haproxy/src/buffer.c
Willy Tarreau 33cb065348 MINOR: config: implement global setting tune.buffers.limit
This setting is used to limit memory usage without causing the alloc
failures caused by "-m". Unexpectedly, tests have shown a performance
boost of up to about 18% on HTTP traffic when limiting the number of
buffers to about 10% of the amount of concurrent connections.

tune.buffers.limit <number>
  Sets a hard limit on the number of buffers which may be allocated per process.
  The default value is zero which means unlimited. The minimum non-zero value
  will always be greater than "tune.buffers.reserve" and should ideally always
  be about twice as large. Forcing this value can be particularly useful to
  limit the amount of memory a process may take, while retaining a sane
  behaviour. When this limit is reached, sessions which need a buffer wait for
  another one to be released by another session. Since buffers are dynamically
  allocated and released, the waiting time is very short and not perceptible
  provided that limits remain reasonable. In fact sometimes reducing the limit
  may even increase performance by increasing the CPU cache's efficiency. Tests
  have shown good results on average HTTP traffic with a limit to 1/10 of the
  expected global maxconn setting, which also significantly reduces memory
  usage. The memory savings come from the fact that a number of connections
  will not allocate 2*tune.bufsize. It is best not to touch this value unless
  advised to do so by an haproxy core developer.
2014-12-24 23:47:33 +01:00

279 lines
7.7 KiB
C

/*
* Buffer management functions.
*
* Copyright 2000-2012 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <ctype.h>
#include <stdio.h>
#include <string.h>
#include <common/config.h>
#include <common/buffer.h>
#include <common/memory.h>
#include <types/global.h>
struct pool_head *pool2_buffer;
/* These buffers are used to always have a valid pointer to an empty buffer in
* channels. The first buffer is set once a buffer is empty. The second one is
* set when a buffer is desired but no more are available. It helps knowing
* what channel wants a buffer. They can reliably be exchanged, the split
* between the two is only an optimization.
*/
struct buffer buf_empty = { .p = buf_empty.data };
struct buffer buf_wanted = { .p = buf_wanted.data };
/* perform minimal intializations, report 0 in case of error, 1 if OK. */
int init_buffer()
{
void *buffer;
pool2_buffer = create_pool("buffer", sizeof (struct buffer) + global.tune.bufsize, MEM_F_SHARED);
if (!pool2_buffer)
return 0;
/* The reserved buffer is what we leave behind us. Thus we always need
* at least one extra buffer in minavail otherwise we'll end up waking
* up tasks with no memory available, causing a lot of useless wakeups.
* That means that we always want to have at least 3 buffers available
* (2 for current session, one for next session that might be needed to
* release a server connection).
*/
pool2_buffer->minavail = MAX(global.tune.reserved_bufs, 3);
if (global.tune.buf_limit)
pool2_buffer->limit = global.tune.buf_limit;
buffer = pool_refill_alloc(pool2_buffer, pool2_buffer->minavail - 1);
if (!buffer)
return 0;
pool_free2(pool2_buffer, buffer);
return 1;
}
/* This function writes the string <str> at position <pos> which must be in
* buffer <b>, and moves <end> just after the end of <str>. <b>'s parameters
* <l> and <r> are updated to be valid after the shift. The shift value
* (positive or negative) is returned. If there's no space left, the move is
* not done. The function does not adjust ->o because it does not make sense to
* use it on data scheduled to be sent. For the same reason, it does not make
* sense to call this function on unparsed data, so <orig> is not updated. The
* string length is taken from parameter <len>. If <len> is null, the <str>
* pointer is allowed to be null.
*/
int buffer_replace2(struct buffer *b, char *pos, char *end, const char *str, int len)
{
int delta;
delta = len - (end - pos);
if (bi_end(b) + delta >= b->data + b->size)
return 0; /* no space left */
if (buffer_not_empty(b) &&
bi_end(b) + delta > bo_ptr(b) &&
bo_ptr(b) >= bi_end(b))
return 0; /* no space left before wrapping data */
/* first, protect the end of the buffer */
memmove(end + delta, end, bi_end(b) - end);
/* now, copy str over pos */
if (len)
memcpy(pos, str, len);
b->i += delta;
if (buffer_empty(b))
b->p = b->data;
return delta;
}
/*
* Inserts <str> followed by "\r\n" at position <pos> in buffer <b>. The <len>
* argument informs about the length of string <str> so that we don't have to
* measure it. It does not include the "\r\n". If <str> is NULL, then the buffer
* is only opened for len+2 bytes but nothing is copied in. It may be useful in
* some circumstances. The send limit is *not* adjusted. Same comments as above
* for the valid use cases.
*
* The number of bytes added is returned on success. 0 is returned on failure.
*/
int buffer_insert_line2(struct buffer *b, char *pos, const char *str, int len)
{
int delta;
delta = len + 2;
if (bi_end(b) + delta >= b->data + b->size)
return 0; /* no space left */
if (buffer_not_empty(b) &&
bi_end(b) + delta > bo_ptr(b) &&
bo_ptr(b) >= bi_end(b))
return 0; /* no space left before wrapping data */
/* first, protect the end of the buffer */
memmove(pos + delta, pos, bi_end(b) - pos);
/* now, copy str over pos */
if (len && str) {
memcpy(pos, str, len);
pos[len] = '\r';
pos[len + 1] = '\n';
}
b->i += delta;
return delta;
}
/* This function realigns input data in a possibly wrapping buffer so that it
* becomes contiguous and starts at the beginning of the buffer area. The
* function may only be used when the buffer's output is empty.
*/
void buffer_slow_realign(struct buffer *buf)
{
/* two possible cases :
* - the buffer is in one contiguous block, we move it in-place
* - the buffer is in two blocks, we move it via the swap_buffer
*/
if (buf->i) {
int block1 = buf->i;
int block2 = 0;
if (buf->p + buf->i > buf->data + buf->size) {
/* non-contiguous block */
block1 = buf->data + buf->size - buf->p;
block2 = buf->p + buf->i - (buf->data + buf->size);
}
if (block2)
memcpy(swap_buffer, buf->data, block2);
memmove(buf->data, buf->p, block1);
if (block2)
memcpy(buf->data + block1, swap_buffer, block2);
}
buf->p = buf->data;
}
/* Realigns a possibly non-contiguous buffer by bouncing bytes from source to
* destination. It does not use any intermediate buffer and does the move in
* place, though it will be slower than a simple memmove() on contiguous data,
* so it's desirable to use it only on non-contiguous buffers. No pointers are
* changed, the caller is responsible for that.
*/
void buffer_bounce_realign(struct buffer *buf)
{
int advance, to_move;
char *from, *to;
from = bo_ptr(buf);
advance = buf->data + buf->size - from;
if (!advance)
return;
to_move = buffer_len(buf);
while (to_move) {
char last, save;
last = *from;
to = from + advance;
if (to >= buf->data + buf->size)
to -= buf->size;
while (1) {
save = *to;
*to = last;
last = save;
to_move--;
if (!to_move)
break;
/* check if we went back home after rotating a number of bytes */
if (to == from)
break;
/* if we ended up in the empty area, let's walk to next place. The
* empty area is either between buf->r and from or before from or
* after buf->r.
*/
if (from > bi_end(buf)) {
if (to >= bi_end(buf) && to < from)
break;
} else if (from < bi_end(buf)) {
if (to < from || to >= bi_end(buf))
break;
}
/* we have overwritten a byte of the original set, let's move it */
to += advance;
if (to >= buf->data + buf->size)
to -= buf->size;
}
from++;
if (from >= buf->data + buf->size)
from -= buf->size;
}
}
/*
* Dumps part or all of a buffer.
*/
void buffer_dump(FILE *o, struct buffer *b, int from, int to)
{
fprintf(o, "Dumping buffer %p\n", b);
fprintf(o, " data=%p o=%d i=%d p=%p\n"
" relative: p=0x%04x\n",
b->data, b->o, b->i, b->p, (unsigned int)(b->p - b->data));
fprintf(o, "Dumping contents from byte %d to byte %d\n", from, to);
fprintf(o, " 0 1 2 3 4 5 6 7 8 9 a b c d e f\n");
/* dump hexa */
while (from < to) {
int i;
fprintf(o, " %04x: ", from);
for (i = 0; ((from + i) < to) && (i < 16) ; i++) {
fprintf(o, "%02x ", (unsigned char)b->data[from + i]);
if (((from + i) & 15) == 7)
fprintf(o, "- ");
}
if (to - from < 16) {
int j = 0;
for (j = 0; j < from + 16 - to; j++)
fprintf(o, " ");
if (j > 8)
fprintf(o, " ");
}
fprintf(o, " ");
for (i = 0; (from + i < to) && (i < 16) ; i++) {
fprintf(o, "%c", isprint((int)b->data[from + i]) ? b->data[from + i] : '.') ;
if ((((from + i) & 15) == 15) && ((from + i) != to-1))
fprintf(o, "\n");
}
from += i;
}
fprintf(o, "\n--\n");
fflush(o);
}
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/