mirror of
				https://git.haproxy.org/git/haproxy.git/
				synced 2025-10-31 08:30:59 +01:00 
			
		
		
		
	This flag is always set when we end up here, for each and every data layer (idle, stream-interface, checks), and continuing to test it leaves a big risk of forgetting to set it as happened once already before 1.5-dev13. It could make sense to backport this into stable branches as part of the connection flag fixes, after some cool down period.
		
			
				
	
	
		
			1096 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1096 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Connection management functions
 | |
|  *
 | |
|  * Copyright 2000-2012 Willy Tarreau <w@1wt.eu>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version
 | |
|  * 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <errno.h>
 | |
| 
 | |
| #include <common/compat.h>
 | |
| #include <common/config.h>
 | |
| #include <common/namespace.h>
 | |
| 
 | |
| #include <proto/connection.h>
 | |
| #include <proto/fd.h>
 | |
| #include <proto/frontend.h>
 | |
| #include <proto/proto_tcp.h>
 | |
| #include <proto/stream_interface.h>
 | |
| #include <proto/sample.h>
 | |
| 
 | |
| #ifdef USE_OPENSSL
 | |
| #include <proto/ssl_sock.h>
 | |
| #endif
 | |
| 
 | |
| struct pool_head *pool2_connection;
 | |
| struct xprt_ops *registered_xprt[XPRT_ENTRIES] = { NULL, };
 | |
| 
 | |
| /* perform minimal intializations, report 0 in case of error, 1 if OK. */
 | |
| int init_connection()
 | |
| {
 | |
| 	pool2_connection = create_pool("connection", sizeof (struct connection), MEM_F_SHARED);
 | |
| 	return pool2_connection != NULL;
 | |
| }
 | |
| 
 | |
| /* I/O callback for fd-based connections. It calls the read/write handlers
 | |
|  * provided by the connection's sock_ops, which must be valid.
 | |
|  */
 | |
| void conn_fd_handler(int fd)
 | |
| {
 | |
| 	struct connection *conn = fdtab[fd].owner;
 | |
| 	unsigned int flags;
 | |
| 
 | |
| 	if (unlikely(!conn))
 | |
| 		return;
 | |
| 
 | |
| 	conn_refresh_polling_flags(conn);
 | |
| 	flags = conn->flags & ~CO_FL_ERROR; /* ensure to call the wake handler upon error */
 | |
| 
 | |
|  process_handshake:
 | |
| 	/* The handshake callbacks are called in sequence. If either of them is
 | |
| 	 * missing something, it must enable the required polling at the socket
 | |
| 	 * layer of the connection. Polling state is not guaranteed when entering
 | |
| 	 * these handlers, so any handshake handler which does not complete its
 | |
| 	 * work must explicitly disable events it's not interested in. Error
 | |
| 	 * handling is also performed here in order to reduce the number of tests
 | |
| 	 * around.
 | |
| 	 */
 | |
| 	while (unlikely(conn->flags & (CO_FL_HANDSHAKE | CO_FL_ERROR))) {
 | |
| 		if (unlikely(conn->flags & CO_FL_ERROR))
 | |
| 			goto leave;
 | |
| 
 | |
| 		if (conn->flags & CO_FL_ACCEPT_CIP)
 | |
| 			if (!conn_recv_netscaler_cip(conn, CO_FL_ACCEPT_CIP))
 | |
| 				goto leave;
 | |
| 
 | |
| 		if (conn->flags & CO_FL_ACCEPT_PROXY)
 | |
| 			if (!conn_recv_proxy(conn, CO_FL_ACCEPT_PROXY))
 | |
| 				goto leave;
 | |
| 
 | |
| 		if (conn->flags & CO_FL_SEND_PROXY)
 | |
| 			if (!conn_si_send_proxy(conn, CO_FL_SEND_PROXY))
 | |
| 				goto leave;
 | |
| #ifdef USE_OPENSSL
 | |
| 		if (conn->flags & CO_FL_SSL_WAIT_HS)
 | |
| 			if (!ssl_sock_handshake(conn, CO_FL_SSL_WAIT_HS))
 | |
| 				goto leave;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	/* Once we're purely in the data phase, we disable handshake polling */
 | |
| 	if (!(conn->flags & CO_FL_POLL_SOCK))
 | |
| 		__conn_sock_stop_both(conn);
 | |
| 
 | |
| 	/* The data layer might not be ready yet (eg: when using embryonic
 | |
| 	 * sessions). If we're about to move data, we must initialize it first.
 | |
| 	 * The function may fail and cause the connection to be destroyed, thus
 | |
| 	 * we must not use it anymore and should immediately leave instead.
 | |
| 	 */
 | |
| 	if ((conn->flags & CO_FL_INIT_DATA) && conn->data->init(conn) < 0)
 | |
| 		return;
 | |
| 
 | |
| 	/* The data transfer starts here and stops on error and handshakes. Note
 | |
| 	 * that we must absolutely test conn->xprt at each step in case it suddenly
 | |
| 	 * changes due to a quick unexpected close().
 | |
| 	 */
 | |
| 	if (conn->xprt && fd_recv_ready(fd) &&
 | |
| 	    ((conn->flags & (CO_FL_DATA_RD_ENA|CO_FL_WAIT_ROOM|CO_FL_ERROR|CO_FL_HANDSHAKE)) == CO_FL_DATA_RD_ENA)) {
 | |
| 		/* force reporting of activity by clearing the previous flags :
 | |
| 		 * we'll have at least ERROR or CONNECTED at the end of an I/O,
 | |
| 		 * both of which will be detected below.
 | |
| 		 */
 | |
| 		flags = 0;
 | |
| 		conn->data->recv(conn);
 | |
| 	}
 | |
| 
 | |
| 	if (conn->xprt && fd_send_ready(fd) &&
 | |
| 	    ((conn->flags & (CO_FL_DATA_WR_ENA|CO_FL_WAIT_DATA|CO_FL_ERROR|CO_FL_HANDSHAKE)) == CO_FL_DATA_WR_ENA)) {
 | |
| 		/* force reporting of activity by clearing the previous flags :
 | |
| 		 * we'll have at least ERROR or CONNECTED at the end of an I/O,
 | |
| 		 * both of which will be detected below.
 | |
| 		 */
 | |
| 		flags = 0;
 | |
| 		conn->data->send(conn);
 | |
| 	}
 | |
| 
 | |
| 	/* It may happen during the data phase that a handshake is
 | |
| 	 * enabled again (eg: SSL)
 | |
| 	 */
 | |
| 	if (unlikely(conn->flags & (CO_FL_HANDSHAKE | CO_FL_ERROR)))
 | |
| 		goto process_handshake;
 | |
| 
 | |
| 	if (unlikely(conn->flags & CO_FL_WAIT_L4_CONN)) {
 | |
| 		/* still waiting for a connection to establish and nothing was
 | |
| 		 * attempted yet to probe the connection. Then let's retry the
 | |
| 		 * connect().
 | |
| 		 */
 | |
| 		if (!tcp_connect_probe(conn))
 | |
| 			goto leave;
 | |
| 	}
 | |
|  leave:
 | |
| 	/* Verify if the connection just established. */
 | |
| 	if (unlikely(!(conn->flags & (CO_FL_WAIT_L4_CONN | CO_FL_WAIT_L6_CONN | CO_FL_CONNECTED))))
 | |
| 		conn->flags |= CO_FL_CONNECTED;
 | |
| 
 | |
| 	/* The wake callback is normally used to notify the data layer about
 | |
| 	 * data layer activity (successful send/recv), connection establishment,
 | |
| 	 * shutdown and fatal errors. We need to consider the following
 | |
| 	 * situations to wake up the data layer :
 | |
| 	 *  - change among the CO_FL_NOTIFY_DATA flags :
 | |
| 	 *      {DATA,SOCK}_{RD,WR}_SH, ERROR,
 | |
| 	 *  - absence of any of {L4,L6}_CONN and CONNECTED, indicating the
 | |
| 	 *    end of handshake and transition to CONNECTED
 | |
| 	 *  - raise of CONNECTED with HANDSHAKE down
 | |
| 	 *  - end of HANDSHAKE with CONNECTED set
 | |
| 	 *  - regular data layer activity
 | |
| 	 *
 | |
| 	 * Note that the wake callback is allowed to release the connection and
 | |
| 	 * the fd (and return < 0 in this case).
 | |
| 	 */
 | |
| 	if ((((conn->flags ^ flags) & CO_FL_NOTIFY_DATA) ||
 | |
| 	     ((flags & (CO_FL_CONNECTED|CO_FL_HANDSHAKE)) != CO_FL_CONNECTED &&
 | |
| 	      (conn->flags & (CO_FL_CONNECTED|CO_FL_HANDSHAKE)) == CO_FL_CONNECTED)) &&
 | |
| 	    conn->data->wake(conn) < 0)
 | |
| 		return;
 | |
| 
 | |
| 	/* remove the events before leaving */
 | |
| 	fdtab[fd].ev &= FD_POLL_STICKY;
 | |
| 
 | |
| 	/* commit polling changes */
 | |
| 	conn_cond_update_polling(conn);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /* Update polling on connection <c>'s file descriptor depending on its current
 | |
|  * state as reported in the connection's CO_FL_CURR_* flags, reports of EAGAIN
 | |
|  * in CO_FL_WAIT_*, and the data layer expectations indicated by CO_FL_DATA_*.
 | |
|  * The connection flags are updated with the new flags at the end of the
 | |
|  * operation. Polling is totally disabled if an error was reported.
 | |
|  */
 | |
| void conn_update_data_polling(struct connection *c)
 | |
| {
 | |
| 	unsigned int f = c->flags;
 | |
| 
 | |
| 	if (!conn_ctrl_ready(c))
 | |
| 		return;
 | |
| 
 | |
| 	/* update read status if needed */
 | |
| 	if (unlikely((f & (CO_FL_CURR_RD_ENA|CO_FL_DATA_RD_ENA)) == CO_FL_DATA_RD_ENA)) {
 | |
| 		fd_want_recv(c->t.sock.fd);
 | |
| 		f |= CO_FL_CURR_RD_ENA;
 | |
| 	}
 | |
| 	else if (unlikely((f & (CO_FL_CURR_RD_ENA|CO_FL_DATA_RD_ENA)) == CO_FL_CURR_RD_ENA)) {
 | |
| 		fd_stop_recv(c->t.sock.fd);
 | |
| 		f &= ~CO_FL_CURR_RD_ENA;
 | |
| 	}
 | |
| 
 | |
| 	/* update write status if needed */
 | |
| 	if (unlikely((f & (CO_FL_CURR_WR_ENA|CO_FL_DATA_WR_ENA)) == CO_FL_DATA_WR_ENA)) {
 | |
| 		fd_want_send(c->t.sock.fd);
 | |
| 		f |= CO_FL_CURR_WR_ENA;
 | |
| 	}
 | |
| 	else if (unlikely((f & (CO_FL_CURR_WR_ENA|CO_FL_DATA_WR_ENA)) == CO_FL_CURR_WR_ENA)) {
 | |
| 		fd_stop_send(c->t.sock.fd);
 | |
| 		f &= ~CO_FL_CURR_WR_ENA;
 | |
| 	}
 | |
| 	c->flags = f;
 | |
| }
 | |
| 
 | |
| /* Update polling on connection <c>'s file descriptor depending on its current
 | |
|  * state as reported in the connection's CO_FL_CURR_* flags, reports of EAGAIN
 | |
|  * in CO_FL_WAIT_*, and the sock layer expectations indicated by CO_FL_SOCK_*.
 | |
|  * The connection flags are updated with the new flags at the end of the
 | |
|  * operation. Polling is totally disabled if an error was reported.
 | |
|  */
 | |
| void conn_update_sock_polling(struct connection *c)
 | |
| {
 | |
| 	unsigned int f = c->flags;
 | |
| 
 | |
| 	if (!conn_ctrl_ready(c))
 | |
| 		return;
 | |
| 
 | |
| 	/* update read status if needed */
 | |
| 	if (unlikely((f & (CO_FL_CURR_RD_ENA|CO_FL_SOCK_RD_ENA)) == CO_FL_SOCK_RD_ENA)) {
 | |
| 		fd_want_recv(c->t.sock.fd);
 | |
| 		f |= CO_FL_CURR_RD_ENA;
 | |
| 	}
 | |
| 	else if (unlikely((f & (CO_FL_CURR_RD_ENA|CO_FL_SOCK_RD_ENA)) == CO_FL_CURR_RD_ENA)) {
 | |
| 		fd_stop_recv(c->t.sock.fd);
 | |
| 		f &= ~CO_FL_CURR_RD_ENA;
 | |
| 	}
 | |
| 
 | |
| 	/* update write status if needed */
 | |
| 	if (unlikely((f & (CO_FL_CURR_WR_ENA|CO_FL_SOCK_WR_ENA)) == CO_FL_SOCK_WR_ENA)) {
 | |
| 		fd_want_send(c->t.sock.fd);
 | |
| 		f |= CO_FL_CURR_WR_ENA;
 | |
| 	}
 | |
| 	else if (unlikely((f & (CO_FL_CURR_WR_ENA|CO_FL_SOCK_WR_ENA)) == CO_FL_CURR_WR_ENA)) {
 | |
| 		fd_stop_send(c->t.sock.fd);
 | |
| 		f &= ~CO_FL_CURR_WR_ENA;
 | |
| 	}
 | |
| 	c->flags = f;
 | |
| }
 | |
| 
 | |
| /* Send a message over an established connection. It makes use of send() and
 | |
|  * returns the same return code and errno. If the socket layer is not ready yet
 | |
|  * then -1 is returned and ENOTSOCK is set into errno. If the fd is not marked
 | |
|  * as ready, or if EAGAIN or ENOTCONN is returned, then we return 0. It returns
 | |
|  * EMSGSIZE if called with a zero length message. The purpose is to simplify
 | |
|  * some rare attempts to directly write on the socket from above the connection
 | |
|  * (typically send_proxy). In case of EAGAIN, the fd is marked as "cant_send".
 | |
|  * It automatically retries on EINTR. Other errors cause the connection to be
 | |
|  * marked as in error state. It takes similar arguments as send() except the
 | |
|  * first one which is the connection instead of the file descriptor. Note,
 | |
|  * MSG_DONTWAIT and MSG_NOSIGNAL are forced on the flags.
 | |
|  */
 | |
| int conn_sock_send(struct connection *conn, const void *buf, int len, int flags)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = -1;
 | |
| 	errno = ENOTSOCK;
 | |
| 
 | |
| 	if (conn->flags & CO_FL_SOCK_WR_SH)
 | |
| 		goto fail;
 | |
| 
 | |
| 	if (!conn_ctrl_ready(conn))
 | |
| 		goto fail;
 | |
| 
 | |
| 	errno = EMSGSIZE;
 | |
| 	if (!len)
 | |
| 		goto fail;
 | |
| 
 | |
| 	if (!fd_send_ready(conn->t.sock.fd))
 | |
| 		goto wait;
 | |
| 
 | |
| 	do {
 | |
| 		ret = send(conn->t.sock.fd, buf, len, flags | MSG_DONTWAIT | MSG_NOSIGNAL);
 | |
| 	} while (ret < 0 && errno == EINTR);
 | |
| 
 | |
| 
 | |
| 	if (ret > 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (ret == 0 || errno == EAGAIN || errno == ENOTCONN) {
 | |
| 	wait:
 | |
| 		fd_cant_send(conn->t.sock.fd);
 | |
| 		return 0;
 | |
| 	}
 | |
|  fail:
 | |
| 	conn->flags |= CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH | CO_FL_ERROR;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Drains possibly pending incoming data on the file descriptor attached to the
 | |
|  * connection and update the connection's flags accordingly. This is used to
 | |
|  * know whether we need to disable lingering on close. Returns non-zero if it
 | |
|  * is safe to close without disabling lingering, otherwise zero. The SOCK_RD_SH
 | |
|  * flag may also be updated if the incoming shutdown was reported by the drain()
 | |
|  * function.
 | |
|  */
 | |
| int conn_sock_drain(struct connection *conn)
 | |
| {
 | |
| 	if (!conn_ctrl_ready(conn))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (fdtab[conn->t.sock.fd].ev & (FD_POLL_ERR|FD_POLL_HUP)) {
 | |
| 		fdtab[conn->t.sock.fd].linger_risk = 0;
 | |
| 	}
 | |
| 	else {
 | |
| 		if (!fd_recv_ready(conn->t.sock.fd))
 | |
| 			return 0;
 | |
| 
 | |
| 		/* disable draining if we were called and have no drain function */
 | |
| 		if (!conn->ctrl->drain) {
 | |
| 			__conn_data_stop_recv(conn);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		if (conn->ctrl->drain(conn->t.sock.fd) <= 0)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	conn->flags |= CO_FL_SOCK_RD_SH;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get data length from tlv
 | |
|  */
 | |
| static int get_tlv_length(const struct tlv *src)
 | |
| {
 | |
| 	return (src->length_hi << 8) | src->length_lo;
 | |
| }
 | |
| 
 | |
| /* This handshake handler waits a PROXY protocol header at the beginning of the
 | |
|  * raw data stream. The header looks like this :
 | |
|  *
 | |
|  *   "PROXY" <SP> PROTO <SP> SRC3 <SP> DST3 <SP> SRC4 <SP> <DST4> "\r\n"
 | |
|  *
 | |
|  * There must be exactly one space between each field. Fields are :
 | |
|  *  - PROTO : layer 4 protocol, which must be "TCP4" or "TCP6".
 | |
|  *  - SRC3  : layer 3 (eg: IP) source address in standard text form
 | |
|  *  - DST3  : layer 3 (eg: IP) destination address in standard text form
 | |
|  *  - SRC4  : layer 4 (eg: TCP port) source address in standard text form
 | |
|  *  - DST4  : layer 4 (eg: TCP port) destination address in standard text form
 | |
|  *
 | |
|  * This line MUST be at the beginning of the buffer and MUST NOT wrap.
 | |
|  *
 | |
|  * The header line is small and in all cases smaller than the smallest normal
 | |
|  * TCP MSS. So it MUST always be delivered as one segment, which ensures we
 | |
|  * can safely use MSG_PEEK and avoid buffering.
 | |
|  *
 | |
|  * Once the data is fetched, the values are set in the connection's address
 | |
|  * fields, and data are removed from the socket's buffer. The function returns
 | |
|  * zero if it needs to wait for more data or if it fails, or 1 if it completed
 | |
|  * and removed itself.
 | |
|  */
 | |
| int conn_recv_proxy(struct connection *conn, int flag)
 | |
| {
 | |
| 	char *line, *end;
 | |
| 	struct proxy_hdr_v2 *hdr_v2;
 | |
| 	const char v2sig[] = PP2_SIGNATURE;
 | |
| 	int tlv_length = 0;
 | |
| 	int tlv_offset = 0;
 | |
| 
 | |
| 	/* we might have been called just after an asynchronous shutr */
 | |
| 	if (conn->flags & CO_FL_SOCK_RD_SH)
 | |
| 		goto fail;
 | |
| 
 | |
| 	if (!conn_ctrl_ready(conn))
 | |
| 		goto fail;
 | |
| 
 | |
| 	if (!fd_recv_ready(conn->t.sock.fd))
 | |
| 		return 0;
 | |
| 
 | |
| 	do {
 | |
| 		trash.len = recv(conn->t.sock.fd, trash.str, trash.size, MSG_PEEK);
 | |
| 		if (trash.len < 0) {
 | |
| 			if (errno == EINTR)
 | |
| 				continue;
 | |
| 			if (errno == EAGAIN) {
 | |
| 				fd_cant_recv(conn->t.sock.fd);
 | |
| 				return 0;
 | |
| 			}
 | |
| 			goto recv_abort;
 | |
| 		}
 | |
| 	} while (0);
 | |
| 
 | |
| 	if (!trash.len) {
 | |
| 		/* client shutdown */
 | |
| 		conn->err_code = CO_ER_PRX_EMPTY;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	if (trash.len < 6)
 | |
| 		goto missing;
 | |
| 
 | |
| 	line = trash.str;
 | |
| 	end = trash.str + trash.len;
 | |
| 
 | |
| 	/* Decode a possible proxy request, fail early if it does not match */
 | |
| 	if (strncmp(line, "PROXY ", 6) != 0)
 | |
| 		goto not_v1;
 | |
| 
 | |
| 	line += 6;
 | |
| 	if (trash.len < 9) /* shortest possible line */
 | |
| 		goto missing;
 | |
| 
 | |
| 	if (memcmp(line, "TCP4 ", 5) == 0) {
 | |
| 		u32 src3, dst3, sport, dport;
 | |
| 
 | |
| 		line += 5;
 | |
| 
 | |
| 		src3 = inetaddr_host_lim_ret(line, end, &line);
 | |
| 		if (line == end)
 | |
| 			goto missing;
 | |
| 		if (*line++ != ' ')
 | |
| 			goto bad_header;
 | |
| 
 | |
| 		dst3 = inetaddr_host_lim_ret(line, end, &line);
 | |
| 		if (line == end)
 | |
| 			goto missing;
 | |
| 		if (*line++ != ' ')
 | |
| 			goto bad_header;
 | |
| 
 | |
| 		sport = read_uint((const char **)&line, end);
 | |
| 		if (line == end)
 | |
| 			goto missing;
 | |
| 		if (*line++ != ' ')
 | |
| 			goto bad_header;
 | |
| 
 | |
| 		dport = read_uint((const char **)&line, end);
 | |
| 		if (line > end - 2)
 | |
| 			goto missing;
 | |
| 		if (*line++ != '\r')
 | |
| 			goto bad_header;
 | |
| 		if (*line++ != '\n')
 | |
| 			goto bad_header;
 | |
| 
 | |
| 		/* update the session's addresses and mark them set */
 | |
| 		((struct sockaddr_in *)&conn->addr.from)->sin_family      = AF_INET;
 | |
| 		((struct sockaddr_in *)&conn->addr.from)->sin_addr.s_addr = htonl(src3);
 | |
| 		((struct sockaddr_in *)&conn->addr.from)->sin_port        = htons(sport);
 | |
| 
 | |
| 		((struct sockaddr_in *)&conn->addr.to)->sin_family        = AF_INET;
 | |
| 		((struct sockaddr_in *)&conn->addr.to)->sin_addr.s_addr   = htonl(dst3);
 | |
| 		((struct sockaddr_in *)&conn->addr.to)->sin_port          = htons(dport);
 | |
| 		conn->flags |= CO_FL_ADDR_FROM_SET | CO_FL_ADDR_TO_SET;
 | |
| 	}
 | |
| 	else if (memcmp(line, "TCP6 ", 5) == 0) {
 | |
| 		u32 sport, dport;
 | |
| 		char *src_s;
 | |
| 		char *dst_s, *sport_s, *dport_s;
 | |
| 		struct in6_addr src3, dst3;
 | |
| 
 | |
| 		line += 5;
 | |
| 
 | |
| 		src_s = line;
 | |
| 		dst_s = sport_s = dport_s = NULL;
 | |
| 		while (1) {
 | |
| 			if (line > end - 2) {
 | |
| 				goto missing;
 | |
| 			}
 | |
| 			else if (*line == '\r') {
 | |
| 				*line = 0;
 | |
| 				line++;
 | |
| 				if (*line++ != '\n')
 | |
| 					goto bad_header;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			if (*line == ' ') {
 | |
| 				*line = 0;
 | |
| 				if (!dst_s)
 | |
| 					dst_s = line + 1;
 | |
| 				else if (!sport_s)
 | |
| 					sport_s = line + 1;
 | |
| 				else if (!dport_s)
 | |
| 					dport_s = line + 1;
 | |
| 			}
 | |
| 			line++;
 | |
| 		}
 | |
| 
 | |
| 		if (!dst_s || !sport_s || !dport_s)
 | |
| 			goto bad_header;
 | |
| 
 | |
| 		sport = read_uint((const char **)&sport_s,dport_s - 1);
 | |
| 		if (*sport_s != 0)
 | |
| 			goto bad_header;
 | |
| 
 | |
| 		dport = read_uint((const char **)&dport_s,line - 2);
 | |
| 		if (*dport_s != 0)
 | |
| 			goto bad_header;
 | |
| 
 | |
| 		if (inet_pton(AF_INET6, src_s, (void *)&src3) != 1)
 | |
| 			goto bad_header;
 | |
| 
 | |
| 		if (inet_pton(AF_INET6, dst_s, (void *)&dst3) != 1)
 | |
| 			goto bad_header;
 | |
| 
 | |
| 		/* update the session's addresses and mark them set */
 | |
| 		((struct sockaddr_in6 *)&conn->addr.from)->sin6_family      = AF_INET6;
 | |
| 		memcpy(&((struct sockaddr_in6 *)&conn->addr.from)->sin6_addr, &src3, sizeof(struct in6_addr));
 | |
| 		((struct sockaddr_in6 *)&conn->addr.from)->sin6_port        = htons(sport);
 | |
| 
 | |
| 		((struct sockaddr_in6 *)&conn->addr.to)->sin6_family        = AF_INET6;
 | |
| 		memcpy(&((struct sockaddr_in6 *)&conn->addr.to)->sin6_addr, &dst3, sizeof(struct in6_addr));
 | |
| 		((struct sockaddr_in6 *)&conn->addr.to)->sin6_port          = htons(dport);
 | |
| 		conn->flags |= CO_FL_ADDR_FROM_SET | CO_FL_ADDR_TO_SET;
 | |
| 	}
 | |
| 	else if (memcmp(line, "UNKNOWN\r\n", 9) == 0) {
 | |
| 		/* This can be a UNIX socket forwarded by an haproxy upstream */
 | |
| 		line += 9;
 | |
| 	}
 | |
| 	else {
 | |
| 		/* The protocol does not match something known (TCP4/TCP6/UNKNOWN) */
 | |
| 		conn->err_code = CO_ER_PRX_BAD_PROTO;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	trash.len = line - trash.str;
 | |
| 	goto eat_header;
 | |
| 
 | |
|  not_v1:
 | |
| 	/* try PPv2 */
 | |
| 	if (trash.len < PP2_HEADER_LEN)
 | |
| 		goto missing;
 | |
| 
 | |
| 	hdr_v2 = (struct proxy_hdr_v2 *)trash.str;
 | |
| 
 | |
| 	if (memcmp(hdr_v2->sig, v2sig, PP2_SIGNATURE_LEN) != 0 ||
 | |
| 	    (hdr_v2->ver_cmd & PP2_VERSION_MASK) != PP2_VERSION) {
 | |
| 		conn->err_code = CO_ER_PRX_NOT_HDR;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	if (trash.len < PP2_HEADER_LEN + ntohs(hdr_v2->len))
 | |
| 		goto missing;
 | |
| 
 | |
| 	switch (hdr_v2->ver_cmd & PP2_CMD_MASK) {
 | |
| 	case 0x01: /* PROXY command */
 | |
| 		switch (hdr_v2->fam) {
 | |
| 		case 0x11:  /* TCPv4 */
 | |
| 			if (ntohs(hdr_v2->len) < PP2_ADDR_LEN_INET)
 | |
| 				goto bad_header;
 | |
| 
 | |
| 			((struct sockaddr_in *)&conn->addr.from)->sin_family = AF_INET;
 | |
| 			((struct sockaddr_in *)&conn->addr.from)->sin_addr.s_addr = hdr_v2->addr.ip4.src_addr;
 | |
| 			((struct sockaddr_in *)&conn->addr.from)->sin_port = hdr_v2->addr.ip4.src_port;
 | |
| 			((struct sockaddr_in *)&conn->addr.to)->sin_family = AF_INET;
 | |
| 			((struct sockaddr_in *)&conn->addr.to)->sin_addr.s_addr = hdr_v2->addr.ip4.dst_addr;
 | |
| 			((struct sockaddr_in *)&conn->addr.to)->sin_port = hdr_v2->addr.ip4.dst_port;
 | |
| 			conn->flags |= CO_FL_ADDR_FROM_SET | CO_FL_ADDR_TO_SET;
 | |
| 			tlv_offset = PP2_HEADER_LEN + PP2_ADDR_LEN_INET;
 | |
| 			tlv_length = ntohs(hdr_v2->len) - PP2_ADDR_LEN_INET;
 | |
| 			break;
 | |
| 		case 0x21:  /* TCPv6 */
 | |
| 			if (ntohs(hdr_v2->len) < PP2_ADDR_LEN_INET6)
 | |
| 				goto bad_header;
 | |
| 
 | |
| 			((struct sockaddr_in6 *)&conn->addr.from)->sin6_family = AF_INET6;
 | |
| 			memcpy(&((struct sockaddr_in6 *)&conn->addr.from)->sin6_addr, hdr_v2->addr.ip6.src_addr, 16);
 | |
| 			((struct sockaddr_in6 *)&conn->addr.from)->sin6_port = hdr_v2->addr.ip6.src_port;
 | |
| 			((struct sockaddr_in6 *)&conn->addr.to)->sin6_family = AF_INET6;
 | |
| 			memcpy(&((struct sockaddr_in6 *)&conn->addr.to)->sin6_addr, hdr_v2->addr.ip6.dst_addr, 16);
 | |
| 			((struct sockaddr_in6 *)&conn->addr.to)->sin6_port = hdr_v2->addr.ip6.dst_port;
 | |
| 			conn->flags |= CO_FL_ADDR_FROM_SET | CO_FL_ADDR_TO_SET;
 | |
| 			tlv_offset = PP2_HEADER_LEN + PP2_ADDR_LEN_INET6;
 | |
| 			tlv_length = ntohs(hdr_v2->len) - PP2_ADDR_LEN_INET6;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* TLV parsing */
 | |
| 		if (tlv_length > 0) {
 | |
| 			while (tlv_offset + TLV_HEADER_SIZE <= trash.len) {
 | |
| 				const struct tlv *tlv_packet = (struct tlv *) &trash.str[tlv_offset];
 | |
| 				const int tlv_len = get_tlv_length(tlv_packet);
 | |
| 				tlv_offset += tlv_len + TLV_HEADER_SIZE;
 | |
| 
 | |
| 				switch (tlv_packet->type) {
 | |
| #ifdef CONFIG_HAP_NS
 | |
| 				case PP2_TYPE_NETNS: {
 | |
| 					const struct netns_entry *ns;
 | |
| 					ns = netns_store_lookup((char*)tlv_packet->value, tlv_len);
 | |
| 					if (ns)
 | |
| 						conn->proxy_netns = ns;
 | |
| 					break;
 | |
| 				}
 | |
| #endif
 | |
| 				default:
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* unsupported protocol, keep local connection address */
 | |
| 		break;
 | |
| 	case 0x00: /* LOCAL command */
 | |
| 		/* keep local connection address for LOCAL */
 | |
| 		break;
 | |
| 	default:
 | |
| 		goto bad_header; /* not a supported command */
 | |
| 	}
 | |
| 
 | |
| 	trash.len = PP2_HEADER_LEN + ntohs(hdr_v2->len);
 | |
| 	goto eat_header;
 | |
| 
 | |
|  eat_header:
 | |
| 	/* remove the PROXY line from the request. For this we re-read the
 | |
| 	 * exact line at once. If we don't get the exact same result, we
 | |
| 	 * fail.
 | |
| 	 */
 | |
| 	do {
 | |
| 		int len2 = recv(conn->t.sock.fd, trash.str, trash.len, 0);
 | |
| 		if (len2 < 0 && errno == EINTR)
 | |
| 			continue;
 | |
| 		if (len2 != trash.len)
 | |
| 			goto recv_abort;
 | |
| 	} while (0);
 | |
| 
 | |
| 	conn->flags &= ~flag;
 | |
| 	conn->flags |= CO_FL_RCVD_PROXY;
 | |
| 	return 1;
 | |
| 
 | |
|  missing:
 | |
| 	/* Missing data. Since we're using MSG_PEEK, we can only poll again if
 | |
| 	 * we have not read anything. Otherwise we need to fail because we won't
 | |
| 	 * be able to poll anymore.
 | |
| 	 */
 | |
| 	conn->err_code = CO_ER_PRX_TRUNCATED;
 | |
| 	goto fail;
 | |
| 
 | |
|  bad_header:
 | |
| 	/* This is not a valid proxy protocol header */
 | |
| 	conn->err_code = CO_ER_PRX_BAD_HDR;
 | |
| 	goto fail;
 | |
| 
 | |
|  recv_abort:
 | |
| 	conn->err_code = CO_ER_PRX_ABORT;
 | |
| 	conn->flags |= CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH;
 | |
| 	goto fail;
 | |
| 
 | |
|  fail:
 | |
| 	__conn_sock_stop_both(conn);
 | |
| 	conn->flags |= CO_FL_ERROR;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* This handshake handler waits a NetScaler Client IP insertion header
 | |
|  * at the beginning of the raw data stream. The header looks like this:
 | |
|  *
 | |
|  *   4 bytes:   CIP magic number
 | |
|  *   4 bytes:   Header length
 | |
|  *   20+ bytes: Header of the last IP packet sent by the client during
 | |
|  *              TCP handshake.
 | |
|  *   20+ bytes: Header of the last TCP packet sent by the client during
 | |
|  *              TCP handshake.
 | |
|  *
 | |
|  * This line MUST be at the beginning of the buffer and MUST NOT be
 | |
|  * fragmented.
 | |
|  *
 | |
|  * The header line is small and in all cases smaller than the smallest normal
 | |
|  * TCP MSS. So it MUST always be delivered as one segment, which ensures we
 | |
|  * can safely use MSG_PEEK and avoid buffering.
 | |
|  *
 | |
|  * Once the data is fetched, the values are set in the connection's address
 | |
|  * fields, and data are removed from the socket's buffer. The function returns
 | |
|  * zero if it needs to wait for more data or if it fails, or 1 if it completed
 | |
|  * and removed itself.
 | |
|  */
 | |
| int conn_recv_netscaler_cip(struct connection *conn, int flag)
 | |
| {
 | |
| 	char *line;
 | |
| 	uint32_t cip_magic;
 | |
| 	uint32_t cip_len;
 | |
| 	uint8_t ip_v;
 | |
| 
 | |
| 	/* we might have been called just after an asynchronous shutr */
 | |
| 	if (conn->flags & CO_FL_SOCK_RD_SH)
 | |
| 		goto fail;
 | |
| 
 | |
| 	if (!conn_ctrl_ready(conn))
 | |
| 		goto fail;
 | |
| 
 | |
| 	if (!fd_recv_ready(conn->t.sock.fd))
 | |
| 		return 0;
 | |
| 
 | |
| 	do {
 | |
| 		trash.len = recv(conn->t.sock.fd, trash.str, trash.size, MSG_PEEK);
 | |
| 		if (trash.len < 0) {
 | |
| 			if (errno == EINTR)
 | |
| 				continue;
 | |
| 			if (errno == EAGAIN) {
 | |
| 				fd_cant_recv(conn->t.sock.fd);
 | |
| 				return 0;
 | |
| 			}
 | |
| 			goto recv_abort;
 | |
| 		}
 | |
| 	} while (0);
 | |
| 
 | |
| 	if (!trash.len) {
 | |
| 		/* client shutdown */
 | |
| 		conn->err_code = CO_ER_CIP_EMPTY;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	/* Fail if buffer length is not large enough to contain
 | |
| 	 * CIP magic, CIP length */
 | |
| 	if (trash.len < 8)
 | |
| 		goto missing;
 | |
| 
 | |
| 	line = trash.str;
 | |
| 
 | |
| 	cip_magic = ntohl(*(uint32_t *)line);
 | |
| 	cip_len = ntohl(*(uint32_t *)(line+4));
 | |
| 
 | |
| 	/* Decode a possible NetScaler Client IP request, fail early if
 | |
| 	 * it does not match */
 | |
| 	if (cip_magic != objt_listener(conn->target)->bind_conf->ns_cip_magic)
 | |
| 		goto bad_magic;
 | |
| 
 | |
| 	/* Fail if buffer length is not large enough to contain
 | |
| 	 * CIP magic, CIP length, minimal IP header */
 | |
| 	if (trash.len < 28)
 | |
| 		goto missing;
 | |
| 
 | |
| 	line += 8;
 | |
| 
 | |
| 	/* Get IP version from the first four bits */
 | |
| 	ip_v = (*line & 0xf0) >> 4;
 | |
| 
 | |
| 	if (ip_v == 4) {
 | |
| 		struct ip *hdr_ip4;
 | |
| 		struct my_tcphdr *hdr_tcp;
 | |
| 
 | |
| 		hdr_ip4 = (struct ip *)line;
 | |
| 
 | |
| 		if (trash.len < (8 + ntohs(hdr_ip4->ip_len))) {
 | |
| 			/* Fail if buffer length is not large enough to contain
 | |
| 			 * CIP magic, CIP length, IPv4 header */
 | |
| 			goto missing;
 | |
| 		} else if (hdr_ip4->ip_p != IPPROTO_TCP) {
 | |
| 			/* The protocol does not include a TCP header */
 | |
| 			conn->err_code = CO_ER_CIP_BAD_PROTO;
 | |
| 			goto fail;
 | |
| 		} else if (trash.len < (28 + ntohs(hdr_ip4->ip_len))) {
 | |
| 			/* Fail if buffer length is not large enough to contain
 | |
| 			 * CIP magic, CIP length, IPv4 header, TCP header */
 | |
| 			goto missing;
 | |
| 		}
 | |
| 
 | |
| 		hdr_tcp = (struct my_tcphdr *)(line + (hdr_ip4->ip_hl * 4));
 | |
| 
 | |
| 		/* update the session's addresses and mark them set */
 | |
| 		((struct sockaddr_in *)&conn->addr.from)->sin_family = AF_INET;
 | |
| 		((struct sockaddr_in *)&conn->addr.from)->sin_addr.s_addr = hdr_ip4->ip_src.s_addr;
 | |
| 		((struct sockaddr_in *)&conn->addr.from)->sin_port = hdr_tcp->source;
 | |
| 
 | |
| 		((struct sockaddr_in *)&conn->addr.to)->sin_family = AF_INET;
 | |
| 		((struct sockaddr_in *)&conn->addr.to)->sin_addr.s_addr = hdr_ip4->ip_dst.s_addr;
 | |
| 		((struct sockaddr_in *)&conn->addr.to)->sin_port = hdr_tcp->dest;
 | |
| 
 | |
| 		conn->flags |= CO_FL_ADDR_FROM_SET | CO_FL_ADDR_TO_SET;
 | |
| 	}
 | |
| 	else if (ip_v == 6) {
 | |
| 		struct ip6_hdr *hdr_ip6;
 | |
| 		struct my_tcphdr *hdr_tcp;
 | |
| 
 | |
| 		hdr_ip6 = (struct ip6_hdr *)line;
 | |
| 
 | |
| 		if (trash.len < 28) {
 | |
| 			/* Fail if buffer length is not large enough to contain
 | |
| 			 * CIP magic, CIP length, IPv6 header */
 | |
| 			goto missing;
 | |
| 		} else if (hdr_ip6->ip6_nxt != IPPROTO_TCP) {
 | |
| 			/* The protocol does not include a TCP header */
 | |
| 			conn->err_code = CO_ER_CIP_BAD_PROTO;
 | |
| 			goto fail;
 | |
| 		} else if (trash.len < 48) {
 | |
| 			/* Fail if buffer length is not large enough to contain
 | |
| 			 * CIP magic, CIP length, IPv6 header, TCP header */
 | |
| 			goto missing;
 | |
| 		}
 | |
| 
 | |
| 		hdr_tcp = (struct my_tcphdr *)(line + sizeof(struct ip6_hdr));
 | |
| 
 | |
| 		/* update the session's addresses and mark them set */
 | |
| 		((struct sockaddr_in6 *)&conn->addr.from)->sin6_family = AF_INET6;
 | |
| 		((struct sockaddr_in6 *)&conn->addr.from)->sin6_addr = hdr_ip6->ip6_src;
 | |
| 		((struct sockaddr_in6 *)&conn->addr.from)->sin6_port = hdr_tcp->source;
 | |
| 
 | |
| 		((struct sockaddr_in6 *)&conn->addr.to)->sin6_family = AF_INET6;
 | |
| 		((struct sockaddr_in6 *)&conn->addr.to)->sin6_addr = hdr_ip6->ip6_dst;
 | |
| 		((struct sockaddr_in6 *)&conn->addr.to)->sin6_port = hdr_tcp->dest;
 | |
| 
 | |
| 		conn->flags |= CO_FL_ADDR_FROM_SET | CO_FL_ADDR_TO_SET;
 | |
| 	}
 | |
| 	else {
 | |
| 		/* The protocol does not match something known (IPv4/IPv6) */
 | |
| 		conn->err_code = CO_ER_CIP_BAD_PROTO;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	line += cip_len;
 | |
| 	trash.len = line - trash.str;
 | |
| 
 | |
| 	/* remove the NetScaler Client IP header from the request. For this
 | |
| 	 * we re-read the exact line at once. If we don't get the exact same
 | |
| 	 * result, we fail.
 | |
| 	 */
 | |
| 	do {
 | |
| 		int len2 = recv(conn->t.sock.fd, trash.str, trash.len, 0);
 | |
| 		if (len2 < 0 && errno == EINTR)
 | |
| 			continue;
 | |
| 		if (len2 != trash.len)
 | |
| 			goto recv_abort;
 | |
| 	} while (0);
 | |
| 
 | |
| 	conn->flags &= ~flag;
 | |
| 	return 1;
 | |
| 
 | |
|  missing:
 | |
| 	/* Missing data. Since we're using MSG_PEEK, we can only poll again if
 | |
| 	 * we have not read anything. Otherwise we need to fail because we won't
 | |
| 	 * be able to poll anymore.
 | |
| 	 */
 | |
| 	conn->err_code = CO_ER_CIP_TRUNCATED;
 | |
| 	goto fail;
 | |
| 
 | |
|  bad_magic:
 | |
| 	conn->err_code = CO_ER_CIP_BAD_MAGIC;
 | |
| 	goto fail;
 | |
| 
 | |
|  recv_abort:
 | |
| 	conn->err_code = CO_ER_CIP_ABORT;
 | |
| 	conn->flags |= CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH;
 | |
| 	goto fail;
 | |
| 
 | |
|  fail:
 | |
| 	__conn_sock_stop_both(conn);
 | |
| 	conn->flags |= CO_FL_ERROR;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int make_proxy_line(char *buf, int buf_len, struct server *srv, struct connection *remote)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (srv && (srv->pp_opts & SRV_PP_V2)) {
 | |
| 		ret = make_proxy_line_v2(buf, buf_len, srv, remote);
 | |
| 	}
 | |
| 	else {
 | |
| 		if (remote)
 | |
| 			ret = make_proxy_line_v1(buf, buf_len, &remote->addr.from, &remote->addr.to);
 | |
| 		else
 | |
| 			ret = make_proxy_line_v1(buf, buf_len, NULL, NULL);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Makes a PROXY protocol line from the two addresses. The output is sent to
 | |
|  * buffer <buf> for a maximum size of <buf_len> (including the trailing zero).
 | |
|  * It returns the number of bytes composing this line (including the trailing
 | |
|  * LF), or zero in case of failure (eg: not enough space). It supports TCP4,
 | |
|  * TCP6 and "UNKNOWN" formats. If any of <src> or <dst> is null, UNKNOWN is
 | |
|  * emitted as well.
 | |
|  */
 | |
| int make_proxy_line_v1(char *buf, int buf_len, struct sockaddr_storage *src, struct sockaddr_storage *dst)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (src && dst && src->ss_family == dst->ss_family && src->ss_family == AF_INET) {
 | |
| 		ret = snprintf(buf + ret, buf_len - ret, "PROXY TCP4 ");
 | |
| 		if (ret >= buf_len)
 | |
| 			return 0;
 | |
| 
 | |
| 		/* IPv4 src */
 | |
| 		if (!inet_ntop(src->ss_family, &((struct sockaddr_in *)src)->sin_addr, buf + ret, buf_len - ret))
 | |
| 			return 0;
 | |
| 
 | |
| 		ret += strlen(buf + ret);
 | |
| 		if (ret >= buf_len)
 | |
| 			return 0;
 | |
| 
 | |
| 		buf[ret++] = ' ';
 | |
| 
 | |
| 		/* IPv4 dst */
 | |
| 		if (!inet_ntop(dst->ss_family, &((struct sockaddr_in *)dst)->sin_addr, buf + ret, buf_len - ret))
 | |
| 			return 0;
 | |
| 
 | |
| 		ret += strlen(buf + ret);
 | |
| 		if (ret >= buf_len)
 | |
| 			return 0;
 | |
| 
 | |
| 		/* source and destination ports */
 | |
| 		ret += snprintf(buf + ret, buf_len - ret, " %u %u\r\n",
 | |
| 				ntohs(((struct sockaddr_in *)src)->sin_port),
 | |
| 				ntohs(((struct sockaddr_in *)dst)->sin_port));
 | |
| 		if (ret >= buf_len)
 | |
| 			return 0;
 | |
| 	}
 | |
| 	else if (src && dst && src->ss_family == dst->ss_family && src->ss_family == AF_INET6) {
 | |
| 		ret = snprintf(buf + ret, buf_len - ret, "PROXY TCP6 ");
 | |
| 		if (ret >= buf_len)
 | |
| 			return 0;
 | |
| 
 | |
| 		/* IPv6 src */
 | |
| 		if (!inet_ntop(src->ss_family, &((struct sockaddr_in6 *)src)->sin6_addr, buf + ret, buf_len - ret))
 | |
| 			return 0;
 | |
| 
 | |
| 		ret += strlen(buf + ret);
 | |
| 		if (ret >= buf_len)
 | |
| 			return 0;
 | |
| 
 | |
| 		buf[ret++] = ' ';
 | |
| 
 | |
| 		/* IPv6 dst */
 | |
| 		if (!inet_ntop(dst->ss_family, &((struct sockaddr_in6 *)dst)->sin6_addr, buf + ret, buf_len - ret))
 | |
| 			return 0;
 | |
| 
 | |
| 		ret += strlen(buf + ret);
 | |
| 		if (ret >= buf_len)
 | |
| 			return 0;
 | |
| 
 | |
| 		/* source and destination ports */
 | |
| 		ret += snprintf(buf + ret, buf_len - ret, " %u %u\r\n",
 | |
| 				ntohs(((struct sockaddr_in6 *)src)->sin6_port),
 | |
| 				ntohs(((struct sockaddr_in6 *)dst)->sin6_port));
 | |
| 		if (ret >= buf_len)
 | |
| 			return 0;
 | |
| 	}
 | |
| 	else {
 | |
| 		/* unknown family combination */
 | |
| 		ret = snprintf(buf, buf_len, "PROXY UNKNOWN\r\n");
 | |
| 		if (ret >= buf_len)
 | |
| 			return 0;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #if defined(USE_OPENSSL) || defined(CONFIG_HAP_NS)
 | |
| static int make_tlv(char *dest, int dest_len, char type, uint16_t length, const char *value)
 | |
| {
 | |
| 	struct tlv *tlv;
 | |
| 
 | |
| 	if (!dest || (length + sizeof(*tlv) > dest_len))
 | |
| 		return 0;
 | |
| 
 | |
| 	tlv = (struct tlv *)dest;
 | |
| 
 | |
| 	tlv->type = type;
 | |
| 	tlv->length_hi = length >> 8;
 | |
| 	tlv->length_lo = length & 0x00ff;
 | |
| 	memcpy(tlv->value, value, length);
 | |
| 	return length + sizeof(*tlv);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int make_proxy_line_v2(char *buf, int buf_len, struct server *srv, struct connection *remote)
 | |
| {
 | |
| 	const char pp2_signature[] = PP2_SIGNATURE;
 | |
| 	int ret = 0;
 | |
| 	struct proxy_hdr_v2 *hdr = (struct proxy_hdr_v2 *)buf;
 | |
| 	struct sockaddr_storage null_addr = { .ss_family = 0 };
 | |
| 	struct sockaddr_storage *src = &null_addr;
 | |
| 	struct sockaddr_storage *dst = &null_addr;
 | |
| 
 | |
| #ifdef USE_OPENSSL
 | |
| 	char *value = NULL;
 | |
| 	struct tlv_ssl *tlv;
 | |
| 	int ssl_tlv_len = 0;
 | |
| 	struct chunk *cn_trash;
 | |
| #endif
 | |
| 
 | |
| 	if (buf_len < PP2_HEADER_LEN)
 | |
| 		return 0;
 | |
| 	memcpy(hdr->sig, pp2_signature, PP2_SIGNATURE_LEN);
 | |
| 
 | |
| 	if (remote) {
 | |
| 		src = &remote->addr.from;
 | |
| 		dst = &remote->addr.to;
 | |
| 	}
 | |
| 
 | |
| 	if (src && dst && src->ss_family == dst->ss_family && src->ss_family == AF_INET) {
 | |
| 		if (buf_len < PP2_HDR_LEN_INET)
 | |
| 			return 0;
 | |
| 		hdr->ver_cmd = PP2_VERSION | PP2_CMD_PROXY;
 | |
| 		hdr->fam = PP2_FAM_INET | PP2_TRANS_STREAM;
 | |
| 		hdr->addr.ip4.src_addr = ((struct sockaddr_in *)src)->sin_addr.s_addr;
 | |
| 		hdr->addr.ip4.dst_addr = ((struct sockaddr_in *)dst)->sin_addr.s_addr;
 | |
| 		hdr->addr.ip4.src_port = ((struct sockaddr_in *)src)->sin_port;
 | |
| 		hdr->addr.ip4.dst_port = ((struct sockaddr_in *)dst)->sin_port;
 | |
| 		ret = PP2_HDR_LEN_INET;
 | |
| 	}
 | |
| 	else if (src && dst && src->ss_family == dst->ss_family && src->ss_family == AF_INET6) {
 | |
| 		if (buf_len < PP2_HDR_LEN_INET6)
 | |
| 			return 0;
 | |
| 		hdr->ver_cmd = PP2_VERSION | PP2_CMD_PROXY;
 | |
| 		hdr->fam = PP2_FAM_INET6 | PP2_TRANS_STREAM;
 | |
| 		memcpy(hdr->addr.ip6.src_addr, &((struct sockaddr_in6 *)src)->sin6_addr, 16);
 | |
| 		memcpy(hdr->addr.ip6.dst_addr, &((struct sockaddr_in6 *)dst)->sin6_addr, 16);
 | |
| 		hdr->addr.ip6.src_port = ((struct sockaddr_in6 *)src)->sin6_port;
 | |
| 		hdr->addr.ip6.dst_port = ((struct sockaddr_in6 *)dst)->sin6_port;
 | |
| 		ret = PP2_HDR_LEN_INET6;
 | |
| 	}
 | |
| 	else {
 | |
| 		if (buf_len < PP2_HDR_LEN_UNSPEC)
 | |
| 			return 0;
 | |
| 		hdr->ver_cmd = PP2_VERSION | PP2_CMD_LOCAL;
 | |
| 		hdr->fam = PP2_FAM_UNSPEC | PP2_TRANS_UNSPEC;
 | |
| 		ret = PP2_HDR_LEN_UNSPEC;
 | |
| 	}
 | |
| 
 | |
| #ifdef USE_OPENSSL
 | |
| 	if (srv->pp_opts & SRV_PP_V2_SSL) {
 | |
| 		if ((buf_len - ret) < sizeof(struct tlv_ssl))
 | |
| 			return 0;
 | |
| 		tlv = (struct tlv_ssl *)&buf[ret];
 | |
| 		memset(tlv, 0, sizeof(struct tlv_ssl));
 | |
| 		ssl_tlv_len += sizeof(struct tlv_ssl);
 | |
| 		tlv->tlv.type = PP2_TYPE_SSL;
 | |
| 		if (ssl_sock_is_ssl(remote)) {
 | |
| 			tlv->client |= PP2_CLIENT_SSL;
 | |
| 			value = ssl_sock_get_version(remote);
 | |
| 			if (value) {
 | |
| 				ssl_tlv_len += make_tlv(&buf[ret+ssl_tlv_len], (buf_len-ret-ssl_tlv_len), PP2_TYPE_SSL_VERSION, strlen(value), value);
 | |
| 			}
 | |
| 			if (ssl_sock_get_cert_used_sess(remote)) {
 | |
| 				tlv->client |= PP2_CLIENT_CERT_SESS;
 | |
| 				tlv->verify = htonl(ssl_sock_get_verify_result(remote));
 | |
| 				if (ssl_sock_get_cert_used_conn(remote))
 | |
| 					tlv->client |= PP2_CLIENT_CERT_CONN;
 | |
| 			}
 | |
| 			if (srv->pp_opts & SRV_PP_V2_SSL_CN) {
 | |
| 				cn_trash = get_trash_chunk();
 | |
| 				if (ssl_sock_get_remote_common_name(remote, cn_trash) > 0) {
 | |
| 					ssl_tlv_len += make_tlv(&buf[ret+ssl_tlv_len], (buf_len - ret - ssl_tlv_len), PP2_TYPE_SSL_CN, cn_trash->len, cn_trash->str);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		tlv->tlv.length_hi = (uint16_t)(ssl_tlv_len - sizeof(struct tlv)) >> 8;
 | |
| 		tlv->tlv.length_lo = (uint16_t)(ssl_tlv_len - sizeof(struct tlv)) & 0x00ff;
 | |
| 		ret += ssl_tlv_len;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_HAP_NS
 | |
| 	if (remote && (remote->proxy_netns)) {
 | |
| 		if ((buf_len - ret) < sizeof(struct tlv))
 | |
| 			return 0;
 | |
| 		ret += make_tlv(&buf[ret], buf_len, PP2_TYPE_NETNS, remote->proxy_netns->name_len, remote->proxy_netns->node.key);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	hdr->len = htons((uint16_t)(ret - PP2_HEADER_LEN));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* fetch if the received connection used a PROXY protocol header */
 | |
| int smp_fetch_fc_rcvd_proxy(const struct arg *args, struct sample *smp, const char *kw, void *private)
 | |
| {
 | |
| 	struct connection *conn;
 | |
| 
 | |
| 	conn = objt_conn(smp->sess->origin);
 | |
| 	if (!conn)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!(conn->flags & CO_FL_CONNECTED)) {
 | |
| 		smp->flags |= SMP_F_MAY_CHANGE;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	smp->flags = 0;
 | |
| 	smp->data.type = SMP_T_BOOL;
 | |
| 	smp->data.u.sint = (conn->flags & CO_FL_RCVD_PROXY) ? 1 : 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Note: must not be declared <const> as its list will be overwritten.
 | |
|  * Note: fetches that may return multiple types must be declared as the lowest
 | |
|  * common denominator, the type that can be casted into all other ones. For
 | |
|  * instance v4/v6 must be declared v4.
 | |
|  */
 | |
| static struct sample_fetch_kw_list sample_fetch_keywords = {ILH, {
 | |
| 	{ "fc_rcvd_proxy", smp_fetch_fc_rcvd_proxy, 0, NULL, SMP_T_BOOL, SMP_USE_L4CLI },
 | |
| 	{ /* END */ },
 | |
| }};
 | |
| 
 | |
| 
 | |
| __attribute__((constructor))
 | |
| static void __connection_init(void)
 | |
| {
 | |
| 	sample_register_fetches(&sample_fetch_keywords);
 | |
| }
 |