mirror of
				https://git.haproxy.org/git/haproxy.git/
				synced 2025-11-03 18:11:29 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			1567 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			1567 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
2020/07/07 - HAProxy coding style - Willy Tarreau <w@1wt.eu>
 | 
						|
------------------------------------------------------------
 | 
						|
 | 
						|
A number of contributors are often embarrassed with coding style issues, they
 | 
						|
don't always know if they're doing it right, especially since the coding style
 | 
						|
has elvoved along the years. What is explained here is not necessarily what is
 | 
						|
applied in the code, but new code should as much as possible conform to this
 | 
						|
style. Coding style fixes happen when code is replaced. It is useless to send
 | 
						|
patches to fix coding style only, they will be rejected, unless they belong to
 | 
						|
a patch series which needs these fixes prior to get code changes. Also, please
 | 
						|
avoid fixing coding style in the same patches as functional changes, they make
 | 
						|
code review harder.
 | 
						|
 | 
						|
A good way to quickly validate your patch before submitting it is to pass it
 | 
						|
through the Linux kernel's checkpatch.pl utility which can be downloaded here :
 | 
						|
 | 
						|
   http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/scripts/checkpatch.pl
 | 
						|
 | 
						|
Running it with the following options relaxes its checks to accommodate to the
 | 
						|
extra degree of freedom that is tolerated in HAProxy's coding style compared to
 | 
						|
the stricter style used in the kernel :
 | 
						|
 | 
						|
   checkpatch.pl -q --max-line-length=160 --no-tree --no-signoff \
 | 
						|
                 --ignore=LEADING_SPACE,CODE_INDENT,DEEP_INDENTATION \
 | 
						|
                 --ignore=ELSE_AFTER_BRACE  < patch
 | 
						|
 | 
						|
You can take its output as hints instead of strict rules, but in general its
 | 
						|
output will be accurate and it may even spot some real bugs.
 | 
						|
 | 
						|
When modifying a file, you must accept the terms of the license of this file
 | 
						|
which is recalled at the top of the file, or is explained in the LICENSE file,
 | 
						|
or if not stated, defaults to LGPL version 2.1 or later for files in the
 | 
						|
'include' directory, and GPL version 2 or later for all other files.
 | 
						|
 | 
						|
When adding a new file, you must add a copyright banner at the top of the
 | 
						|
file with your real name, e-mail address and a reminder of the license.
 | 
						|
Contributions under incompatible licenses or too restrictive licenses might
 | 
						|
get rejected. If in doubt, please apply the principle above for existing files.
 | 
						|
 | 
						|
All code examples below will intentionally be prefixed with "  | " to mark
 | 
						|
where the code aligns with the first column, and tabs in this document will be
 | 
						|
represented as a series of 8 spaces so that it displays the same everywhere.
 | 
						|
 | 
						|
 | 
						|
1) Indentation and alignment
 | 
						|
----------------------------
 | 
						|
 | 
						|
1.1) Indentation
 | 
						|
----------------
 | 
						|
 | 
						|
Indentation and alignment are two completely different things that people often
 | 
						|
get wrong. Indentation is used to mark a sub-level in the code. A sub-level
 | 
						|
means that a block is executed in the context of another block (eg: a function
 | 
						|
or a condition) :
 | 
						|
 | 
						|
  | main(int argc, char **argv)
 | 
						|
  | {
 | 
						|
  |         int i;
 | 
						|
  | 
 | 
						|
  |         if (argc < 2)
 | 
						|
  |                 exit(1);
 | 
						|
  | }
 | 
						|
 | 
						|
In the example above, the code belongs to the main() function and the exit()
 | 
						|
call belongs to the if statement. Indentation is made with tabs (\t, ASCII 9),
 | 
						|
which allows any developer to configure their preferred editor to use their
 | 
						|
own tab size and to still get the text properly indented. Exactly one tab is
 | 
						|
used per sub-level. Tabs may only appear at the beginning of a line or after
 | 
						|
another tab. It is illegal to put a tab after some text, as it mangles displays
 | 
						|
in a different manner for different users (particularly when used to align
 | 
						|
comments or values after a #define). If you're tempted to put a tab after some
 | 
						|
text, then you're doing it wrong and you need alignment instead (see below).
 | 
						|
 | 
						|
Note that there are places where the code was not properly indented in the
 | 
						|
past. In order to view it correctly, you may have to set your tab size to 8
 | 
						|
characters.
 | 
						|
 | 
						|
 | 
						|
1.2) Alignment
 | 
						|
--------------
 | 
						|
 | 
						|
Alignment is used to continue a line in a way to makes things easier to group
 | 
						|
together. By definition, alignment is character-based, so it uses spaces. Tabs
 | 
						|
would not work because for one tab there would not be as many characters on all
 | 
						|
displays. For instance, the arguments in a function declaration may be broken
 | 
						|
into multiple lines using alignment spaces :
 | 
						|
 | 
						|
  | int http_header_match2(const char *hdr, const char *end,
 | 
						|
  |                        const char *name, int len)
 | 
						|
  | {
 | 
						|
  | ...
 | 
						|
  | }
 | 
						|
 | 
						|
In this example, the "const char *name" part is aligned with the first
 | 
						|
character of the group it belongs to (list of function arguments). Placing it
 | 
						|
here makes it obvious that it's one of the function's arguments. Multiple lines
 | 
						|
are easy to handle this way. This is very common with long conditions too :
 | 
						|
 | 
						|
  |         if ((len < eol - sol) &&
 | 
						|
  |             (sol[len] == ':') &&
 | 
						|
  |             (strncasecmp(sol, name, len) == 0)) {
 | 
						|
  |                 ctx->del = len;
 | 
						|
  |         }
 | 
						|
 | 
						|
If we take again the example above marking tabs with "[-Tabs-]" and spaces
 | 
						|
with "#", we get this :
 | 
						|
 | 
						|
  | [-Tabs-]if ((len < eol - sol) &&
 | 
						|
  | [-Tabs-]####(sol[len] == ':') &&
 | 
						|
  | [-Tabs-]####(strncasecmp(sol, name, len) == 0)) {
 | 
						|
  | [-Tabs-][-Tabs-]ctx->del = len;
 | 
						|
  | [-Tabs-]}
 | 
						|
 | 
						|
It is worth noting that some editors tend to confuse indentations and alignment.
 | 
						|
Emacs is notoriously known for this brokenness, and is responsible for almost
 | 
						|
all of the alignment mess. The reason is that Emacs only counts spaces, tries
 | 
						|
to fill as many as possible with tabs and completes with spaces. Once you know
 | 
						|
it, you just have to be careful, as alignment is not used much, so generally it
 | 
						|
is just a matter of replacing the last tab with 8 spaces when this happens.
 | 
						|
 | 
						|
Indentation should be used everywhere there is a block or an opening brace. It
 | 
						|
is not possible to have two consecutive closing braces on the same column, it
 | 
						|
means that the innermost was not indented.
 | 
						|
 | 
						|
Right :
 | 
						|
 | 
						|
  | main(int argc, char **argv)
 | 
						|
  | {
 | 
						|
  |         if (argc > 1) {
 | 
						|
  |                 printf("Hello\n");
 | 
						|
  |         }
 | 
						|
  |         exit(0);
 | 
						|
  | }
 | 
						|
 | 
						|
Wrong :
 | 
						|
 | 
						|
  | main(int argc, char **argv)
 | 
						|
  | {
 | 
						|
  | if (argc > 1) {
 | 
						|
  |         printf("Hello\n");
 | 
						|
  | }
 | 
						|
  | exit(0);
 | 
						|
  | }
 | 
						|
 | 
						|
A special case applies to switch/case statements. Due to my editor's settings,
 | 
						|
I've been used to align "case" with "switch" and to find it somewhat logical
 | 
						|
since each of the "case" statements opens a sublevel belonging to the "switch"
 | 
						|
statement. But indenting "case" after "switch" is accepted too. However in any
 | 
						|
case, whatever follows the "case" statement must be indented, whether or not it
 | 
						|
contains braces :
 | 
						|
 | 
						|
  | switch (*arg) {
 | 
						|
  | case 'A': {
 | 
						|
  |         int i;
 | 
						|
  |         for (i = 0; i < 10; i++)
 | 
						|
  |                 printf("Please stop pressing 'A'!\n");
 | 
						|
  |         break;
 | 
						|
  | }
 | 
						|
  | case 'B':
 | 
						|
  |         printf("You pressed 'B'\n");
 | 
						|
  |         break;
 | 
						|
  | case 'C':
 | 
						|
  | case 'D':
 | 
						|
  |         printf("You pressed 'C' or 'D'\n");
 | 
						|
  |         break;
 | 
						|
  | default:
 | 
						|
  |         printf("I don't know what you pressed\n");
 | 
						|
  | }
 | 
						|
 | 
						|
 | 
						|
2) Braces
 | 
						|
---------
 | 
						|
 | 
						|
Braces are used to delimit multiple-instruction blocks. In general it is
 | 
						|
preferred to avoid braces around single-instruction blocks as it reduces the
 | 
						|
number of lines :
 | 
						|
 | 
						|
Right :
 | 
						|
 | 
						|
  | if (argc >= 2)
 | 
						|
  |         exit(0);
 | 
						|
 | 
						|
Wrong :
 | 
						|
 | 
						|
  | if (argc >= 2) {
 | 
						|
  |         exit(0);
 | 
						|
  | }
 | 
						|
 | 
						|
But it is not that strict, it really depends on the context. It happens from
 | 
						|
time to time that single-instruction blocks are enclosed within braces because
 | 
						|
it makes the code more symmetrical, or more readable. Example :
 | 
						|
 | 
						|
  | if (argc < 2) {
 | 
						|
  |         printf("Missing argument\n");
 | 
						|
  |         exit(1);
 | 
						|
  | } else {
 | 
						|
  |         exit(0);
 | 
						|
  | }
 | 
						|
 | 
						|
Braces are always needed to declare a function. A function's opening brace must
 | 
						|
be placed at the beginning of the next line :
 | 
						|
 | 
						|
Right :
 | 
						|
 | 
						|
  | int main(int argc, char **argv)
 | 
						|
  | {
 | 
						|
  |         exit(0);
 | 
						|
  | }
 | 
						|
 | 
						|
Wrong :
 | 
						|
 | 
						|
  | int main(int argc, char **argv) {
 | 
						|
  |         exit(0);
 | 
						|
  | }
 | 
						|
 | 
						|
Note that a large portion of the code still does not conforms to this rule, as
 | 
						|
it took years to get all authors to adapt to this more common standard which
 | 
						|
is now preferred, as it avoids visual confusion when function declarations are
 | 
						|
broken on multiple lines :
 | 
						|
 | 
						|
Right :
 | 
						|
 | 
						|
  | int foo(const char *hdr, const char *end,
 | 
						|
  |         const char *name, const char *err,
 | 
						|
  |         int len)
 | 
						|
  | {
 | 
						|
  |         int i;
 | 
						|
 | 
						|
Wrong :
 | 
						|
 | 
						|
  | int foo(const char *hdr, const char *end,
 | 
						|
  |         const char *name, const char *err,
 | 
						|
  |         int len) {
 | 
						|
  |         int i;
 | 
						|
 | 
						|
Braces should always be used where there might be an ambiguity with the code
 | 
						|
later. The most common example is the stacked "if" statement where an "else"
 | 
						|
may be added later at the wrong place breaking the code, but it also happens
 | 
						|
with comments or long arguments in function calls. In general, if a block is
 | 
						|
more than one line long, it should use braces.
 | 
						|
 | 
						|
Dangerous code waiting of a victim :
 | 
						|
 | 
						|
  | if (argc < 2)
 | 
						|
  |         /* ret must not be negative here */
 | 
						|
  |         if (ret < 0)
 | 
						|
  |                 return -1;
 | 
						|
 | 
						|
Wrong change :
 | 
						|
 | 
						|
  | if (argc < 2)
 | 
						|
  |         /* ret must not be negative here */
 | 
						|
  |         if (ret < 0)
 | 
						|
  |                 return -1;
 | 
						|
  | else
 | 
						|
  |         return 0;
 | 
						|
 | 
						|
It will do this instead of what your eye seems to tell you :
 | 
						|
 | 
						|
  | if (argc < 2)
 | 
						|
  |         /* ret must not be negative here */
 | 
						|
  |         if (ret < 0)
 | 
						|
  |                 return -1;
 | 
						|
  |         else
 | 
						|
  |                 return 0;
 | 
						|
 | 
						|
Right :
 | 
						|
 | 
						|
  | if (argc < 2) {
 | 
						|
  |         /* ret must not be negative here */
 | 
						|
  |         if (ret < 0)
 | 
						|
  |                 return -1;
 | 
						|
  | }
 | 
						|
  | else
 | 
						|
  |         return 0;
 | 
						|
 | 
						|
Similarly dangerous example :
 | 
						|
 | 
						|
  | if (ret < 0)
 | 
						|
  |         /* ret must not be negative here */
 | 
						|
  |         complain();
 | 
						|
  | init();
 | 
						|
 | 
						|
Wrong change to silent the annoying message :
 | 
						|
 | 
						|
  | if (ret < 0)
 | 
						|
  |         /* ret must not be negative here */
 | 
						|
  |         //complain();
 | 
						|
  | init();
 | 
						|
 | 
						|
... which in fact means :
 | 
						|
 | 
						|
  | if (ret < 0)
 | 
						|
  |         init();
 | 
						|
 | 
						|
 | 
						|
3) Breaking lines
 | 
						|
-----------------
 | 
						|
 | 
						|
There is no strict rule for line breaking. Some files try to stick to the 80
 | 
						|
column limit, but given that various people use various tab sizes, it does not
 | 
						|
make much sense. Also, code is sometimes easier to read with less lines, as it
 | 
						|
represents less surface on the screen (since each new line adds its tabs and
 | 
						|
spaces). The rule is to stick to the average line length of other lines. If you
 | 
						|
are working in a file which fits in 80 columns, try to keep this goal in mind.
 | 
						|
If you're in a function with 120-chars lines, there is no reason to add many
 | 
						|
short lines, so you can make longer lines.
 | 
						|
 | 
						|
In general, opening a new block should lead to a new line. Similarly, multiple
 | 
						|
instructions should be avoided on the same line. But some constructs make it
 | 
						|
more readable when those are perfectly aligned :
 | 
						|
 | 
						|
A copy-paste bug in the following construct will be easier to spot :
 | 
						|
 | 
						|
  | if (omult % idiv == 0) { omult /= idiv; idiv = 1; }
 | 
						|
  | if (idiv % omult == 0) { idiv /= omult; omult = 1; }
 | 
						|
  | if (imult % odiv == 0) { imult /= odiv; odiv = 1; }
 | 
						|
  | if (odiv % imult == 0) { odiv /= imult; imult = 1; }
 | 
						|
 | 
						|
than in this one :
 | 
						|
 | 
						|
  | if (omult % idiv == 0) {
 | 
						|
  |         omult /= idiv;
 | 
						|
  |         idiv = 1;
 | 
						|
  | }
 | 
						|
  | if (idiv % omult == 0) {
 | 
						|
  |         idiv /= omult;
 | 
						|
  |         omult = 1;
 | 
						|
  | }
 | 
						|
  | if (imult % odiv == 0) {
 | 
						|
  |         imult /= odiv;
 | 
						|
  |         odiv = 1;
 | 
						|
  | }
 | 
						|
  | if (odiv % imult == 0) {
 | 
						|
  |         odiv /= imult;
 | 
						|
  |         imult = 1;
 | 
						|
  | }
 | 
						|
 | 
						|
What is important is not to mix styles. For instance there is nothing wrong
 | 
						|
with having many one-line "case" statements as long as most of them are this
 | 
						|
short like below :
 | 
						|
 | 
						|
  | switch (*arg) {
 | 
						|
  | case 'A': ret = 1; break;
 | 
						|
  | case 'B': ret = 2; break;
 | 
						|
  | case 'C': ret = 4; break;
 | 
						|
  | case 'D': ret = 8; break;
 | 
						|
  | default : ret = 0; break;
 | 
						|
  | }
 | 
						|
 | 
						|
Otherwise, prefer to have the "case" statement on its own line as in the
 | 
						|
example in section 1.2 about alignment. In any case, avoid to stack multiple
 | 
						|
control statements on the same line, so that it will never be the needed to
 | 
						|
add two tab levels at once :
 | 
						|
 | 
						|
Right :
 | 
						|
 | 
						|
  | switch (*arg) {
 | 
						|
  | case 'A':
 | 
						|
  |         if (ret < 0)
 | 
						|
  |                 ret = 1;
 | 
						|
  |         break;
 | 
						|
  | default : ret = 0; break;
 | 
						|
  | }
 | 
						|
 | 
						|
Wrong :
 | 
						|
 | 
						|
  | switch (*arg) {
 | 
						|
  | case 'A': if (ret < 0)
 | 
						|
  |                 ret = 1;
 | 
						|
  |         break;
 | 
						|
  | default : ret = 0; break;
 | 
						|
  | }
 | 
						|
 | 
						|
Right :
 | 
						|
 | 
						|
  | if (argc < 2)
 | 
						|
  |         if (ret < 0)
 | 
						|
  |                 return -1;
 | 
						|
 | 
						|
or Right :
 | 
						|
 | 
						|
  | if (argc < 2)
 | 
						|
  |         if (ret < 0) return -1;
 | 
						|
 | 
						|
but Wrong :
 | 
						|
 | 
						|
  | if (argc < 2) if (ret < 0) return -1;
 | 
						|
 | 
						|
 | 
						|
When complex conditions or expressions are broken into multiple lines, please
 | 
						|
do ensure that alignment is perfectly appropriate, and group all main operators
 | 
						|
on the same side (which you're free to choose as long as it does not change for
 | 
						|
every block. Putting binary operators on the right side is preferred as it does
 | 
						|
not mangle with alignment but various people have their preferences.
 | 
						|
 | 
						|
Right :
 | 
						|
 | 
						|
  | if ((txn->flags & TX_NOT_FIRST) &&
 | 
						|
  |     ((req->flags & BF_FULL) ||
 | 
						|
  |      req->r < req->lr ||
 | 
						|
  |      req->r > req->data + req->size - global.tune.maxrewrite)) {
 | 
						|
  |         return 0;
 | 
						|
  | }
 | 
						|
 | 
						|
Right :
 | 
						|
 | 
						|
  | if ((txn->flags & TX_NOT_FIRST)
 | 
						|
  |     && ((req->flags & BF_FULL)
 | 
						|
  |         || req->r < req->lr
 | 
						|
  |         || req->r > req->data + req->size - global.tune.maxrewrite)) {
 | 
						|
  |         return 0;
 | 
						|
  | }
 | 
						|
 | 
						|
Wrong :
 | 
						|
 | 
						|
  | if ((txn->flags & TX_NOT_FIRST) &&
 | 
						|
  |    ((req->flags & BF_FULL) ||
 | 
						|
  |      req->r < req->lr
 | 
						|
  |    || req->r > req->data + req->size - global.tune.maxrewrite)) {
 | 
						|
  |         return 0;
 | 
						|
  | }
 | 
						|
 | 
						|
If it makes the result more readable, parenthesis may even be closed on their
 | 
						|
own line in order to align with the opening one. Note that should normally not
 | 
						|
be needed because such code would be too complex to be digged into.
 | 
						|
 | 
						|
The "else" statement may either be merged with the closing "if" brace or lie on
 | 
						|
its own line. The later is preferred but it adds one extra line to each control
 | 
						|
block which is annoying in short ones. However, if the "else" is followed by an
 | 
						|
"if", then it should really be on its own line and the rest of the if/else
 | 
						|
blocks must follow the same style.
 | 
						|
 | 
						|
Right :
 | 
						|
 | 
						|
  | if (a < b) {
 | 
						|
  |         return a;
 | 
						|
  | }
 | 
						|
  | else {
 | 
						|
  |         return b;
 | 
						|
  | }
 | 
						|
 | 
						|
Right :
 | 
						|
 | 
						|
  | if (a < b) {
 | 
						|
  |         return a;
 | 
						|
  | } else {
 | 
						|
  |         return b;
 | 
						|
  | }
 | 
						|
 | 
						|
Right :
 | 
						|
 | 
						|
  | if (a < b) {
 | 
						|
  |         return a;
 | 
						|
  | }
 | 
						|
  | else if (a != b) {
 | 
						|
  |         return b;
 | 
						|
  | }
 | 
						|
  | else {
 | 
						|
  |         return 0;
 | 
						|
  | }
 | 
						|
 | 
						|
Wrong :
 | 
						|
 | 
						|
  | if (a < b) {
 | 
						|
  |         return a;
 | 
						|
  | } else if (a != b) {
 | 
						|
  |         return b;
 | 
						|
  | } else {
 | 
						|
  |         return 0;
 | 
						|
  | }
 | 
						|
 | 
						|
Wrong :
 | 
						|
 | 
						|
  | if (a < b) {
 | 
						|
  |         return a;
 | 
						|
  | }
 | 
						|
  | else if (a != b) {
 | 
						|
  |         return b;
 | 
						|
  | } else {
 | 
						|
  |         return 0;
 | 
						|
  | }
 | 
						|
 | 
						|
 | 
						|
4) Spacing
 | 
						|
----------
 | 
						|
 | 
						|
Correctly spacing code is very important. When you have to spot a bug at 3am,
 | 
						|
you need it to be clear. When you expect other people to review your code, you
 | 
						|
want it to be clear and don't want them to get nervous when trying to find what
 | 
						|
you did.
 | 
						|
 | 
						|
Always place spaces around all binary or ternary operators, commas, as well as
 | 
						|
after semi-colons and opening braces if the line continues :
 | 
						|
 | 
						|
Right :
 | 
						|
 | 
						|
  | int ret = 0;
 | 
						|
  | /* if (x >> 4) { x >>= 4; ret += 4; } */
 | 
						|
  | ret += (x >> 4) ? (x >>= 4, 4) : 0;
 | 
						|
  | val = ret + ((0xFFFFAA50U >> (x << 1)) & 3) + 1;
 | 
						|
 | 
						|
Wrong :
 | 
						|
 | 
						|
  | int ret=0;
 | 
						|
  | /* if (x>>4) {x>>=4;ret+=4;} */
 | 
						|
  | ret+=(x>>4)?(x>>=4,4):0;
 | 
						|
  | val=ret+((0xFFFFAA50U>>(x<<1))&3)+1;
 | 
						|
 | 
						|
Never place spaces after unary operators (&, *, -, !, ~, ++, --) nor cast, as
 | 
						|
they might be confused with they binary counterpart, nor before commas or
 | 
						|
semicolons :
 | 
						|
 | 
						|
Right :
 | 
						|
 | 
						|
  | bit = !!(~len++ ^ -(unsigned char)*x);
 | 
						|
 | 
						|
Wrong :
 | 
						|
 | 
						|
  | bit = ! ! (~len++ ^ - (unsigned char) * x) ;
 | 
						|
 | 
						|
Note that "sizeof" is a unary operator which is sometimes considered as a
 | 
						|
language keyword, but in no case it is a function. It does not require
 | 
						|
parenthesis so it is sometimes followed by spaces and sometimes not when
 | 
						|
there are no parenthesis. Most people do not really care as long as what
 | 
						|
is written is unambiguous.
 | 
						|
 | 
						|
Braces opening a block must be preceded by one space unless the brace is
 | 
						|
placed on the first column :
 | 
						|
 | 
						|
Right :
 | 
						|
 | 
						|
  | if (argc < 2) {
 | 
						|
  | }
 | 
						|
 | 
						|
Wrong :
 | 
						|
 | 
						|
  | if (argc < 2){
 | 
						|
  | }
 | 
						|
 | 
						|
Do not add unneeded spaces inside parenthesis, they just make the code less
 | 
						|
readable.
 | 
						|
 | 
						|
Right :
 | 
						|
 | 
						|
  | if (x < 4 && (!y || !z))
 | 
						|
  |         break;
 | 
						|
 | 
						|
Wrong :
 | 
						|
 | 
						|
  | if ( x < 4 && ( !y || !z ) )
 | 
						|
  |         break;
 | 
						|
 | 
						|
Language keywords must all be followed by a space. This is true for control
 | 
						|
statements (do, for, while, if, else, return, switch, case), and for types
 | 
						|
(int, char, unsigned). As an exception, the last type in a cast does not take
 | 
						|
a space before the closing parenthesis). The "default" statement in a "switch"
 | 
						|
construct is generally just followed by the colon. However the colon after a
 | 
						|
"case" or "default" statement must be followed by a space.
 | 
						|
 | 
						|
Right :
 | 
						|
 | 
						|
  | if (nbargs < 2) {
 | 
						|
  |         printf("Missing arg at %c\n", *(char *)ptr);
 | 
						|
  |         for (i = 0; i < 10; i++) beep();
 | 
						|
  |         return 0;
 | 
						|
  | }
 | 
						|
  | switch (*arg) {
 | 
						|
 | 
						|
Wrong :
 | 
						|
 | 
						|
  | if(nbargs < 2){
 | 
						|
  |         printf("Missing arg at %c\n", *(char*)ptr);
 | 
						|
  |         for(i = 0; i < 10; i++)beep();
 | 
						|
  |         return 0;
 | 
						|
  | }
 | 
						|
  | switch(*arg) {
 | 
						|
 | 
						|
Function calls are different, the opening parenthesis is always coupled to the
 | 
						|
function name without any space. But spaces are still needed after commas :
 | 
						|
 | 
						|
Right :
 | 
						|
 | 
						|
  | if (!init(argc, argv))
 | 
						|
  |         exit(1);
 | 
						|
 | 
						|
Wrong :
 | 
						|
 | 
						|
  | if (!init (argc,argv))
 | 
						|
  |         exit(1);
 | 
						|
 | 
						|
 | 
						|
5) Excess or lack of parenthesis
 | 
						|
--------------------------------
 | 
						|
 | 
						|
Sometimes there are too many parenthesis in some formulas, sometimes there are
 | 
						|
too few. There are a few rules of thumb for this. The first one is to respect
 | 
						|
the compiler's advice. If it emits a warning and asks for more parenthesis to
 | 
						|
avoid confusion, follow the advice at least to shut the warning. For instance,
 | 
						|
the code below is quite ambiguous due to its alignment :
 | 
						|
 | 
						|
  | if (var1 < 2 || var2 < 2 &&
 | 
						|
  |     var3 != var4) {
 | 
						|
  |         /* fail */
 | 
						|
  |         return -3;
 | 
						|
  | }
 | 
						|
 | 
						|
Note that this code does :
 | 
						|
 | 
						|
  | if (var1 < 2 || (var2 < 2 && var3 != var4)) {
 | 
						|
  |         /* fail */
 | 
						|
  |         return -3;
 | 
						|
  | }
 | 
						|
 | 
						|
But maybe the author meant :
 | 
						|
 | 
						|
  | if ((var1 < 2 || var2 < 2) && var3 != var4) {
 | 
						|
  |         /* fail */
 | 
						|
  |         return -3;
 | 
						|
  | }
 | 
						|
 | 
						|
A second rule to put parenthesis is that people don't always know operators
 | 
						|
precedence too well. Most often they have no issue with operators of the same
 | 
						|
category (eg: booleans, integers, bit manipulation, assignment) but once these
 | 
						|
operators are mixed, it causes them all sort of issues. In this case, it is
 | 
						|
wise to use parenthesis to avoid errors. One common error concerns the bit
 | 
						|
shift operators because they're used to replace multiplies and divides but
 | 
						|
don't have the same precedence :
 | 
						|
 | 
						|
The expression :
 | 
						|
 | 
						|
  | x = y * 16 + 5;
 | 
						|
 | 
						|
becomes :
 | 
						|
 | 
						|
  | x = y << 4 + 5;
 | 
						|
 | 
						|
which is wrong because it is equivalent to :
 | 
						|
 | 
						|
  | x = y << (4 + 5);
 | 
						|
 | 
						|
while the following was desired instead :
 | 
						|
 | 
						|
  | x = (y << 4) + 5;
 | 
						|
 | 
						|
It is generally fine to write boolean expressions based on comparisons without
 | 
						|
any parenthesis. But on top of that, integer expressions and assignments should
 | 
						|
then be protected. For instance, there is an error in the expression below
 | 
						|
which should be safely rewritten :
 | 
						|
 | 
						|
Wrong :
 | 
						|
 | 
						|
  | if (var1 > 2 && var1 < 10 ||
 | 
						|
  |     var1 > 2 + 256 && var2 < 10 + 256 ||
 | 
						|
  |     var1 > 2 + 1 << 16 && var2 < 10 + 2 << 16)
 | 
						|
  |         return 1;
 | 
						|
 | 
						|
Right (may remove a few parenthesis depending on taste) :
 | 
						|
 | 
						|
  | if ((var1 > 2 && var1 < 10) ||
 | 
						|
  |     (var1 > (2 + 256) && var2 < (10 + 256)) ||
 | 
						|
  |     (var1 > (2 + (1 << 16)) && var2 < (10 + (1 << 16))))
 | 
						|
  |         return 1;
 | 
						|
 | 
						|
The "return" statement is not a function, so it takes no argument. It is a
 | 
						|
control statement which is followed by the expression to be returned. It does
 | 
						|
not need to be followed by parenthesis :
 | 
						|
 | 
						|
Wrong :
 | 
						|
 | 
						|
  | int ret0()
 | 
						|
  | {
 | 
						|
  |         return(0);
 | 
						|
  | }
 | 
						|
 | 
						|
Right :
 | 
						|
 | 
						|
  | int ret0()
 | 
						|
  | {
 | 
						|
  |         return 0;
 | 
						|
  | }
 | 
						|
 | 
						|
Parenthesisis are also found in type casts. Type casting should be avoided as
 | 
						|
much as possible, especially when it concerns pointer types. Casting a pointer
 | 
						|
disables the compiler's type checking and is the best way to get caught doing
 | 
						|
wrong things with data not the size you expect. If you need to manipulate
 | 
						|
multiple data types, you can use a union instead. If the union is really not
 | 
						|
convenient and casts are easier, then try to isolate them as much as possible,
 | 
						|
for instance when initializing function arguments or in another function. Not
 | 
						|
proceeding this way causes huge risks of not using the proper pointer without
 | 
						|
any notification, which is especially true during copy-pastes.
 | 
						|
 | 
						|
Wrong :
 | 
						|
 | 
						|
  | void *check_private_data(void *arg1, void *arg2)
 | 
						|
  | {
 | 
						|
  |         char *area;
 | 
						|
  |
 | 
						|
  |         if (*(int *)arg1 > 1000)
 | 
						|
  |                 return NULL;
 | 
						|
  |         if (memcmp(*(const char *)arg2, "send(", 5) != 0))
 | 
						|
  |                 return NULL;
 | 
						|
  |         area = malloc(*(int *)arg1);
 | 
						|
  |         if (!area)
 | 
						|
  |                 return NULL;
 | 
						|
  |         memcpy(area, *(const char *)arg2 + 5, *(int *)arg1);
 | 
						|
  |         return area;
 | 
						|
  | }
 | 
						|
 | 
						|
Right :
 | 
						|
 | 
						|
  | void *check_private_data(void *arg1, void *arg2)
 | 
						|
  | {
 | 
						|
  |         char *area;
 | 
						|
  |         int len = *(int *)arg1;
 | 
						|
  |         const char *msg = arg2;
 | 
						|
  |
 | 
						|
  |         if (len > 1000)
 | 
						|
  |                 return NULL;
 | 
						|
  |         if (memcmp(msg, "send(", 5) != 0)
 | 
						|
  |                 return NULL;
 | 
						|
  |         area = malloc(len);
 | 
						|
  |         if (!area)
 | 
						|
  |                 return NULL;
 | 
						|
  |         memcpy(area, msg + 5, len);
 | 
						|
  |         return area;
 | 
						|
  | }
 | 
						|
 | 
						|
 | 
						|
6) Ambiguous comparisons with zero or NULL
 | 
						|
------------------------------------------
 | 
						|
 | 
						|
In C, '0' has no type, or it has the type of the variable it is assigned to.
 | 
						|
Comparing a variable or a return value with zero means comparing with the
 | 
						|
representation of zero for this variable's type. For a boolean, zero is false.
 | 
						|
For a pointer, zero is NULL. Very often, to make things shorter, it is fine to
 | 
						|
use the '!' unary operator to compare with zero, as it is shorter and easier to
 | 
						|
remind or understand than a plain '0'. Since the '!' operator is read "not", it
 | 
						|
helps read code faster when what follows it makes sense as a boolean, and it is
 | 
						|
often much more appropriate than a comparison with zero which makes an equal
 | 
						|
sign appear at an undesirable place. For instance :
 | 
						|
 | 
						|
  | if (!isdigit(*c) && !isspace(*c))
 | 
						|
  |         break;
 | 
						|
 | 
						|
is easier to understand than :
 | 
						|
 | 
						|
  | if (isdigit(*c) == 0 && isspace(*c) == 0)
 | 
						|
  |         break;
 | 
						|
 | 
						|
For a char this "not" operator can be reminded as "no remaining char", and the
 | 
						|
absence of comparison to zero implies existence of the tested entity, hence the
 | 
						|
simple strcpy() implementation below which automatically stops once the last
 | 
						|
zero is copied :
 | 
						|
 | 
						|
  | void my_strcpy(char *d, const char *s)
 | 
						|
  | {
 | 
						|
  |         while ((*d++ = *s++));
 | 
						|
  | }
 | 
						|
 | 
						|
Note the double parenthesis in order to avoid the compiler telling us it looks
 | 
						|
like an equality test.
 | 
						|
 | 
						|
For a string or more generally any pointer, this test may be understood as an
 | 
						|
existence test or a validity test, as the only pointer which will fail to
 | 
						|
validate equality is the NULL pointer :
 | 
						|
 | 
						|
  | area = malloc(1000);
 | 
						|
  | if (!area)
 | 
						|
  |         return -1;
 | 
						|
 | 
						|
However sometimes it can fool the reader. For instance, strcmp() precisely is
 | 
						|
one of such functions whose return value can make one think the opposite due to
 | 
						|
its name which may be understood as "if strings compare...". Thus it is strongly
 | 
						|
recommended to perform an explicit comparison with zero in such a case, and it
 | 
						|
makes sense considering that the comparison's operator is the same that is
 | 
						|
wanted to compare the strings (note that current config parser lacks a lot in
 | 
						|
this regards) :
 | 
						|
 | 
						|
    strcmp(a, b) == 0  <=>  a == b
 | 
						|
    strcmp(a, b) != 0  <=>  a != b
 | 
						|
    strcmp(a, b) <  0  <=>  a <  b
 | 
						|
    strcmp(a, b) >  0  <=>  a >  b
 | 
						|
 | 
						|
Avoid this :
 | 
						|
 | 
						|
  | if (strcmp(arg, "test"))
 | 
						|
  |         printf("this is not a test\n");
 | 
						|
  |
 | 
						|
  | if (!strcmp(arg, "test"))
 | 
						|
  |         printf("this is a test\n");
 | 
						|
 | 
						|
Prefer this :
 | 
						|
 | 
						|
  | if (strcmp(arg, "test") != 0)
 | 
						|
  |         printf("this is not a test\n");
 | 
						|
  |
 | 
						|
  | if (strcmp(arg, "test") == 0)
 | 
						|
  |         printf("this is a test\n");
 | 
						|
 | 
						|
 | 
						|
7) System call returns
 | 
						|
----------------------
 | 
						|
 | 
						|
This is not directly a matter of coding style but more of bad habits. It is
 | 
						|
important to check for the correct value upon return of syscalls. The proper
 | 
						|
return code indicating an error is described in its man page. There is no
 | 
						|
reason to consider wider ranges than what is indicated. For instance, it is
 | 
						|
common to see such a thing :
 | 
						|
 | 
						|
  | if ((fd = open(file, O_RDONLY)) < 0)
 | 
						|
  |         return -1;
 | 
						|
 | 
						|
This is wrong. The man page says that -1 is returned if an error occurred. It
 | 
						|
does not suggest that any other negative value will be an error. It is possible
 | 
						|
that a few such issues have been left in existing code. They are bugs for which
 | 
						|
fixes are accepted, even though they're currently harmless since open() is not
 | 
						|
known for returning negative values at the moment.
 | 
						|
 | 
						|
 | 
						|
8) Declaring new types, names and values
 | 
						|
----------------------------------------
 | 
						|
 | 
						|
Please refrain from using "typedef" to declare new types, they only obfuscate
 | 
						|
the code. The reader never knows whether he's manipulating a scalar type or a
 | 
						|
struct. For instance it is not obvious why the following code fails to build :
 | 
						|
 | 
						|
  | int delay_expired(timer_t exp, timer_us_t now)
 | 
						|
  | {
 | 
						|
  |         return now >= exp;
 | 
						|
  | }
 | 
						|
 | 
						|
With the types declared in another file this way :
 | 
						|
 | 
						|
  | typedef unsigned int timer_t;
 | 
						|
  | typedef struct timeval timer_us_t;
 | 
						|
 | 
						|
This cannot work because we're comparing a scalar with a struct, which does
 | 
						|
not make sense. Without a typedef, the function would have been written this
 | 
						|
way without any ambiguity and would not have failed :
 | 
						|
 | 
						|
  | int delay_expired(unsigned int exp, struct timeval *now)
 | 
						|
  | {
 | 
						|
  |         return now >= exp->tv_sec;
 | 
						|
  | }
 | 
						|
 | 
						|
Declaring special values may be done using enums. Enums are a way to define
 | 
						|
structured integer values which are related to each other. They are perfectly
 | 
						|
suited for state machines. While the first element is always assigned the zero
 | 
						|
value, not everybody knows that, especially people working with multiple
 | 
						|
languages all the day. For this reason it is recommended to explicitly force
 | 
						|
the first value even if it's zero. The last element should be followed by a
 | 
						|
comma if it is planned that new elements might later be added, this will make
 | 
						|
later patches shorter. Conversely, if the last element is placed in order to
 | 
						|
get the number of possible values, it must not be followed by a comma and must
 | 
						|
be preceded by a comment :
 | 
						|
 | 
						|
  | enum {
 | 
						|
  |         first = 0,
 | 
						|
  |         second,
 | 
						|
  |         third,
 | 
						|
  |         fourth,
 | 
						|
  | };
 | 
						|
 | 
						|
 | 
						|
  | enum {
 | 
						|
  |         first = 0,
 | 
						|
  |         second,
 | 
						|
  |         third,
 | 
						|
  |         fourth,
 | 
						|
  |         /* nbvalues must always be placed last */
 | 
						|
  |         nbvalues
 | 
						|
  | };
 | 
						|
 | 
						|
Structure names should be short enough not to mangle function declarations,
 | 
						|
and explicit enough to avoid confusion (which is the most important thing).
 | 
						|
 | 
						|
Wrong :
 | 
						|
 | 
						|
  | struct request_args { /* arguments on the query string */
 | 
						|
  |         char *name;
 | 
						|
  |         char *value;
 | 
						|
  |         struct misc_args *next;
 | 
						|
  | };
 | 
						|
 | 
						|
Right :
 | 
						|
 | 
						|
  | struct qs_args { /* arguments on the query string */
 | 
						|
  |         char *name;
 | 
						|
  |         char *value;
 | 
						|
  |         struct qs_args *next;
 | 
						|
  | }
 | 
						|
 | 
						|
 | 
						|
When declaring new functions or structures, please do not use CamelCase, which
 | 
						|
is a style where upper and lower case are mixed in a single word. It causes a
 | 
						|
lot of confusion when words are composed from acronyms, because it's hard to
 | 
						|
stick to a rule. For instance, a function designed to generate an ISN (initial
 | 
						|
sequence number) for a TCP/IP connection could be called :
 | 
						|
 | 
						|
  - generateTcpipIsn()
 | 
						|
  - generateTcpIpIsn()
 | 
						|
  - generateTcpIpISN()
 | 
						|
  - generateTCPIPISN()
 | 
						|
  etc...
 | 
						|
 | 
						|
None is right, none is wrong, these are just preferences which might change
 | 
						|
along the code. Instead, please use an underscore to separate words. Lowercase
 | 
						|
is preferred for the words, but if acronyms are upcased it's not dramatic. The
 | 
						|
real advantage of this method is that it creates unambiguous levels even for
 | 
						|
short names.
 | 
						|
 | 
						|
Valid examples :
 | 
						|
 | 
						|
  - generate_tcpip_isn()
 | 
						|
  - generate_tcp_ip_isn()
 | 
						|
  - generate_TCPIP_ISN()
 | 
						|
  - generate_TCP_IP_ISN()
 | 
						|
 | 
						|
Another example is easy to understand when 3 arguments are involved in naming
 | 
						|
the function :
 | 
						|
 | 
						|
Wrong (naming conflict) :
 | 
						|
 | 
						|
  | /* returns A + B * C */
 | 
						|
  | int mulABC(int a, int b, int c)
 | 
						|
  | {
 | 
						|
  |         return a + b * c;
 | 
						|
  | }
 | 
						|
  |
 | 
						|
  | /* returns (A + B) * C */
 | 
						|
  | int mulABC(int a, int b, int c)
 | 
						|
  | {
 | 
						|
  |         return (a + b) * c;
 | 
						|
  | }
 | 
						|
 | 
						|
Right (unambiguous naming) :
 | 
						|
 | 
						|
  | /* returns A + B * C */
 | 
						|
  | int mul_a_bc(int a, int b, int c)
 | 
						|
  | {
 | 
						|
  |         return a + b * c;
 | 
						|
  | }
 | 
						|
  |
 | 
						|
  | /* returns (A + B) * C */
 | 
						|
  | int mul_ab_c(int a, int b, int c)
 | 
						|
  | {
 | 
						|
  |         return (a + b) * c;
 | 
						|
  | }
 | 
						|
 | 
						|
Whenever you manipulate pointers, try to declare them as "const", as it will
 | 
						|
save you from many accidental misuses and will only cause warnings to be
 | 
						|
emitted when there is a real risk. In the examples below, it is possible to
 | 
						|
call my_strcpy() with a const string only in the first declaration. Note that
 | 
						|
people who ignore "const" are often the ones who cast a lot and who complain
 | 
						|
from segfaults when using strtok() !
 | 
						|
 | 
						|
Right :
 | 
						|
 | 
						|
  | void my_strcpy(char *d, const char *s)
 | 
						|
  | {
 | 
						|
  |         while ((*d++ = *s++));
 | 
						|
  | }
 | 
						|
  |
 | 
						|
  | void say_hello(char *dest)
 | 
						|
  | {
 | 
						|
  |         my_strcpy(dest, "hello\n");
 | 
						|
  | }
 | 
						|
 | 
						|
Wrong :
 | 
						|
 | 
						|
  | void my_strcpy(char *d, char *s)
 | 
						|
  | {
 | 
						|
  |         while ((*d++ = *s++));
 | 
						|
  | }
 | 
						|
  |
 | 
						|
  | void say_hello(char *dest)
 | 
						|
  | {
 | 
						|
  |         my_strcpy(dest, "hello\n");
 | 
						|
  | }
 | 
						|
 | 
						|
 | 
						|
9) Getting macros right
 | 
						|
-----------------------
 | 
						|
 | 
						|
It is very common for macros to do the wrong thing when used in a way their
 | 
						|
author did not have in mind. For this reason, macros must always be named with
 | 
						|
uppercase letters only. This is the only way to catch the developer's eye when
 | 
						|
using them, so that they double-check whether they are taking a risk or not. First,
 | 
						|
macros must never ever be terminated by a semi-colon, or they will close the
 | 
						|
wrong block once in a while. For instance, the following will cause a build
 | 
						|
error before the "else" due to the double semi-colon :
 | 
						|
 | 
						|
Wrong :
 | 
						|
 | 
						|
  | #define WARN printf("warning\n");
 | 
						|
  | ...
 | 
						|
  |         if (a < 0)
 | 
						|
  |                 WARN;
 | 
						|
  |         else
 | 
						|
  |                 a--;
 | 
						|
 | 
						|
Right :
 | 
						|
 | 
						|
  | #define WARN printf("warning\n")
 | 
						|
 | 
						|
If multiple instructions are needed, then use a do { } while (0) block, which
 | 
						|
is the only construct which respects *exactly* the semantics of a single
 | 
						|
instruction :
 | 
						|
 | 
						|
  | #define WARN do { printf("warning\n"); log("warning\n"); } while (0)
 | 
						|
  | ...
 | 
						|
  |
 | 
						|
  |         if (a < 0)
 | 
						|
  |                 WARN;
 | 
						|
  |         else
 | 
						|
  |                 a--;
 | 
						|
 | 
						|
Second, do not put unprotected control statements in macros, they will
 | 
						|
definitely cause bugs :
 | 
						|
 | 
						|
Wrong :
 | 
						|
 | 
						|
  | #define WARN if (verbose) printf("warning\n")
 | 
						|
  | ...
 | 
						|
  |         if (a < 0)
 | 
						|
  |                 WARN;
 | 
						|
  |         else
 | 
						|
  |                 a--;
 | 
						|
 | 
						|
Which is equivalent to the undesired form below :
 | 
						|
 | 
						|
  |         if (a < 0)
 | 
						|
  |                 if (verbose)
 | 
						|
  |                         printf("warning\n");
 | 
						|
  |                 else
 | 
						|
  |                         a--;
 | 
						|
 | 
						|
Right way to do it :
 | 
						|
 | 
						|
  | #define WARN do { if (verbose) printf("warning\n"); } while (0)
 | 
						|
  | ...
 | 
						|
  |         if (a < 0)
 | 
						|
  |                 WARN;
 | 
						|
  |         else
 | 
						|
  |                 a--;
 | 
						|
 | 
						|
Which is equivalent to :
 | 
						|
 | 
						|
  |         if (a < 0)
 | 
						|
  |                 do { if (verbose) printf("warning\n"); } while (0);
 | 
						|
  |         else
 | 
						|
  |                 a--;
 | 
						|
 | 
						|
Macro parameters must always be surrounded by parenthesis, and must never be
 | 
						|
duplicated in the same macro unless explicitly stated. Also, macros must not be
 | 
						|
defined with operators without surrounding parenthesis. The MIN/MAX macros are
 | 
						|
a pretty common example of multiple misuses, but this happens as early as when
 | 
						|
using bit masks. Most often, in case of any doubt, try to use inline functions
 | 
						|
instead.
 | 
						|
 | 
						|
Wrong :
 | 
						|
 | 
						|
  | #define MIN(a, b) a < b ? a : b
 | 
						|
  |
 | 
						|
  | /* returns 2 * min(a,b) + 1 */
 | 
						|
  | int double_min_p1(int a, int b)
 | 
						|
  | {
 | 
						|
  |         return 2 * MIN(a, b) + 1;
 | 
						|
  | }
 | 
						|
 | 
						|
What this will do :
 | 
						|
 | 
						|
  | int double_min_p1(int a, int b)
 | 
						|
  | {
 | 
						|
  |         return 2 * a < b ? a : b + 1;
 | 
						|
  | }
 | 
						|
 | 
						|
Which is equivalent to :
 | 
						|
 | 
						|
  | int double_min_p1(int a, int b)
 | 
						|
  | {
 | 
						|
  |         return (2 * a) < b ? a : (b + 1);
 | 
						|
  | }
 | 
						|
 | 
						|
The first thing to fix is to surround the macro definition with parenthesis to
 | 
						|
avoid this mistake :
 | 
						|
 | 
						|
  | #define MIN(a, b) (a < b ? a : b)
 | 
						|
 | 
						|
But this is still not enough, as can be seen in this example :
 | 
						|
 | 
						|
  | /* compares either a or b with c */
 | 
						|
  | int min_ab_c(int a, int b, int c)
 | 
						|
  | {
 | 
						|
  |         return MIN(a ? a : b, c);
 | 
						|
  | }
 | 
						|
 | 
						|
Which is equivalent to :
 | 
						|
 | 
						|
  | int min_ab_c(int a, int b, int c)
 | 
						|
  | {
 | 
						|
  |         return (a ? a : b < c ? a ? a : b : c);
 | 
						|
  | }
 | 
						|
 | 
						|
Which in turn means a totally different thing due to precedence :
 | 
						|
 | 
						|
  | int min_ab_c(int a, int b, int c)
 | 
						|
  | {
 | 
						|
  |         return (a ? a : ((b < c) ? (a ? a : b) : c));
 | 
						|
  | }
 | 
						|
 | 
						|
This can be fixed by surrounding *each* argument in the macro with parenthesis:
 | 
						|
 | 
						|
  | #define MIN(a, b) ((a) < (b) ? (a) : (b))
 | 
						|
 | 
						|
But this is still not enough, as can be seen in this example :
 | 
						|
 | 
						|
  | int min_ap1_b(int a, int b)
 | 
						|
  | {
 | 
						|
  |         return MIN(++a, b);
 | 
						|
  | }
 | 
						|
 | 
						|
Which is equivalent to :
 | 
						|
 | 
						|
  | int min_ap1_b(int a, int b)
 | 
						|
  | {
 | 
						|
  |         return ((++a) < (b) ? (++a) : (b));
 | 
						|
  | }
 | 
						|
 | 
						|
Again, this is wrong because "a" is incremented twice if below b. The only way
 | 
						|
to fix this is to use a compound statement and to assign each argument exactly
 | 
						|
once to a local variable of the same type :
 | 
						|
 | 
						|
  | #define MIN(a, b) ({ typeof(a) __a = (a); typeof(b) __b = (b);  \
 | 
						|
  |                      ((__a) < (__b) ? (__a) : (__b));           \
 | 
						|
  |                   })
 | 
						|
 | 
						|
At this point, using static inline functions is much cleaner if a single type
 | 
						|
is to be used :
 | 
						|
 | 
						|
  | static inline int min(int a, int b)
 | 
						|
  | {
 | 
						|
  |         return a < b ? a : b;
 | 
						|
  | }
 | 
						|
 | 
						|
 | 
						|
10) Includes
 | 
						|
------------
 | 
						|
 | 
						|
Includes are as much as possible listed in alphabetically ordered groups :
 | 
						|
  - the includes more or less system-specific (sys/*, netinet/*, ...)
 | 
						|
  - the libc-standard includes (those without any path component)
 | 
						|
  - includes from the local "import" subdirectory
 | 
						|
  - includes from the local "haproxy" subdirectory
 | 
						|
 | 
						|
Each section is just visually delimited from the other ones using an empty
 | 
						|
line. The two first ones above may be merged into a single section depending on
 | 
						|
developer's preference. Please do not copy-paste include statements from other
 | 
						|
files. Having too many includes significantly increases build time and makes it
 | 
						|
hard to find which ones are needed later. Just include what you need and if
 | 
						|
possible in alphabetical order so that when something is missing, it becomes
 | 
						|
obvious where to look for it and where to add it.
 | 
						|
 | 
						|
All files should include <haproxy/api.h> because this is where build options
 | 
						|
are prepared.
 | 
						|
 | 
						|
Haproxy header files are split in two, those exporting the types only (named
 | 
						|
with a trailing "-t") and those exporting variables, functions and inline
 | 
						|
functions. Types, structures, enums and #defines must go into the types files
 | 
						|
which are the only ones that may be included by othertype files. Function
 | 
						|
prototypes and inlined functions must go into the main files. This split is
 | 
						|
because of inlined functions which cross-reference types from other files,
 | 
						|
which cause a chicken-and-egg problem if the functions and types are declared
 | 
						|
at the same place.
 | 
						|
 | 
						|
Include files must be protected against multiple inclusion using the common
 | 
						|
#ifndef/#define/#endif trick with a tag derived from the include file and its
 | 
						|
location.
 | 
						|
 | 
						|
 | 
						|
11) Comments
 | 
						|
------------
 | 
						|
 | 
						|
Comments are preferably of the standard 'C' form using /* */. The C++ form "//"
 | 
						|
are tolerated for very short comments (eg: a word or two) but should be avoided
 | 
						|
as much as possible. Multi-line comments are made with each intermediate line
 | 
						|
starting with a star aligned with the first one, as in this example :
 | 
						|
 | 
						|
  | /*
 | 
						|
  |  * This is a multi-line
 | 
						|
  |  * comment.
 | 
						|
  |  */
 | 
						|
 | 
						|
If multiple code lines need a short comment, try to align them so that you can
 | 
						|
have multi-line sentences. This is rarely needed, only for really complex
 | 
						|
constructs.
 | 
						|
 | 
						|
Do not tell what you're doing in comments, but explain why you're doing it if
 | 
						|
it seems not to be obvious. Also *do* indicate at the top of function what they
 | 
						|
accept and what they don't accept. For instance, strcpy() only accepts output
 | 
						|
buffers at least as large as the input buffer, and does not support any NULL
 | 
						|
pointer. There is nothing wrong with that if the caller knows it.
 | 
						|
 | 
						|
Wrong use of comments :
 | 
						|
 | 
						|
  | int flsnz8(unsigned int x)
 | 
						|
  | {
 | 
						|
  |         int ret = 0;                         /* initialize ret */
 | 
						|
  |         if (x >> 4) { x >>= 4; ret += 4; }   /* add 4 to ret if needed */
 | 
						|
  |         return ret + ((0xFFFFAA50U >> (x << 1)) & 3) + 1; /* add ??? */
 | 
						|
  | }
 | 
						|
  | ...
 | 
						|
  | bit = ~len + (skip << 3) + 9;        /* update bit */
 | 
						|
 | 
						|
Right use of comments :
 | 
						|
 | 
						|
  | /* This function returns the position of the highest bit set in the lowest
 | 
						|
  |  * byte of <x>, between 0 and 7. It only works if <x> is non-null. It uses
 | 
						|
  |  * a 32-bit value as a lookup table to return one of 4 values for the
 | 
						|
  |  * highest 16 possible 4-bit values.
 | 
						|
  |  */
 | 
						|
  | int flsnz8(unsigned int x)
 | 
						|
  | {
 | 
						|
  |         int ret = 0;
 | 
						|
  |         if (x >> 4) { x >>= 4; ret += 4; }
 | 
						|
  |         return ret + ((0xFFFFAA50U >> (x << 1)) & 3) + 1;
 | 
						|
  | }
 | 
						|
  | ...
 | 
						|
  | bit = ~len + (skip << 3) + 9; /* (skip << 3) + (8 - len), saves 1 cycle */
 | 
						|
 | 
						|
 | 
						|
12) Use of assembly
 | 
						|
-------------------
 | 
						|
 | 
						|
There are many projects where use of assembly code is not welcome. There is no
 | 
						|
problem with use of assembly in haproxy, provided that :
 | 
						|
 | 
						|
  a) an alternate C-form is provided for architectures not covered
 | 
						|
  b) the code is small enough and well commented enough to be maintained
 | 
						|
 | 
						|
It is important to take care of various incompatibilities between compiler
 | 
						|
versions, for instance regarding output and cloberred registers. There are
 | 
						|
a number of documentations on the subject on the net. Anyway if you are
 | 
						|
fiddling with assembly, you probably know that already.
 | 
						|
 | 
						|
Example :
 | 
						|
  | /* gcc does not know when it can safely divide 64 bits by 32 bits. Use this
 | 
						|
  |  * function when you know for sure that the result fits in 32 bits, because
 | 
						|
  |  * it is optimal on x86 and on 64bit processors.
 | 
						|
  |  */
 | 
						|
  | static inline unsigned int div64_32(unsigned long long o1, unsigned int o2)
 | 
						|
  | {
 | 
						|
  |         unsigned int result;
 | 
						|
  | #ifdef __i386__
 | 
						|
  |         asm("divl %2"
 | 
						|
  |             : "=a" (result)
 | 
						|
  |             : "A"(o1), "rm"(o2));
 | 
						|
  | #else
 | 
						|
  |         result = o1 / o2;
 | 
						|
  | #endif
 | 
						|
  |         return result;
 | 
						|
  | }
 | 
						|
 | 
						|
 | 
						|
13) Pointers
 | 
						|
------------
 | 
						|
 | 
						|
A lot could be said about pointers, there's enough to fill entire books. Misuse
 | 
						|
of pointers is one of the primary reasons for bugs in haproxy, and this rate
 | 
						|
has significantly increased with the use of threads. Moreover, bogus pointers
 | 
						|
cause the hardest to analyse bugs, because usually they result in modifications
 | 
						|
to reassigned areas or accesses to unmapped areas, and in each case, bugs that
 | 
						|
strike very far away from where they were located. Some bugs have already taken
 | 
						|
up to 3 weeks of full time analysis, which has a severe impact on the project's
 | 
						|
ability to make forward progress on important features. For this reason, code
 | 
						|
that doesn't look robust enough or that doesn't follow some of the rules below
 | 
						|
will be rejected, and may even be reverted after being merged if the trouble is
 | 
						|
detected late!
 | 
						|
 | 
						|
 | 
						|
13.1) No test before freeing
 | 
						|
----------------------------
 | 
						|
 | 
						|
All platforms where haproxy is supported have a well-defined and documented
 | 
						|
behavior for free(NULL), which is to do nothing at all. In other words, free()
 | 
						|
does test for the pointer's nullity. As such, there is no point in testing
 | 
						|
if a pointer is NULL or not before calling free(). And further, you must not
 | 
						|
do it, because it adds some confusion to the reader during debugging sessions,
 | 
						|
making one think that the code's authors weren't very sure about what they
 | 
						|
were doing. This will not cause a bug but will result in your code to get
 | 
						|
rejected.
 | 
						|
 | 
						|
Wrong call to free :
 | 
						|
 | 
						|
  | static inline int blah_free(struct blah *blah)
 | 
						|
  | {
 | 
						|
  |         if (blah->str1)
 | 
						|
  |                 free(blah->str1);
 | 
						|
  |         if (blah->str2)
 | 
						|
  |                 free(blah->str2);
 | 
						|
  |         free(blah);
 | 
						|
  | }
 | 
						|
 | 
						|
Correct call to free :
 | 
						|
 | 
						|
  | static inline int blah_free(struct blah *blah)
 | 
						|
  | {
 | 
						|
  |         free(blah->str1);
 | 
						|
  |         free(blah->str2);
 | 
						|
  |         free(blah);
 | 
						|
  | }
 | 
						|
 | 
						|
 | 
						|
13.2) No dangling pointers
 | 
						|
--------------------------
 | 
						|
 | 
						|
Pointers are very commonly used as booleans: if they're not NULL, then the
 | 
						|
area they point to is valid and may be used. This is convenient for many things
 | 
						|
and is even emphasized with threads where they can atomically be swapped with
 | 
						|
another value (even NULL), and as such provide guaranteed atomic resource
 | 
						|
allocation and sharing.
 | 
						|
 | 
						|
The problem with this is when someone forgets to delete a pointer when an area
 | 
						|
is no longer valid, because this may result in the pointer being accessed later
 | 
						|
and pointing to a wrong location, one that was reallocated for something else
 | 
						|
and causing all sort of nastiness like crashes or memory corruption. Moreover,
 | 
						|
thanks to the memory pools, it is extremely likely that a just released pointer
 | 
						|
will be reassigned to a similar object with comparable values (flags etc) at
 | 
						|
the same positions, making tests apparently succeed for a while. Some such bugs
 | 
						|
have gone undetected for several years.
 | 
						|
 | 
						|
The rule is pretty simple:
 | 
						|
 | 
						|
   +-----------------------------------------------------------------+
 | 
						|
   | NO REACHABLE POINTER MAY EVER POINT TO AN UNREACHABLE LOCATION. |
 | 
						|
   +-----------------------------------------------------------------+
 | 
						|
 | 
						|
By "reachable pointer", here we mean a pointer that is accessible from a
 | 
						|
reachable structure or a global variable. This means that any pointer found
 | 
						|
anywhere in any structure in the code may always be dereferenced. This can
 | 
						|
seem obvious but this is not always enforced.
 | 
						|
 | 
						|
This means that when freeing an area, the pointer that was used to find that
 | 
						|
area must be overwritten with NULL, and all other such pointers must as well
 | 
						|
if any. It is one case where one can find more convenient to write the NULL
 | 
						|
on the same line as the call to free() to make things easier to check. Be
 | 
						|
careful about any potential "if" when doing this.
 | 
						|
 | 
						|
Wrong use of free :
 | 
						|
 | 
						|
  | static inline int blah_recycle(struct blah *blah)
 | 
						|
  | {
 | 
						|
  |         free(blah->str1);
 | 
						|
  |         free(blah->str2);
 | 
						|
  | }
 | 
						|
 | 
						|
Correct use of free :
 | 
						|
 | 
						|
  | static inline int blah_recycle(struct blah *blah)
 | 
						|
  | {
 | 
						|
  |         free(blah->str1); blah->str1 = NULL;
 | 
						|
  |         free(blah->str2); blah->str2 = NULL;
 | 
						|
  | }
 | 
						|
 | 
						|
Sometimes the code doesn't permit this to be done. It is not a matter of code
 | 
						|
but a matter of architecture. Example:
 | 
						|
 | 
						|
Initialization:
 | 
						|
 | 
						|
  | static struct foo *foo_init()
 | 
						|
  | {
 | 
						|
  |         struct foo *foo;
 | 
						|
  |         struct bar *bar;
 | 
						|
  |
 | 
						|
  |         foo = pool_alloc(foo_head);
 | 
						|
  |         bar = pool_alloc(bar_head);
 | 
						|
  |         if (!foo || !bar)
 | 
						|
  |                goto fail;
 | 
						|
  |         foo->bar = bar;
 | 
						|
  |         ...
 | 
						|
  | }
 | 
						|
 | 
						|
Scheduled task 1:
 | 
						|
 | 
						|
  | static inline int foo_timeout(struct foo *foo)
 | 
						|
  | {
 | 
						|
  |         free(foo->bar);
 | 
						|
  |         free(foo);
 | 
						|
  | }
 | 
						|
 | 
						|
Scheduled task 2:
 | 
						|
 | 
						|
  | static inline int bar_timeout(struct bar *bar)
 | 
						|
  | {
 | 
						|
  |         free(bar);
 | 
						|
  | }
 | 
						|
 | 
						|
Here it's obvious that if "bar" times out, it will be freed but its pointer in
 | 
						|
"foo" will remain here, and if foo times out just after, it will lead to a
 | 
						|
double free. Or worse, if another instance allocates a pointer and receives bar
 | 
						|
again, when foo times out, it will release the old bar pointer which now points
 | 
						|
to a new object, and the code using that new object will crash much later, or
 | 
						|
even worse, will share the same area as yet another instance having inherited
 | 
						|
that pointer again.
 | 
						|
 | 
						|
Here this simply means that the data model is wrong. If bar may be freed alone,
 | 
						|
it MUST have a pointer to foo so that bar->foo->bar is set to NULL to let foo
 | 
						|
finish its life peacefully. This also means that the code dealing with foo must
 | 
						|
be written in a way to support bar's leaving.
 | 
						|
 | 
						|
 | 
						|
13.3) Don't abuse pointers as booleans
 | 
						|
--------------------------------------
 | 
						|
 | 
						|
Given the common use of a pointer to know if the area it points to is valid,
 | 
						|
there is a big incentive in using such pointers as booleans to describe
 | 
						|
something a bit higher level, like "is the user authenticated". This must not
 | 
						|
be done. The reason stems from the points above. Initially this perfectly
 | 
						|
matches and the code is simple. Then later some extra options need to be added,
 | 
						|
and more pointers are needed, all allocated together. At this point they all
 | 
						|
start to become their own booleans, supposedly always equivalent, but if that
 | 
						|
were true, they would be a single area with a single pointer. And things start
 | 
						|
to fall apart with some code areas relying on one pointer for the condition and
 | 
						|
other ones relying on other pointers. Pointers may be substituted with "flags"
 | 
						|
or "present in list" etc here. And from this point, things quickly degrade with
 | 
						|
pointers needing to remain set even if pointing to wrong areas, just for the
 | 
						|
sake of not being NULL and not breaking some assumptions. At this point the
 | 
						|
bugs are already there and the code is not trustable anymore.
 | 
						|
 | 
						|
The only way to avoid this is to strictly respect this rule: pointers do not
 | 
						|
represent a functionality but a storage area. Of course it is very frequent to
 | 
						|
consider that if an optional string is not set, a feature is not enabled. This
 | 
						|
can be fine to some extents. But as soon as any slightest condition is added
 | 
						|
anywhere into the mux, the code relying on the pointer must be replaced with
 | 
						|
something else so that the pointer may live its own life and be released (and
 | 
						|
reset) earlier if needed.
 | 
						|
 | 
						|
 | 
						|
13.4) Mixing const and non-const
 | 
						|
--------------------------------
 | 
						|
 | 
						|
Something often encountered, especially when assembling error messages, is
 | 
						|
functions that collect strings, assemble them into larger messages and free
 | 
						|
everything. The problem here is that if strings are defined as variables, there
 | 
						|
will rightfully be build warnings when reporting string constants such as bare
 | 
						|
keywords or messages, and if strings are defined as constants, it is not
 | 
						|
possible to free them. The temptation is sometimes huge to force some free()
 | 
						|
calls on casted strings. Do not do that! It will inevitably lead to someone
 | 
						|
getting caught passing a constant string that will make the process crash (if
 | 
						|
lucky). Document the expectations, indicate that all arguments must be freeable
 | 
						|
and that the caller must be capable of strdup(), and make your function support
 | 
						|
NULLs and document it (so that callers can deal with a failing strdup() on
 | 
						|
allocation error).
 | 
						|
 | 
						|
One valid alternative is to use a secondary channel to indicate whether the
 | 
						|
message may be freed or not. A flag in a complex structure can be used for this
 | 
						|
purpose, for example. If you are certain that your strings are aligned to a
 | 
						|
certain number of bytes, it can be possible to instrument the code to use the
 | 
						|
lowest bit to indicate the need to free (e.g. by always adding one to every
 | 
						|
const string). But such a solution will require good enough instrumentation so
 | 
						|
that it doesn't constitute a new set of traps.
 | 
						|
 | 
						|
 | 
						|
13.5) No pointer casts
 | 
						|
----------------------
 | 
						|
 | 
						|
Except in rare occasions caused by legacy APIs (e.g. sockaddr) or special cases
 | 
						|
which explicitly require a form of aliasing, there is no valid reason for
 | 
						|
casting pointers, and usually this is used to hide other problems that will
 | 
						|
strike later. The only suitable type of cast is the cast from the generic void*
 | 
						|
used to store a context for example. But in C, there is no need to cast to nor
 | 
						|
from void*, so this is not required. However those coming from C++ tend to be
 | 
						|
used to this practice, and others argue that it makes the intent more visible.
 | 
						|
 | 
						|
As a corollary, do not abuse void*. Placing void* everywhere to avoid casting
 | 
						|
is a bad practice as well. The use of void* is only for generic functions or
 | 
						|
structures which do not have a limited set of types supported. When only a few
 | 
						|
types are supported, generally their type can be passed using a side channel,
 | 
						|
and the void* can be turned into a union that makes the code more readable and
 | 
						|
more verifiable.
 | 
						|
 | 
						|
An alternative in haproxy is to use a pointer to an obj_type enum. Usually it
 | 
						|
is placed at the beginning of a structure. It works like a void* except that
 | 
						|
the type is read directly from the object. This is convenient when a small set
 | 
						|
of remote objects may be attached to another one because a single of them will
 | 
						|
match a non-null pointer (e.g. a connection or an applet).
 | 
						|
 | 
						|
Example:
 | 
						|
 | 
						|
  | static inline int blah_free(struct blah *blah)
 | 
						|
  | {
 | 
						|
  |         /* only one of them (at most) will not be null */
 | 
						|
  |         pool_free(pool_head_connection, objt_conn(blah->target));
 | 
						|
  |         pool_free(pool_head_appctx,     objt_appctx(blah->target));
 | 
						|
  |         pool_free(pool_head_stream,     objt_stream(blah->target));
 | 
						|
  |         blah->target = NULL;
 | 
						|
  | }
 | 
						|
 | 
						|
 | 
						|
13.6) Extreme caution when using non-canonical pointers
 | 
						|
-------------------------------------------------------
 | 
						|
 | 
						|
It can be particularly convenient to embed some logic in the unused bits or
 | 
						|
code points of a pointer. Indeed, when it is known by design that a given
 | 
						|
pointer will always follow a certain alignment, a few lower bits will always
 | 
						|
remain zero, and as such may be used as optional flags. For example, the ebtree
 | 
						|
code uses the lowest bit to differentiate left/right attachments to the parent
 | 
						|
and node/leaf in branches. It is also known that values very close to NULL will
 | 
						|
never represent a valid pointer, and the thread-safe MT_LIST code uses this to
 | 
						|
lock visited pointers.
 | 
						|
 | 
						|
There are a few rules to respect in order to do this:
 | 
						|
  - the deviations from the canonical pointers must be exhaustively documented
 | 
						|
    where the pointer type is defined, and the whole control logic with its
 | 
						|
    implications and possible and impossible cases must be enumerated as well ;
 | 
						|
 | 
						|
  - make sure that the operations will work on every supported platform, which
 | 
						|
    includes 32-bit platforms where structures may be aligned on as little as
 | 
						|
    32-bit. 32-bit alignment leaves only two LSB available. When doing so, make
 | 
						|
    sure the target structures are not labelled with the "packed" attribute, or
 | 
						|
    that they're always perfectly aligned. All platforms where haproxy runs
 | 
						|
    have their NULL pointer mapped at address zero, and use page sizes at least
 | 
						|
    4096 bytes large, leaving all values form 1 to 4095 unused. Anything
 | 
						|
    outside of this is unsafe. In particular, never use negative numbers to
 | 
						|
    represent a supposedly invalid address. On 32-bits platforms it will often
 | 
						|
    correspond to a system address or a special page. Always try a variety of
 | 
						|
    platforms when doing such a thing.
 | 
						|
 | 
						|
  - the code must not use such pointers as booleans anymore even if it is known
 | 
						|
    that "it works" because that keeps a doubt open for the reviewer. Only the
 | 
						|
    canonical pointer may be tested. There can be a rare exception which is if
 | 
						|
    this is on a critical path where severe performance degradation may result
 | 
						|
    from this. In this case, *each* of the checks must be duly documented and
 | 
						|
    the equivalent BUG_ON() instances must be placed to prove the claim.
 | 
						|
 | 
						|
  - some inline functions (or macros) must be used to turn the pointers to/from
 | 
						|
    their canonical form so that the regular code doesn't have to see the
 | 
						|
    operations, and so that the representation may be easily adjusted in the
 | 
						|
    future. A few comments indicating to a human how to turn a pointer back and
 | 
						|
    forth from inside a debugger will be appreciated, as macros often end up
 | 
						|
    not being trivially readable nor directly usable.
 | 
						|
 | 
						|
  - do not use int types to cast the pointers, this will only work on 32-bit
 | 
						|
    platforms. While "long" is usually fine, it is not recommended anymore due
 | 
						|
    to the Windows platform being LLP64 and having it set to 32 bits. And
 | 
						|
    "long long" isn't good either for always being 64 bits. More suitable types
 | 
						|
    are ptrdiff_t or size_t. Note that while those were not available everywhere
 | 
						|
    in the early days of hparoxy, size_t is now heavily used and known to work
 | 
						|
    everywhere. And do not perform the operations on the pointers, only on the
 | 
						|
    integer types (and cast back again). Some compilers such as gcc are
 | 
						|
    extremely picky about this and will often emit wrong code when they see
 | 
						|
    equality conditions they believe is impossible and decide to optimize them
 | 
						|
    away.
 | 
						|
 | 
						|
 | 
						|
13.7) Pointers in unions
 | 
						|
------------------------
 | 
						|
 | 
						|
Before placing multiple aliasing pointers inside a same union, there MUST be a
 | 
						|
SINGLE well-defined way to figure them out from each other. It may be thanks to
 | 
						|
a side-channel information (as done in the samples with a defined type), it may
 | 
						|
be based on in-area information (as done using obj_types), or any other trusted
 | 
						|
solution. In any case, if pointers are mixed with any other type (integer or
 | 
						|
float) in a union, there must be a very simple way to distinguish them, and not
 | 
						|
a platform-dependent nor compiler-dependent one.
 |