mirror of
https://git.haproxy.org/git/haproxy.git/
synced 2026-01-16 14:21:03 +01:00
The last 3 fields were 3 list heads that are per-thread, and which are: - the pool's LRU head - the buffer_wq - the streams list head Moving them into thread_ctx completes the removal of dynamic elements from the struct thread_info. Now all these dynamic elements are packed together at a single place for a thread.
718 lines
19 KiB
C
718 lines
19 KiB
C
/*
|
|
* Memory management functions.
|
|
*
|
|
* Copyright 2000-2007 Willy Tarreau <w@1wt.eu>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <sys/mman.h>
|
|
#include <errno.h>
|
|
|
|
#include <haproxy/activity.h>
|
|
#include <haproxy/api.h>
|
|
#include <haproxy/applet-t.h>
|
|
#include <haproxy/cfgparse.h>
|
|
#include <haproxy/channel.h>
|
|
#include <haproxy/cli.h>
|
|
#include <haproxy/errors.h>
|
|
#include <haproxy/global.h>
|
|
#include <haproxy/list.h>
|
|
#include <haproxy/pool.h>
|
|
#include <haproxy/stats-t.h>
|
|
#include <haproxy/stream_interface.h>
|
|
#include <haproxy/thread.h>
|
|
#include <haproxy/tools.h>
|
|
|
|
|
|
#ifdef CONFIG_HAP_POOLS
|
|
/* These ones are initialized per-thread on startup by init_pools() */
|
|
THREAD_LOCAL size_t pool_cache_bytes = 0; /* total cache size */
|
|
THREAD_LOCAL size_t pool_cache_count = 0; /* #cache objects */
|
|
#endif
|
|
|
|
static struct list pools = LIST_HEAD_INIT(pools);
|
|
int mem_poison_byte = -1;
|
|
|
|
#ifdef DEBUG_FAIL_ALLOC
|
|
static int mem_fail_rate = 0;
|
|
#endif
|
|
|
|
#if defined(HA_HAVE_MALLOC_TRIM)
|
|
static int using_libc_allocator = 0;
|
|
|
|
/* ask the allocator to trim memory pools */
|
|
static void trim_all_pools(void)
|
|
{
|
|
if (using_libc_allocator)
|
|
malloc_trim(0);
|
|
}
|
|
|
|
/* check if we're using the same allocator as the one that provides
|
|
* malloc_trim() and mallinfo(). The principle is that on glibc, both
|
|
* malloc_trim() and mallinfo() are provided, and using mallinfo() we
|
|
* can check if malloc() is performed through glibc or any other one
|
|
* the executable was linked against (e.g. jemalloc).
|
|
*/
|
|
static void detect_allocator(void)
|
|
{
|
|
#ifdef HA_HAVE_MALLINFO2
|
|
struct mallinfo2 mi1, mi2;
|
|
#else
|
|
struct mallinfo mi1, mi2;
|
|
#endif
|
|
void *ptr;
|
|
|
|
#ifdef HA_HAVE_MALLINFO2
|
|
mi1 = mallinfo2();
|
|
#else
|
|
mi1 = mallinfo();
|
|
#endif
|
|
ptr = DISGUISE(malloc(1));
|
|
#ifdef HA_HAVE_MALLINFO2
|
|
mi2 = mallinfo2();
|
|
#else
|
|
mi2 = mallinfo();
|
|
#endif
|
|
free(DISGUISE(ptr));
|
|
|
|
using_libc_allocator = !!memcmp(&mi1, &mi2, sizeof(mi1));
|
|
}
|
|
|
|
static int is_trim_enabled(void)
|
|
{
|
|
return using_libc_allocator;
|
|
}
|
|
#else
|
|
|
|
static void trim_all_pools(void)
|
|
{
|
|
}
|
|
|
|
static void detect_allocator(void)
|
|
{
|
|
}
|
|
|
|
static int is_trim_enabled(void)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/* Try to find an existing shared pool with the same characteristics and
|
|
* returns it, otherwise creates this one. NULL is returned if no memory
|
|
* is available for a new creation. Two flags are supported :
|
|
* - MEM_F_SHARED to indicate that the pool may be shared with other users
|
|
* - MEM_F_EXACT to indicate that the size must not be rounded up
|
|
*/
|
|
struct pool_head *create_pool(char *name, unsigned int size, unsigned int flags)
|
|
{
|
|
struct pool_head *pool;
|
|
struct pool_head *entry;
|
|
struct list *start;
|
|
unsigned int align;
|
|
int thr __maybe_unused;
|
|
|
|
/* We need to store a (void *) at the end of the chunks. Since we know
|
|
* that the malloc() function will never return such a small size,
|
|
* let's round the size up to something slightly bigger, in order to
|
|
* ease merging of entries. Note that the rounding is a power of two.
|
|
* This extra (void *) is not accounted for in the size computation
|
|
* so that the visible parts outside are not affected.
|
|
*
|
|
* Note: for the LRU cache, we need to store 2 doubly-linked lists.
|
|
*/
|
|
|
|
if (!(flags & MEM_F_EXACT)) {
|
|
align = 4 * sizeof(void *); // 2 lists = 4 pointers min
|
|
size = ((size + POOL_EXTRA + align - 1) & -align) - POOL_EXTRA;
|
|
}
|
|
|
|
/* TODO: thread: we do not lock pool list for now because all pools are
|
|
* created during HAProxy startup (so before threads creation) */
|
|
start = &pools;
|
|
pool = NULL;
|
|
|
|
list_for_each_entry(entry, &pools, list) {
|
|
if (entry->size == size) {
|
|
/* either we can share this place and we take it, or
|
|
* we look for a shareable one or for the next position
|
|
* before which we will insert a new one.
|
|
*/
|
|
if ((flags & entry->flags & MEM_F_SHARED)
|
|
#ifdef DEBUG_DONT_SHARE_POOLS
|
|
&& strcmp(name, entry->name) == 0
|
|
#endif
|
|
) {
|
|
/* we can share this one */
|
|
pool = entry;
|
|
DPRINTF(stderr, "Sharing %s with %s\n", name, pool->name);
|
|
break;
|
|
}
|
|
}
|
|
else if (entry->size > size) {
|
|
/* insert before this one */
|
|
start = &entry->list;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!pool) {
|
|
if (!pool)
|
|
pool = calloc(1, sizeof(*pool));
|
|
|
|
if (!pool)
|
|
return NULL;
|
|
if (name)
|
|
strlcpy2(pool->name, name, sizeof(pool->name));
|
|
pool->size = size;
|
|
pool->flags = flags;
|
|
LIST_APPEND(start, &pool->list);
|
|
|
|
#ifdef CONFIG_HAP_POOLS
|
|
/* update per-thread pool cache if necessary */
|
|
for (thr = 0; thr < MAX_THREADS; thr++) {
|
|
LIST_INIT(&pool->cache[thr].list);
|
|
}
|
|
#endif
|
|
}
|
|
pool->users++;
|
|
return pool;
|
|
}
|
|
|
|
/* Tries to allocate an object for the pool <pool> using the system's allocator
|
|
* and directly returns it. The pool's allocated counter is checked and updated,
|
|
* but no other checks are performed.
|
|
*/
|
|
void *pool_get_from_os(struct pool_head *pool)
|
|
{
|
|
if (!pool->limit || pool->allocated < pool->limit) {
|
|
void *ptr = pool_alloc_area(pool->size + POOL_EXTRA);
|
|
if (ptr) {
|
|
_HA_ATOMIC_INC(&pool->allocated);
|
|
return ptr;
|
|
}
|
|
_HA_ATOMIC_INC(&pool->failed);
|
|
}
|
|
activity[tid].pool_fail++;
|
|
return NULL;
|
|
|
|
}
|
|
|
|
/* Releases a pool item back to the operating system and atomically updates
|
|
* the allocation counter.
|
|
*/
|
|
void pool_put_to_os(struct pool_head *pool, void *ptr)
|
|
{
|
|
#ifdef DEBUG_UAF
|
|
/* This object will be released for real in order to detect a use after
|
|
* free. We also force a write to the area to ensure we crash on double
|
|
* free or free of a const area.
|
|
*/
|
|
*(uint32_t *)ptr = 0xDEADADD4;
|
|
#endif /* DEBUG_UAF */
|
|
|
|
pool_free_area(ptr, pool->size + POOL_EXTRA);
|
|
_HA_ATOMIC_DEC(&pool->allocated);
|
|
}
|
|
|
|
/* Tries to allocate an object for the pool <pool> using the system's allocator
|
|
* and directly returns it. The pool's counters are updated but the object is
|
|
* never cached, so this is usable with and without local or shared caches.
|
|
*/
|
|
void *pool_alloc_nocache(struct pool_head *pool)
|
|
{
|
|
void *ptr = NULL;
|
|
|
|
ptr = pool_get_from_os(pool);
|
|
if (!ptr)
|
|
return NULL;
|
|
|
|
swrate_add_scaled(&pool->needed_avg, POOL_AVG_SAMPLES, pool->used, POOL_AVG_SAMPLES/4);
|
|
_HA_ATOMIC_INC(&pool->used);
|
|
|
|
#ifdef DEBUG_MEMORY_POOLS
|
|
/* keep track of where the element was allocated from */
|
|
*POOL_LINK(pool, ptr) = (void *)pool;
|
|
#endif
|
|
return ptr;
|
|
}
|
|
|
|
/* Release a pool item back to the OS and keeps the pool's counters up to date.
|
|
* This is always defined even when pools are not enabled (their usage stats
|
|
* are maintained).
|
|
*/
|
|
void pool_free_nocache(struct pool_head *pool, void *ptr)
|
|
{
|
|
_HA_ATOMIC_DEC(&pool->used);
|
|
swrate_add(&pool->needed_avg, POOL_AVG_SAMPLES, pool->used);
|
|
pool_put_to_os(pool, ptr);
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_HAP_POOLS
|
|
|
|
/* Evicts some of the oldest objects from one local cache, until its number of
|
|
* objects is no more than 16+1/8 of the total number of locally cached objects
|
|
* or the total size of the local cache is no more than 75% of its maximum (i.e.
|
|
* we don't want a single cache to use all the cache for itself). For this, the
|
|
* list is scanned in reverse.
|
|
*/
|
|
void pool_evict_from_local_cache(struct pool_head *pool)
|
|
{
|
|
struct pool_cache_head *ph = &pool->cache[tid];
|
|
struct pool_cache_item *item;
|
|
|
|
while (ph->count >= 16 + pool_cache_count / 8 &&
|
|
pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE * 3 / 4) {
|
|
item = LIST_NEXT(&ph->list, typeof(item), by_pool);
|
|
ph->count--;
|
|
pool_cache_bytes -= pool->size;
|
|
pool_cache_count--;
|
|
LIST_DELETE(&item->by_pool);
|
|
LIST_DELETE(&item->by_lru);
|
|
pool_put_to_shared_cache(pool, item);
|
|
}
|
|
}
|
|
|
|
/* Evicts some of the oldest objects from the local cache, pushing them to the
|
|
* global pool.
|
|
*/
|
|
void pool_evict_from_local_caches()
|
|
{
|
|
struct pool_cache_item *item;
|
|
struct pool_cache_head *ph;
|
|
struct pool_head *pool;
|
|
|
|
do {
|
|
item = LIST_PREV(&th_ctx->pool_lru_head, struct pool_cache_item *, by_lru);
|
|
/* note: by definition we remove oldest objects so they also are the
|
|
* oldest in their own pools, thus their next is the pool's head.
|
|
*/
|
|
ph = LIST_NEXT(&item->by_pool, struct pool_cache_head *, list);
|
|
pool = container_of(ph - tid, struct pool_head, cache);
|
|
LIST_DELETE(&item->by_pool);
|
|
LIST_DELETE(&item->by_lru);
|
|
ph->count--;
|
|
pool_cache_count--;
|
|
pool_cache_bytes -= pool->size;
|
|
pool_put_to_shared_cache(pool, item);
|
|
} while (pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE * 7 / 8);
|
|
}
|
|
|
|
/* Frees an object to the local cache, possibly pushing oldest objects to the
|
|
* shared cache, which itself may decide to release some of them to the OS.
|
|
* While it is unspecified what the object becomes past this point, it is
|
|
* guaranteed to be released from the users' perpective.
|
|
*/
|
|
void pool_put_to_cache(struct pool_head *pool, void *ptr)
|
|
{
|
|
struct pool_cache_item *item = (struct pool_cache_item *)ptr;
|
|
struct pool_cache_head *ph = &pool->cache[tid];
|
|
|
|
LIST_INSERT(&ph->list, &item->by_pool);
|
|
LIST_INSERT(&th_ctx->pool_lru_head, &item->by_lru);
|
|
ph->count++;
|
|
pool_cache_count++;
|
|
pool_cache_bytes += pool->size;
|
|
|
|
if (unlikely(pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE * 3 / 4)) {
|
|
if (ph->count >= 16 + pool_cache_count / 8)
|
|
pool_evict_from_local_cache(pool);
|
|
if (pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE)
|
|
pool_evict_from_local_caches();
|
|
}
|
|
}
|
|
|
|
#if defined(CONFIG_HAP_NO_GLOBAL_POOLS)
|
|
|
|
/* legacy stuff */
|
|
void pool_flush(struct pool_head *pool)
|
|
{
|
|
}
|
|
|
|
/* This function might ask the malloc library to trim its buffers. */
|
|
void pool_gc(struct pool_head *pool_ctx)
|
|
{
|
|
trim_all_pools();
|
|
}
|
|
|
|
#else /* CONFIG_HAP_NO_GLOBAL_POOLS */
|
|
|
|
/*
|
|
* This function frees whatever can be freed in pool <pool>.
|
|
*/
|
|
void pool_flush(struct pool_head *pool)
|
|
{
|
|
void *next, *temp;
|
|
|
|
if (!pool)
|
|
return;
|
|
|
|
/* The loop below atomically detaches the head of the free list and
|
|
* replaces it with a NULL. Then the list can be released.
|
|
*/
|
|
next = pool->free_list;
|
|
do {
|
|
while (unlikely(next == POOL_BUSY)) {
|
|
__ha_cpu_relax();
|
|
next = _HA_ATOMIC_LOAD(&pool->free_list);
|
|
}
|
|
if (next == NULL)
|
|
return;
|
|
} while (unlikely((next = _HA_ATOMIC_XCHG(&pool->free_list, POOL_BUSY)) == POOL_BUSY));
|
|
_HA_ATOMIC_STORE(&pool->free_list, NULL);
|
|
__ha_barrier_atomic_store();
|
|
|
|
while (next) {
|
|
temp = next;
|
|
next = *POOL_LINK(pool, temp);
|
|
pool_put_to_os(pool, temp);
|
|
}
|
|
/* here, we should have pool->allocated == pool->used */
|
|
}
|
|
|
|
/*
|
|
* This function frees whatever can be freed in all pools, but respecting
|
|
* the minimum thresholds imposed by owners. It makes sure to be alone to
|
|
* run by using thread_isolate(). <pool_ctx> is unused.
|
|
*/
|
|
void pool_gc(struct pool_head *pool_ctx)
|
|
{
|
|
struct pool_head *entry;
|
|
int isolated = thread_isolated();
|
|
|
|
if (!isolated)
|
|
thread_isolate();
|
|
|
|
list_for_each_entry(entry, &pools, list) {
|
|
void *temp;
|
|
//qfprintf(stderr, "Flushing pool %s\n", entry->name);
|
|
while (entry->free_list &&
|
|
(int)(entry->allocated - entry->used) > (int)entry->minavail) {
|
|
temp = entry->free_list;
|
|
entry->free_list = *POOL_LINK(entry, temp);
|
|
pool_put_to_os(entry, temp);
|
|
}
|
|
}
|
|
|
|
trim_all_pools();
|
|
|
|
if (!isolated)
|
|
thread_release();
|
|
}
|
|
#endif /* CONFIG_HAP_NO_GLOBAL_POOLS */
|
|
|
|
#else /* CONFIG_HAP_POOLS */
|
|
|
|
/* legacy stuff */
|
|
void pool_flush(struct pool_head *pool)
|
|
{
|
|
}
|
|
|
|
/* This function might ask the malloc library to trim its buffers. */
|
|
void pool_gc(struct pool_head *pool_ctx)
|
|
{
|
|
trim_all_pools();
|
|
}
|
|
|
|
#endif /* CONFIG_HAP_POOLS */
|
|
|
|
|
|
#ifdef DEBUG_UAF
|
|
|
|
/************* use-after-free allocator *************/
|
|
|
|
/* allocates an area of size <size> and returns it. The semantics are similar
|
|
* to those of malloc(). However the allocation is rounded up to 4kB so that a
|
|
* full page is allocated. This ensures the object can be freed alone so that
|
|
* future dereferences are easily detected. The returned object is always
|
|
* 16-bytes aligned to avoid issues with unaligned structure objects. In case
|
|
* some padding is added, the area's start address is copied at the end of the
|
|
* padding to help detect underflows.
|
|
*/
|
|
void *pool_alloc_area_uaf(size_t size)
|
|
{
|
|
size_t pad = (4096 - size) & 0xFF0;
|
|
int isolated;
|
|
void *ret;
|
|
|
|
isolated = thread_isolated();
|
|
if (!isolated)
|
|
thread_harmless_now();
|
|
ret = mmap(NULL, (size + 4095) & -4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
|
|
if (ret != MAP_FAILED) {
|
|
/* let's dereference the page before returning so that the real
|
|
* allocation in the system is performed without holding the lock.
|
|
*/
|
|
*(int *)ret = 0;
|
|
if (pad >= sizeof(void *))
|
|
*(void **)(ret + pad - sizeof(void *)) = ret + pad;
|
|
ret += pad;
|
|
} else {
|
|
ret = NULL;
|
|
}
|
|
if (!isolated)
|
|
thread_harmless_end();
|
|
return ret;
|
|
}
|
|
|
|
/* frees an area <area> of size <size> allocated by pool_alloc_area(). The
|
|
* semantics are identical to free() except that the size must absolutely match
|
|
* the one passed to pool_alloc_area(). In case some padding is added, the
|
|
* area's start address is compared to the one at the end of the padding, and
|
|
* a segfault is triggered if they don't match, indicating an underflow.
|
|
*/
|
|
void pool_free_area_uaf(void *area, size_t size)
|
|
{
|
|
size_t pad = (4096 - size) & 0xFF0;
|
|
|
|
if (pad >= sizeof(void *) && *(void **)(area - sizeof(void *)) != area)
|
|
ABORT_NOW();
|
|
|
|
thread_harmless_now();
|
|
munmap(area - pad, (size + 4095) & -4096);
|
|
thread_harmless_end();
|
|
}
|
|
|
|
#endif /* DEBUG_UAF */
|
|
|
|
/*
|
|
* This function destroys a pool by freeing it completely, unless it's still
|
|
* in use. This should be called only under extreme circumstances. It always
|
|
* returns NULL if the resulting pool is empty, easing the clearing of the old
|
|
* pointer, otherwise it returns the pool.
|
|
* .
|
|
*/
|
|
void *pool_destroy(struct pool_head *pool)
|
|
{
|
|
if (pool) {
|
|
pool_flush(pool);
|
|
if (pool->used)
|
|
return pool;
|
|
pool->users--;
|
|
if (!pool->users) {
|
|
LIST_DELETE(&pool->list);
|
|
/* note that if used == 0, the cache is empty */
|
|
free(pool);
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* This destroys all pools on exit. It is *not* thread safe. */
|
|
void pool_destroy_all()
|
|
{
|
|
struct pool_head *entry, *back;
|
|
|
|
list_for_each_entry_safe(entry, back, &pools, list)
|
|
pool_destroy(entry);
|
|
}
|
|
|
|
/* This function dumps memory usage information into the trash buffer. */
|
|
void dump_pools_to_trash()
|
|
{
|
|
struct pool_head *entry;
|
|
unsigned long allocated, used;
|
|
int nbpools;
|
|
#ifdef CONFIG_HAP_POOLS
|
|
unsigned long cached_bytes = 0;
|
|
uint cached = 0;
|
|
#endif
|
|
|
|
allocated = used = nbpools = 0;
|
|
chunk_printf(&trash, "Dumping pools usage. Use SIGQUIT to flush them.\n");
|
|
list_for_each_entry(entry, &pools, list) {
|
|
#ifdef CONFIG_HAP_POOLS
|
|
int i;
|
|
for (cached = i = 0; i < global.nbthread; i++)
|
|
cached += entry->cache[i].count;
|
|
cached_bytes += cached * entry->size;
|
|
#endif
|
|
chunk_appendf(&trash, " - Pool %s (%u bytes) : %u allocated (%u bytes), %u used"
|
|
#ifdef CONFIG_HAP_POOLS
|
|
" (~%u by thread caches)"
|
|
#endif
|
|
", needed_avg %u, %u failures, %u users, @%p%s\n",
|
|
entry->name, entry->size, entry->allocated,
|
|
entry->size * entry->allocated, entry->used,
|
|
#ifdef CONFIG_HAP_POOLS
|
|
cached,
|
|
#endif
|
|
swrate_avg(entry->needed_avg, POOL_AVG_SAMPLES), entry->failed,
|
|
entry->users, entry,
|
|
(entry->flags & MEM_F_SHARED) ? " [SHARED]" : "");
|
|
|
|
allocated += entry->allocated * entry->size;
|
|
used += entry->used * entry->size;
|
|
nbpools++;
|
|
}
|
|
chunk_appendf(&trash, "Total: %d pools, %lu bytes allocated, %lu used"
|
|
#ifdef CONFIG_HAP_POOLS
|
|
" (~%lu by thread caches)"
|
|
#endif
|
|
".\n",
|
|
nbpools, allocated, used
|
|
#ifdef CONFIG_HAP_POOLS
|
|
, cached_bytes
|
|
#endif
|
|
);
|
|
}
|
|
|
|
/* Dump statistics on pools usage. */
|
|
void dump_pools(void)
|
|
{
|
|
dump_pools_to_trash();
|
|
qfprintf(stderr, "%s", trash.area);
|
|
}
|
|
|
|
/* This function returns the total number of failed pool allocations */
|
|
int pool_total_failures()
|
|
{
|
|
struct pool_head *entry;
|
|
int failed = 0;
|
|
|
|
list_for_each_entry(entry, &pools, list)
|
|
failed += entry->failed;
|
|
return failed;
|
|
}
|
|
|
|
/* This function returns the total amount of memory allocated in pools (in bytes) */
|
|
unsigned long pool_total_allocated()
|
|
{
|
|
struct pool_head *entry;
|
|
unsigned long allocated = 0;
|
|
|
|
list_for_each_entry(entry, &pools, list)
|
|
allocated += entry->allocated * entry->size;
|
|
return allocated;
|
|
}
|
|
|
|
/* This function returns the total amount of memory used in pools (in bytes) */
|
|
unsigned long pool_total_used()
|
|
{
|
|
struct pool_head *entry;
|
|
unsigned long used = 0;
|
|
|
|
list_for_each_entry(entry, &pools, list)
|
|
used += entry->used * entry->size;
|
|
return used;
|
|
}
|
|
|
|
/* This function dumps memory usage information onto the stream interface's
|
|
* read buffer. It returns 0 as long as it does not complete, non-zero upon
|
|
* completion. No state is used.
|
|
*/
|
|
static int cli_io_handler_dump_pools(struct appctx *appctx)
|
|
{
|
|
struct stream_interface *si = appctx->owner;
|
|
|
|
dump_pools_to_trash();
|
|
if (ci_putchk(si_ic(si), &trash) == -1) {
|
|
si_rx_room_blk(si);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* callback used to create early pool <name> of size <size> and store the
|
|
* resulting pointer into <ptr>. If the allocation fails, it quits with after
|
|
* emitting an error message.
|
|
*/
|
|
void create_pool_callback(struct pool_head **ptr, char *name, unsigned int size)
|
|
{
|
|
*ptr = create_pool(name, size, MEM_F_SHARED);
|
|
if (!*ptr) {
|
|
ha_alert("Failed to allocate pool '%s' of size %u : %s. Aborting.\n",
|
|
name, size, strerror(errno));
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
/* Initializes all per-thread arrays on startup */
|
|
static void init_pools()
|
|
{
|
|
#ifdef CONFIG_HAP_POOLS
|
|
int thr;
|
|
|
|
for (thr = 0; thr < MAX_THREADS; thr++) {
|
|
LIST_INIT(&ha_thread_ctx[thr].pool_lru_head);
|
|
}
|
|
#endif
|
|
detect_allocator();
|
|
}
|
|
|
|
INITCALL0(STG_PREPARE, init_pools);
|
|
|
|
/* Report in build options if trim is supported */
|
|
static void pools_register_build_options(void)
|
|
{
|
|
if (is_trim_enabled()) {
|
|
char *ptr = NULL;
|
|
memprintf(&ptr, "Support for malloc_trim() is enabled.");
|
|
hap_register_build_opts(ptr, 1);
|
|
}
|
|
}
|
|
INITCALL0(STG_REGISTER, pools_register_build_options);
|
|
|
|
/* register cli keywords */
|
|
static struct cli_kw_list cli_kws = {{ },{
|
|
{ { "show", "pools", NULL }, "show pools : report information about the memory pools usage", NULL, cli_io_handler_dump_pools },
|
|
{{},}
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);
|
|
|
|
#ifdef DEBUG_FAIL_ALLOC
|
|
|
|
int mem_should_fail(const struct pool_head *pool)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (mem_fail_rate > 0 && !(global.mode & MODE_STARTING)) {
|
|
if (mem_fail_rate > statistical_prng_range(100))
|
|
ret = 1;
|
|
else
|
|
ret = 0;
|
|
}
|
|
return ret;
|
|
|
|
}
|
|
|
|
/* config parser for global "tune.fail-alloc" */
|
|
static int mem_parse_global_fail_alloc(char **args, int section_type, struct proxy *curpx,
|
|
const struct proxy *defpx, const char *file, int line,
|
|
char **err)
|
|
{
|
|
if (too_many_args(1, args, err, NULL))
|
|
return -1;
|
|
mem_fail_rate = atoi(args[1]);
|
|
if (mem_fail_rate < 0 || mem_fail_rate > 100) {
|
|
memprintf(err, "'%s' expects a numeric value between 0 and 100.", args[0]);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/* register global config keywords */
|
|
static struct cfg_kw_list mem_cfg_kws = {ILH, {
|
|
#ifdef DEBUG_FAIL_ALLOC
|
|
{ CFG_GLOBAL, "tune.fail-alloc", mem_parse_global_fail_alloc },
|
|
#endif
|
|
{ 0, NULL, NULL }
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, cfg_register_keywords, &mem_cfg_kws);
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-indent-level: 8
|
|
* c-basic-offset: 8
|
|
* End:
|
|
*/
|