haproxy/src/ssl_utils.c
Remi Tricot-Le Breton 14615a8672 CLEANUP: ssl: Use only NIDs in curve name to id table
The curve name to curve id mapping table was built out of multiple
internal tables found in openssl sources, namely the 'nid_to_group'
table found in 'ssl/t1_lib.c' which maps openssl specific NIDs to public
IANA curve identifiers. In this table, there were two instances of
EVP_PKEY_XXX ids being used while all the other ones are NID_XXX
identifiers.
Since the two EVP_PKEY are actually equal to their NID equivalent in
'include/openssl/evp.h' we can use NIDs all along for better coherence.
2025-07-24 10:58:54 +02:00

1041 lines
29 KiB
C

/*
* Utility functions for SSL:
* Mostly generic functions that retrieve information from certificates
*
* Copyright (C) 2012 EXCELIANCE, Emeric Brun <ebrun@exceliance.fr>
* Copyright (C) 2020 HAProxy Technologies, William Lallemand <wlallemand@haproxy.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <haproxy/api.h>
#include <haproxy/buf-t.h>
#include <haproxy/chunk.h>
#include <haproxy/openssl-compat.h>
#include <haproxy/ssl_sock.h>
#include <haproxy/ssl_utils.h>
/* fill a buffer with the algorithm and size of a public key */
int cert_get_pkey_algo(X509 *crt, struct buffer *out)
{
int bits = 0;
int sig = TLSEXT_signature_anonymous;
int len = -1;
EVP_PKEY *pkey;
pkey = X509_get_pubkey(crt);
if (pkey) {
bits = EVP_PKEY_bits(pkey);
switch(EVP_PKEY_base_id(pkey)) {
case EVP_PKEY_RSA:
sig = TLSEXT_signature_rsa;
break;
case EVP_PKEY_EC:
sig = TLSEXT_signature_ecdsa;
break;
case EVP_PKEY_DSA:
sig = TLSEXT_signature_dsa;
break;
}
EVP_PKEY_free(pkey);
}
switch(sig) {
case TLSEXT_signature_rsa:
len = chunk_printf(out, "RSA%d", bits);
break;
case TLSEXT_signature_ecdsa:
len = chunk_printf(out, "EC%d", bits);
break;
case TLSEXT_signature_dsa:
len = chunk_printf(out, "DSA%d", bits);
break;
default:
return 0;
}
if (len < 0)
return 0;
return 1;
}
/* Extract a serial from a cert, and copy it to a chunk.
* Returns 1 if serial is found and copied, 0 if no serial found and
* -1 if output is not large enough.
*/
int ssl_sock_get_serial(X509 *crt, struct buffer *out)
{
ASN1_INTEGER *serial;
serial = X509_get_serialNumber(crt);
if (!serial)
return 0;
if (out->size < serial->length)
return -1;
memcpy(out->area, serial->data, serial->length);
out->data = serial->length;
return 1;
}
/* Extract a cert to der, and copy it to a chunk.
* Returns 1 if the cert is found and copied, 0 on der conversion failure
* and -1 if the output is not large enough.
*/
int ssl_sock_crt2der(X509 *crt, struct buffer *out)
{
int len;
unsigned char *p = (unsigned char *) out->area;
len = i2d_X509(crt, NULL);
if (len <= 0)
return 1;
if (out->size < len)
return -1;
i2d_X509(crt, &p);
out->data = len;
return 1;
}
/* Copy Date in ASN1_UTCTIME format in struct buffer out.
* Returns 1 if serial is found and copied, 0 if no valid time found
* and -1 if output is not large enough.
*/
int ssl_sock_get_time(ASN1_TIME *tm, struct buffer *out)
{
if (tm->type == V_ASN1_GENERALIZEDTIME) {
ASN1_GENERALIZEDTIME *gentm = (ASN1_GENERALIZEDTIME *)tm;
if (gentm->length < 12)
return 0;
if (gentm->data[0] != 0x32 || gentm->data[1] != 0x30)
return 0;
if (out->size < gentm->length-2)
return -1;
memcpy(out->area, gentm->data+2, gentm->length-2);
out->data = gentm->length-2;
return 1;
}
else if (tm->type == V_ASN1_UTCTIME) {
ASN1_UTCTIME *utctm = (ASN1_UTCTIME *)tm;
if (utctm->length < 10)
return 0;
if (utctm->data[0] >= 0x35)
return 0;
if (out->size < utctm->length)
return -1;
memcpy(out->area, utctm->data, utctm->length);
out->data = utctm->length;
return 1;
}
return 0;
}
/* Extract an entry from a X509_NAME and copy its value to an output chunk.
* Returns 1 if entry found, 0 if entry not found, or -1 if output not large enough.
*/
int ssl_sock_get_dn_entry(X509_NAME *a, const struct buffer *entry, int pos,
struct buffer *out)
{
X509_NAME_ENTRY *ne;
ASN1_OBJECT *obj;
ASN1_STRING *data;
const unsigned char *data_ptr;
int data_len;
int i, j, n;
int cur = 0;
const char *s;
char tmp[128];
int name_count;
name_count = X509_NAME_entry_count(a);
out->data = 0;
for (i = 0; i < name_count; i++) {
if (pos < 0)
j = (name_count-1) - i;
else
j = i;
ne = X509_NAME_get_entry(a, j);
obj = X509_NAME_ENTRY_get_object(ne);
data = X509_NAME_ENTRY_get_data(ne);
data_ptr = ASN1_STRING_get0_data(data);
data_len = ASN1_STRING_length(data);
n = OBJ_obj2nid(obj);
if ((n == NID_undef) || ((s = OBJ_nid2sn(n)) == NULL)) {
i2t_ASN1_OBJECT(tmp, sizeof(tmp), obj);
s = tmp;
}
if (chunk_strcasecmp(entry, s) != 0)
continue;
if (pos < 0)
cur--;
else
cur++;
if (cur != pos)
continue;
if (data_len > out->size)
return -1;
memcpy(out->area, data_ptr, data_len);
out->data = data_len;
return 1;
}
return 0;
}
/*
* Extract the DN in the specified format from the X509_NAME and copy result to a chunk.
* Currently supports rfc2253 for returning LDAP V3 DNs.
* Returns 1 if dn entries exist, 0 if no dn entry was found.
*/
int ssl_sock_get_dn_formatted(X509_NAME *a, const struct buffer *format, struct buffer *out)
{
BIO *bio = NULL;
int ret = 0;
int data_len = 0;
if (chunk_strcmp(format, "rfc2253") == 0) {
bio = BIO_new(BIO_s_mem());
if (bio == NULL)
goto out;
if (X509_NAME_print_ex(bio, a, 0, XN_FLAG_RFC2253) < 0)
goto out;
if ((data_len = BIO_read(bio, out->area, out->size)) <= 0)
goto out;
out->data = data_len;
ret = 1;
}
out:
if (bio)
BIO_free(bio);
return ret;
}
/* Extract and format full DN from a X509_NAME and copy result into a chunk
* Returns 1 if dn entries exits, 0 if no dn entry found or -1 if output is not large enough.
*/
int ssl_sock_get_dn_oneline(X509_NAME *a, struct buffer *out)
{
X509_NAME_ENTRY *ne;
ASN1_OBJECT *obj;
ASN1_STRING *data;
const unsigned char *data_ptr;
int data_len;
int i, n, ln;
int l = 0;
const char *s;
char *p;
char tmp[128];
int name_count;
name_count = X509_NAME_entry_count(a);
out->data = 0;
p = out->area;
for (i = 0; i < name_count; i++) {
ne = X509_NAME_get_entry(a, i);
obj = X509_NAME_ENTRY_get_object(ne);
data = X509_NAME_ENTRY_get_data(ne);
data_ptr = ASN1_STRING_get0_data(data);
data_len = ASN1_STRING_length(data);
n = OBJ_obj2nid(obj);
if ((n == NID_undef) || ((s = OBJ_nid2sn(n)) == NULL)) {
i2t_ASN1_OBJECT(tmp, sizeof(tmp), obj);
s = tmp;
}
ln = strlen(s);
l += 1 + ln + 1 + data_len;
if (l > out->size)
return -1;
out->data = l;
*(p++)='/';
memcpy(p, s, ln);
p += ln;
*(p++)='=';
memcpy(p, data_ptr, data_len);
p += data_len;
}
if (!out->data)
return 0;
return 1;
}
extern int ssl_client_crt_ref_index;
/*
* This function fetches the SSL certificate for a specific connection (either
* client certificate or server certificate depending on the cert_peer
* parameter).
* When trying to get the peer certificate from the server side, we first try to
* use the dedicated SSL_get_peer_certificate function, but we fall back to
* trying to get the client certificate reference that might have been stored in
* the SSL structure's ex_data during the verification process.
* Returns NULL in case of failure.
*/
X509* ssl_sock_get_peer_certificate(SSL *ssl)
{
X509* cert;
cert = SSL_get_peer_certificate(ssl);
/* Get the client certificate reference stored in the SSL
* structure's ex_data during the verification process. */
if (!cert) {
cert = SSL_get_ex_data(ssl, ssl_client_crt_ref_index);
if (cert)
X509_up_ref(cert);
}
return cert;
}
/*
* This function fetches the x509* for the root CA of client certificate
* from the verified chain. We use the SSL_get0_verified_chain and get the
* last certificate in the x509 stack.
*
* Returns NULL in case of failure.
*/
#ifdef HAVE_SSL_get0_verified_chain
X509* ssl_sock_get_verified_chain_root(SSL *ssl)
{
STACK_OF(X509) *chain = NULL;
X509 *crt = NULL;
int i;
chain = SSL_get0_verified_chain(ssl);
if (!chain)
return NULL;
for (i = 0; i < sk_X509_num(chain); i++) {
crt = sk_X509_value(chain, i);
if (X509_check_issued(crt, crt) == X509_V_OK)
break;
}
return crt;
}
#endif
/*
* Take an OpenSSL version in text format and return a numeric openssl version
* Return 0 if it failed to parse the version
*
* https://www.openssl.org/docs/man1.1.1/man3/OPENSSL_VERSION_NUMBER.html
*
* MNNFFPPS: major minor fix patch status
*
* The status nibble has one of the values 0 for development, 1 to e for betas
* 1 to 14, and f for release.
*
* for example
*
* 0x0090821f 0.9.8zh
* 0x1000215f 1.0.2u
* 0x30000000 3.0.0-alpha17
* 0x30000002 3.0.0-beta2
* 0x3000000e 3.0.0-beta14
* 0x3000000f 3.0.0
*/
unsigned int openssl_version_parser(const char *version)
{
unsigned int numversion;
unsigned int major = 0, minor = 0, fix = 0, patch = 0, status = 0;
char *p, *end;
p = (char *)version;
if (!p || !*p)
return 0;
major = strtol(p, &end, 10);
if (*end != '.' || major > 0xf)
goto error;
p = end + 1;
minor = strtol(p, &end, 10);
if (*end != '.' || minor > 0xff)
goto error;
p = end + 1;
fix = strtol(p, &end, 10);
if (fix > 0xff)
goto error;
p = end;
if (!*p) {
/* end of the string, that's a release */
status = 0xf;
} else if (*p == '-') {
/* after the hyphen, only the beta will increment the status
* counter, all others versions will be considered as "dev" and
* does not increment anything */
p++;
if (!strncmp(p, "beta", 4)) {
p += 4;
status = strtol(p, &end, 10);
if (status > 14)
goto error;
}
} else {
/* that's a patch release */
patch = 1;
/* add the value of each letter */
while (*p) {
patch += (*p & ~0x20) - 'A';
p++;
}
status = 0xf;
}
end:
numversion = ((major & 0xf) << 28) | ((minor & 0xff) << 20) | ((fix & 0xff) << 12) | ((patch & 0xff) << 4) | (status & 0xf);
return numversion;
error:
return 0;
}
/* Exclude GREASE (RFC8701) values from input buffer */
void exclude_tls_grease(char *input, int len, struct buffer *output)
{
int ptr = 0;
while (ptr < len - 1) {
if (input[ptr] != input[ptr+1] || (input[ptr] & 0x0f) != 0x0a) {
if (output->data <= output->size - 2) {
memcpy(output->area + output->data, input + ptr, 2);
output->data += 2;
} else
break;
}
ptr += 2;
}
if (output->size - output->data > 0 && len - ptr > 0)
output->area[output->data++] = input[ptr];
}
/*
* The following generates an array <x509_v_codes> in which the X509_V_ERR_*
* codes are populated with there string equivalent. Depending on the version
* of the SSL library, some code does not exist, these will be populated as
* "-1" in the array.
*
* The list was taken from
* https://github.com/openssl/openssl/blob/master/include/openssl/x509_vfy.h.in
* and must be updated when new constant are introduced.
*/
#undef _Q
#define _Q(x) (#x)
#undef V
#define V(x) { .code = -1, .value = _Q(x), .string = #x }
static struct x509_v_codes {
int code; // integer value of the code or -1 if undefined
const char *value; // value of the macro as a string or its name
const char *string; // name of the macro
} x509_v_codes[] = {
V(X509_V_OK),
V(X509_V_ERR_UNSPECIFIED),
V(X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT),
V(X509_V_ERR_UNABLE_TO_GET_CRL),
V(X509_V_ERR_UNABLE_TO_DECRYPT_CERT_SIGNATURE),
V(X509_V_ERR_UNABLE_TO_DECRYPT_CRL_SIGNATURE),
V(X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY),
V(X509_V_ERR_CERT_SIGNATURE_FAILURE),
V(X509_V_ERR_CRL_SIGNATURE_FAILURE),
V(X509_V_ERR_CERT_NOT_YET_VALID),
V(X509_V_ERR_CERT_HAS_EXPIRED),
V(X509_V_ERR_CRL_NOT_YET_VALID),
V(X509_V_ERR_CRL_HAS_EXPIRED),
V(X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD),
V(X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD),
V(X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD),
V(X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD),
V(X509_V_ERR_OUT_OF_MEM),
V(X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT),
V(X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN),
V(X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY),
V(X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE),
V(X509_V_ERR_CERT_CHAIN_TOO_LONG),
V(X509_V_ERR_CERT_REVOKED),
V(X509_V_ERR_NO_ISSUER_PUBLIC_KEY),
V(X509_V_ERR_PATH_LENGTH_EXCEEDED),
V(X509_V_ERR_INVALID_PURPOSE),
V(X509_V_ERR_CERT_UNTRUSTED),
V(X509_V_ERR_CERT_REJECTED),
V(X509_V_ERR_SUBJECT_ISSUER_MISMATCH),
V(X509_V_ERR_AKID_SKID_MISMATCH),
V(X509_V_ERR_AKID_ISSUER_SERIAL_MISMATCH),
V(X509_V_ERR_KEYUSAGE_NO_CERTSIGN),
V(X509_V_ERR_UNABLE_TO_GET_CRL_ISSUER),
V(X509_V_ERR_UNHANDLED_CRITICAL_EXTENSION),
V(X509_V_ERR_KEYUSAGE_NO_CRL_SIGN),
V(X509_V_ERR_UNHANDLED_CRITICAL_CRL_EXTENSION),
V(X509_V_ERR_INVALID_NON_CA),
V(X509_V_ERR_PROXY_PATH_LENGTH_EXCEEDED),
V(X509_V_ERR_KEYUSAGE_NO_DIGITAL_SIGNATURE),
V(X509_V_ERR_PROXY_CERTIFICATES_NOT_ALLOWED),
V(X509_V_ERR_INVALID_EXTENSION),
V(X509_V_ERR_INVALID_POLICY_EXTENSION),
V(X509_V_ERR_NO_EXPLICIT_POLICY),
V(X509_V_ERR_DIFFERENT_CRL_SCOPE),
V(X509_V_ERR_UNSUPPORTED_EXTENSION_FEATURE),
V(X509_V_ERR_UNNESTED_RESOURCE),
V(X509_V_ERR_PERMITTED_VIOLATION),
V(X509_V_ERR_EXCLUDED_VIOLATION),
V(X509_V_ERR_SUBTREE_MINMAX),
V(X509_V_ERR_APPLICATION_VERIFICATION),
V(X509_V_ERR_UNSUPPORTED_CONSTRAINT_TYPE),
V(X509_V_ERR_UNSUPPORTED_CONSTRAINT_SYNTAX),
V(X509_V_ERR_UNSUPPORTED_NAME_SYNTAX),
V(X509_V_ERR_CRL_PATH_VALIDATION_ERROR),
V(X509_V_ERR_PATH_LOOP),
V(X509_V_ERR_SUITE_B_INVALID_VERSION),
V(X509_V_ERR_SUITE_B_INVALID_ALGORITHM),
V(X509_V_ERR_SUITE_B_INVALID_CURVE),
V(X509_V_ERR_SUITE_B_INVALID_SIGNATURE_ALGORITHM),
V(X509_V_ERR_SUITE_B_LOS_NOT_ALLOWED),
V(X509_V_ERR_SUITE_B_CANNOT_SIGN_P_384_WITH_P_256),
V(X509_V_ERR_HOSTNAME_MISMATCH),
V(X509_V_ERR_EMAIL_MISMATCH),
V(X509_V_ERR_IP_ADDRESS_MISMATCH),
V(X509_V_ERR_DANE_NO_MATCH),
V(X509_V_ERR_EE_KEY_TOO_SMALL),
V(X509_V_ERR_CA_KEY_TOO_SMALL),
V(X509_V_ERR_CA_MD_TOO_WEAK),
V(X509_V_ERR_INVALID_CALL),
V(X509_V_ERR_STORE_LOOKUP),
V(X509_V_ERR_NO_VALID_SCTS),
V(X509_V_ERR_PROXY_SUBJECT_NAME_VIOLATION),
V(X509_V_ERR_OCSP_VERIFY_NEEDED),
V(X509_V_ERR_OCSP_VERIFY_FAILED),
V(X509_V_ERR_OCSP_CERT_UNKNOWN),
V(X509_V_ERR_UNSUPPORTED_SIGNATURE_ALGORITHM),
V(X509_V_ERR_SIGNATURE_ALGORITHM_MISMATCH),
V(X509_V_ERR_SIGNATURE_ALGORITHM_INCONSISTENCY),
V(X509_V_ERR_INVALID_CA),
V(X509_V_ERR_PATHLEN_INVALID_FOR_NON_CA),
V(X509_V_ERR_PATHLEN_WITHOUT_KU_KEY_CERT_SIGN),
V(X509_V_ERR_KU_KEY_CERT_SIGN_INVALID_FOR_NON_CA),
V(X509_V_ERR_ISSUER_NAME_EMPTY),
V(X509_V_ERR_SUBJECT_NAME_EMPTY),
V(X509_V_ERR_MISSING_AUTHORITY_KEY_IDENTIFIER),
V(X509_V_ERR_MISSING_SUBJECT_KEY_IDENTIFIER),
V(X509_V_ERR_EMPTY_SUBJECT_ALT_NAME),
V(X509_V_ERR_EMPTY_SUBJECT_SAN_NOT_CRITICAL),
V(X509_V_ERR_CA_BCONS_NOT_CRITICAL),
V(X509_V_ERR_AUTHORITY_KEY_IDENTIFIER_CRITICAL),
V(X509_V_ERR_SUBJECT_KEY_IDENTIFIER_CRITICAL),
V(X509_V_ERR_CA_CERT_MISSING_KEY_USAGE),
V(X509_V_ERR_EXTENSIONS_REQUIRE_VERSION_3),
V(X509_V_ERR_EC_KEY_EXPLICIT_PARAMS),
{ 0, NULL, NULL },
};
/*
* Return the X509_V_ERR code corresponding to the name of the constant.
* See https://github.com/openssl/openssl/blob/master/include/openssl/x509_vfy.h.in
* If not found, return -1
*/
int x509_v_err_str_to_int(const char *str)
{
int i;
for (i = 0; x509_v_codes[i].string; i++) {
if (strcmp(str, x509_v_codes[i].string) == 0) {
return x509_v_codes[i].code;
}
}
return -1;
}
/*
* Return the constant name corresponding to the X509_V_ERR code
* See https://github.com/openssl/openssl/blob/master/include/openssl/x509_vfy.h.in
* If not found, return NULL;
*/
const char *x509_v_err_int_to_str(int code)
{
int i;
if (code == -1)
return NULL;
for (i = 0; x509_v_codes[i].string; i++) {
if (x509_v_codes[i].code == code) {
return x509_v_codes[i].string;
}
}
return NULL;
}
void init_x509_v_err_tab(void)
{
int i;
for (i = 0; x509_v_codes[i].string; i++) {
/* either the macro exists or it's equal to its own name */
if (strcmp(x509_v_codes[i].string, x509_v_codes[i].value) == 0)
continue;
x509_v_codes[i].code = atoi(x509_v_codes[i].value);
}
}
INITCALL0(STG_REGISTER, init_x509_v_err_tab);
/*
* This function returns the number of seconds elapsed
* since the Epoch, 1970-01-01 00:00:00 +0000 (UTC) and the
* date presented un ASN1_GENERALIZEDTIME.
*
* In parsing error case, it returns -1.
*/
long asn1_generalizedtime_to_epoch(ASN1_GENERALIZEDTIME *d)
{
long epoch;
char *p, *end;
const unsigned short month_offset[12] = {
0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
};
unsigned long year, month;
if (!d || (d->type != V_ASN1_GENERALIZEDTIME)) return -1;
p = (char *)d->data;
end = p + d->length;
if (end - p < 4) return -1;
year = 1000 * (p[0] - '0') + 100 * (p[1] - '0') + 10 * (p[2] - '0') + p[3] - '0';
p += 4;
if (end - p < 2) return -1;
month = 10 * (p[0] - '0') + p[1] - '0';
if (month < 1 || month > 12) return -1;
/* Compute the number of seconds since 1 jan 1970 and the beginning of current month
We consider leap years and the current month (<marsh or not) */
epoch = ( ((year - 1970) * 365)
+ ((year - (month < 3)) / 4 - (year - (month < 3)) / 100 + (year - (month < 3)) / 400)
- ((1970 - 1) / 4 - (1970 - 1) / 100 + (1970 - 1) / 400)
+ month_offset[month-1]
) * 24 * 60 * 60;
p += 2;
if (end - p < 2) return -1;
/* Add the number of seconds of completed days of current month */
epoch += (10 * (p[0] - '0') + p[1] - '0' - 1) * 24 * 60 * 60;
p += 2;
if (end - p < 2) return -1;
/* Add the completed hours of the current day */
epoch += (10 * (p[0] - '0') + p[1] - '0') * 60 * 60;
p += 2;
if (end - p < 2) return -1;
/* Add the completed minutes of the current hour */
epoch += (10 * (p[0] - '0') + p[1] - '0') * 60;
p += 2;
if (p == end) return -1;
/* Test if there is available seconds */
if (p[0] < '0' || p[0] > '9')
goto nosec;
if (end - p < 2) return -1;
/* Add the seconds of the current minute */
epoch += 10 * (p[0] - '0') + p[1] - '0';
p += 2;
if (p == end) return -1;
/* Ignore seconds float part if present */
if (p[0] == '.') {
do {
if (++p == end) return -1;
} while (p[0] >= '0' && p[0] <= '9');
}
nosec:
if (p[0] == 'Z') {
if (end - p != 1) return -1;
return epoch;
}
else if (p[0] == '+') {
if (end - p != 5) return -1;
/* Apply timezone offset */
return epoch - ((10 * (p[1] - '0') + p[2] - '0') * 60 * 60 + (10 * (p[3] - '0') + p[4] - '0')) * 60;
}
else if (p[0] == '-') {
if (end - p != 5) return -1;
/* Apply timezone offset */
return epoch + ((10 * (p[1] - '0') + p[2] - '0') * 60 * 60 + (10 * (p[3] - '0') + p[4] - '0')) * 60;
}
return -1;
}
/* Return the nofAfter value as as string extracted from an X509 certificate
* The returned buffer is static and thread local.
*/
const char *x509_get_notafter(X509 *cert)
{
BIO *bio = NULL;
int write;
static THREAD_LOCAL char buf[256];
memset(buf, 0, sizeof(buf));
if ((bio = BIO_new(BIO_s_mem())) == NULL)
goto end;
if (ASN1_TIME_print(bio, X509_getm_notAfter(cert)) == 0)
goto end;
write = BIO_read(bio, buf, sizeof(buf)-1);
buf[write] = '\0';
BIO_free(bio);
return buf;
end:
BIO_free(bio);
return NULL;
}
/* Return the nofBefore value as as string extracted from an X509 certificate
* The returned buffer is static and thread local.
*/
const char *x509_get_notbefore(X509 *cert)
{
BIO *bio = NULL;
int write;
static THREAD_LOCAL char buf[256];
memset(buf, 0, sizeof(buf));
if ((bio = BIO_new(BIO_s_mem())) == NULL)
goto end;
if (ASN1_TIME_print(bio, X509_getm_notBefore(cert)) == 0)
goto end;
write = BIO_read(bio, buf, sizeof(buf)-1);
buf[write] = '\0';
BIO_free(bio);
return buf;
end:
BIO_free(bio);
return NULL;
}
#ifdef HAVE_ASN1_TIME_TO_TM
/* Takes a ASN1_TIME and converts it into a time_t */
time_t ASN1_to_time_t(ASN1_TIME *asn1_time)
{
struct tm tm;
time_t ret = -1;
if (ASN1_TIME_to_tm(asn1_time, &tm) == 0)
goto error;
ret = my_timegm(&tm);
error:
return ret;
}
/* return the notAfter date of a X509 certificate in a time_t format */
time_t x509_get_notafter_time_t(X509 *cert)
{
time_t ret = -1;
ASN1_TIME *asn1_time;
if ((asn1_time = X509_getm_notAfter(cert)) == NULL)
goto error;
ret = ASN1_to_time_t(asn1_time);
error:
return ret;
}
/* return the notBefore date of a X509 certificate in a time_t format */
time_t x509_get_notbefore_time_t(X509 *cert)
{
time_t ret = -1;
ASN1_TIME *asn1_time;
if ((asn1_time = X509_getm_notBefore(cert)) == NULL)
goto error;
ret = ASN1_to_time_t(asn1_time);
error:
return ret;
}
#endif
/* convert an OpenSSL NID to a NIST curves name */
const char *nid2nist(int nid)
{
switch (nid) {
case NID_X9_62_prime256v1: return "P-256";
case NID_secp384r1: return "P-384";
case NID_secp521r1: return "P-521";
default: return NULL;
}
}
/* https://datatracker.ietf.org/doc/html/rfc8446#section-4.2.3
* https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-signaturescheme
* Sigalg identifier to sigalg name table.
* Some TLSv1.2 combinations are included as well to ease debugging. */
static struct sigalgs { const char *name; int sigalg; } sigalgs_list [] =
{
/* RSASSA-PKCS1-v1_5 algorithms */
{ "rsa_pkcs1_sha256", 0x0401 },
{ "rsa_pkcs1_sha384", 0x0501 },
{ "rsa_pkcs1_sha512", 0x0601 },
/* ECDSA algorithms */
{ "ecdsa_secp256r1_sha256", 0x0403 },
{ "ecdsa_secp384r1_sha384", 0x0503 },
{ "ecdsa_secp521r1_sha512", 0x0603 },
/* RSASSA-PSS algorithms with public key OID rsaEncryption */
{ "rsa_pss_rsae_sha256", 0x0804 },
{ "rsa_pss_rsae_sha384", 0x0805 },
{ "rsa_pss_rsae_sha512", 0x0806 },
/* EdDSA algorithms */
{ "ed25519", 0x0807 },
{ "ed448", 0x0808 },
/* RSASSA-PSS algorithms with public key OID RSASSA-PSS */
{ "rsa_pss_pss_sha256", 0x0809 },
{ "rsa_pss_pss_sha384", 0x080a },
{ "rsa_pss_pss_sha512", 0x080b },
/* Legacy algorithms */
{ "rsa_pkcs1_sha1", 0x0201 },
{ "ecdsa_sha1", 0x0203 },
/* Other IANA codes */
/* https://datatracker.ietf.org/doc/draft-davidben-tls13-pkcs1/00/ */
{ "rsa_pkcs1_sha256_legacy", 0x0420 },
{ "rsa_pkcs1_sha384_legacy", 0x0520 },
{ "rsa_pkcs1_sha512_legacy", 0x0620 },
/* https://datatracker.ietf.org/doc/draft-wang-tls-raw-public-key-with-ibc/02/ */
{ "eccsi_sha256", 0x0704 },
{ "iso_ibs1", 0x0705 },
{ "iso_ibs2", 0x0706 },
{ "iso_chinese_ibs", 0x0707 },
/* RFC 8998 */
{ "sm2sig_sm3", 0x0708 },
/* RFC 9367 */
{ "gostr34102012_256a", 0x0709 },
{ "gostr34102012_256b", 0x070A },
{ "gostr34102012_256c", 0x070B },
{ "gostr34102012_256d", 0x070C },
{ "gostr34102012_512a", 0x070D },
{ "gostr34102012_512b", 0x070E },
{ "gostr34102012_512c", 0x070F },
/* RFC 8734 */
{ "ecdsa_brainpoolP256r1tls13_sha256", 0x081A },
{ "ecdsa_brainpoolP384r1tls13_sha384", 0x081B },
{ "ecdsa_brainpoolP512r1tls13_sha512", 0x081C },
/* TLSv1.2 backward compatibility */
{ "dsa_sha256", 0x0402 },
{ "dsa_sha384", 0x0502 },
{ "dsa_sha512", 0x0602 },
{ "dsa_sha224", 0x0302 },
{ "dsa_sha1", 0x0202 },
{ "ecdsa_sha224", 0x0303 },
{ "ecdsa_sha1", 0x0203 },
/* RFC 9189 */
{ "gostr34102012_256_intrinsic", 0x0840 },
{ "gostr34102012_512_intrinsic", 0x0841 },
{ NULL, 0 }
};
/* Convert a signature algorithm identifier (2 bytes) to name */
const char *sigalg2str(int sigalg)
{
struct sigalgs *item = sigalgs_list;
while (item->name) {
if (item->sigalg == sigalg)
return item->name;
++item;
}
return NULL;
}
/*
* Like in x509_v_codes array, the following macros enable to use some NIDs that
* can be undefined depending on the SSL library type or version. Those NIDs
* will be converted to their numerical value when possible in
* "init_curves_tab" function (called during init).
*/
#undef _Q
#define _Q(x) (#x)
#undef V
#define V(w, x, y, z) { .curve_id = w, .nid = -1, .nid_val_str = _Q(x), .name = y, .nist = z }
/*
* Curve identifier to curve name mapping table. We use the actual identifiers
* as defined in https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8
* as well as NIDs, special identifiers used in SSL libraries such as OpenSSL.
* The names used are the standard SECG ones as well as the NIST ones.
*/
static struct curve {
int curve_id;
int nid;
char *nid_val_str;
const char *name;
const char *nist;
} curves_list[] = {
V( 1, NID_sect163k1, "sect163k1", "K-163" ),
V( 2, NID_sect163r1, "sect163r1", NULL ),
V( 3, NID_sect163r2, "sect163r2", "B-163" ),
V( 4, NID_sect193r1, "sect193r1", NULL ),
V( 5, NID_sect193r2, "sect193r2", NULL ),
V( 6, NID_sect233k1, "sect233k1", "K-233" ),
V( 7, NID_sect233r1, "sect233r1", "B-233" ),
V( 8, NID_sect239k1, "sect239k1", NULL ),
V( 9, NID_sect283k1, "sect283k1", "K-283" ),
V( 10, NID_sect283r1, "sect283r1", "B-283" ),
V( 11, NID_sect409k1, "sect409k1", "K-409" ),
V( 12, NID_sect409r1, "sect409r1", "B-409" ),
V( 13, NID_sect571k1, "sect571k1", "K-571" ),
V( 14, NID_sect571r1, "sect571r1", "B-571" ),
V( 15, NID_secp160k1, "secp160k1", NULL ),
V( 16, NID_secp160r1, "secp160r1", NULL ),
V( 17, NID_secp160r2, "secp160r2", NULL ),
V( 18, NID_secp192k1, "secp192k1", NULL ),
V( 19, NID_X9_62_prime192v1, "secp192r1", "P-192" ),
V( 20, NID_secp224k1, "secp224k1", NULL ),
V( 21, NID_secp224r1, "secp224r1", "P-224" ),
V( 22, NID_secp256k1, "secp256k1", NULL ),
V( 23, NID_X9_62_prime256v1, "secp256r1", "P-256" ),
V( 24, NID_secp384r1, "secp384r1", "P-384" ),
V( 25, NID_secp521r1, "secp521r1", "P-521" ),
V( 26, NID_brainpoolP256r1, "brainpoolP256r1", NULL ),
V( 27, NID_brainpoolP384r1, "brainpoolP384r1", NULL ),
V( 28, NID_brainpoolP512r1, "brainpoolP512r1", NULL ),
V( 29, NID_X25519, "ecdh_x25519", NULL ),
V( 30, NID_X448, "ecdh_x448", NULL ),
V( 31, NID_brainpoolP256r1tls13, "brainpoolP256r1tls13", NULL ),
V( 32, NID_brainpoolP384r1tls13, "brainpoolP384r1tls13", NULL ),
V( 33, NID_brainpoolP512r1tls13, "brainpoolP512r1tls13", NULL ),
V( 34, NID_id_tc26_gost_3410_2012_256_paramSetA, "GC256A", NULL ),
V( 35, NID_id_tc26_gost_3410_2012_256_paramSetB, "GC256B", NULL ),
V( 36, NID_id_tc26_gost_3410_2012_256_paramSetC, "GC256C", NULL ),
V( 37, NID_id_tc26_gost_3410_2012_256_paramSetD, "GC256D", NULL ),
V( 38, NID_id_tc26_gost_3410_2012_512_paramSetA, "GC512A", NULL ),
V( 39, NID_id_tc26_gost_3410_2012_512_paramSetB, "GC512B", NULL ),
V( 40, NID_id_tc26_gost_3410_2012_512_paramSetC, "GC512C", NULL ),
V( 256, NID_ffdhe2048, "ffdhe2048", NULL ),
V( 257, NID_ffdhe3072, "ffdhe3072", NULL ),
V( 258, NID_ffdhe4096, "ffdhe4096", NULL ),
V( 259, NID_ffdhe6144, "ffdhe6144", NULL ),
V( 260, NID_ffdhe8192, "ffdhe8192", NULL ),
/* The following curves are defined in the IANA list as well as in an
* OpenSSL internal array but they don't have any corresponding NID.
*/
V( 25497, -1, "X25519Kyber768Draft00", NULL ),
V( 25498, -1, "SecP256r1Kyber768Draft00", NULL ),
V( 0xFF01, -1, "arbitrary_explicit_prime_curves", NULL ),
V( 0xFF02, -1, "arbitrary_explicit_char2_curves", NULL ),
{ 0, 0, NULL, NULL, NULL }
};
void init_curves_tab(void)
{
int i;
for (i = 0; curves_list[i].nid_val_str; i++) {
char *endptr = NULL;
long value = 0;
errno = 0;
value = strtol(curves_list[i].nid_val_str, &endptr, 10);
if (!errno && endptr > curves_list[i].nid_val_str)
curves_list[i].nid = value;
}
}
INITCALL0(STG_REGISTER, init_curves_tab);
/* Convert a curve identifier (2 bytes) to name */
const char *curveid2str(int curve_id)
{
struct curve *item = curves_list;
while (item->name) {
if (item->curve_id == curve_id)
return item->name;
++item;
}
return NULL;
}
/* convert a curves name to a openssl NID */
int curves2nid(const char *curve)
{
struct curve *curves = curves_list;
while (curves->curve_id) {
if ((curves->name && strcmp(curve, curves->name) == 0) ||
(curves->nist && strcmp(curve, curves->nist) == 0))
return curves->nid;
curves++;
}
return -1;
}