haproxy/src/debug.c
Valentine Krasnobaeva 865db6307f MINOR: init: use RLIMIT_DATA instead of RLIMIT_AS
Limiting total allocatable process memory (VSZ) via setting RLIMIT_AS limit is
no longer effective, in order to restrict memory consumption at run time.
We can see from process memory map below, that there are many holes within
the process VA space, which bumps its VSZ to 1.5G. These holes are here by
many reasons and could be explaned at first by the full randomization of
system VA space. Now it is usually enabled in Linux kernels by default. There
are always gaps around the process stack area to trap overflows. Holes before
and after shared libraries could be explained by the fact, that on many
architectures libraries have a 'preferred' address to be loaded at; putting
them elsewhere requires relocation work, and probably some unshared pages.
Repetitive holes of 65380K are most probably correspond to the header that
malloc has to allocate before asked a claimed memory block. This header is
used by malloc to link allocated chunks together and for its internal book
keeping.

	$ sudo pmap -x -p `pidof haproxy`
	127136:   ./haproxy -f /home/haproxy/haproxy/haproxy_h2.cfg
	Address           Kbytes     RSS   Dirty Mode  Mapping
	0000555555554000     388      64       0 r---- /home/haproxy/haproxy/haproxy
	00005555555b5000    2608    1216       0 r-x-- /home/haproxy/haproxy/haproxy
	0000555555841000     916      64       0 r---- /home/haproxy/haproxy/haproxy
	0000555555926000      60      60      60 r---- /home/haproxy/haproxy/haproxy
	0000555555935000     116     116     116 rw--- /home/haproxy/haproxy/haproxy
	0000555555952000    7872    5236    5236 rw---   [ anon ]
	00007fff98000000     156      36      36 rw---   [ anon ]
	00007fff98027000   65380       0       0 -----   [ anon ]
	00007fffa0000000     156      36      36 rw---   [ anon ]
	00007fffa0027000   65380       0       0 -----   [ anon ]
	00007fffa4000000     156      36      36 rw---   [ anon ]
	00007fffa4027000   65380       0       0 -----   [ anon ]
	00007fffa8000000     156      36      36 rw---   [ anon ]
	00007fffa8027000   65380       0       0 -----   [ anon ]
	00007fffac000000     156      36      36 rw---   [ anon ]
	00007fffac027000   65380       0       0 -----   [ anon ]
	00007fffb0000000     156      36      36 rw---   [ anon ]
	00007fffb0027000   65380       0       0 -----   [ anon ]
	...
	00007ffff7fce000       4       4       0 r-x--   [ anon ]
	00007ffff7fcf000       4       4       0 r---- /usr/lib/x86_64-linux-gnu/ld-2.31.so
	00007ffff7fd0000     140     140       0 r-x-- /usr/lib/x86_64-linux-gnu/ld-2.31.so
	...
	00007ffff7ffe000       4       4       4 rw---   [ anon ]
	00007ffffffde000     132      20      20 rw---   [ stack ]
	ffffffffff600000       4       0       0 --x--   [ anon ]
	---------------- ------- ------- -------
	total kB         1499288   75504   72760

This exceeded VSZ makes impossible to start an haproxy process with 200M
memory limit, set at its initialization stage as RLIMIT_AS. We usually
have in this case such cryptic output at stderr:

	$ haproxy -m 200 -f haproxy_quic.cfg
        (null)(null)(null)(null)(null)(null)

At the same time the process RSS (a memory really used) is only 75,5M.
So to make process memory accounting more realistic let's base the memory
limit, set by -m option, on RSS measurement and let's use RLIMIT_DATA instead
of RLIMIT_AS.

RLIMIT_AS was used before, because earlier versions of haproxy always allocate
memory buffers for new connections, but data were not written there
immediately. So these buffers were not instantly counted in RSS, but were
always counted in VSZ. Now we allocate new buffers only in the case, when we
will write there some data immediately, so using RLIMIT_DATA becomes more
appropriate.
2024-04-19 17:36:40 +02:00

2400 lines
78 KiB
C

/*
* Process debugging functions.
*
* Copyright 2000-2019 Willy Tarreau <willy@haproxy.org>.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <errno.h>
#include <fcntl.h>
#include <signal.h>
#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include <syslog.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/utsname.h>
#include <sys/wait.h>
#include <unistd.h>
#ifdef USE_EPOLL
#include <sys/epoll.h>
#endif
#include <haproxy/api.h>
#include <haproxy/applet.h>
#include <haproxy/buf.h>
#include <haproxy/cli.h>
#include <haproxy/clock.h>
#include <haproxy/debug.h>
#include <haproxy/fd.h>
#include <haproxy/global.h>
#include <haproxy/hlua.h>
#include <haproxy/http_ana.h>
#include <haproxy/log.h>
#include <haproxy/net_helper.h>
#include <haproxy/sc_strm.h>
#include <haproxy/stconn.h>
#include <haproxy/task.h>
#include <haproxy/thread.h>
#include <haproxy/time.h>
#include <haproxy/tools.h>
#include <haproxy/trace.h>
#include <import/ist.h>
/* The dump state is made of:
* - num_thread on the lowest 15 bits
* - a SYNC flag on bit 15 (waiting for sync start)
* - number of participating threads on bits 16-30
* Initiating a dump consists in setting it to SYNC and incrementing the
* num_thread part when entering the function. The first thread periodically
* recounts active threads and compares it to the ready ones, and clears SYNC
* and sets the number of participants to the value found, which serves as a
* start signal. A thread finished dumping looks up the TID of the next active
* thread after it and writes it in the lowest part. If there's none, it sets
* the thread counter to the number of participants and resets that part,
* which serves as an end-of-dump signal. All threads decrement the num_thread
* part. Then all threads wait for the value to reach zero. Only used when
* USE_THREAD_DUMP is set.
*/
#define THREAD_DUMP_TMASK 0x00007FFFU
#define THREAD_DUMP_FSYNC 0x00008000U
#define THREAD_DUMP_PMASK 0x7FFF0000U
/* Description of a component with name, version, path, build options etc. E.g.
* one of them is haproxy. Others might be some clearly identified shared libs.
* They're intentionally self-contained and to be placed into an array to make
* it easier to find them in a core. The important fields (name and version)
* are locally allocated, other ones are dynamic.
*/
struct post_mortem_component {
char name[32]; // symbolic short name
char version[32]; // exact version
char *toolchain; // compiler and version (e.g. gcc-11.4.0)
char *toolchain_opts; // optims, arch-specific options (e.g. CFLAGS)
char *build_settings; // build options (e.g. USE_*, TARGET, etc)
char *path; // path if known.
};
/* This is a collection of information that are centralized to help with core
* dump analysis. It must be used with a public variable and gather elements
* as much as possible without dereferences so that even when identified in a
* core dump it's possible to get the most out of it even if the core file is
* not much exploitable. It's aligned to 256 so that it's easy to spot, given
* that being that large it will not change its size much.
*/
struct post_mortem {
/* platform-specific information */
struct {
struct utsname utsname; // OS name+ver+arch+hostname
char hw_vendor[64]; // hardware/hypervisor vendor when known
char hw_family[64]; // hardware/hypervisor product family when known
char hw_model[64]; // hardware/hypervisor product/model when known
char brd_vendor[64]; // mainboard vendor when known
char brd_model[64]; // mainboard model when known
char soc_vendor[64]; // SoC/CPU vendor from cpuinfo
char soc_model[64]; // SoC model when known and relevant
char cpu_model[64]; // CPU model when different from SoC
char virt_techno[16]; // when provided by cpuid
char cont_techno[16]; // empty, "no", "yes", "docker" or others
} platform;
/* process-specific information */
struct {
pid_t pid;
uid_t boot_uid;
gid_t boot_gid;
struct rlimit limit_fd; // RLIMIT_NOFILE
struct rlimit limit_ram; // RLIMIT_DATA
#if defined(USE_THREAD)
struct {
ullong pth_id; // pthread_t cast to a ullong
void *stack_top; // top of the stack
} thread_info[MAX_THREADS];
#endif
} process;
#if defined(HA_HAVE_DUMP_LIBS)
/* information about dynamic shared libraries involved */
char *libs; // dump of one addr / path per line, or NULL
#endif
/* info about identified distinct components (executable, shared libs, etc).
* These can be all listed at once in gdb using:
* p *post_mortem.components@post_mortem.nb_components
*/
uint nb_components; // # of components below
struct post_mortem_component *components; // NULL or array
} post_mortem ALIGNED(256) = { };
/* Points to a copy of the buffer where the dump functions should write, when
* non-null. It's only used by debuggers for core dump analysis.
*/
struct buffer *thread_dump_buffer = NULL;
unsigned int debug_commands_issued = 0;
/* dumps a backtrace of the current thread that is appended to buffer <buf>.
* Lines are prefixed with the string <prefix> which may be empty (used for
* indenting). It is recommended to use this at a function's tail so that
* the function does not appear in the call stack. The <dump> argument
* indicates what dump state to start from, and should usually be zero. It
* may be among the following values:
* - 0: search usual callers before step 1, or directly jump to 2
* - 1: skip usual callers before step 2
* - 2: dump until polling loop, scheduler, or main() (excluded)
* - 3: end
* - 4-7: like 0 but stops *after* main.
*/
void ha_dump_backtrace(struct buffer *buf, const char *prefix, int dump)
{
struct buffer bak;
char pfx2[100];
void *callers[100];
int j, nptrs;
const void *addr;
nptrs = my_backtrace(callers, sizeof(callers)/sizeof(*callers));
if (!nptrs)
return;
if (snprintf(pfx2, sizeof(pfx2), "%s| ", prefix) > sizeof(pfx2))
pfx2[0] = 0;
/* The call backtrace_symbols_fd(callers, nptrs, STDOUT_FILENO would
* produce similar output to the following:
*/
chunk_appendf(buf, "%scall trace(%d):\n", prefix, nptrs);
for (j = 0; (j < nptrs || (dump & 3) < 2); j++) {
if (j == nptrs && !(dump & 3)) {
/* we failed to spot the starting point of the
* dump, let's start over dumping everything we
* have.
*/
dump += 2;
j = 0;
}
bak = *buf;
dump_addr_and_bytes(buf, pfx2, callers[j], 8);
addr = resolve_sym_name(buf, ": ", callers[j]);
if ((dump & 3) == 0) {
/* dump not started, will start *after* ha_thread_dump_one(),
* ha_panic and ha_backtrace_to_stderr
*/
if (addr == ha_panic ||
addr == ha_backtrace_to_stderr || addr == ha_thread_dump_one)
dump++;
*buf = bak;
continue;
}
if ((dump & 3) == 1) {
/* starting */
if (addr == ha_panic ||
addr == ha_backtrace_to_stderr || addr == ha_thread_dump_one) {
*buf = bak;
continue;
}
dump++;
}
if ((dump & 3) == 2) {
/* still dumping */
if (dump == 6) {
/* we only stop *after* main and we must send the LF */
if (addr == main) {
j = nptrs;
dump++;
}
}
else if (addr == run_poll_loop || addr == main || addr == run_tasks_from_lists) {
dump++;
*buf = bak;
break;
}
}
/* OK, line dumped */
chunk_appendf(buf, "\n");
}
}
/* dump a backtrace of current thread's stack to stderr. */
void ha_backtrace_to_stderr(void)
{
char area[2048];
struct buffer b = b_make(area, sizeof(area), 0, 0);
ha_dump_backtrace(&b, " ", 4);
if (b.data)
DISGUISE(write(2, b.area, b.data));
}
/* Dumps to the thread's buffer some known information for the desired thread,
* and optionally extra info when it's safe to do so (current thread or
* isolated). The dump will be appended to the buffer, so the caller is
* responsible for preliminary initializing it. The <from_signal> argument will
* indicate if the function is called from the debug signal handler, indicating
* the thread was dumped upon request from another one, otherwise if the thread
* it the current one, a star ('*') will be displayed in front of the thread to
* indicate the requesting one. Any stuck thread is also prefixed with a '>'.
* The caller is responsible for atomically setting up the thread's dump buffer
* to point to a valid buffer with enough room. Output will be truncated if it
* does not fit. When the dump is complete, the dump buffer will be switched to
* (void*)0x1 that the caller must turn to 0x0 once the contents are collected.
*/
void ha_thread_dump_one(int thr, int from_signal)
{
struct buffer *buf = HA_ATOMIC_LOAD(&ha_thread_ctx[thr].thread_dump_buffer);
unsigned long __maybe_unused thr_bit = ha_thread_info[thr].ltid_bit;
int __maybe_unused tgrp = ha_thread_info[thr].tgid;
unsigned long long p = ha_thread_ctx[thr].prev_cpu_time;
unsigned long long n = now_cpu_time_thread(thr);
int stuck = !!(ha_thread_ctx[thr].flags & TH_FL_STUCK);
chunk_appendf(buf,
"%c%cThread %-2u: id=0x%llx act=%d glob=%d wq=%d rq=%d tl=%d tlsz=%d rqsz=%d\n"
" %2u/%-2u stuck=%d prof=%d",
(thr == tid && !from_signal) ? '*' : ' ', stuck ? '>' : ' ', thr + 1,
ha_get_pthread_id(thr),
thread_has_tasks(),
!eb_is_empty(&ha_thread_ctx[thr].rqueue_shared),
!eb_is_empty(&ha_thread_ctx[thr].timers),
!eb_is_empty(&ha_thread_ctx[thr].rqueue),
!(LIST_ISEMPTY(&ha_thread_ctx[thr].tasklets[TL_URGENT]) &&
LIST_ISEMPTY(&ha_thread_ctx[thr].tasklets[TL_NORMAL]) &&
LIST_ISEMPTY(&ha_thread_ctx[thr].tasklets[TL_BULK]) &&
MT_LIST_ISEMPTY(&ha_thread_ctx[thr].shared_tasklet_list)),
ha_thread_ctx[thr].tasks_in_list,
ha_thread_ctx[thr].rq_total,
ha_thread_info[thr].tgid, ha_thread_info[thr].ltid + 1,
stuck,
!!(ha_thread_ctx[thr].flags & TH_FL_TASK_PROFILING));
#if defined(USE_THREAD)
chunk_appendf(buf,
" harmless=%d isolated=%d",
!!(_HA_ATOMIC_LOAD(&ha_tgroup_ctx[tgrp-1].threads_harmless) & thr_bit),
isolated_thread == thr);
#endif
chunk_appendf(buf, "\n");
chunk_appendf(buf, " cpu_ns: poll=%llu now=%llu diff=%llu\n", p, n, n-p);
/* this is the end of what we can dump from outside the current thread */
if (thr != tid && !thread_isolated())
goto leave;
chunk_appendf(buf, " curr_task=");
ha_task_dump(buf, th_ctx->current, " ");
if (stuck && thr == tid) {
#ifdef USE_LUA
if (th_ctx->current &&
th_ctx->current->process == process_stream && th_ctx->current->context) {
const struct stream *s = (const struct stream *)th_ctx->current->context;
struct hlua *hlua = NULL;
if (s) {
if (s->hlua[0] && HLUA_IS_BUSY(s->hlua[0]))
hlua = s->hlua[0];
else if (s->hlua[1] && HLUA_IS_BUSY(s->hlua[1]))
hlua = s->hlua[1];
}
if (hlua) {
mark_tainted(TAINTED_LUA_STUCK);
if (hlua->state_id == 0)
mark_tainted(TAINTED_LUA_STUCK_SHARED);
}
}
#endif
if (HA_ATOMIC_LOAD(&pool_trim_in_progress))
mark_tainted(TAINTED_MEM_TRIMMING_STUCK);
/* We only emit the backtrace for stuck threads in order not to
* waste precious output buffer space with non-interesting data.
* Please leave this as the last instruction in this function
* so that the compiler uses tail merging and the current
* function does not appear in the stack.
*/
ha_dump_backtrace(buf, " ", 0);
}
leave:
/* end of dump, setting the buffer to 0x1 will tell the caller we're done */
HA_ATOMIC_STORE(&ha_thread_ctx[thr].thread_dump_buffer, (void*)0x1UL);
}
/* Triggers a thread dump from thread <thr>, either directly if it's the
* current thread or if thread dump signals are not implemented, or by sending
* a signal if it's a remote one and the feature is supported. The buffer <buf>
* will get the dump appended, and the caller is responsible for making sure
* there is enough room otherwise some contents will be truncated.
*/
void ha_thread_dump(struct buffer *buf, int thr)
{
struct buffer *old = NULL;
/* try to impose our dump buffer and to reserve the target thread's
* next dump for us.
*/
do {
if (old)
ha_thread_relax();
old = NULL;
} while (!HA_ATOMIC_CAS(&ha_thread_ctx[thr].thread_dump_buffer, &old, buf));
#ifdef USE_THREAD_DUMP
/* asking the remote thread to dump itself allows to get more details
* including a backtrace.
*/
if (thr != tid)
ha_tkill(thr, DEBUGSIG);
else
#endif
ha_thread_dump_one(thr, thr != tid);
/* now wait for the dump to be done, and release it */
do {
if (old)
ha_thread_relax();
old = (void*)0x01;
} while (!HA_ATOMIC_CAS(&ha_thread_ctx[thr].thread_dump_buffer, &old, 0));
}
/* dumps into the buffer some information related to task <task> (which may
* either be a task or a tasklet, and prepend each line except the first one
* with <pfx>. The buffer is only appended and the first output starts by the
* pointer itself. The caller is responsible for making sure the task is not
* going to vanish during the dump.
*/
void ha_task_dump(struct buffer *buf, const struct task *task, const char *pfx)
{
const struct stream *s = NULL;
const struct appctx __maybe_unused *appctx = NULL;
struct hlua __maybe_unused *hlua = NULL;
const struct stconn *sc;
if (!task) {
chunk_appendf(buf, "0\n");
return;
}
if (TASK_IS_TASKLET(task))
chunk_appendf(buf,
"%p (tasklet) calls=%u\n",
task,
task->calls);
else
chunk_appendf(buf,
"%p (task) calls=%u last=%llu%s\n",
task,
task->calls,
task->wake_date ? (unsigned long long)(now_mono_time() - task->wake_date) : 0,
task->wake_date ? " ns ago" : "");
chunk_appendf(buf, "%s fct=%p(", pfx, task->process);
resolve_sym_name(buf, NULL, task->process);
chunk_appendf(buf,") ctx=%p", task->context);
if (task->process == task_run_applet && (appctx = task->context))
chunk_appendf(buf, "(%s)\n", appctx->applet->name);
else
chunk_appendf(buf, "\n");
if (task->process == process_stream && task->context)
s = (struct stream *)task->context;
else if (task->process == task_run_applet && task->context && (sc = appctx_sc((struct appctx *)task->context)))
s = sc_strm(sc);
else if (task->process == sc_conn_io_cb && task->context)
s = sc_strm(((struct stconn *)task->context));
if (s) {
chunk_appendf(buf, "%sstream=", pfx);
strm_dump_to_buffer(buf, s, pfx, HA_ATOMIC_LOAD(&global.anon_key));
}
#ifdef USE_LUA
hlua = NULL;
if (s && ((s->hlua[0] && HLUA_IS_BUSY(s->hlua[0])) ||
(s->hlua[1] && HLUA_IS_BUSY(s->hlua[1])))) {
hlua = (s->hlua[0] && HLUA_IS_BUSY(s->hlua[0])) ? s->hlua[0] : s->hlua[1];
chunk_appendf(buf, "%sCurrent executing Lua from a stream analyser -- ", pfx);
}
else if (task->process == hlua_process_task && (hlua = task->context)) {
chunk_appendf(buf, "%sCurrent executing a Lua task -- ", pfx);
}
else if (task->process == task_run_applet && (appctx = task->context) &&
(appctx->applet->fct == hlua_applet_tcp_fct)) {
chunk_appendf(buf, "%sCurrent executing a Lua TCP service -- ", pfx);
}
else if (task->process == task_run_applet && (appctx = task->context) &&
(appctx->applet->fct == hlua_applet_http_fct)) {
chunk_appendf(buf, "%sCurrent executing a Lua HTTP service -- ", pfx);
}
if (hlua && hlua->T) {
chunk_appendf(buf, "stack traceback:\n ");
append_prefixed_str(buf, hlua_traceback(hlua->T, "\n "), pfx, '\n', 0);
}
/* we may need to terminate the current line */
if (*b_peek(buf, b_data(buf)-1) != '\n')
b_putchr(buf, '\n');
#endif
}
/* This function dumps all profiling settings. It returns 0 if the output
* buffer is full and it needs to be called again, otherwise non-zero.
*/
static int cli_io_handler_show_threads(struct appctx *appctx)
{
int thr;
if (appctx->st0)
thr = appctx->st1;
else
thr = 0;
do {
chunk_reset(&trash);
ha_thread_dump(&trash, thr);
if (applet_putchk(appctx, &trash) == -1) {
/* failed, try again */
appctx->st1 = thr;
return 0;
}
thr++;
} while (thr < global.nbthread);
return 1;
}
#if defined(HA_HAVE_DUMP_LIBS)
/* parse a "show libs" command. It returns 1 if it emits anything otherwise zero. */
static int debug_parse_cli_show_libs(char **args, char *payload, struct appctx *appctx, void *private)
{
if (!cli_has_level(appctx, ACCESS_LVL_OPER))
return 1;
chunk_reset(&trash);
if (dump_libs(&trash, 1))
return cli_msg(appctx, LOG_INFO, trash.area);
else
return 0;
}
#endif
/* parse a "show dev" command. It returns 1 if it emits anything otherwise zero. */
static int debug_parse_cli_show_dev(char **args, char *payload, struct appctx *appctx, void *private)
{
const char **build_opt;
if (*args[2])
return cli_err(appctx, "This command takes no argument.\n");
chunk_reset(&trash);
chunk_appendf(&trash, "Features\n %s\n", build_features);
chunk_appendf(&trash, "Build options\n");
for (build_opt = NULL; (build_opt = hap_get_next_build_opt(build_opt)); )
if (append_prefixed_str(&trash, *build_opt, " ", '\n', 0) == 0)
chunk_strcat(&trash, "\n");
chunk_appendf(&trash, "Platform info\n");
if (*post_mortem.platform.hw_vendor)
chunk_appendf(&trash, " machine vendor: %s\n", post_mortem.platform.hw_vendor);
if (*post_mortem.platform.hw_family)
chunk_appendf(&trash, " machine family: %s\n", post_mortem.platform.hw_family);
if (*post_mortem.platform.hw_model)
chunk_appendf(&trash, " machine model: %s\n", post_mortem.platform.hw_model);
if (*post_mortem.platform.brd_vendor)
chunk_appendf(&trash, " board vendor: %s\n", post_mortem.platform.brd_vendor);
if (*post_mortem.platform.brd_model)
chunk_appendf(&trash, " board model: %s\n", post_mortem.platform.brd_model);
if (*post_mortem.platform.soc_vendor)
chunk_appendf(&trash, " soc vendor: %s\n", post_mortem.platform.soc_vendor);
if (*post_mortem.platform.soc_model)
chunk_appendf(&trash, " soc model: %s\n", post_mortem.platform.soc_model);
if (*post_mortem.platform.cpu_model)
chunk_appendf(&trash, " cpu model: %s\n", post_mortem.platform.cpu_model);
if (*post_mortem.platform.virt_techno)
chunk_appendf(&trash, " virtual machine: %s\n", post_mortem.platform.virt_techno);
if (*post_mortem.platform.cont_techno)
chunk_appendf(&trash, " container: %s\n", post_mortem.platform.cont_techno);
if (*post_mortem.platform.utsname.sysname)
chunk_appendf(&trash, " OS name: %s\n", post_mortem.platform.utsname.sysname);
if (*post_mortem.platform.utsname.release)
chunk_appendf(&trash, " OS release: %s\n", post_mortem.platform.utsname.release);
if (*post_mortem.platform.utsname.version)
chunk_appendf(&trash, " OS version: %s\n", post_mortem.platform.utsname.version);
if (*post_mortem.platform.utsname.machine)
chunk_appendf(&trash, " OS architecture: %s\n", post_mortem.platform.utsname.machine);
if (*post_mortem.platform.utsname.nodename)
chunk_appendf(&trash, " node name: %s\n", HA_ANON_CLI(post_mortem.platform.utsname.nodename));
chunk_appendf(&trash, "Process info\n");
chunk_appendf(&trash, " pid: %d\n", post_mortem.process.pid);
chunk_appendf(&trash, " boot uid: %d\n", post_mortem.process.boot_uid);
chunk_appendf(&trash, " boot gid: %d\n", post_mortem.process.boot_gid);
if ((ulong)post_mortem.process.limit_fd.rlim_cur != RLIM_INFINITY)
chunk_appendf(&trash, " fd limit (soft): %lu\n", (ulong)post_mortem.process.limit_fd.rlim_cur);
if ((ulong)post_mortem.process.limit_fd.rlim_max != RLIM_INFINITY)
chunk_appendf(&trash, " fd limit (hard): %lu\n", (ulong)post_mortem.process.limit_fd.rlim_max);
if ((ulong)post_mortem.process.limit_ram.rlim_cur != RLIM_INFINITY)
chunk_appendf(&trash, " ram limit (soft): %lu\n", (ulong)post_mortem.process.limit_ram.rlim_cur);
if ((ulong)post_mortem.process.limit_ram.rlim_max != RLIM_INFINITY)
chunk_appendf(&trash, " ram limit (hard): %lu\n", (ulong)post_mortem.process.limit_ram.rlim_max);
return cli_msg(appctx, LOG_INFO, trash.area);
}
/* Dumps a state of all threads into the trash and on fd #2, then aborts.
* A copy will be put into a trash chunk that's assigned to thread_dump_buffer
* so that the debugger can easily find it. This buffer might be truncated if
* too many threads are being dumped, but at least we'll dump them all on stderr.
* If thread_dump_buffer is set, it means that a panic has already begun.
*/
void ha_panic()
{
struct buffer *old;
unsigned int thr;
mark_tainted(TAINTED_PANIC);
old = NULL;
if (!HA_ATOMIC_CAS(&thread_dump_buffer, &old, get_trash_chunk())) {
/* a panic dump is already in progress, let's not disturb it,
* we'll be called via signal DEBUGSIG. By returning we may be
* able to leave a current signal handler (e.g. WDT) so that
* this will ensure more reliable signal delivery.
*/
return;
}
chunk_reset(&trash);
chunk_appendf(&trash, "Thread %u is about to kill the process.\n", tid + 1);
for (thr = 0; thr < global.nbthread; thr++) {
ha_thread_dump(&trash, thr);
DISGUISE(write(2, trash.area, trash.data));
b_force_xfer(thread_dump_buffer, &trash, b_room(thread_dump_buffer));
chunk_reset(&trash);
}
#ifdef USE_LUA
if (get_tainted() & TAINTED_LUA_STUCK_SHARED && global.nbthread > 1) {
chunk_printf(&trash,
"### Note: at least one thread was stuck in a Lua context loaded using the\n"
" 'lua-load' directive, which is known for causing heavy contention\n"
" when used with threads. Please consider using 'lua-load-per-thread'\n"
" instead if your code is safe to run in parallel on multiple threads.\n");
DISGUISE(write(2, trash.area, trash.data));
}
else if (get_tainted() & TAINTED_LUA_STUCK) {
chunk_printf(&trash,
"### Note: at least one thread was stuck in a Lua context in a way that suggests\n"
" heavy processing inside a dependency or a long loop that can't yield.\n"
" Please make sure any external code you may rely on is safe for use in\n"
" an event-driven engine.\n");
DISGUISE(write(2, trash.area, trash.data));
}
#endif
if (get_tainted() & TAINTED_MEM_TRIMMING_STUCK) {
chunk_printf(&trash,
"### Note: one thread was found stuck under malloc_trim(), which can run for a\n"
" very long time on large memory systems. You way want to disable this\n"
" memory reclaiming feature by setting 'no-memory-trimming' in the\n"
" 'global' section of your configuration to avoid this in the future.\n");
DISGUISE(write(2, trash.area, trash.data));
}
for (;;)
abort();
}
/* Complain with message <msg> on stderr. If <counter> is not NULL, it is
* atomically incremented, and the message is only printed when the counter
* was zero, so that the message is only printed once. <taint> is only checked
* on bit 1, and will taint the process either for a bug (2) or warn (0).
*/
void complain(int *counter, const char *msg, int taint)
{
if (counter && _HA_ATOMIC_FETCH_ADD(counter, 1))
return;
DISGUISE(write(2, msg, strlen(msg)));
if (taint & 2)
mark_tainted(TAINTED_BUG);
else
mark_tainted(TAINTED_WARN);
}
/* parse a "debug dev exit" command. It always returns 1, though it should never return. */
static int debug_parse_cli_exit(char **args, char *payload, struct appctx *appctx, void *private)
{
int code = atoi(args[3]);
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
_HA_ATOMIC_INC(&debug_commands_issued);
exit(code);
return 1;
}
/* parse a "debug dev bug" command. It always returns 1, though it should never return.
* Note: we make sure not to make the function static so that it appears in the trace.
*/
int debug_parse_cli_bug(char **args, char *payload, struct appctx *appctx, void *private)
{
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
_HA_ATOMIC_INC(&debug_commands_issued);
BUG_ON(one > zero, "This was triggered on purpose from the CLI 'debug dev bug' command.");
return 1;
}
/* parse a "debug dev warn" command. It always returns 1.
* Note: we make sure not to make the function static so that it appears in the trace.
*/
int debug_parse_cli_warn(char **args, char *payload, struct appctx *appctx, void *private)
{
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
_HA_ATOMIC_INC(&debug_commands_issued);
WARN_ON(one > zero, "This was triggered on purpose from the CLI 'debug dev warn' command.");
return 1;
}
/* parse a "debug dev check" command. It always returns 1.
* Note: we make sure not to make the function static so that it appears in the trace.
*/
int debug_parse_cli_check(char **args, char *payload, struct appctx *appctx, void *private)
{
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
_HA_ATOMIC_INC(&debug_commands_issued);
CHECK_IF(one > zero, "This was triggered on purpose from the CLI 'debug dev check' command.");
return 1;
}
/* parse a "debug dev close" command. It always returns 1. */
static int debug_parse_cli_close(char **args, char *payload, struct appctx *appctx, void *private)
{
int fd;
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
if (!*args[3])
return cli_err(appctx, "Missing file descriptor number.\n");
fd = atoi(args[3]);
if (fd < 0 || fd >= global.maxsock)
return cli_err(appctx, "File descriptor out of range.\n");
if (!fdtab[fd].owner)
return cli_msg(appctx, LOG_INFO, "File descriptor was already closed.\n");
_HA_ATOMIC_INC(&debug_commands_issued);
fd_delete(fd);
return 1;
}
/* this is meant to cause a deadlock when more than one task is running it or when run twice */
static struct task *debug_run_cli_deadlock(struct task *task, void *ctx, unsigned int state)
{
static HA_SPINLOCK_T lock __maybe_unused;
HA_SPIN_LOCK(OTHER_LOCK, &lock);
return NULL;
}
/* parse a "debug dev deadlock" command. It always returns 1. */
static int debug_parse_cli_deadlock(char **args, char *payload, struct appctx *appctx, void *private)
{
int tasks;
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
_HA_ATOMIC_INC(&debug_commands_issued);
for (tasks = atoi(args[3]); tasks > 0; tasks--) {
struct task *t = task_new_on(tasks % global.nbthread);
if (!t)
continue;
t->process = debug_run_cli_deadlock;
t->context = NULL;
task_wakeup(t, TASK_WOKEN_INIT);
}
return 1;
}
/* parse a "debug dev delay" command. It always returns 1. */
static int debug_parse_cli_delay(char **args, char *payload, struct appctx *appctx, void *private)
{
int delay = atoi(args[3]);
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
_HA_ATOMIC_INC(&debug_commands_issued);
usleep((long)delay * 1000);
return 1;
}
/* parse a "debug dev log" command. It always returns 1. */
static int debug_parse_cli_log(char **args, char *payload, struct appctx *appctx, void *private)
{
int arg;
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
_HA_ATOMIC_INC(&debug_commands_issued);
chunk_reset(&trash);
for (arg = 3; *args[arg]; arg++) {
if (arg > 3)
chunk_strcat(&trash, " ");
chunk_strcat(&trash, args[arg]);
}
send_log(NULL, LOG_INFO, "%s\n", trash.area);
return 1;
}
/* parse a "debug dev loop" command. It always returns 1. */
static int debug_parse_cli_loop(char **args, char *payload, struct appctx *appctx, void *private)
{
struct timeval deadline, curr;
int loop = atoi(args[3]);
int isolate;
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
isolate = strcmp(args[4], "isolated") == 0;
_HA_ATOMIC_INC(&debug_commands_issued);
gettimeofday(&curr, NULL);
tv_ms_add(&deadline, &curr, loop);
if (isolate)
thread_isolate();
while (tv_ms_cmp(&curr, &deadline) < 0)
gettimeofday(&curr, NULL);
if (isolate)
thread_release();
return 1;
}
/* parse a "debug dev panic" command. It always returns 1, though it should never return. */
static int debug_parse_cli_panic(char **args, char *payload, struct appctx *appctx, void *private)
{
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
_HA_ATOMIC_INC(&debug_commands_issued);
ha_panic();
return 1;
}
/* parse a "debug dev exec" command. It always returns 1. */
#if defined(DEBUG_DEV)
static int debug_parse_cli_exec(char **args, char *payload, struct appctx *appctx, void *private)
{
int pipefd[2];
int arg;
int pid;
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
_HA_ATOMIC_INC(&debug_commands_issued);
chunk_reset(&trash);
for (arg = 3; *args[arg]; arg++) {
if (arg > 3)
chunk_strcat(&trash, " ");
chunk_strcat(&trash, args[arg]);
}
thread_isolate();
if (pipe(pipefd) < 0)
goto fail_pipe;
if (fd_set_cloexec(pipefd[0]) == -1)
goto fail_fcntl;
if (fd_set_cloexec(pipefd[1]) == -1)
goto fail_fcntl;
pid = fork();
if (pid < 0)
goto fail_fork;
else if (pid == 0) {
/* child */
char *cmd[4] = { "/bin/sh", "-c", 0, 0 };
close(0);
dup2(pipefd[1], 1);
dup2(pipefd[1], 2);
cmd[2] = trash.area;
execvp(cmd[0], cmd);
printf("execvp() failed\n");
exit(1);
}
/* parent */
thread_release();
close(pipefd[1]);
chunk_reset(&trash);
while (1) {
size_t ret = read(pipefd[0], trash.area + trash.data, trash.size - 20 - trash.data);
if (ret <= 0)
break;
trash.data += ret;
if (trash.data + 20 == trash.size) {
chunk_strcat(&trash, "\n[[[TRUNCATED]]]\n");
break;
}
}
close(pipefd[0]);
waitpid(pid, NULL, WNOHANG);
trash.area[trash.data] = 0;
return cli_msg(appctx, LOG_INFO, trash.area);
fail_fork:
fail_fcntl:
close(pipefd[0]);
close(pipefd[1]);
fail_pipe:
thread_release();
return cli_err(appctx, "Failed to execute command.\n");
}
/* handles SIGRTMAX to inject random delays on the receiving thread in order
* to try to increase the likelihood to reproduce inter-thread races. The
* signal is periodically sent by a task initiated by "debug dev delay-inj".
*/
void debug_delay_inj_sighandler(int sig, siginfo_t *si, void *arg)
{
volatile int i = statistical_prng_range(10000);
while (i--)
__ha_cpu_relax();
}
#endif
/* parse a "debug dev hex" command. It always returns 1. */
static int debug_parse_cli_hex(char **args, char *payload, struct appctx *appctx, void *private)
{
unsigned long start, len;
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
if (!*args[3])
return cli_err(appctx, "Missing memory address to dump from.\n");
start = strtoul(args[3], NULL, 0);
if (!start)
return cli_err(appctx, "Will not dump from NULL address.\n");
_HA_ATOMIC_INC(&debug_commands_issued);
/* by default, dump ~128 till next block of 16 */
len = strtoul(args[4], NULL, 0);
if (!len)
len = ((start + 128) & -16) - start;
chunk_reset(&trash);
dump_hex(&trash, " ", (const void *)start, len, 1);
trash.area[trash.data] = 0;
return cli_msg(appctx, LOG_INFO, trash.area);
}
/* parse a "debug dev sym <addr>" command. It always returns 1. */
static int debug_parse_cli_sym(char **args, char *payload, struct appctx *appctx, void *private)
{
unsigned long addr;
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
if (!*args[3])
return cli_err(appctx, "Missing memory address to be resolved.\n");
_HA_ATOMIC_INC(&debug_commands_issued);
addr = strtoul(args[3], NULL, 0);
chunk_printf(&trash, "%#lx resolves to ", addr);
resolve_sym_name(&trash, NULL, (const void *)addr);
chunk_appendf(&trash, "\n");
return cli_msg(appctx, LOG_INFO, trash.area);
}
/* parse a "debug dev tkill" command. It always returns 1. */
static int debug_parse_cli_tkill(char **args, char *payload, struct appctx *appctx, void *private)
{
int thr = 0;
int sig = SIGABRT;
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
if (*args[3])
thr = atoi(args[3]);
if (thr < 0 || thr > global.nbthread)
return cli_err(appctx, "Thread number out of range (use 0 for current).\n");
if (*args[4])
sig = atoi(args[4]);
_HA_ATOMIC_INC(&debug_commands_issued);
if (thr)
ha_tkill(thr - 1, sig);
else
raise(sig);
return 1;
}
/* hashes 'word' in "debug dev hash 'word' ". */
static int debug_parse_cli_hash(char **args, char *payload, struct appctx *appctx, void *private)
{
char *msg = NULL;
cli_dynmsg(appctx, LOG_INFO, memprintf(&msg, "%s\n", HA_ANON_CLI(args[3])));
return 1;
}
/* parse a "debug dev write" command. It always returns 1. */
static int debug_parse_cli_write(char **args, char *payload, struct appctx *appctx, void *private)
{
unsigned long len;
if (!*args[3])
return cli_err(appctx, "Missing output size.\n");
len = strtoul(args[3], NULL, 0);
if (len >= trash.size)
return cli_err(appctx, "Output too large, must be <tune.bufsize.\n");
_HA_ATOMIC_INC(&debug_commands_issued);
chunk_reset(&trash);
trash.data = len;
memset(trash.area, '.', trash.data);
trash.area[trash.data] = 0;
for (len = 64; len < trash.data; len += 64)
trash.area[len] = '\n';
return cli_msg(appctx, LOG_INFO, trash.area);
}
/* parse a "debug dev stream" command */
/*
* debug dev stream [strm=<ptr>] [strm.f[{+-=}<flags>]] [txn.f[{+-=}<flags>]] \
* [req.f[{+-=}<flags>]] [res.f[{+-=}<flags>]] \
* [sif.f[{+-=<flags>]] [sib.f[{+-=<flags>]] \
* [sif.s[=<state>]] [sib.s[=<state>]]
*/
static int debug_parse_cli_stream(char **args, char *payload, struct appctx *appctx, void *private)
{
struct stream *s = appctx_strm(appctx);
int arg;
void *ptr;
int size;
const char *word, *end;
struct ist name;
char *msg = NULL;
char *endarg;
unsigned long long old, new;
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
ptr = NULL; size = 0;
if (!*args[3]) {
return cli_err(appctx,
"Usage: debug dev stream [ strm=<ptr> ] { <obj> <op> <value> | wake }*\n"
" <obj> = { strm.f | strm.x | scf.s | scb.s | txn.f | req.f | res.f }\n"
" <op> = {'' (show) | '=' (assign) | '^' (xor) | '+' (or) | '-' (andnot)}\n"
" <value> = 'now' | 64-bit dec/hex integer (0x prefix supported)\n"
" 'wake' wakes the stream assigned to 'strm' (default: current)\n"
);
}
_HA_ATOMIC_INC(&debug_commands_issued);
for (arg = 3; *args[arg]; arg++) {
old = 0;
end = word = args[arg];
while (*end && *end != '=' && *end != '^' && *end != '+' && *end != '-')
end++;
name = ist2(word, end - word);
if (isteq(name, ist("strm"))) {
ptr = (!s || !may_access(s)) ? NULL : &s; size = sizeof(s);
} else if (isteq(name, ist("strm.f"))) {
ptr = (!s || !may_access(s)) ? NULL : &s->flags; size = sizeof(s->flags);
} else if (isteq(name, ist("strm.x"))) {
ptr = (!s || !may_access(s)) ? NULL : &s->conn_exp; size = sizeof(s->conn_exp);
} else if (isteq(name, ist("txn.f"))) {
ptr = (!s || !may_access(s)) ? NULL : &s->txn->flags; size = sizeof(s->txn->flags);
} else if (isteq(name, ist("req.f"))) {
ptr = (!s || !may_access(s)) ? NULL : &s->req.flags; size = sizeof(s->req.flags);
} else if (isteq(name, ist("res.f"))) {
ptr = (!s || !may_access(s)) ? NULL : &s->res.flags; size = sizeof(s->res.flags);
} else if (isteq(name, ist("scf.s"))) {
ptr = (!s || !may_access(s)) ? NULL : &s->scf->state; size = sizeof(s->scf->state);
} else if (isteq(name, ist("scb.s"))) {
ptr = (!s || !may_access(s)) ? NULL : &s->scf->state; size = sizeof(s->scb->state);
} else if (isteq(name, ist("wake"))) {
if (s && may_access(s) && may_access((void *)s + sizeof(*s) - 1))
task_wakeup(s->task, TASK_WOKEN_TIMER|TASK_WOKEN_IO|TASK_WOKEN_MSG);
continue;
} else
return cli_dynerr(appctx, memprintf(&msg, "Unsupported field name: '%s'.\n", word));
/* read previous value */
if ((s || ptr == &s) && ptr && may_access(ptr) && may_access(ptr + size - 1)) {
if (size == 8)
old = read_u64(ptr);
else if (size == 4)
old = read_u32(ptr);
else if (size == 2)
old = read_u16(ptr);
else
old = *(const uint8_t *)ptr;
} else {
memprintf(&msg,
"%sSkipping inaccessible pointer %p for field '%.*s'.\n",
msg ? msg : "", ptr, (int)(end - word), word);
continue;
}
/* parse the new value . */
new = strtoll(end + 1, &endarg, 0);
if (end[1] && *endarg) {
if (strcmp(end + 1, "now") == 0)
new = now_ms;
else {
memprintf(&msg,
"%sIgnoring unparsable value '%s' for field '%.*s'.\n",
msg ? msg : "", end + 1, (int)(end - word), word);
continue;
}
}
switch (*end) {
case '\0': /* show */
memprintf(&msg, "%s%.*s=%#llx ", msg ? msg : "", (int)(end - word), word, old);
new = old; // do not change the value
break;
case '=': /* set */
break;
case '^': /* XOR */
new = old ^ new;
break;
case '+': /* OR */
new = old | new;
break;
case '-': /* AND NOT */
new = old & ~new;
break;
default:
break;
}
/* write the new value */
if (new != old) {
if (size == 8)
write_u64(ptr, new);
else if (size == 4)
write_u32(ptr, new);
else if (size == 2)
write_u16(ptr, new);
else
*(uint8_t *)ptr = new;
}
}
if (msg && *msg)
return cli_dynmsg(appctx, LOG_INFO, msg);
return 1;
}
/* parse a "debug dev stream" command */
/*
* debug dev task <ptr> [ "wake" | "expire" | "kill" ]
* Show/change status of a task/tasklet
*/
static int debug_parse_cli_task(char **args, char *payload, struct appctx *appctx, void *private)
{
const struct ha_caller *caller;
struct task *t;
char *endarg;
char *msg;
void *ptr;
int ret = 1;
int task_ok;
int arg;
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
/* parse the pointer value */
ptr = (void *)strtoul(args[3], &endarg, 0);
if (!*args[3] || *endarg)
goto usage;
_HA_ATOMIC_INC(&debug_commands_issued);
/* everything below must run under thread isolation till reaching label "leave" */
thread_isolate();
/* struct tasklet is smaller than struct task and is sufficient to check
* the TASK_COMMON part.
*/
if (!may_access(ptr) || !may_access(ptr + sizeof(struct tasklet) - 1) ||
((const struct tasklet *)ptr)->tid < -1 ||
((const struct tasklet *)ptr)->tid >= (int)MAX_THREADS) {
ret = cli_err(appctx, "The designated memory area doesn't look like a valid task/tasklet\n");
goto leave;
}
t = ptr;
caller = t->caller;
msg = NULL;
task_ok = may_access(ptr + sizeof(*t) - 1);
chunk_reset(&trash);
resolve_sym_name(&trash, NULL, (const void *)t->process);
/* we need to be careful here because we may dump a freed task that's
* still in the pool cache, containing garbage in pointers.
*/
if (!*args[4]) {
memprintf(&msg, "%s%p: %s state=%#x tid=%d process=%s ctx=%p calls=%d last=%s:%d intl=%d",
msg ? msg : "", t, (t->state & TASK_F_TASKLET) ? "tasklet" : "task",
t->state, t->tid, trash.area, t->context, t->calls,
caller && may_access(caller) && may_access(caller->func) && isalnum((uchar)*caller->func) ? caller->func : "0",
caller ? t->caller->line : 0,
(t->state & TASK_F_TASKLET) ? LIST_INLIST(&((const struct tasklet *)t)->list) : 0);
if (task_ok && !(t->state & TASK_F_TASKLET))
memprintf(&msg, "%s inrq=%d inwq=%d exp=%d nice=%d",
msg ? msg : "", task_in_rq(t), task_in_wq(t), t->expire, t->nice);
memprintf(&msg, "%s\n", msg ? msg : "");
}
for (arg = 4; *args[arg]; arg++) {
if (strcmp(args[arg], "expire") == 0) {
if (t->state & TASK_F_TASKLET) {
/* do nothing for tasklets */
}
else if (task_ok) {
/* unlink task and wake with timer flag */
__task_unlink_wq(t);
t->expire = now_ms;
task_wakeup(t, TASK_WOKEN_TIMER);
}
} else if (strcmp(args[arg], "wake") == 0) {
/* wake with all flags but init / timer */
if (t->state & TASK_F_TASKLET)
tasklet_wakeup((struct tasklet *)t);
else if (task_ok)
task_wakeup(t, TASK_WOKEN_ANY & ~(TASK_WOKEN_INIT|TASK_WOKEN_TIMER));
} else if (strcmp(args[arg], "kill") == 0) {
/* Kill the task. This is not idempotent! */
if (!(t->state & TASK_KILLED)) {
if (t->state & TASK_F_TASKLET)
tasklet_kill((struct tasklet *)t);
else if (task_ok)
task_kill(t);
}
} else {
thread_release();
goto usage;
}
}
if (msg && *msg)
ret = cli_dynmsg(appctx, LOG_INFO, msg);
leave:
thread_release();
return ret;
usage:
return cli_err(appctx,
"Usage: debug dev task <ptr> [ wake | expire | kill ]\n"
" By default, dumps some info on task/tasklet <ptr>. 'wake' will wake it up\n"
" with all conditions flags but init/exp. 'expire' will expire the entry, and\n"
" 'kill' will kill it (warning: may crash since later not idempotent!). All\n"
" changes may crash the process if performed on a wrong object!\n"
);
}
#if defined(DEBUG_DEV)
static struct task *debug_delay_inj_task(struct task *t, void *ctx, unsigned int state)
{
unsigned long *tctx = ctx; // [0] = interval, [1] = nbwakeups
unsigned long inter = tctx[0];
unsigned long count = tctx[1];
unsigned long rnd;
if (inter)
t->expire = tick_add(now_ms, inter);
else
task_wakeup(t, TASK_WOKEN_MSG);
/* wake a random thread */
while (count--) {
rnd = statistical_prng_range(global.nbthread);
ha_tkill(rnd, SIGRTMAX);
}
return t;
}
/* parse a "debug dev delay-inj" command
* debug dev delay-inj <inter> <count>
*/
static int debug_parse_delay_inj(char **args, char *payload, struct appctx *appctx, void *private)
{
unsigned long *tctx; // [0] = inter, [2] = count
struct task *task;
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
if (!*args[4])
return cli_err(appctx, "Usage: debug dev delay-inj <inter_ms> <count>*\n");
_HA_ATOMIC_INC(&debug_commands_issued);
tctx = calloc(2, sizeof(*tctx));
if (!tctx)
goto fail;
tctx[0] = atoi(args[3]);
tctx[1] = atoi(args[4]);
task = task_new_here/*anywhere*/();
if (!task)
goto fail;
task->process = debug_delay_inj_task;
task->context = tctx;
task_wakeup(task, TASK_WOKEN_INIT);
return 1;
fail:
free(tctx);
return cli_err(appctx, "Not enough memory");
}
#endif // DEBUG_DEV
static struct task *debug_task_handler(struct task *t, void *ctx, unsigned int state)
{
unsigned long *tctx = ctx; // [0] = #tasks, [1] = inter, [2+] = { tl | (tsk+1) }
unsigned long inter = tctx[1];
unsigned long rnd;
t->expire = tick_add(now_ms, inter);
/* half of the calls will wake up another entry */
rnd = statistical_prng();
if (rnd & 1) {
rnd >>= 1;
rnd %= tctx[0];
rnd = tctx[rnd + 2];
if (rnd & 1)
task_wakeup((struct task *)(rnd - 1), TASK_WOKEN_MSG);
else
tasklet_wakeup((struct tasklet *)rnd);
}
return t;
}
static struct task *debug_tasklet_handler(struct task *t, void *ctx, unsigned int state)
{
unsigned long *tctx = ctx; // [0] = #tasks, [1] = inter, [2+] = { tl | (tsk+1) }
unsigned long rnd;
int i;
/* wake up two random entries */
for (i = 0; i < 2; i++) {
rnd = statistical_prng() % tctx[0];
rnd = tctx[rnd + 2];
if (rnd & 1)
task_wakeup((struct task *)(rnd - 1), TASK_WOKEN_MSG);
else
tasklet_wakeup((struct tasklet *)rnd);
}
return t;
}
/* parse a "debug dev sched" command
* debug dev sched {task|tasklet} [count=<count>] [mask=<mask>] [single=<single>] [inter=<inter>]
*/
static int debug_parse_cli_sched(char **args, char *payload, struct appctx *appctx, void *private)
{
int arg;
void *ptr;
int size;
const char *word, *end;
struct ist name;
char *msg = NULL;
char *endarg;
unsigned long long new;
unsigned long count = 0;
unsigned long thrid = tid;
unsigned int inter = 0;
unsigned long i;
int mode = 0; // 0 = tasklet; 1 = task
unsigned long *tctx; // [0] = #tasks, [1] = inter, [2+] = { tl | (tsk+1) }
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
ptr = NULL; size = 0;
if (strcmp(args[3], "task") != 0 && strcmp(args[3], "tasklet") != 0) {
return cli_err(appctx,
"Usage: debug dev sched {task|tasklet} { <obj> = <value> }*\n"
" <obj> = {count | tid | inter }\n"
" <value> = 64-bit dec/hex integer (0x prefix supported)\n"
);
}
mode = strcmp(args[3], "task") == 0;
_HA_ATOMIC_INC(&debug_commands_issued);
for (arg = 4; *args[arg]; arg++) {
end = word = args[arg];
while (*end && *end != '=' && *end != '^' && *end != '+' && *end != '-')
end++;
name = ist2(word, end - word);
if (isteq(name, ist("count"))) {
ptr = &count; size = sizeof(count);
} else if (isteq(name, ist("tid"))) {
ptr = &thrid; size = sizeof(thrid);
} else if (isteq(name, ist("inter"))) {
ptr = &inter; size = sizeof(inter);
} else
return cli_dynerr(appctx, memprintf(&msg, "Unsupported setting: '%s'.\n", word));
/* parse the new value . */
new = strtoll(end + 1, &endarg, 0);
if (end[1] && *endarg) {
memprintf(&msg,
"%sIgnoring unparsable value '%s' for field '%.*s'.\n",
msg ? msg : "", end + 1, (int)(end - word), word);
continue;
}
/* write the new value */
if (size == 8)
write_u64(ptr, new);
else if (size == 4)
write_u32(ptr, new);
else if (size == 2)
write_u16(ptr, new);
else
*(uint8_t *)ptr = new;
}
tctx = calloc(count + 2, sizeof(*tctx));
if (!tctx)
goto fail;
tctx[0] = (unsigned long)count;
tctx[1] = (unsigned long)inter;
if (thrid >= global.nbthread)
thrid = tid;
for (i = 0; i < count; i++) {
/* now, if poly or mask was set, tmask corresponds to the
* valid thread mask to use, otherwise it remains zero.
*/
//printf("%lu: mode=%d mask=%#lx\n", i, mode, tmask);
if (mode == 0) {
struct tasklet *tl = tasklet_new();
if (!tl)
goto fail;
tl->tid = thrid;
tl->process = debug_tasklet_handler;
tl->context = tctx;
tctx[i + 2] = (unsigned long)tl;
} else {
struct task *task = task_new_on(thrid);
if (!task)
goto fail;
task->process = debug_task_handler;
task->context = tctx;
tctx[i + 2] = (unsigned long)task + 1;
}
}
/* start the tasks and tasklets */
for (i = 0; i < count; i++) {
unsigned long ctx = tctx[i + 2];
if (ctx & 1)
task_wakeup((struct task *)(ctx - 1), TASK_WOKEN_INIT);
else
tasklet_wakeup((struct tasklet *)ctx);
}
if (msg && *msg)
return cli_dynmsg(appctx, LOG_INFO, msg);
return 1;
fail:
/* free partially allocated entries */
for (i = 0; tctx && i < count; i++) {
unsigned long ctx = tctx[i + 2];
if (!ctx)
break;
if (ctx & 1)
task_destroy((struct task *)(ctx - 1));
else
tasklet_free((struct tasklet *)ctx);
}
free(tctx);
return cli_err(appctx, "Not enough memory");
}
#if defined(DEBUG_DEV)
/* All of this is for "trace dbg" */
static struct trace_source trace_dbg __read_mostly = {
.name = IST("dbg"),
.desc = "trace debugger",
.report_events = ~0, // report everything by default
};
#define TRACE_SOURCE &trace_dbg
INITCALL1(STG_REGISTER, trace_register_source, TRACE_SOURCE);
/* This is the task handler used to send traces in loops. Note that the task's
* context contains the number of remaining calls to be done. The task sends 20
* messages per wakeup.
*/
static struct task *debug_trace_task(struct task *t, void *ctx, unsigned int state)
{
ulong count;
/* send 2 traces enter/leave +18 devel = 20 traces total */
TRACE_ENTER(1);
TRACE_DEVEL("msg01 has 20 bytes .", 1);
TRACE_DEVEL("msg02 has 20 bytes .", 1);
TRACE_DEVEL("msg03 has 20 bytes .", 1);
TRACE_DEVEL("msg04 has 70 bytes payload: 0123456789 0123456789 0123456789 012345678", 1);
TRACE_DEVEL("msg05 has 70 bytes payload: 0123456789 0123456789 0123456789 012345678", 1);
TRACE_DEVEL("msg06 has 70 bytes payload: 0123456789 0123456789 0123456789 012345678", 1);
TRACE_DEVEL("msg07 has 120 bytes payload: 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 012", 1);
TRACE_DEVEL("msg08 has 120 bytes payload: 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 012", 1);
TRACE_DEVEL("msg09 has 120 bytes payload: 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 012", 1);
TRACE_DEVEL("msg10 has 170 bytes payload: 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 012345678", 1);
TRACE_DEVEL("msg11 has 170 bytes payload: 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 012345678", 1);
TRACE_DEVEL("msg12 has 170 bytes payload: 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 012345678", 1);
TRACE_DEVEL("msg13 has 220 bytes payload: 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123", 1);
TRACE_DEVEL("msg14 has 220 bytes payload: 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123", 1);
TRACE_DEVEL("msg15 has 220 bytes payload: 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123", 1);
TRACE_DEVEL("msg16 has 270 bytes payload: 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789", 1);
TRACE_DEVEL("msg17 has 270 bytes payload: 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789", 1);
TRACE_DEVEL("msg18 has 270 bytes payload: 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789", 1);
TRACE_LEAVE(1);
count = (ulong)t->context;
t->context = (void*)count - 1;
if (count)
task_wakeup(t, TASK_WOKEN_MSG);
else {
task_destroy(t);
t = NULL;
}
return t;
}
/* parse a "debug dev trace" command
* debug dev trace <nbthr>.
* It will create as many tasks (one per thread), starting from lowest threads.
* The traces will stop after 1M wakeups or 20M messages ~= 4GB of data.
*/
static int debug_parse_cli_trace(char **args, char *payload, struct appctx *appctx, void *private)
{
unsigned long count = 1;
unsigned long i;
char *msg = NULL;
char *endarg;
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
_HA_ATOMIC_INC(&debug_commands_issued);
if (!args[3][0]) {
memprintf(&msg, "Need a thread count. Note that 20M msg will be sent per thread.\n");
goto fail;
}
/* parse the new value . */
count = strtoll(args[3], &endarg, 0);
if (args[3][1] && *endarg) {
memprintf(&msg, "Ignoring unparsable thread number '%s'.\n", args[3]);
goto fail;
}
if (count >= global.nbthread)
count = global.nbthread;
for (i = 0; i < count; i++) {
struct task *task = task_new_on(i);
if (!task)
goto fail;
task->process = debug_trace_task;
task->context = (void*)(ulong)1000000; // 1M wakeups = 20M messages
task_wakeup(task, TASK_WOKEN_INIT);
}
if (msg && *msg)
return cli_dynmsg(appctx, LOG_INFO, msg);
return 1;
fail:
return cli_dynmsg(appctx, LOG_ERR, msg);
}
#endif /* DEBUG_DEV */
/* CLI state for "debug dev fd" */
struct dev_fd_ctx {
int start_fd;
};
/* CLI parser for the "debug dev fd" command. The current FD to restart from is
* stored in a struct dev_fd_ctx pointed to by svcctx.
*/
static int debug_parse_cli_fd(char **args, char *payload, struct appctx *appctx, void *private)
{
struct dev_fd_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
if (!cli_has_level(appctx, ACCESS_LVL_OPER))
return 1;
/* start at fd #0 */
ctx->start_fd = 0;
return 0;
}
/* CLI I/O handler for the "debug dev fd" command. Dumps all FDs that are
* accessible from the process but not known from fdtab. The FD number to
* restart from is stored in a struct dev_fd_ctx pointed to by svcctx.
*/
static int debug_iohandler_fd(struct appctx *appctx)
{
struct dev_fd_ctx *ctx = appctx->svcctx;
struct sockaddr_storage sa;
struct stat statbuf;
socklen_t salen, vlen;
int ret1, ret2, port;
char *addrstr;
int ret = 1;
int i, fd;
chunk_reset(&trash);
thread_isolate();
/* we have two inner loops here, one for the proxy, the other one for
* the buffer.
*/
for (fd = ctx->start_fd; fd < global.maxsock; fd++) {
/* check for FD's existence */
ret1 = fcntl(fd, F_GETFD, 0);
if (ret1 == -1)
continue; // not known to the process
if (fdtab[fd].owner)
continue; // well-known
/* OK we're seeing an orphan let's try to retrieve as much
* information as possible about it.
*/
chunk_printf(&trash, "%5d", fd);
if (fstat(fd, &statbuf) != -1) {
chunk_appendf(&trash, " type=%s mod=%04o dev=%#llx siz=%#llx uid=%lld gid=%lld fs=%#llx ino=%#llx",
isatty(fd) ? "tty.":
S_ISREG(statbuf.st_mode) ? "file":
S_ISDIR(statbuf.st_mode) ? "dir.":
S_ISCHR(statbuf.st_mode) ? "chr.":
S_ISBLK(statbuf.st_mode) ? "blk.":
S_ISFIFO(statbuf.st_mode) ? "pipe":
S_ISLNK(statbuf.st_mode) ? "link":
S_ISSOCK(statbuf.st_mode) ? "sock":
#ifdef USE_EPOLL
/* trick: epoll_ctl() will return -ENOENT when trying
* to remove from a valid epoll FD an FD that was not
* registered against it. But we don't want to risk
* disabling a random FD. Instead we'll create a new
* one by duplicating 0 (it should be valid since
* pointing to a terminal or /dev/null), and try to
* remove it.
*/
({
int fd2 = dup(0);
int ret = fd2;
if (ret >= 0) {
ret = epoll_ctl(fd, EPOLL_CTL_DEL, fd2, NULL);
if (ret == -1 && errno == ENOENT)
ret = 0; // that's a real epoll
else
ret = -1; // it's something else
close(fd2);
}
ret;
}) == 0 ? "epol" :
#endif
"????",
(uint)statbuf.st_mode & 07777,
(ullong)statbuf.st_rdev,
(ullong)statbuf.st_size,
(ullong)statbuf.st_uid,
(ullong)statbuf.st_gid,
(ullong)statbuf.st_dev,
(ullong)statbuf.st_ino);
}
chunk_appendf(&trash, " getfd=%s+%#x",
(ret1 & FD_CLOEXEC) ? "cloex" : "",
ret1 &~ FD_CLOEXEC);
/* FD options */
ret2 = fcntl(fd, F_GETFL, 0);
if (ret2) {
chunk_appendf(&trash, " getfl=%s",
(ret1 & 3) >= 2 ? "O_RDWR" :
(ret1 & 1) ? "O_WRONLY" : "O_RDONLY");
for (i = 2; i < 32; i++) {
if (!(ret2 & (1UL << i)))
continue;
switch (1UL << i) {
case O_CREAT: chunk_appendf(&trash, ",O_CREAT"); break;
case O_EXCL: chunk_appendf(&trash, ",O_EXCL"); break;
case O_NOCTTY: chunk_appendf(&trash, ",O_NOCTTY"); break;
case O_TRUNC: chunk_appendf(&trash, ",O_TRUNC"); break;
case O_APPEND: chunk_appendf(&trash, ",O_APPEND"); break;
#ifdef O_ASYNC
case O_ASYNC: chunk_appendf(&trash, ",O_ASYNC"); break;
#endif
#ifdef O_DIRECT
case O_DIRECT: chunk_appendf(&trash, ",O_DIRECT"); break;
#endif
#ifdef O_NOATIME
case O_NOATIME: chunk_appendf(&trash, ",O_NOATIME"); break;
#endif
}
}
}
vlen = sizeof(ret2);
ret1 = getsockopt(fd, SOL_SOCKET, SO_TYPE, &ret2, &vlen);
if (ret1 != -1)
chunk_appendf(&trash, " so_type=%d", ret2);
vlen = sizeof(ret2);
ret1 = getsockopt(fd, SOL_SOCKET, SO_ACCEPTCONN, &ret2, &vlen);
if (ret1 != -1)
chunk_appendf(&trash, " so_accept=%d", ret2);
vlen = sizeof(ret2);
ret1 = getsockopt(fd, SOL_SOCKET, SO_ERROR, &ret2, &vlen);
if (ret1 != -1)
chunk_appendf(&trash, " so_error=%d", ret2);
salen = sizeof(sa);
if (getsockname(fd, (struct sockaddr *)&sa, &salen) != -1) {
if (sa.ss_family == AF_INET)
port = ntohs(((const struct sockaddr_in *)&sa)->sin_port);
else if (sa.ss_family == AF_INET6)
port = ntohs(((const struct sockaddr_in6 *)&sa)->sin6_port);
else
port = 0;
addrstr = sa2str(&sa, port, 0);
chunk_appendf(&trash, " laddr=%s", addrstr);
free(addrstr);
}
salen = sizeof(sa);
if (getpeername(fd, (struct sockaddr *)&sa, &salen) != -1) {
if (sa.ss_family == AF_INET)
port = ntohs(((const struct sockaddr_in *)&sa)->sin_port);
else if (sa.ss_family == AF_INET6)
port = ntohs(((const struct sockaddr_in6 *)&sa)->sin6_port);
else
port = 0;
addrstr = sa2str(&sa, port, 0);
chunk_appendf(&trash, " raddr=%s", addrstr);
free(addrstr);
}
chunk_appendf(&trash, "\n");
if (applet_putchk(appctx, &trash) == -1) {
ctx->start_fd = fd;
ret = 0;
break;
}
}
thread_release();
return ret;
}
#if defined(DEBUG_MEM_STATS)
/* CLI state for "debug dev memstats" */
struct dev_mem_ctx {
struct mem_stats *start, *stop; /* begin/end of dump */
char *match; /* non-null if a name prefix is specified */
int show_all; /* show all entries if non-null */
int width; /* 1st column width */
long tot_size; /* sum of alloc-free */
ulong tot_calls; /* sum of calls */
};
/* CLI parser for the "debug dev memstats" command. Sets a dev_mem_ctx shown above. */
static int debug_parse_cli_memstats(char **args, char *payload, struct appctx *appctx, void *private)
{
struct dev_mem_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
int arg;
extern __attribute__((__weak__)) struct mem_stats __start_mem_stats;
extern __attribute__((__weak__)) struct mem_stats __stop_mem_stats;
if (!cli_has_level(appctx, ACCESS_LVL_OPER))
return 1;
for (arg = 3; *args[arg]; arg++) {
if (strcmp(args[arg], "reset") == 0) {
struct mem_stats *ptr;
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
return 1;
for (ptr = &__start_mem_stats; ptr < &__stop_mem_stats; ptr++) {
_HA_ATOMIC_STORE(&ptr->calls, 0);
_HA_ATOMIC_STORE(&ptr->size, 0);
}
return 1;
}
else if (strcmp(args[arg], "all") == 0) {
ctx->show_all = 1;
continue;
}
else if (strcmp(args[arg], "match") == 0 && *args[arg + 1]) {
ha_free(&ctx->match);
ctx->match = strdup(args[arg + 1]);
arg++;
continue;
}
else
return cli_err(appctx, "Expects either 'reset', 'all', or 'match <pfx>'.\n");
}
/* otherwise proceed with the dump from p0 to p1 */
ctx->start = &__start_mem_stats;
ctx->stop = &__stop_mem_stats;
ctx->width = 0;
return 0;
}
/* CLI I/O handler for the "debug dev memstats" command using a dev_mem_ctx
* found in appctx->svcctx. Dumps all mem_stats structs referenced by pointers
* located between ->start and ->stop. Dumps all entries if ->show_all != 0,
* otherwise only non-zero calls.
*/
static int debug_iohandler_memstats(struct appctx *appctx)
{
struct dev_mem_ctx *ctx = appctx->svcctx;
struct mem_stats *ptr;
const char *pfx = ctx->match;
int ret = 1;
if (!ctx->width) {
/* we don't know the first column's width, let's compute it
* now based on a first pass on printable entries and their
* expected width (approximated).
*/
for (ptr = ctx->start; ptr != ctx->stop; ptr++) {
const char *p, *name;
int w = 0;
char tmp;
if (!ptr->size && !ptr->calls && !ctx->show_all)
continue;
for (p = name = ptr->caller.file; *p; p++) {
if (*p == '/')
name = p + 1;
}
if (ctx->show_all)
w = snprintf(&tmp, 0, "%s(%s:%d) ", ptr->caller.func, name, ptr->caller.line);
else
w = snprintf(&tmp, 0, "%s:%d ", name, ptr->caller.line);
if (w > ctx->width)
ctx->width = w;
}
}
/* we have two inner loops here, one for the proxy, the other one for
* the buffer.
*/
for (ptr = ctx->start; ptr != ctx->stop; ptr++) {
const char *type;
const char *name;
const char *p;
const char *info = NULL;
const char *func = NULL;
int direction = 0; // neither alloc nor free (e.g. realloc)
if (!ptr->size && !ptr->calls && !ctx->show_all)
continue;
/* basename only */
for (p = name = ptr->caller.file; *p; p++) {
if (*p == '/')
name = p + 1;
}
func = ptr->caller.func;
switch (ptr->caller.what) {
case MEM_STATS_TYPE_CALLOC: type = "CALLOC"; direction = 1; break;
case MEM_STATS_TYPE_FREE: type = "FREE"; direction = -1; break;
case MEM_STATS_TYPE_MALLOC: type = "MALLOC"; direction = 1; break;
case MEM_STATS_TYPE_REALLOC: type = "REALLOC"; break;
case MEM_STATS_TYPE_STRDUP: type = "STRDUP"; direction = 1; break;
case MEM_STATS_TYPE_P_ALLOC: type = "P_ALLOC"; direction = 1; if (ptr->extra) info = ((const struct pool_head *)ptr->extra)->name; break;
case MEM_STATS_TYPE_P_FREE: type = "P_FREE"; direction = -1; if (ptr->extra) info = ((const struct pool_head *)ptr->extra)->name; break;
default: type = "UNSET"; break;
}
//chunk_printf(&trash,
// "%20s:%-5d %7s size: %12lu calls: %9lu size/call: %6lu\n",
// name, ptr->line, type,
// (unsigned long)ptr->size, (unsigned long)ptr->calls,
// (unsigned long)(ptr->calls ? (ptr->size / ptr->calls) : 0));
/* only match requested prefixes */
if (pfx && (!info || strncmp(info, pfx, strlen(pfx)) != 0))
continue;
chunk_reset(&trash);
if (ctx->show_all)
chunk_appendf(&trash, "%s(", func);
chunk_appendf(&trash, "%s:%d", name, ptr->caller.line);
if (ctx->show_all)
chunk_appendf(&trash, ")");
while (trash.data < ctx->width)
trash.area[trash.data++] = ' ';
chunk_appendf(&trash, "%7s size: %12lu calls: %9lu size/call: %6lu %s\n",
type,
(unsigned long)ptr->size, (unsigned long)ptr->calls,
(unsigned long)(ptr->calls ? (ptr->size / ptr->calls) : 0),
info ? info : "");
if (applet_putchk(appctx, &trash) == -1) {
ctx->start = ptr;
ret = 0;
goto end;
}
if (direction > 0) {
ctx->tot_size += (ulong)ptr->size;
ctx->tot_calls += (ulong)ptr->calls;
}
else if (direction < 0) {
ctx->tot_size -= (ulong)ptr->size;
ctx->tot_calls += (ulong)ptr->calls;
}
}
/* now dump a summary */
chunk_reset(&trash);
chunk_appendf(&trash, "Total");
while (trash.data < ctx->width)
trash.area[trash.data++] = ' ';
chunk_appendf(&trash, "%7s size: %12ld calls: %9lu size/call: %6ld %s\n",
"BALANCE",
ctx->tot_size, ctx->tot_calls,
(long)(ctx->tot_calls ? (ctx->tot_size / ctx->tot_calls) : 0),
"(excl. realloc)");
if (applet_putchk(appctx, &trash) == -1) {
ctx->start = ptr;
ret = 0;
goto end;
}
end:
return ret;
}
/* release the "show pools" context */
static void debug_release_memstats(struct appctx *appctx)
{
struct dev_mem_ctx *ctx = appctx->svcctx;
ha_free(&ctx->match);
}
#endif
#ifdef USE_THREAD_DUMP
/* handles DEBUGSIG to dump the state of the thread it's working on. This is
* appended at the end of thread_dump_buffer which must be protected against
* reentrance from different threads (a thread-local buffer works fine).
*/
void debug_handler(int sig, siginfo_t *si, void *arg)
{
struct buffer *buf = HA_ATOMIC_LOAD(&th_ctx->thread_dump_buffer);
int harmless = is_thread_harmless();
/* first, let's check it's really for us and that we didn't just get
* a spurious DEBUGSIG.
*/
if (!buf || buf == (void*)(0x1UL))
return;
/* now dump the current state into the designated buffer, and indicate
* we come from a sig handler.
*/
ha_thread_dump_one(tid, 1);
/* mark the current thread as stuck to detect it upon next invocation
* if it didn't move.
*/
if (!harmless &&
!(_HA_ATOMIC_LOAD(&th_ctx->flags) & TH_FL_SLEEPING))
_HA_ATOMIC_OR(&th_ctx->flags, TH_FL_STUCK);
}
static int init_debug_per_thread()
{
sigset_t set;
/* unblock the DEBUGSIG signal we intend to use */
sigemptyset(&set);
sigaddset(&set, DEBUGSIG);
#if defined(DEBUG_DEV)
sigaddset(&set, SIGRTMAX);
#endif
ha_sigmask(SIG_UNBLOCK, &set, NULL);
return 1;
}
static int init_debug()
{
struct sigaction sa;
void *callers[1];
/* calling backtrace() will access libgcc at runtime. We don't want to
* do it after the chroot, so let's perform a first call to have it
* ready in memory for later use.
*/
my_backtrace(callers, sizeof(callers)/sizeof(*callers));
sa.sa_handler = NULL;
sa.sa_sigaction = debug_handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_SIGINFO;
sigaction(DEBUGSIG, &sa, NULL);
#if defined(DEBUG_DEV)
sa.sa_handler = NULL;
sa.sa_sigaction = debug_delay_inj_sighandler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_SIGINFO;
sigaction(SIGRTMAX, &sa, NULL);
#endif
return ERR_NONE;
}
REGISTER_POST_CHECK(init_debug);
REGISTER_PER_THREAD_INIT(init_debug_per_thread);
#endif /* USE_THREAD_DUMP */
static void feed_post_mortem_linux()
{
#if defined(__linux__)
struct stat statbuf;
FILE *file;
/* DMI reports either HW or hypervisor, this allows to detect most VMs.
* On ARM the device-tree is often more precise for the model. Since many
* boards present "to be filled by OEM" or so in many fields, we dedup
* them as much as possible.
*/
if (read_line_to_trash("/sys/class/dmi/id/sys_vendor") > 0)
strlcpy2(post_mortem.platform.hw_vendor, trash.area, sizeof(post_mortem.platform.hw_vendor));
if (read_line_to_trash("/sys/class/dmi/id/product_family") > 0 &&
strcmp(trash.area, post_mortem.platform.hw_vendor) != 0)
strlcpy2(post_mortem.platform.hw_family, trash.area, sizeof(post_mortem.platform.hw_family));
if ((read_line_to_trash("/sys/class/dmi/id/product_name") > 0 &&
strcmp(trash.area, post_mortem.platform.hw_vendor) != 0 &&
strcmp(trash.area, post_mortem.platform.hw_family) != 0))
strlcpy2(post_mortem.platform.hw_model, trash.area, sizeof(post_mortem.platform.hw_model));
if ((read_line_to_trash("/sys/class/dmi/id/board_vendor") > 0 &&
strcmp(trash.area, post_mortem.platform.hw_vendor) != 0))
strlcpy2(post_mortem.platform.brd_vendor, trash.area, sizeof(post_mortem.platform.brd_vendor));
if ((read_line_to_trash("/sys/firmware/devicetree/base/model") > 0 &&
strcmp(trash.area, post_mortem.platform.brd_vendor) != 0 &&
strcmp(trash.area, post_mortem.platform.hw_vendor) != 0 &&
strcmp(trash.area, post_mortem.platform.hw_family) != 0 &&
strcmp(trash.area, post_mortem.platform.hw_model) != 0) ||
(read_line_to_trash("/sys/class/dmi/id/board_name") > 0 &&
strcmp(trash.area, post_mortem.platform.brd_vendor) != 0 &&
strcmp(trash.area, post_mortem.platform.hw_vendor) != 0 &&
strcmp(trash.area, post_mortem.platform.hw_family) != 0 &&
strcmp(trash.area, post_mortem.platform.hw_model) != 0))
strlcpy2(post_mortem.platform.brd_model, trash.area, sizeof(post_mortem.platform.brd_model));
/* Check for containers. In a container on linux we don't see keventd (2.4) kthreadd (2.6+) on pid 2 */
if (read_line_to_trash("/proc/2/status") <= 0 ||
(strcmp(trash.area, "Name:\tkthreadd") != 0 &&
strcmp(trash.area, "Name:\tkeventd") != 0)) {
/* OK we're in a container. Docker often has /.dockerenv */
const char *tech = "yes";
if (stat("/.dockerenv", &statbuf) == 0)
tech = "docker";
strlcpy2(post_mortem.platform.cont_techno, tech, sizeof(post_mortem.platform.cont_techno));
}
else {
strlcpy2(post_mortem.platform.cont_techno, "no", sizeof(post_mortem.platform.cont_techno));
}
file = fopen("/proc/cpuinfo", "r");
if (file) {
uint cpu_implem = 0, cpu_arch = 0, cpu_variant = 0, cpu_part = 0, cpu_rev = 0; // arm
uint cpu_family = 0, model = 0, stepping = 0; // x86
char vendor_id[64] = "", model_name[64] = ""; // x86
char machine[64] = "", system_type[64] = "", cpu_model[64] = ""; // mips
const char *virt = "no";
char *p, *e, *v, *lf;
/* let's figure what CPU we're working with */
while ((p = fgets(trash.area, trash.size, file)) != NULL) {
lf = strchr(p, '\n');
if (lf)
*lf = 0;
/* stop at first line break */
if (!*p)
break;
/* skip colon and spaces and trim spaces after name */
v = e = strchr(p, ':');
if (!e)
continue;
do { *e-- = 0; } while (e >= p && (*e == ' ' || *e == '\t'));
/* locate value after colon */
do { v++; } while (*v == ' ' || *v == '\t');
/* ARM */
if (strcmp(p, "CPU implementer") == 0)
cpu_implem = strtoul(v, NULL, 0);
else if (strcmp(p, "CPU architecture") == 0)
cpu_arch = strtoul(v, NULL, 0);
else if (strcmp(p, "CPU variant") == 0)
cpu_variant = strtoul(v, NULL, 0);
else if (strcmp(p, "CPU part") == 0)
cpu_part = strtoul(v, NULL, 0);
else if (strcmp(p, "CPU revision") == 0)
cpu_rev = strtoul(v, NULL, 0);
/* x86 */
else if (strcmp(p, "cpu family") == 0)
cpu_family = strtoul(v, NULL, 0);
else if (strcmp(p, "model") == 0)
model = strtoul(v, NULL, 0);
else if (strcmp(p, "stepping") == 0)
stepping = strtoul(v, NULL, 0);
else if (strcmp(p, "vendor_id") == 0)
strlcpy2(vendor_id, v, sizeof(vendor_id));
else if (strcmp(p, "model name") == 0)
strlcpy2(model_name, v, sizeof(model_name));
else if (strcmp(p, "flags") == 0) {
if (strstr(v, "hypervisor")) {
if (strncmp(post_mortem.platform.hw_vendor, "QEMU", 4) == 0)
virt = "qemu";
else if (strncmp(post_mortem.platform.hw_vendor, "VMware", 6) == 0)
virt = "vmware";
else
virt = "yes";
}
}
/* MIPS */
else if (strcmp(p, "system type") == 0)
strlcpy2(system_type, v, sizeof(system_type));
else if (strcmp(p, "machine") == 0)
strlcpy2(machine, v, sizeof(machine));
else if (strcmp(p, "cpu model") == 0)
strlcpy2(cpu_model, v, sizeof(cpu_model));
}
fclose(file);
/* Machine may replace hw_product on MIPS */
if (!*post_mortem.platform.hw_model)
strlcpy2(post_mortem.platform.hw_model, machine, sizeof(post_mortem.platform.hw_model));
/* SoC vendor */
strlcpy2(post_mortem.platform.soc_vendor, vendor_id, sizeof(post_mortem.platform.soc_vendor));
/* SoC model */
if (*system_type) {
/* MIPS */
strlcpy2(post_mortem.platform.soc_model, system_type, sizeof(post_mortem.platform.soc_model));
*system_type = 0;
} else if (*model_name) {
/* x86 */
strlcpy2(post_mortem.platform.soc_model, model_name, sizeof(post_mortem.platform.soc_model));
*model_name = 0;
}
/* Create a CPU model name based on available IDs */
if (cpu_implem) // arm
snprintf(cpu_model + strlen(cpu_model),
sizeof(cpu_model) - strlen(cpu_model),
"%sImpl %#02x", *cpu_model ? " " : "", cpu_implem);
if (cpu_family) // x86
snprintf(cpu_model + strlen(cpu_model),
sizeof(cpu_model) - strlen(cpu_model),
"%sFam %u", *cpu_model ? " " : "", cpu_family);
if (model) // x86
snprintf(cpu_model + strlen(cpu_model),
sizeof(cpu_model) - strlen(cpu_model),
"%sModel %u", *cpu_model ? " " : "", model);
if (stepping) // x86
snprintf(cpu_model + strlen(cpu_model),
sizeof(cpu_model) - strlen(cpu_model),
"%sStep %u", *cpu_model ? " " : "", stepping);
if (cpu_arch) // arm
snprintf(cpu_model + strlen(cpu_model),
sizeof(cpu_model) - strlen(cpu_model),
"%sArch %u", *cpu_model ? " " : "", cpu_arch);
if (cpu_part) // arm
snprintf(cpu_model + strlen(cpu_model),
sizeof(cpu_model) - strlen(cpu_model),
"%sPart %#03x", *cpu_model ? " " : "", cpu_part);
if (cpu_variant || cpu_rev) // arm
snprintf(cpu_model + strlen(cpu_model),
sizeof(cpu_model) - strlen(cpu_model),
"%sr%up%u", *cpu_model ? " " : "", cpu_variant, cpu_rev);
strlcpy2(post_mortem.platform.cpu_model, cpu_model, sizeof(post_mortem.platform.cpu_model));
if (*virt)
strlcpy2(post_mortem.platform.virt_techno, virt, sizeof(post_mortem.platform.virt_techno));
}
#endif // __linux__
}
static int feed_post_mortem()
{
/* kernel type, version and arch */
uname(&post_mortem.platform.utsname);
/* some boot-time info related to the process */
post_mortem.process.pid = getpid();
post_mortem.process.boot_uid = geteuid();
post_mortem.process.boot_gid = getegid();
getrlimit(RLIMIT_NOFILE, &post_mortem.process.limit_fd);
getrlimit(RLIMIT_DATA, &post_mortem.process.limit_ram);
if (strcmp(post_mortem.platform.utsname.sysname, "Linux") == 0)
feed_post_mortem_linux();
#if defined(HA_HAVE_DUMP_LIBS)
chunk_reset(&trash);
if (dump_libs(&trash, 1))
post_mortem.libs = strdup(trash.area);
#endif
return ERR_NONE;
}
REGISTER_POST_CHECK(feed_post_mortem);
static void deinit_post_mortem(void)
{
int comp;
#if defined(HA_HAVE_DUMP_LIBS)
ha_free(&post_mortem.libs);
#endif
for (comp = 0; comp < post_mortem.nb_components; comp++) {
free(post_mortem.components[comp].toolchain);
free(post_mortem.components[comp].toolchain_opts);
free(post_mortem.components[comp].build_settings);
free(post_mortem.components[comp].path);
}
ha_free(&post_mortem.components);
}
REGISTER_POST_DEINIT(deinit_post_mortem);
/* Appends a component to the list of post_portem info. May silently fail
* on allocation errors but we don't care since the goal is to provide info
* we have in case it helps.
*/
void post_mortem_add_component(const char *name, const char *version,
const char *toolchain, const char *toolchain_opts,
const char *build_settings, const char *path)
{
struct post_mortem_component *comp;
int nbcomp = post_mortem.nb_components;
comp = realloc(post_mortem.components, (nbcomp + 1) * sizeof(*comp));
if (!comp)
return;
memset(&comp[nbcomp], 0, sizeof(*comp));
strlcpy2(comp[nbcomp].name, name, sizeof(comp[nbcomp].name));
strlcpy2(comp[nbcomp].version, version, sizeof(comp[nbcomp].version));
comp[nbcomp].toolchain = strdup(toolchain);
comp[nbcomp].toolchain_opts = strdup(toolchain_opts);
comp[nbcomp].build_settings = strdup(build_settings);
comp[nbcomp].path = strdup(path);
post_mortem.nb_components++;
post_mortem.components = comp;
}
#ifdef USE_THREAD
/* init code is called one at a time so let's collect all per-thread info on
* the last starting thread. These info are not critical anyway and there's no
* problem if we get them slightly late.
*/
static int feed_post_mortem_late()
{
static int per_thread_info_collected;
if (HA_ATOMIC_ADD_FETCH(&per_thread_info_collected, 1) == global.nbthread) {
int i;
for (i = 0; i < global.nbthread; i++) {
post_mortem.process.thread_info[i].pth_id = ha_thread_info[i].pth_id;
post_mortem.process.thread_info[i].stack_top = ha_thread_info[i].stack_top;
}
}
return 1;
}
REGISTER_PER_THREAD_INIT(feed_post_mortem_late);
#endif
/* register cli keywords */
static struct cli_kw_list cli_kws = {{ },{
{{ "debug", "dev", "bug", NULL }, "debug dev bug : call BUG_ON() and crash", debug_parse_cli_bug, NULL, NULL, NULL, ACCESS_EXPERT },
{{ "debug", "dev", "check", NULL }, "debug dev check : call CHECK_IF() and possibly crash", debug_parse_cli_check, NULL, NULL, NULL, ACCESS_EXPERT },
{{ "debug", "dev", "close", NULL }, "debug dev close <fd> : close this file descriptor", debug_parse_cli_close, NULL, NULL, NULL, ACCESS_EXPERT },
{{ "debug", "dev", "deadlock", NULL }, "debug dev deadlock [nbtask] : deadlock between this number of tasks", debug_parse_cli_deadlock, NULL, NULL, NULL, ACCESS_EXPERT },
{{ "debug", "dev", "delay", NULL }, "debug dev delay [ms] : sleep this long", debug_parse_cli_delay, NULL, NULL, NULL, ACCESS_EXPERT },
#if defined(DEBUG_DEV)
{{ "debug", "dev", "delay-inj", NULL },"debug dev delay-inj <inter> <count> : inject random delays into threads", debug_parse_delay_inj, NULL, NULL, NULL, ACCESS_EXPERT },
{{ "debug", "dev", "exec", NULL }, "debug dev exec [cmd] ... : show this command's output", debug_parse_cli_exec, NULL, NULL, NULL, ACCESS_EXPERT },
#endif
{{ "debug", "dev", "fd", NULL }, "debug dev fd : scan for rogue/unhandled FDs", debug_parse_cli_fd, debug_iohandler_fd, NULL, NULL, ACCESS_EXPERT },
{{ "debug", "dev", "exit", NULL }, "debug dev exit [code] : immediately exit the process", debug_parse_cli_exit, NULL, NULL, NULL, ACCESS_EXPERT },
{{ "debug", "dev", "hash", NULL }, "debug dev hash [msg] : return msg hashed if anon is set", debug_parse_cli_hash, NULL, NULL, NULL, 0 },
{{ "debug", "dev", "hex", NULL }, "debug dev hex <addr> [len] : dump a memory area", debug_parse_cli_hex, NULL, NULL, NULL, ACCESS_EXPERT },
{{ "debug", "dev", "log", NULL }, "debug dev log [msg] ... : send this msg to global logs", debug_parse_cli_log, NULL, NULL, NULL, ACCESS_EXPERT },
{{ "debug", "dev", "loop", NULL }, "debug dev loop <ms> [isolated] : loop this long, possibly isolated", debug_parse_cli_loop, NULL, NULL, NULL, ACCESS_EXPERT },
#if defined(DEBUG_MEM_STATS)
{{ "debug", "dev", "memstats", NULL }, "debug dev memstats [reset|all|match ...]: dump/reset memory statistics", debug_parse_cli_memstats, debug_iohandler_memstats, debug_release_memstats, NULL, 0 },
#endif
{{ "debug", "dev", "panic", NULL }, "debug dev panic : immediately trigger a panic", debug_parse_cli_panic, NULL, NULL, NULL, ACCESS_EXPERT },
{{ "debug", "dev", "sched", NULL }, "debug dev sched {task|tasklet} [k=v]* : stress the scheduler", debug_parse_cli_sched, NULL, NULL, NULL, ACCESS_EXPERT },
{{ "debug", "dev", "stream",NULL }, "debug dev stream [k=v]* : show/manipulate stream flags", debug_parse_cli_stream,NULL, NULL, NULL, ACCESS_EXPERT },
{{ "debug", "dev", "sym", NULL }, "debug dev sym <addr> : resolve symbol address", debug_parse_cli_sym, NULL, NULL, NULL, ACCESS_EXPERT },
{{ "debug", "dev", "task", NULL }, "debug dev task <ptr> [wake|expire|kill] : show/wake/expire/kill task/tasklet", debug_parse_cli_task, NULL, NULL, NULL, ACCESS_EXPERT },
{{ "debug", "dev", "tkill", NULL }, "debug dev tkill [thr] [sig] : send signal to thread", debug_parse_cli_tkill, NULL, NULL, NULL, ACCESS_EXPERT },
#if defined(DEBUG_DEV)
{{ "debug", "dev", "trace", NULL }, "debug dev trace [nbthr] : flood traces from that many threads", debug_parse_cli_trace, NULL, NULL, NULL, ACCESS_EXPERT },
#endif
{{ "debug", "dev", "warn", NULL }, "debug dev warn : call WARN_ON() and possibly crash", debug_parse_cli_warn, NULL, NULL, NULL, ACCESS_EXPERT },
{{ "debug", "dev", "write", NULL }, "debug dev write [size] : write that many bytes in return", debug_parse_cli_write, NULL, NULL, NULL, ACCESS_EXPERT },
{{ "show", "dev", NULL, NULL }, "show dev : show debug info for developers", debug_parse_cli_show_dev, NULL, NULL },
#if defined(HA_HAVE_DUMP_LIBS)
{{ "show", "libs", NULL, NULL }, "show libs : show loaded object files and libraries", debug_parse_cli_show_libs, NULL, NULL },
#endif
{{ "show", "threads", NULL, NULL }, "show threads : show some threads debugging information", NULL, cli_io_handler_show_threads, NULL },
{{},}
}};
INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);