mirror of
https://git.haproxy.org/git/haproxy.git/
synced 2025-09-20 13:21:29 +02:00
The support for duplicates is necessary for various use cases related to config names, so let's upgrade to the latest version which brings this support. This updates the cebtree code to commit 808ed67 (tag 0.5.0). A few tiny adaptations were needed: - replace a few ceb_node** with ceb_root** since pointers are now tagged ; - replace cebu*.h with ceb*.h since both are now merged in the same include file. This way we can drop the unused cebu*.h files from cebtree that are provided only for compatibility. - rename immediate storage functions to cebXX_imm_XXX() as per the API change in 0.5 that makes immediate explicit rather than implicit. This only affects vars and tools.c:copy_file_name(). The tests continue to work.
1768 lines
65 KiB
C
1768 lines
65 KiB
C
/*
|
|
* Compact Elastic Binary Trees - internal functions and types
|
|
*
|
|
* Copyright (C) 2014-2025 Willy Tarreau - w@1wt.eu
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining
|
|
* a copy of this software and associated documentation files (the
|
|
* "Software"), to deal in the Software without restriction, including
|
|
* without limitation the rights to use, copy, modify, merge, publish,
|
|
* distribute, sublicense, and/or sell copies of the Software, and to
|
|
* permit persons to whom the Software is furnished to do so, subject to
|
|
* the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be
|
|
* included in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
|
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
|
|
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
|
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
/* This file MUST NOT be included by public code, it contains macros, enums
|
|
* with short names and function definitions that may clash with user code.
|
|
* It may only be included by the respective types' C files.
|
|
*/
|
|
|
|
/*
|
|
* These trees are optimized for adding the minimalest overhead to the stored
|
|
* data. This version uses the node's pointer as the key, for the purpose of
|
|
* quickly finding its neighbours.
|
|
*
|
|
* A few properties :
|
|
* - the xor between two branches of a node cannot be zero unless the two
|
|
* branches are duplicate keys
|
|
* - the xor between two nodes has *at least* the split bit set, possibly more
|
|
* - the split bit is always strictly smaller for a node than for its parent,
|
|
* which implies that the xor between the keys of the lowest level node is
|
|
* always smaller than the xor between a higher level node. Hence the xor
|
|
* between the branches of a regular leaf is always strictly larger than the
|
|
* xor of its parent node's branches if this node is different, since the
|
|
* leaf is associated with a higher level node which has at least one higher
|
|
* level branch. The first leaf doesn't validate this but is handled by the
|
|
* rules below.
|
|
* - during the descent, the node corresponding to a leaf is always visited
|
|
* before the leaf, unless it's the first inserted, nodeless leaf.
|
|
* - the first key is the only one without any node, and it has both its
|
|
* branches pointing to itself during insertion to detect it (i.e. xor==0).
|
|
* - a leaf is always present as a node on the path from the root, except for
|
|
* the inserted first key which has no node, and is recognizable by its two
|
|
* branches pointing to itself.
|
|
* - a consequence of the rules above is that a non-first leaf appearing below
|
|
* a node will necessarily have an associated node with a split bit equal to
|
|
* or greater than the node's split bit.
|
|
* - another consequence is that below a node, the split bits are different for
|
|
* each branches since both of them are already present above the node, thus
|
|
* at different levels, so their respective XOR values will be different.
|
|
* - since all nodes in a given path have a different split bit, if a leaf has
|
|
* the same split bit as its parent node, it is necessary its associated leaf
|
|
*
|
|
* When descending along the tree, it is possible to know that a search key is
|
|
* not present, because its XOR with both of the branches is stricly higher
|
|
* than the inter-branch XOR. The reason is simple : the inter-branch XOR will
|
|
* have its highest bit set indicating the split bit. Since it's the bit that
|
|
* differs between the two branches, the key cannot have it both set and
|
|
* cleared when comparing to the branch values. So xoring the key with both
|
|
* branches will emit a higher bit only when the key's bit differs from both
|
|
* branches' similar bit. Thus, the following equation :
|
|
* (XOR(key, L) > XOR(L, R)) && (XOR(key, R) > XOR(L, R))
|
|
* is only true when the key should be placed above that node. Since the key
|
|
* has a higher bit which differs from the node, either it has it set and the
|
|
* node has it clear (same for both branches), or it has it clear and the node
|
|
* has it set for both branches. For this reason it's enough to compare the key
|
|
* with any node when the equation above is true, to know if it ought to be
|
|
* present on the left or on the right side. This is useful for insertion and
|
|
* for range lookups.
|
|
*/
|
|
|
|
#ifndef _CEBTREE_PRV_H
|
|
#define _CEBTREE_PRV_H
|
|
|
|
#include <sys/types.h>
|
|
#include <inttypes.h>
|
|
#include <stddef.h>
|
|
#include <string.h>
|
|
#include "cebtree.h"
|
|
|
|
/* A few utility functions and macros that we need below */
|
|
|
|
/* This is used to test if a macro is defined and equals 1. The principle is
|
|
* that the macro is passed as a value and its value concatenated to the word
|
|
* "comma_for_one" to form a new macro name. The macro "comma_for_one1" equals
|
|
* one comma, which, once used in an argument, will shift all of them by one,
|
|
* so that we can use this to concatenate both a 1 and a 0 and always pick the
|
|
* second one.
|
|
*/
|
|
#define comma_for_one1 ,
|
|
#define _____equals_1(x, y, ...) (y)
|
|
#define ____equals_1(x, ...) _____equals_1(x, 0)
|
|
#define ___equals_1(x) ____equals_1(comma_for_one ## x 1)
|
|
#define __equals_1(x) ___equals_1(x)
|
|
|
|
/* gcc 5 and clang 3 brought __has_attribute(), which is not well documented in
|
|
* the case of gcc, but is convenient since handled at the preprocessor level.
|
|
* In both cases it's possible to test for __has_attribute() using ifdef. When
|
|
* not defined we remap this to the __has_attribute_<name> macro so that we'll
|
|
* later be able to implement on a per-compiler basis those which are missing,
|
|
* by defining __has_attribute_<name> to 1.
|
|
*/
|
|
#ifndef __has_attribute
|
|
#define __has_attribute(x) __equals_1(__has_attribute_ ## x)
|
|
#endif
|
|
|
|
/* gcc 10 and clang 3 brought __has_builtin() to test if a builtin exists.
|
|
* Just like above, if it doesn't exist, we remap it to a macro allowing us
|
|
* to define these ourselves by defining __has_builtin_<name> to 1.
|
|
*/
|
|
#ifndef __has_builtin
|
|
#define __has_builtin(x) __equals_1(__has_builtin_ ## x)
|
|
#endif
|
|
|
|
#if !defined(__GNUC__)
|
|
/* Some versions of glibc irresponsibly redefine __attribute__() to empty for
|
|
* non-gcc compilers, and as such, silently break all constructors with other
|
|
* other compilers. Let's make sure such incompatibilities are detected if any,
|
|
* or that the attribute is properly enforced.
|
|
*/
|
|
#undef __attribute__
|
|
#define __attribute__(x) __attribute__(x)
|
|
#endif
|
|
|
|
/* Define the missing __builtin_prefetch() for tcc. */
|
|
#if defined(__TINYC__) && !defined(__builtin_prefetch)
|
|
#define __builtin_prefetch(addr, ...) do { } while (0)
|
|
#endif
|
|
|
|
/* __builtin_unreachable() was added in gcc 4.5 */
|
|
#if defined(__GNUC__) && (__GNUC__ >= 5 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5))
|
|
#define __has_builtin___builtin_unreachable 1 /* make __builtin_unreachable() return 1 */
|
|
#elif !__has_builtin(__builtin_unreachable)
|
|
#define __builtin_unreachable() do { } while (1)
|
|
#endif
|
|
|
|
/* FLSNZ: find last set bit for non-zero value. "Last" here means the highest
|
|
* one. It returns a value from 1 to 32 for 1<<0 to 1<<31.
|
|
*/
|
|
|
|
#if defined(__GNUC__) && ((__GNUC__ > 4) || ((__GNUC__ == 4) && (__GNUC_MINOR__ >= 2)))
|
|
/* gcc >= 4.2 brings __builtin_clz() and __builtin_clzl(), also usable for
|
|
* non-x86. However on x86 gcc does bad stuff if not properly handled. It xors
|
|
* the bsr return with 31 and since it doesn't know how to deal with a xor
|
|
* followed by a negation, it adds two instructions when using 32-clz(). Thus
|
|
* instead we first cancel the xor using another one then add one. Even on ARM
|
|
* that provides a clz instruction, it saves one register to proceed like this.
|
|
*/
|
|
|
|
#define flsnz8(x) flsnz32((unsigned char)x)
|
|
|
|
static inline __attribute__((always_inline)) unsigned int flsnz32(unsigned int x)
|
|
{
|
|
return (__builtin_clz(x) ^ 31) + 1;
|
|
}
|
|
|
|
static inline __attribute__((always_inline)) unsigned int flsnz64(unsigned long long x)
|
|
{
|
|
return (__builtin_clzll(x) ^ 63) + 1;
|
|
}
|
|
|
|
#elif (defined(__i386__) || defined(__x86_64__)) && !defined(__atom__) /* Not gcc >= 4.2 */
|
|
/* DO NOT USE ON ATOM! The instruction is emulated and is several times slower
|
|
* than doing the math by hand.
|
|
*/
|
|
#define flsnz8(x) flsnz32((unsigned char)x)
|
|
|
|
static inline __attribute__((always_inline)) unsigned int flsnz32(unsigned int x)
|
|
{
|
|
unsigned int r;
|
|
__asm__("bsrl %1,%0\n"
|
|
: "=r" (r) : "rm" (x));
|
|
return r + 1;
|
|
}
|
|
|
|
#if defined(__x86_64__)
|
|
static inline __attribute__((always_inline)) unsigned int flsnz64(unsigned long long x)
|
|
{
|
|
unsigned long long r;
|
|
__asm__("bsrq %1,%0\n"
|
|
: "=r" (r) : "rm" (x));
|
|
return r + 1;
|
|
}
|
|
#else
|
|
static inline __attribute__((always_inline)) unsigned int flsnz64(unsigned long long x)
|
|
{
|
|
unsigned int h;
|
|
unsigned int bits = 32;
|
|
|
|
h = x >> 32;
|
|
if (!h) {
|
|
h = x;
|
|
bits = 0;
|
|
}
|
|
return flsnz32(h) + bits;
|
|
}
|
|
#endif
|
|
|
|
#else /* Neither gcc >= 4.2 nor x86, use generic code */
|
|
|
|
static inline __attribute__((always_inline)) unsigned int flsnz8(unsigned int x)
|
|
{
|
|
unsigned int ret = 0;
|
|
if (x >> 4) { x >>= 4; ret += 4; }
|
|
return ret + ((0xFFFFAA50U >> (x << 1)) & 3) + 1;
|
|
}
|
|
|
|
#define flsnz32(___a) ({ \
|
|
register unsigned int ___x, ___bits = 0; \
|
|
___x = (___a); \
|
|
if (___x & 0xffff0000) { ___x &= 0xffff0000; ___bits += 16;} \
|
|
if (___x & 0xff00ff00) { ___x &= 0xff00ff00; ___bits += 8;} \
|
|
if (___x & 0xf0f0f0f0) { ___x &= 0xf0f0f0f0; ___bits += 4;} \
|
|
if (___x & 0xcccccccc) { ___x &= 0xcccccccc; ___bits += 2;} \
|
|
if (___x & 0xaaaaaaaa) { ___x &= 0xaaaaaaaa; ___bits += 1;} \
|
|
___bits + 1; \
|
|
})
|
|
|
|
static inline __attribute__((always_inline)) unsigned int flsnz64(unsigned long long x)
|
|
{
|
|
unsigned int h;
|
|
unsigned int bits = 32;
|
|
|
|
h = x >> 32;
|
|
if (!h) {
|
|
h = x;
|
|
bits = 0;
|
|
}
|
|
return flsnz32(h) + bits;
|
|
}
|
|
|
|
#endif
|
|
|
|
#define flsnz_long(x) ((sizeof(long) > 4) ? flsnz64(x) : flsnz32(x))
|
|
#define flsnz(x) ((sizeof(x) > 4) ? flsnz64(x) : (sizeof(x) > 1) ? flsnz32(x) : flsnz8(x))
|
|
|
|
/* Compare blocks <a> and <b> byte-to-byte, from bit <ignore> to bit <len-1>.
|
|
* Return the number of equal bits between strings, assuming that the first
|
|
* <ignore> bits are already identical. It is possible to return slightly more
|
|
* than <len> bits if <len> does not stop on a byte boundary and we find exact
|
|
* bytes. Note that parts or all of <ignore> bits may be rechecked. It is only
|
|
* passed here as a hint to speed up the check.
|
|
*/
|
|
static
|
|
#if defined(__OPTIMIZE_SIZE__)
|
|
__attribute__((noinline))
|
|
#else
|
|
inline __attribute__((always_inline))
|
|
#endif
|
|
size_t equal_bits(const unsigned char *a,
|
|
const unsigned char *b,
|
|
size_t ignore, size_t len)
|
|
{
|
|
for (ignore >>= 3, a += ignore, b += ignore, ignore <<= 3;
|
|
ignore < len; ) {
|
|
unsigned char c;
|
|
|
|
a++; b++;
|
|
ignore += 8;
|
|
c = b[-1] ^ a[-1];
|
|
|
|
if (c) {
|
|
/* OK now we know that old and new differ at byte <ptr> and that <c> holds
|
|
* the bit differences. We have to find what bit is differing and report
|
|
* it as the number of identical bits. Note that low bit numbers are
|
|
* assigned to high positions in the byte, as we compare them as strings.
|
|
*/
|
|
ignore -= flsnz_long(c);
|
|
break;
|
|
}
|
|
}
|
|
return ignore;
|
|
}
|
|
|
|
/* Compare strings <a> and <b> byte-to-byte, from bit <ignore> to the last 0.
|
|
* Return the number of equal bits between strings, assuming that the first
|
|
* <ignore> bits are already identical. Note that parts or all of <ignore> bits
|
|
* may be rechecked. It is only passed here as a hint to speed up the check.
|
|
* The caller is responsible for not passing an <ignore> value larger than any
|
|
* of the two strings. However, referencing any bit from the trailing zero is
|
|
* permitted. Equal strings are reported as a negative number of bits, which
|
|
* indicates the end was reached.
|
|
*/
|
|
static
|
|
#if defined(__OPTIMIZE_SIZE__)
|
|
__attribute__((noinline))
|
|
#else
|
|
inline __attribute__((always_inline))
|
|
#endif
|
|
size_t string_equal_bits(const unsigned char *a,
|
|
const unsigned char *b,
|
|
size_t ignore)
|
|
{
|
|
unsigned char c, d;
|
|
size_t beg;
|
|
|
|
beg = ignore >> 3;
|
|
|
|
/* skip known and identical bits. We stop at the first different byte
|
|
* or at the first zero we encounter on either side.
|
|
*/
|
|
for (;; beg += 2) {
|
|
c = a[beg + 0];
|
|
d = b[beg + 0];
|
|
c ^= d;
|
|
if (__builtin_expect(c != 0, 0))
|
|
goto brk1;
|
|
if (!d)
|
|
goto same;
|
|
c = a[beg + 1];
|
|
d = b[beg + 1];
|
|
c ^= d;
|
|
if (__builtin_expect(c != 0, 0))
|
|
goto brk2;
|
|
if (!d)
|
|
goto same;
|
|
}
|
|
brk2:
|
|
beg++;
|
|
brk1:
|
|
|
|
/* OK now we know that a and b differ at byte <beg>.
|
|
* We have to find what bit is differing and report it as the number of
|
|
* identical bits. Note that low bit numbers are assigned to high positions
|
|
* in the byte, as we compare them as strings.
|
|
*/
|
|
return (beg << 3) + ((flsnz(c) - 1) ^ 7);
|
|
same:
|
|
return (size_t)-1;
|
|
}
|
|
|
|
/* pointer tagging / untagging, to turn ceb_root to ceb_node and conversely */
|
|
|
|
/* tag an untagged pointer (node -> root) */
|
|
static inline struct ceb_root *_ceb_dotag(const struct ceb_node *node, const uintptr_t tag)
|
|
{
|
|
return (struct ceb_root *)((uintptr_t)node + tag);
|
|
}
|
|
|
|
/* untag a tagged pointer (root -> node) */
|
|
static inline struct ceb_node *_ceb_untag(const struct ceb_root *node, const uintptr_t tag)
|
|
{
|
|
return (struct ceb_node *)((uintptr_t)node - tag);
|
|
}
|
|
|
|
/* clear a pointer's tag, regardless of its previous value */
|
|
static inline struct ceb_node *_ceb_clrtag(const struct ceb_root *node)
|
|
{
|
|
return (struct ceb_node *)((uintptr_t)node & ~(uintptr_t)1);
|
|
}
|
|
|
|
/* report the pointer's tag */
|
|
static inline uintptr_t _ceb_gettag(const struct ceb_root *node)
|
|
{
|
|
return (uintptr_t)node & (uintptr_t)1;
|
|
}
|
|
|
|
/* These macros are used by upper level files to create two variants of their
|
|
* exported functions:
|
|
* - one which uses sizeof(struct ceb_node) as the key offset, for nodes with
|
|
* adjacent keys ; these ones are named <pfx><sfx>(root, ...). This is
|
|
* defined when CEB_USE_BASE is defined.
|
|
* - one with an explicit key offset passed by the caller right after the
|
|
* root. This is defined when CEB_USE_OFST is defined.
|
|
* Both rely on a forced inline version with a body that immediately follows
|
|
* the declaration, so that the declaration looks like a single decorated
|
|
* function while 2 are built in practice. There are variants for the basic one
|
|
* with 0, 1 and 2 extra arguments after the root. The root and the key offset
|
|
* are always the first two arguments, and the key offset never appears in the
|
|
* first variant, it's always replaced by sizeof(struct ceb_node) in the calls
|
|
* to the inline version.
|
|
*/
|
|
#if defined(CEB_USE_BASE)
|
|
# define _CEB_DEF_BASE(x) x
|
|
#else
|
|
# define _CEB_DEF_BASE(x)
|
|
#endif
|
|
|
|
#if defined(CEB_USE_OFST)
|
|
# define _CEB_DEF_OFST(x) x
|
|
#else
|
|
# define _CEB_DEF_OFST(x)
|
|
#endif
|
|
|
|
#define CEB_FDECL2(type, pfx, sfx, type1, arg1, type2, arg2) \
|
|
_CEB_FDECL2(type, pfx, sfx, type1, arg1, type2, arg2)
|
|
|
|
#define _CEB_FDECL2(type, pfx, sfx, type1, arg1, type2, arg2) \
|
|
static inline __attribute__((always_inline)) \
|
|
type _##pfx##sfx(type1 arg1, type2 arg2); \
|
|
_CEB_DEF_BASE(type pfx##_imm##sfx(type1 arg1) { \
|
|
return _##pfx##sfx(arg1, sizeof(struct ceb_node)); \
|
|
}) \
|
|
_CEB_DEF_OFST(type pfx##_ofs##sfx(type1 arg1, type2 arg2) { \
|
|
return _##pfx##sfx(arg1, arg2); \
|
|
}) \
|
|
static inline __attribute__((always_inline)) \
|
|
type _##pfx##sfx(type1 arg1, type2 arg2)
|
|
/* function body follows */
|
|
|
|
#define CEB_FDECL3(type, pfx, sfx, type1, arg1, type2, arg2, type3, arg3) \
|
|
_CEB_FDECL3(type, pfx, sfx, type1, arg1, type2, arg2, type3, arg3)
|
|
|
|
#define _CEB_FDECL3(type, pfx, sfx, type1, arg1, type2, arg2, type3, arg3) \
|
|
static inline __attribute__((always_inline)) \
|
|
type _##pfx##sfx(type1 arg1, type2 arg2, type3 arg3); \
|
|
_CEB_DEF_BASE(type pfx##_imm##sfx(type1 arg1, type3 arg3) { \
|
|
return _##pfx##sfx(arg1, sizeof(struct ceb_node), arg3); \
|
|
}) \
|
|
_CEB_DEF_OFST(type pfx##_ofs##sfx(type1 arg1, type2 arg2, type3 arg3) { \
|
|
return _##pfx##sfx(arg1, arg2, arg3); \
|
|
}) \
|
|
static inline __attribute__((always_inline)) \
|
|
type _##pfx##sfx(type1 arg1, type2 arg2, type3 arg3)
|
|
/* function body follows */
|
|
|
|
#define CEB_FDECL4(type, pfx, sfx, type1, arg1, type2, arg2, type3, arg3, type4, arg4) \
|
|
_CEB_FDECL4(type, pfx, sfx, type1, arg1, type2, arg2, type3, arg3, type4, arg4)
|
|
|
|
#define _CEB_FDECL4(type, pfx, sfx, type1, arg1, type2, arg2, type3, arg3, type4, arg4) \
|
|
static inline __attribute__((always_inline)) \
|
|
type _##pfx##sfx(type1 arg1, type2 arg2, type3 arg3, type4 arg4); \
|
|
_CEB_DEF_BASE(type pfx##_imm##sfx(type1 arg1, type3 arg3, type4 arg4) { \
|
|
return _##pfx##sfx(arg1, sizeof(struct ceb_node), arg3, arg4); \
|
|
}) \
|
|
_CEB_DEF_OFST(type pfx##_ofs##sfx(type1 arg1, type2 arg2, type3 arg3, type4 arg4) { \
|
|
return _##pfx##sfx(arg1, arg2, arg3, arg4); \
|
|
}) \
|
|
static inline __attribute__((always_inline)) \
|
|
type _##pfx##sfx(type1 arg1, type2 arg2, type3 arg3, type4 arg4)
|
|
/* function body follows */
|
|
|
|
#define CEB_FDECL5(type, pfx, sfx, type1, arg1, type2, arg2, type3, arg3, type4, arg4, type5, arg5) \
|
|
_CEB_FDECL5(type, pfx, sfx, type1, arg1, type2, arg2, type3, arg3, type4, arg4, type5, arg5)
|
|
|
|
#define _CEB_FDECL5(type, pfx, sfx, type1, arg1, type2, arg2, type3, arg3, type4, arg4, type5, arg5) \
|
|
static inline __attribute__((always_inline)) \
|
|
type _##pfx##sfx(type1 arg1, type2 arg2, type3 arg3, type4 arg4, type5 arg5); \
|
|
_CEB_DEF_BASE(type pfx##_imm##sfx(type1 arg1, type3 arg3, type4 arg4, type5 arg5) { \
|
|
return _##pfx##sfx(arg1, sizeof(struct ceb_node), arg3, arg4, arg5); \
|
|
}) \
|
|
_CEB_DEF_OFST(type pfx##_ofs##sfx(type1 arg1, type2 arg2, type3 arg3, type4 arg4, type5 arg5) { \
|
|
return _##pfx##sfx(arg1, arg2, arg3, arg4, arg5); \
|
|
}) \
|
|
static inline __attribute__((always_inline)) \
|
|
type _##pfx##sfx(type1 arg1, type2 arg2, type3 arg3, type4 arg4, type5 arg5)
|
|
/* function body follows */
|
|
|
|
/* tree walk method: key, left, right */
|
|
enum ceb_walk_meth {
|
|
CEB_WM_FST, /* look up "first" (walk left only) */
|
|
CEB_WM_NXT, /* look up "next" (walk right once then left) */
|
|
CEB_WM_PRV, /* look up "prev" (walk left once then right) */
|
|
CEB_WM_LST, /* look up "last" (walk right only) */
|
|
/* all methods from CEB_WM_KEQ and above do have a key */
|
|
CEB_WM_KEQ, /* look up the node equal to the key */
|
|
CEB_WM_KGE, /* look up the node greater than or equal to the key */
|
|
CEB_WM_KGT, /* look up the node greater than the key */
|
|
CEB_WM_KLE, /* look up the node lower than or equal to the key */
|
|
CEB_WM_KLT, /* look up the node lower than the key */
|
|
CEB_WM_KNX, /* look up the node's key first, then find the next */
|
|
CEB_WM_KPR, /* look up the node's key first, then find the prev */
|
|
};
|
|
|
|
enum ceb_key_type {
|
|
CEB_KT_ADDR, /* the key is the node's address */
|
|
CEB_KT_U32, /* 32-bit unsigned word in key_u32 */
|
|
CEB_KT_U64, /* 64-bit unsigned word in key_u64 */
|
|
CEB_KT_MB, /* fixed size memory block in (key_u64,key_ptr), direct storage */
|
|
CEB_KT_IM, /* fixed size memory block in (key_u64,key_ptr), indirect storage */
|
|
CEB_KT_ST, /* NUL-terminated string in key_ptr, direct storage */
|
|
CEB_KT_IS, /* NUL-terminated string in key_ptr, indirect storage */
|
|
};
|
|
|
|
union ceb_key_storage {
|
|
uint32_t u32;
|
|
uint64_t u64;
|
|
unsigned long ul;
|
|
unsigned char mb[0];
|
|
unsigned char str[0];
|
|
unsigned char *ptr; /* for CEB_KT_IS */
|
|
};
|
|
|
|
/* returns the ceb_key_storage pointer for node <n> and offset <o> */
|
|
#define NODEK(n, o) ((union ceb_key_storage*)(((char *)(n)) + (o)))
|
|
|
|
/* Generic tree descent function. It must absolutely be inlined so that the
|
|
* compiler can eliminate the tests related to the various return pointers,
|
|
* which must either point to a local variable in the caller, or be NULL.
|
|
* It must not be called with an empty tree, it's the caller business to
|
|
* deal with this special case. It returns in ret_root the location of the
|
|
* pointer to the leaf (i.e. where we have to insert ourselves). The integer
|
|
* pointed to by ret_nside will contain the side the leaf should occupy at
|
|
* its own node, with the sibling being *ret_root. Note that keys for fixed-
|
|
* size arrays are passed in key_ptr with their length in key_u64. For keyless
|
|
* nodes whose address serves as the key, the pointer needs to be passed in
|
|
* key_ptr, and pxor64 will be used internally.
|
|
* The support for duplicates is advertised by ret_is_dup not being null; it
|
|
* will be filled on return with an indication whether the node belongs to a
|
|
* duplicate list or not.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_ceb_descend(struct ceb_root **root,
|
|
enum ceb_walk_meth meth,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr,
|
|
int *ret_nside,
|
|
struct ceb_root ***ret_root,
|
|
struct ceb_node **ret_lparent,
|
|
int *ret_lpside,
|
|
struct ceb_node **ret_nparent,
|
|
int *ret_npside,
|
|
struct ceb_node **ret_gparent,
|
|
int *ret_gpside,
|
|
struct ceb_root **ret_back,
|
|
int *ret_is_dup)
|
|
{
|
|
#if defined(__GNUC__) && (__GNUC__ >= 12) && !defined(__OPTIMIZE__)
|
|
/* Avoid a bogus warning with gcc 12 and above: it warns about negative
|
|
* memcmp() length in non-existing code paths at -O0, as reported here:
|
|
* https://gcc.gnu.org/bugzilla/show_bug.cgi?id=114622
|
|
*/
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wstringop-overread"
|
|
#endif
|
|
struct ceb_node *node;
|
|
union ceb_key_storage *k;
|
|
struct ceb_node *gparent = NULL;
|
|
struct ceb_node *bnode = NULL;
|
|
struct ceb_node *lparent;
|
|
uint32_t pxor32 __attribute__((unused)) = ~0U; // previous xor between branches
|
|
uint64_t pxor64 __attribute__((unused)) = ~0ULL; // previous xor between branches
|
|
int gpside = 0; // side on the grand parent
|
|
long lpside = 0; // side on the leaf's parent
|
|
long brside = 0; // branch side when descending
|
|
size_t llen = 0; // left vs key matching length
|
|
size_t rlen = 0; // right vs key matching length
|
|
size_t plen = 0; // previous common len between branches
|
|
int is_leaf = 0; // set if the current node is a leaf
|
|
|
|
/* the parent will be the (possibly virtual) node so that
|
|
* &lparent->l == root, i.e. container_of(root, struct ceb_node, b[0]).
|
|
*/
|
|
lparent = (struct ceb_node *)((char *)root - (long)&((struct ceb_node *)0)->b[0]);
|
|
gparent = lparent;
|
|
if (ret_nparent)
|
|
*ret_nparent = NULL;
|
|
if (ret_npside)
|
|
*ret_npside = 0;
|
|
|
|
/* for key-less descents we need to set the initial branch to take */
|
|
switch (meth) {
|
|
case CEB_WM_NXT:
|
|
case CEB_WM_LST:
|
|
brside = 1; // start right for next/last
|
|
break;
|
|
case CEB_WM_FST:
|
|
case CEB_WM_PRV:
|
|
default:
|
|
brside = 0; // start left for first/prev
|
|
break;
|
|
}
|
|
|
|
/* In case of deletion, we need the node's parent and side. It's
|
|
* normally discovered during the descent while comparing branches,
|
|
* but there's a case where it's not possible, it's when the root
|
|
* is the node's parent because the first node is the one we're
|
|
* looking for. So we have to perform this check here.
|
|
*/
|
|
if (meth >= CEB_WM_KEQ && ret_nparent && ret_npside) {
|
|
union ceb_key_storage *k = NODEK(_ceb_clrtag(*root), kofs);
|
|
|
|
if (((key_type == CEB_KT_MB || key_type == CEB_KT_IM) &&
|
|
(memcmp(key_ptr, ((key_type == CEB_KT_MB) ? k->mb : k->ptr), key_u64) == 0)) ||
|
|
((key_type == CEB_KT_ST || key_type == CEB_KT_IS) &&
|
|
(strcmp(key_ptr, (const void *)((key_type == CEB_KT_ST) ? k->str : k->ptr)) == 0))) {
|
|
*ret_nparent = lparent;
|
|
*ret_npside = lpside;
|
|
}
|
|
}
|
|
|
|
/* the previous xor is initialized to the largest possible inter-branch
|
|
* value so that it can never match on the first test as we want to use
|
|
* it to detect a leaf vs node. That's achieved with plen==0 for arrays
|
|
* and pxorXX==~0 for scalars.
|
|
*/
|
|
node = _ceb_clrtag(*root);
|
|
is_leaf = _ceb_gettag(*root);
|
|
|
|
if (ret_lpside) {
|
|
/* this is a deletion, benefits from prefetching */
|
|
__builtin_prefetch(node->b[0], 0);
|
|
__builtin_prefetch(node->b[1], 0);
|
|
}
|
|
|
|
while (1) {
|
|
union ceb_key_storage *lks, *rks;
|
|
struct ceb_node *ln, *rn, *next;
|
|
struct ceb_root *lr, *rr;
|
|
int next_leaf, lnl, rnl;
|
|
|
|
lr = node->b[0]; // tagged versions
|
|
rr = node->b[1];
|
|
|
|
/* get a copy of the corresponding nodes */
|
|
lnl = _ceb_gettag(lr);
|
|
ln = _ceb_clrtag(lr);
|
|
rnl = _ceb_gettag(rr);
|
|
rn = _ceb_clrtag(rr);
|
|
|
|
/* neither pointer is tagged */
|
|
k = NODEK(node, kofs);
|
|
|
|
if (is_leaf)
|
|
break;
|
|
|
|
/* Tests show that this is the most optimal location to start
|
|
* a prefetch for adjacent nodes.
|
|
*/
|
|
__builtin_prefetch(ln, 0);
|
|
__builtin_prefetch(rn, 0);
|
|
|
|
lks = NODEK(ln, kofs);
|
|
rks = NODEK(rn, kofs);
|
|
|
|
/* In the following block, we're dealing with type-specific
|
|
* operations which follow the same construct for each type:
|
|
* 1) calculate the new side for key lookups (otherwise keep
|
|
* the current side, e.g. for first/last). Doing it early
|
|
* allows the CPU to more easily predict next branches and
|
|
* is faster by ~10%. For complex bits we keep the length
|
|
* of identical bits instead of xor. We can also xor lkey
|
|
* and rkey with key and use it everywhere later but it
|
|
* doesn't seem to bring anything.
|
|
*
|
|
* 2) calculate the xor between the two sides to figure the
|
|
* split bit position. If the new split bit is before the
|
|
* previous one, we've reached a leaf: each leaf we visit
|
|
* had its node part already visited. The only way to
|
|
* distinguish them is that the inter-branch xor of the
|
|
* leaf will be the node's one, and will necessarily be
|
|
* larger than the previous node's xor if the node is
|
|
* above (we've already checked for direct descendent
|
|
* below). Said differently, if an inter-branch xor is
|
|
* strictly larger than the previous one, it necessarily
|
|
* is the one of an upper node, so what we're seeing
|
|
* cannot be the node, hence it's the leaf. The case where
|
|
* they're equal was already dealt with by the test at the
|
|
* end of the loop (node points to self). For scalar keys,
|
|
* we directly store the last xor value in pxorXX. For
|
|
* arrays and strings, instead we store the previous equal
|
|
* length.
|
|
*
|
|
* 3) for lookups, check if the looked key still has a chance
|
|
* to be below: if it has a xor with both branches that is
|
|
* larger than the xor between them, it cannot be there,
|
|
* since it means that it differs from these branches by
|
|
* at least one bit that's higher than the split bit,
|
|
* hence not common to these branches. In such cases:
|
|
* - if we're just doing a lookup, the key is not found
|
|
* and we fail.
|
|
* - if we are inserting, we must stop here and we have
|
|
* the guarantee to be above a node.
|
|
* - if we're deleting, it could be the key we were
|
|
* looking for so we have to check for it as long as
|
|
* it's still possible to keep a copy of the node's
|
|
* parent.
|
|
*/
|
|
|
|
if (key_type == CEB_KT_U32) {
|
|
uint32_t xor32; // left vs right branch xor
|
|
uint32_t kl, kr;
|
|
|
|
kl = lks->u32; kr = rks->u32;
|
|
if (meth >= CEB_WM_KEQ) {
|
|
kl ^= key_u32; kr ^= key_u32;
|
|
brside = kl >= kr;
|
|
}
|
|
|
|
xor32 = kl ^ kr;
|
|
if (meth >= CEB_WM_KEQ) {
|
|
/* let's stop if our key is not there */
|
|
if (kl > xor32 && kr > xor32)
|
|
break;
|
|
|
|
if (ret_nparent && !*ret_nparent && ret_npside) {
|
|
if (key_u32 == k->u32) {
|
|
*ret_nparent = lparent;
|
|
*ret_npside = lpside;
|
|
}
|
|
}
|
|
|
|
/* for pure lookups, no need to go down the leaf
|
|
* if we've found the key.
|
|
*/
|
|
if (!ret_root && !ret_lpside && !ret_lparent &&
|
|
!ret_gpside && !ret_gparent && !ret_back) {
|
|
if (key_u32 == k->u32)
|
|
break;
|
|
}
|
|
}
|
|
pxor32 = xor32;
|
|
}
|
|
else if (key_type == CEB_KT_U64) {
|
|
uint64_t xor64; // left vs right branch xor
|
|
uint64_t kl, kr;
|
|
|
|
kl = lks->u64; kr = rks->u64;
|
|
if (meth >= CEB_WM_KEQ) {
|
|
kl ^= key_u64; kr ^= key_u64;
|
|
brside = kl >= kr;
|
|
}
|
|
|
|
xor64 = kl ^ kr;
|
|
if (meth >= CEB_WM_KEQ) {
|
|
/* let's stop if our key is not there */
|
|
if (kl > xor64 && kr > xor64)
|
|
break;
|
|
|
|
if (ret_nparent && !*ret_nparent && ret_npside) {
|
|
if (key_u64 == k->u64) {
|
|
*ret_nparent = lparent;
|
|
*ret_npside = lpside;
|
|
}
|
|
}
|
|
|
|
/* for pure lookups, no need to go down the leaf
|
|
* if we've found the key.
|
|
*/
|
|
if (!ret_root && !ret_lpside && !ret_lparent &&
|
|
!ret_gpside && !ret_gparent && !ret_back) {
|
|
if (key_u64 == k->u64)
|
|
break;
|
|
}
|
|
}
|
|
pxor64 = xor64;
|
|
}
|
|
else if (key_type == CEB_KT_ADDR) {
|
|
uintptr_t xoraddr; // left vs right branch xor
|
|
uintptr_t kl, kr;
|
|
|
|
kl = (uintptr_t)lks; kr = (uintptr_t)rks;
|
|
if (meth >= CEB_WM_KEQ) {
|
|
kl ^= (uintptr_t)key_ptr; kr ^= (uintptr_t)key_ptr;
|
|
brside = kl >= kr;
|
|
}
|
|
|
|
xoraddr = kl ^ kr;
|
|
if (meth >= CEB_WM_KEQ) {
|
|
/* let's stop if our key is not there */
|
|
if (kl > xoraddr && kr > xoraddr)
|
|
break;
|
|
|
|
if (ret_nparent && !*ret_nparent && ret_npside) {
|
|
if ((uintptr_t)key_ptr == (uintptr_t)node) {
|
|
*ret_nparent = lparent;
|
|
*ret_npside = lpside;
|
|
}
|
|
}
|
|
|
|
/* for pure lookups, no need to go down the leaf
|
|
* if we've found the key.
|
|
*/
|
|
if (!ret_root && !ret_lpside && !ret_lparent &&
|
|
!ret_gpside && !ret_gparent && !ret_back) {
|
|
if ((uintptr_t)key_ptr == (uintptr_t)node)
|
|
break;
|
|
}
|
|
}
|
|
pxor64 = xoraddr;
|
|
}
|
|
else if (key_type == CEB_KT_MB || key_type == CEB_KT_IM) {
|
|
size_t xlen = 0; // left vs right matching length
|
|
|
|
if (meth >= CEB_WM_KEQ) {
|
|
/* measure identical lengths */
|
|
llen = equal_bits(key_ptr, (key_type == CEB_KT_MB) ? lks->mb : lks->ptr, plen, key_u64 << 3);
|
|
rlen = equal_bits(key_ptr, (key_type == CEB_KT_MB) ? rks->mb : rks->ptr, plen, key_u64 << 3);
|
|
brside = llen <= rlen;
|
|
}
|
|
|
|
xlen = equal_bits((key_type == CEB_KT_MB) ? lks->mb : lks->ptr,
|
|
(key_type == CEB_KT_MB) ? rks->mb : rks->ptr, plen, key_u64 << 3);
|
|
|
|
if (meth >= CEB_WM_KEQ) {
|
|
/* let's stop if our key is not there */
|
|
if (llen < xlen && rlen < xlen)
|
|
break;
|
|
|
|
if (ret_nparent && ret_npside && !*ret_nparent &&
|
|
((llen == key_u64 << 3) || (rlen == key_u64 << 3))) {
|
|
*ret_nparent = node;
|
|
*ret_npside = brside;
|
|
}
|
|
|
|
/* for pure lookups, no need to go down the leaf
|
|
* if we've found the key.
|
|
*/
|
|
if (!ret_root && !ret_lpside && !ret_lparent &&
|
|
!ret_gpside && !ret_gparent && !ret_back) {
|
|
if (llen == key_u64 << 3) {
|
|
node = ln;
|
|
plen = llen;
|
|
break;
|
|
}
|
|
if (rlen == key_u64 << 3) {
|
|
node = rn;
|
|
plen = rlen;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
plen = xlen;
|
|
}
|
|
else if (key_type == CEB_KT_ST || key_type == CEB_KT_IS) {
|
|
size_t xlen = 0; // left vs right matching length
|
|
|
|
if (meth >= CEB_WM_KEQ) {
|
|
/* Note that a negative length indicates an
|
|
* equal value with the final zero reached, but
|
|
* it is still needed to descend to find the
|
|
* leaf. We take that negative length for an
|
|
* infinite one, hence the uint cast.
|
|
*/
|
|
llen = string_equal_bits(key_ptr, (key_type == CEB_KT_ST) ? lks->str : lks->ptr, plen);
|
|
rlen = string_equal_bits(key_ptr, (key_type == CEB_KT_ST) ? rks->str : rks->ptr, plen);
|
|
brside = (size_t)llen <= (size_t)rlen;
|
|
if (ret_nparent && ret_npside && !*ret_nparent &&
|
|
((ssize_t)llen < 0 || (ssize_t)rlen < 0)) {
|
|
*ret_nparent = node;
|
|
*ret_npside = brside;
|
|
}
|
|
|
|
/* for pure lookups, no need to go down the leaf
|
|
* if we've found the key.
|
|
*/
|
|
if (!ret_root && !ret_lpside && !ret_lparent &&
|
|
!ret_gpside && !ret_gparent && !ret_back) {
|
|
if ((ssize_t)llen < 0) {
|
|
node = ln;
|
|
plen = llen;
|
|
break;
|
|
}
|
|
if ((ssize_t)rlen < 0) {
|
|
node = rn;
|
|
plen = rlen;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* the compiler cannot know this never happens and this helps it optimize the code */
|
|
if ((ssize_t)plen < 0)
|
|
__builtin_unreachable();
|
|
|
|
xlen = string_equal_bits((key_type == CEB_KT_ST) ? lks->str : lks->ptr,
|
|
(key_type == CEB_KT_ST) ? rks->str : rks->ptr, plen);
|
|
|
|
/* let's stop if our key is not there */
|
|
if (meth >= CEB_WM_KEQ && llen < xlen && rlen < xlen)
|
|
break;
|
|
|
|
plen = xlen;
|
|
}
|
|
|
|
/* shift all copies by one */
|
|
gparent = lparent;
|
|
gpside = lpside;
|
|
lparent = node;
|
|
lpside = brside;
|
|
if (brside) {
|
|
if (meth == CEB_WM_KPR || meth == CEB_WM_KLE || meth == CEB_WM_KLT)
|
|
bnode = node;
|
|
next = rn;
|
|
next_leaf = rnl;
|
|
root = &node->b[1];
|
|
|
|
/* change branch for key-less walks */
|
|
if (meth == CEB_WM_NXT)
|
|
brside = 0;
|
|
}
|
|
else {
|
|
if (meth == CEB_WM_KNX || meth == CEB_WM_KGE || meth == CEB_WM_KGT)
|
|
bnode = node;
|
|
next = ln;
|
|
next_leaf = lnl;
|
|
root = &node->b[0];
|
|
|
|
/* change branch for key-less walks */
|
|
if (meth == CEB_WM_PRV)
|
|
brside = 1;
|
|
}
|
|
|
|
if (next == node) {
|
|
/* loops over itself, it's either a leaf or the single and last list element of a dup sub-tree */
|
|
break;
|
|
}
|
|
|
|
/* let the compiler know there's no NULL in the tree */
|
|
if (!next)
|
|
__builtin_unreachable();
|
|
|
|
node = next;
|
|
is_leaf = next_leaf;
|
|
}
|
|
|
|
if (ret_is_dup) {
|
|
if (is_leaf && _ceb_gettag(node->b[0]) && _ceb_gettag(node->b[1]) &&
|
|
(_ceb_clrtag(node->b[0]) != node || _ceb_clrtag(node->b[1]) != node)) {
|
|
/* This leaf has two tagged pointers, with at least one not pointing
|
|
* to itself, it's not the nodeless leaf, it's a duplicate.
|
|
*/
|
|
*ret_is_dup = 1;
|
|
} else {
|
|
*ret_is_dup = 0;
|
|
}
|
|
}
|
|
|
|
/* here we're on the closest node from the requested value. It may be
|
|
* slightly lower (has a zero where we expected a one) or slightly
|
|
* larger has a one where we expected a zero). Thus another check is
|
|
* still deserved, depending on the matching method.
|
|
*/
|
|
|
|
/* update the pointers needed for modifications (insert, delete) */
|
|
if (ret_nside && meth >= CEB_WM_KEQ) {
|
|
switch (key_type) {
|
|
case CEB_KT_U32:
|
|
*ret_nside = key_u32 >= k->u32;
|
|
break;
|
|
case CEB_KT_U64:
|
|
*ret_nside = key_u64 >= k->u64;
|
|
break;
|
|
case CEB_KT_ADDR:
|
|
*ret_nside = (uintptr_t)key_ptr >= (uintptr_t)node;
|
|
break;
|
|
case CEB_KT_MB:
|
|
case CEB_KT_IM:
|
|
*ret_nside = (uint64_t)plen / 8 == key_u64 ||
|
|
memcmp(key_ptr + plen / 8, ((key_type == CEB_KT_MB) ? k->mb : k->ptr) + plen / 8, key_u64 - plen / 8) >= 0;
|
|
break;
|
|
|
|
case CEB_KT_ST:
|
|
case CEB_KT_IS:
|
|
*ret_nside = (ssize_t)plen < 0 ||
|
|
strcmp(key_ptr + plen / 8, (const void *)((key_type == CEB_KT_ST) ? k->str : k->ptr) + plen / 8) >= 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ret_root) {
|
|
/* this node is going to be changed */
|
|
*ret_root = root;
|
|
__builtin_prefetch(root, 1);
|
|
}
|
|
|
|
/* info needed by delete */
|
|
if (ret_lpside)
|
|
*ret_lpside = lpside;
|
|
|
|
if (ret_lparent) {
|
|
/* this node is going to be changed */
|
|
*ret_lparent = lparent;
|
|
__builtin_prefetch(lparent, 1);
|
|
}
|
|
|
|
if (ret_gpside)
|
|
*ret_gpside = gpside;
|
|
|
|
if (ret_gparent)
|
|
*ret_gparent = gparent;
|
|
|
|
if (ret_back)
|
|
*ret_back = _ceb_dotag(bnode, 0);
|
|
|
|
if (meth >= CEB_WM_KEQ) {
|
|
/* For lookups, an equal value means an instant return. For insertions,
|
|
* it is the same, we want to return the previously existing value so
|
|
* that the caller can decide what to do. For deletion, we also want to
|
|
* return the pointer that's about to be deleted.
|
|
*/
|
|
if (key_type == CEB_KT_U32) {
|
|
if ((meth == CEB_WM_KEQ && k->u32 == key_u32) ||
|
|
(meth == CEB_WM_KNX && k->u32 == key_u32) ||
|
|
(meth == CEB_WM_KPR && k->u32 == key_u32) ||
|
|
(meth == CEB_WM_KGE && k->u32 >= key_u32) ||
|
|
(meth == CEB_WM_KGT && k->u32 > key_u32) ||
|
|
(meth == CEB_WM_KLE && k->u32 <= key_u32) ||
|
|
(meth == CEB_WM_KLT && k->u32 < key_u32))
|
|
return node;
|
|
}
|
|
else if (key_type == CEB_KT_U64) {
|
|
if ((meth == CEB_WM_KEQ && k->u64 == key_u64) ||
|
|
(meth == CEB_WM_KNX && k->u64 == key_u64) ||
|
|
(meth == CEB_WM_KPR && k->u64 == key_u64) ||
|
|
(meth == CEB_WM_KGE && k->u64 >= key_u64) ||
|
|
(meth == CEB_WM_KGT && k->u64 > key_u64) ||
|
|
(meth == CEB_WM_KLE && k->u64 <= key_u64) ||
|
|
(meth == CEB_WM_KLT && k->u64 < key_u64))
|
|
return node;
|
|
}
|
|
else if (key_type == CEB_KT_ADDR) {
|
|
if ((meth == CEB_WM_KEQ && (uintptr_t)node == (uintptr_t)key_ptr) ||
|
|
(meth == CEB_WM_KNX && (uintptr_t)node == (uintptr_t)key_ptr) ||
|
|
(meth == CEB_WM_KPR && (uintptr_t)node == (uintptr_t)key_ptr) ||
|
|
(meth == CEB_WM_KGE && (uintptr_t)node >= (uintptr_t)key_ptr) ||
|
|
(meth == CEB_WM_KGT && (uintptr_t)node > (uintptr_t)key_ptr) ||
|
|
(meth == CEB_WM_KLE && (uintptr_t)node <= (uintptr_t)key_ptr) ||
|
|
(meth == CEB_WM_KLT && (uintptr_t)node < (uintptr_t)key_ptr))
|
|
return node;
|
|
}
|
|
else if (key_type == CEB_KT_MB || key_type == CEB_KT_IM) {
|
|
int diff;
|
|
|
|
if ((uint64_t)plen / 8 == key_u64)
|
|
diff = 0;
|
|
else
|
|
diff = memcmp(((key_type == CEB_KT_MB) ? k->mb : k->ptr) + plen / 8, key_ptr + plen / 8, key_u64 - plen / 8);
|
|
|
|
if ((meth == CEB_WM_KEQ && diff == 0) ||
|
|
(meth == CEB_WM_KNX && diff == 0) ||
|
|
(meth == CEB_WM_KPR && diff == 0) ||
|
|
(meth == CEB_WM_KGE && diff >= 0) ||
|
|
(meth == CEB_WM_KGT && diff > 0) ||
|
|
(meth == CEB_WM_KLE && diff <= 0) ||
|
|
(meth == CEB_WM_KLT && diff < 0))
|
|
return node;
|
|
}
|
|
else if (key_type == CEB_KT_ST || key_type == CEB_KT_IS) {
|
|
int diff;
|
|
|
|
if ((ssize_t)plen < 0)
|
|
diff = 0;
|
|
else
|
|
diff = strcmp((const void *)((key_type == CEB_KT_ST) ? k->str : k->ptr) + plen / 8, key_ptr + plen / 8);
|
|
|
|
if ((meth == CEB_WM_KEQ && diff == 0) ||
|
|
(meth == CEB_WM_KNX && diff == 0) ||
|
|
(meth == CEB_WM_KPR && diff == 0) ||
|
|
(meth == CEB_WM_KGE && diff >= 0) ||
|
|
(meth == CEB_WM_KGT && diff > 0) ||
|
|
(meth == CEB_WM_KLE && diff <= 0) ||
|
|
(meth == CEB_WM_KLT && diff < 0))
|
|
return node;
|
|
}
|
|
} else if (meth == CEB_WM_FST || meth == CEB_WM_LST) {
|
|
return node;
|
|
} else if (meth == CEB_WM_PRV || meth == CEB_WM_NXT) {
|
|
return node;
|
|
}
|
|
|
|
/* lookups and deletes fail here */
|
|
|
|
/* let's return NULL to indicate the key was not found. For a lookup or
|
|
* a delete, it's a failure. For an insert, it's an invitation to the
|
|
* caller to proceed since the element is not there.
|
|
*/
|
|
return NULL;
|
|
#if defined(__GNUC__) && (__GNUC__ >= 12) && !defined(__OPTIMIZE__)
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Below are the functions that support duplicate keys (_ceb_*)
|
|
*/
|
|
|
|
/* Generic tree insertion function for trees with duplicate keys. Inserts node
|
|
* <node> into tree <tree>, with key type <key_type> and key <key_*>.
|
|
* Returns the inserted node or the one that already contains the same key.
|
|
* If <is_dup_ptr> is non-null, then duplicates are permitted and this variable
|
|
* is used to temporarily carry an internal state.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_ceb_insert(struct ceb_root **root,
|
|
struct ceb_node *node,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr,
|
|
int *is_dup_ptr)
|
|
{
|
|
struct ceb_root **parent;
|
|
struct ceb_node *ret;
|
|
int nside;
|
|
|
|
if (!*root) {
|
|
/* empty tree, insert a leaf only */
|
|
node->b[0] = node->b[1] = _ceb_dotag(node, 1);
|
|
*root = _ceb_dotag(node, 1);
|
|
return node;
|
|
}
|
|
|
|
ret = _ceb_descend(root, CEB_WM_KEQ, kofs, key_type, key_u32, key_u64, key_ptr, &nside, &parent, NULL, NULL, NULL, NULL, NULL, NULL, NULL, is_dup_ptr);
|
|
|
|
if (!ret) {
|
|
/* The key was not in the tree, we can insert it. Better use an
|
|
* "if" like this because the inline function above already has
|
|
* quite identifiable code paths. This reduces the code and
|
|
* optimizes it a bit.
|
|
*/
|
|
if (nside) {
|
|
node->b[1] = _ceb_dotag(node, 1);
|
|
node->b[0] = *parent;
|
|
} else {
|
|
node->b[0] = _ceb_dotag(node, 1);
|
|
node->b[1] = *parent;
|
|
}
|
|
*parent = _ceb_dotag(node, 0);
|
|
ret = node;
|
|
} else if (is_dup_ptr) {
|
|
/* The key was found. We must insert after it as the last
|
|
* element of the dups list, which means that our left branch
|
|
* will point to the key, the right one to the first dup
|
|
* (i.e. previous dup's right if it exists, otherwise ourself)
|
|
* and the parent must point to us.
|
|
*/
|
|
node->b[0] = *parent;
|
|
|
|
if (*is_dup_ptr) {
|
|
node->b[1] = _ceb_untag(*parent, 1)->b[1];
|
|
_ceb_untag(*parent, 1)->b[1] = _ceb_dotag(node, 1);
|
|
} else {
|
|
node->b[1] = _ceb_dotag(node, 1);
|
|
}
|
|
*parent = _ceb_dotag(node, 1);
|
|
ret = node;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Returns the first node or NULL if not found, assuming a tree made of keys of
|
|
* type <key_type>, and optionally <key_len> for fixed-size arrays (otherwise 0).
|
|
* If the tree starts with duplicates, the first of them is returned.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_ceb_first(struct ceb_root *const *root,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint64_t key_len,
|
|
int *is_dup_ptr)
|
|
{
|
|
struct ceb_node *node;
|
|
|
|
if (!*root)
|
|
return NULL;
|
|
|
|
node = _ceb_descend((struct ceb_root **)root, CEB_WM_FST, kofs, key_type, 0, key_len, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, is_dup_ptr);
|
|
if (node && is_dup_ptr && *is_dup_ptr) {
|
|
/* on a duplicate, the first node is right->left and it's a leaf */
|
|
node = _ceb_untag(_ceb_untag(node->b[1], 1)->b[0], 1);
|
|
}
|
|
return node;
|
|
}
|
|
|
|
/* Returns the last node or NULL if not found, assuming a tree made of keys of
|
|
* type <key_type>, and optionally <key_len> for fixed-size arrays (otherwise 0).
|
|
* If the tree ends with duplicates, the last of them is returned.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_ceb_last(struct ceb_root *const *root,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint64_t key_len,
|
|
int *is_dup_ptr)
|
|
{
|
|
if (!*root)
|
|
return NULL;
|
|
|
|
/* note for duplicates: the current scheme always returns the last one by default */
|
|
return _ceb_descend((struct ceb_root **)root, CEB_WM_LST, kofs, key_type, 0, key_len, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, is_dup_ptr);
|
|
}
|
|
|
|
/* Searches in the tree <root> made of keys of type <key_type>, for the next
|
|
* node after the one containing the key <key_*>. Returns NULL if not found.
|
|
* It's up to the caller to pass the current node's key in <key_*>. The
|
|
* approach consists in looking up that node first, recalling the last time a
|
|
* left turn was made, and returning the first node along the right branch at
|
|
* that fork.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_ceb_next_unique(struct ceb_root *const *root,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr,
|
|
int *is_dup_ptr)
|
|
{
|
|
struct ceb_root *restart;
|
|
|
|
if (!*root)
|
|
return NULL;
|
|
|
|
if (!_ceb_descend((struct ceb_root **)root, CEB_WM_KNX, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &restart, is_dup_ptr))
|
|
return NULL;
|
|
|
|
if (!restart)
|
|
return NULL;
|
|
|
|
return _ceb_descend(&restart, CEB_WM_NXT, kofs, key_type, 0, key_u64, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, is_dup_ptr);
|
|
}
|
|
|
|
/* Searches in the tree <root> made of keys of type <key_type>, for the prev
|
|
* node before the one containing the key <key_*>. Returns NULL if not found.
|
|
* It's up to the caller to pass the current node's key in <key_*>. The
|
|
* approach consists in looking up that node first, recalling the last time a
|
|
* right turn was made, and returning the last node along the left branch at
|
|
* that fork.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_ceb_prev_unique(struct ceb_root *const *root,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr,
|
|
int *is_dup_ptr)
|
|
{
|
|
struct ceb_root *restart;
|
|
|
|
if (!*root)
|
|
return NULL;
|
|
|
|
if (!_ceb_descend((struct ceb_root **)root, CEB_WM_KPR, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &restart, is_dup_ptr))
|
|
return NULL;
|
|
|
|
if (!restart)
|
|
return NULL;
|
|
|
|
return _ceb_descend(&restart, CEB_WM_PRV, kofs, key_type, 0, key_u64, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, is_dup_ptr);
|
|
}
|
|
|
|
/* Searches in the tree <root> made of keys of type <key_type>, for the next
|
|
* node after <from> also containing key <key_*>. Returns NULL if not found.
|
|
* It's up to the caller to pass the current node's key in <key_*>.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_ceb_next_dup(struct ceb_root *const *root,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr,
|
|
const struct ceb_node *from)
|
|
{
|
|
struct ceb_node *node;
|
|
int is_dup;
|
|
|
|
if (!*root)
|
|
return NULL;
|
|
|
|
node = _ceb_descend((struct ceb_root **)root, CEB_WM_KNX, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &is_dup);
|
|
if (!node)
|
|
return NULL;
|
|
|
|
/* Normally at this point, if node != from, we've found a node that
|
|
* differs from the one we're starting from, which indicates that
|
|
* the starting point belongs to a dup list and is not the last one.
|
|
* We must then visit the other members. We cannot navigate from the
|
|
* regular leaf node (the first one) but we can easily verify if we're
|
|
* on that one by checking if it's node->b[1]->b[0], in which case we
|
|
* jump to node->b[1]. Otherwise we take from->b[1].
|
|
*/
|
|
if (node != from) {
|
|
if (_ceb_untag(node->b[1], 1)->b[0] == _ceb_dotag(from, 1))
|
|
return _ceb_untag(node->b[1], 1);
|
|
else
|
|
return _ceb_untag(from->b[1], 1);
|
|
}
|
|
|
|
/* there's no other dup here */
|
|
return NULL;
|
|
}
|
|
|
|
/* Searches in the tree <root> made of keys of type <key_type>, for the prev
|
|
* node before <from> also containing key <key_*>. Returns NULL if not found.
|
|
* It's up to the caller to pass the current node's key in <key_*>.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_ceb_prev_dup(struct ceb_root *const *root,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr,
|
|
const struct ceb_node *from)
|
|
{
|
|
struct ceb_node *node;
|
|
int is_dup;
|
|
|
|
if (!*root)
|
|
return NULL;
|
|
|
|
node = _ceb_descend((struct ceb_root **)root, CEB_WM_KPR, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &is_dup);
|
|
if (!node)
|
|
return NULL;
|
|
|
|
/* Here we have several possibilities:
|
|
* - from == node => we've found our node. It may be a unique node,
|
|
* or the last one of a dup series. We'll sort that out thanks to
|
|
* is_dup, and if it's a dup, we'll use node->b[0].
|
|
* - from is not the first dup, so we haven't visited them all yet,
|
|
* hence we visit node->b[0] to switch to the previous dup.
|
|
* - from is the first dup so we've visited them all.
|
|
*/
|
|
if (is_dup && (node == from || _ceb_untag(node->b[1], 1)->b[0] != _ceb_dotag(from, 1)))
|
|
return _ceb_untag(from->b[0], 1);
|
|
|
|
/* there's no other dup here */
|
|
return NULL;
|
|
}
|
|
|
|
/* Searches in the tree <root> made of keys of type <key_type>, for the next
|
|
* node after <from> which contains key <key_*>. Returns NULL if not found.
|
|
* It's up to the caller to pass the current node's key in <key_*>. The
|
|
* approach consists in looking up that node first, recalling the last time a
|
|
* left turn was made, and returning the first node along the right branch at
|
|
* that fork. In case the current node belongs to a duplicate list, all dups
|
|
* will be visited in insertion order prior to jumping to different keys.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_ceb_next(struct ceb_root *const *root,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr,
|
|
const struct ceb_node *from,
|
|
int *is_dup_ptr)
|
|
{
|
|
struct ceb_root *restart;
|
|
struct ceb_node *node;
|
|
|
|
if (!*root)
|
|
return NULL;
|
|
|
|
node = _ceb_descend((struct ceb_root **)root, CEB_WM_KNX, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &restart, is_dup_ptr);
|
|
if (!node)
|
|
return NULL;
|
|
|
|
/* Normally at this point, if node != from, we've found a node that
|
|
* differs from the one we're starting from, which indicates that
|
|
* the starting point belongs to a dup list and is not the last one.
|
|
* We must then visit the other members. We cannot navigate from the
|
|
* regular leaf node (the first one) but we can easily verify if we're
|
|
* on that one by checking if it's _ceb_untag(node->b[1], 0)->b[0], in which case we
|
|
* jump to node->b[1]. Otherwise we take from->b[1].
|
|
*/
|
|
if (node != from) {
|
|
if (_ceb_untag(node->b[1], 1)->b[0] == _ceb_dotag(from, 1))
|
|
return _ceb_untag(node->b[1], 1);
|
|
else
|
|
return _ceb_untag(from->b[1], 1);
|
|
}
|
|
|
|
/* Here the looked up node was found (node == from) and we can look up
|
|
* the next unique one if any.
|
|
*/
|
|
if (!restart)
|
|
return NULL;
|
|
|
|
/* this look up will stop on the topmost dup in a sub-tree which is
|
|
* also the last one. Thanks to restart we know that this entry exists.
|
|
*/
|
|
node = _ceb_descend(&restart, CEB_WM_NXT, kofs, key_type, 0, key_u64, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, is_dup_ptr);
|
|
if (node && is_dup_ptr && *is_dup_ptr) {
|
|
/* on a duplicate, the first node is right->left and it's a leaf */
|
|
node = _ceb_untag(_ceb_untag(node->b[1], 1)->b[0], 1);
|
|
}
|
|
return node;
|
|
}
|
|
|
|
/* Searches in the tree <root> made of keys of type <key_type>, for the prev
|
|
* node before the one containing the key <key_*>. Returns NULL if not found.
|
|
* It's up to the caller to pass the current node's key in <key_*>. The
|
|
* approach consists in looking up that node first, recalling the last time a
|
|
* right turn was made, and returning the last node along the left branch at
|
|
* that fork. In case the current node belongs to a duplicate list, all dups
|
|
* will be visited in reverse insertion order prior to jumping to different
|
|
* keys.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_ceb_prev(struct ceb_root *const *root,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr,
|
|
const struct ceb_node *from,
|
|
int *is_dup_ptr)
|
|
{
|
|
struct ceb_root *restart;
|
|
struct ceb_node *node;
|
|
|
|
if (!*root)
|
|
return NULL;
|
|
|
|
node = _ceb_descend((struct ceb_root **)root, CEB_WM_KPR, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &restart, is_dup_ptr);
|
|
if (!node)
|
|
return NULL;
|
|
|
|
/* Here we have several possibilities:
|
|
* - from == node => we've found our node. It may be a unique node,
|
|
* or the last one of a dup series. We'll sort that out thanks to
|
|
* is_dup, and if it's a dup, we'll use node->b[0].
|
|
* - from is not the first dup, so we haven't visited them all yet,
|
|
* hence we visit node->b[0] to switch to the previous dup.
|
|
* - from is the first dup so we've visited them all, we now need
|
|
* to jump to the previous unique value.
|
|
*/
|
|
if (is_dup_ptr && *is_dup_ptr && (node == from || _ceb_untag(node->b[1], 1)->b[0] != _ceb_dotag(from, 1)))
|
|
return _ceb_untag(from->b[0], 1);
|
|
|
|
/* look up the previous unique entry */
|
|
if (!restart)
|
|
return NULL;
|
|
|
|
/* Note that the descent stops on the last dup which is the one we want */
|
|
return _ceb_descend(&restart, CEB_WM_PRV, kofs, key_type, 0, key_u64, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, is_dup_ptr);
|
|
}
|
|
|
|
/* Searches in the tree <root> made of keys of type <key_type>, for the first
|
|
* node containing the key <key_*>. Returns NULL if not found.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_ceb_lookup(struct ceb_root *const *root,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr,
|
|
int *is_dup_ptr)
|
|
{
|
|
struct ceb_node *ret;
|
|
|
|
if (!*root)
|
|
return NULL;
|
|
|
|
ret = _ceb_descend((struct ceb_root **)root, CEB_WM_KEQ, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, is_dup_ptr);
|
|
if (ret && is_dup_ptr && *is_dup_ptr) {
|
|
/* on a duplicate, the first node is right->left and it's a leaf */
|
|
ret = _ceb_untag(_ceb_untag(ret->b[1], 1)->b[0], 1);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Searches in the tree <root> made of keys of type <key_type>, for the last
|
|
* node containing the key <key_*> or the highest one that's lower than it.
|
|
* Returns NULL if not found.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_ceb_lookup_le(struct ceb_root *const *root,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr,
|
|
int *is_dup_ptr)
|
|
{
|
|
struct ceb_node *ret = NULL;
|
|
struct ceb_root *restart;
|
|
|
|
if (!*root)
|
|
return NULL;
|
|
|
|
/* note that for duplicates, we already find the last one */
|
|
ret = _ceb_descend((struct ceb_root **)root, CEB_WM_KLE, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &restart, is_dup_ptr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!restart)
|
|
return NULL;
|
|
|
|
return _ceb_descend(&restart, CEB_WM_PRV, kofs, key_type, 0, key_u64, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, is_dup_ptr);
|
|
}
|
|
|
|
/* Searches in the tree <root> made of keys of type <key_type>, for the last
|
|
* node containing the greatest key that is strictly lower than <key_*>.
|
|
* Returns NULL if not found. It's very similar to next() except that the
|
|
* looked up value doesn't need to exist.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_ceb_lookup_lt(struct ceb_root *const *root,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr,
|
|
int *is_dup_ptr)
|
|
{
|
|
struct ceb_node *ret = NULL;
|
|
struct ceb_root *restart;
|
|
|
|
if (!*root)
|
|
return NULL;
|
|
|
|
/* note that for duplicates, we already find the last one */
|
|
ret = _ceb_descend((struct ceb_root **)root, CEB_WM_KLT, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &restart, is_dup_ptr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!restart)
|
|
return NULL;
|
|
|
|
return _ceb_descend(&restart, CEB_WM_PRV, kofs, key_type, 0, key_u64, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, is_dup_ptr);
|
|
}
|
|
|
|
/* Searches in the tree <root> made of keys of type <key_type>, for the first
|
|
* node containing the key <key_*> or the smallest one that's greater than it.
|
|
* Returns NULL if not found. If <is_dup_ptr> is non-null, then duplicates are
|
|
* permitted and this variable is used to temporarily carry an internal state.
|
|
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_ceb_lookup_ge(struct ceb_root *const *root,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr,
|
|
int *is_dup_ptr)
|
|
{
|
|
struct ceb_node *ret = NULL;
|
|
struct ceb_root *restart;
|
|
|
|
if (!*root)
|
|
return NULL;
|
|
|
|
ret = _ceb_descend((struct ceb_root **)root, CEB_WM_KGE, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &restart, is_dup_ptr);
|
|
if (!ret) {
|
|
if (!restart)
|
|
return NULL;
|
|
|
|
ret = _ceb_descend(&restart, CEB_WM_NXT, kofs, key_type, 0, key_u64, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, is_dup_ptr);
|
|
}
|
|
|
|
if (ret && is_dup_ptr && *is_dup_ptr) {
|
|
/* on a duplicate, the first node is right->left and it's a leaf */
|
|
ret = _ceb_untag(_ceb_untag(ret->b[1], 1)->b[0], 1);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Searches in the tree <root> made of keys of type <key_type>, for the first
|
|
* node containing the lowest key that is strictly greater than <key_*>. Returns
|
|
* NULL if not found. It's very similar to prev() except that the looked up
|
|
* value doesn't need to exist. If <is_dup_ptr> is non-null, then duplicates are
|
|
* permitted and this variable is used to temporarily carry an internal state.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_ceb_lookup_gt(struct ceb_root *const *root,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr,
|
|
int *is_dup_ptr)
|
|
{
|
|
struct ceb_node *ret = NULL;
|
|
struct ceb_root *restart;
|
|
|
|
if (!*root)
|
|
return NULL;
|
|
|
|
ret = _ceb_descend((struct ceb_root **)root, CEB_WM_KGT, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &restart, is_dup_ptr);
|
|
if (!ret) {
|
|
if (!restart)
|
|
return NULL;
|
|
|
|
ret = _ceb_descend(&restart, CEB_WM_NXT, kofs, key_type, 0, key_u64, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, is_dup_ptr);
|
|
}
|
|
|
|
if (ret && is_dup_ptr && *is_dup_ptr) {
|
|
/* on a duplicate, the first node is right->left and it's a leaf */
|
|
ret = _ceb_untag(_ceb_untag(ret->b[1], 1)->b[0], 1);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Searches in the tree <root> made of keys of type <key_type>, for the node
|
|
* that contains the key <key_*>, and deletes it. If <node> is non-NULL, a
|
|
* check is performed and the node found is deleted only if it matches. The
|
|
* found node is returned in any case, otherwise NULL if not found. A deleted
|
|
* node is detected since it has b[0]==NULL, which this functions also clears
|
|
* after operation. The function is idempotent, so it's safe to attempt to
|
|
* delete an already deleted node (NULL is returned in this case since the node
|
|
* was not in the tree). If <is_dup_ptr> is non-null, then duplicates are
|
|
* permitted and this variable is used to temporarily carry an internal state.
|
|
*/
|
|
static inline __attribute__((always_inline))
|
|
struct ceb_node *_ceb_delete(struct ceb_root **root,
|
|
struct ceb_node *node,
|
|
ptrdiff_t kofs,
|
|
enum ceb_key_type key_type,
|
|
uint32_t key_u32,
|
|
uint64_t key_u64,
|
|
const void *key_ptr,
|
|
int *is_dup_ptr)
|
|
{
|
|
struct ceb_node *lparent, *nparent, *gparent;
|
|
int lpside, npside, gpside;
|
|
struct ceb_node *ret = NULL;
|
|
|
|
if (node && !node->b[0]) {
|
|
/* NULL on a branch means the node is not in the tree */
|
|
return NULL;
|
|
}
|
|
|
|
if (!*root) {
|
|
/* empty tree, the node cannot be there */
|
|
goto done;
|
|
}
|
|
|
|
ret = _ceb_descend(root, CEB_WM_KEQ, kofs, key_type, key_u32, key_u64, key_ptr, NULL, NULL,
|
|
&lparent, &lpside, &nparent, &npside, &gparent, &gpside, NULL, is_dup_ptr);
|
|
|
|
if (!ret) {
|
|
/* key not found */
|
|
goto done;
|
|
}
|
|
|
|
if (is_dup_ptr && *is_dup_ptr) {
|
|
/* the node to be deleted belongs to a dup sub-tree whose ret
|
|
* is the last. The possibilities here are:
|
|
* 1) node==NULL => unspecified, we delete the first one,
|
|
* which is the tree leaf. The tree node (if it exists)
|
|
* is replaced by the first dup. There's nothing else to
|
|
* change.
|
|
* 2) node is the tree leaf. The tree node (if it exists)
|
|
* is replaced by the first dup.
|
|
* 3) node is a dup. We just delete the dup.
|
|
* In order to delete a dup, there are 4 cases:
|
|
* a) node==last and there's a single dup, it's this one
|
|
* -> *parent = node->b[0];
|
|
* b) node==last and there's another dup:
|
|
* -> *parent = node->b[0];
|
|
* node->b[0]->b[1] = node->b[1];
|
|
* (or (*parent)->b[1] = node->b[1] covers a and b)
|
|
* c) node==first != last:
|
|
* -> node->b[1]->b[0] = node->b[0];
|
|
* last->b[1] = node->b[1];
|
|
* (or (*parent)->b[1] = node->b[1] covers a,b,c)
|
|
* d) node!=first && !=last:
|
|
* -> node->b[1]->b[0] = node->b[0];
|
|
* node->b[0]->b[1] = node->b[1];
|
|
* a,b,c,d can be simplified as:
|
|
* ((node == first) ? last : node->b[0])->b[1] = node->b[1];
|
|
* *((node == last) ? parent : &node->b[1]->b[0]) = node->b[0];
|
|
*/
|
|
struct ceb_node *first, *last;
|
|
|
|
last = ret;
|
|
first = _ceb_untag(last->b[1], 1);
|
|
|
|
/* cases 1 and 2 below */
|
|
if (!node || node == _ceb_untag(first->b[0], 1)) {
|
|
/* node unspecified or the first, remove the leaf and
|
|
* convert the first entry to it.
|
|
*/
|
|
ret = _ceb_untag(first->b[0], 1); // update return node
|
|
last->b[1] = first->b[1]; // new first (remains OK if last==first)
|
|
|
|
if (ret->b[0] != _ceb_dotag(ret, 1) || ret->b[1] != _ceb_dotag(ret, 1)) {
|
|
/* not the nodeless leaf, a node exists, put it
|
|
* on the first and update its parent.
|
|
*/
|
|
first->b[0] = ret->b[0];
|
|
first->b[1] = ret->b[1];
|
|
nparent->b[npside] = _ceb_dotag(first, 0);
|
|
}
|
|
else {
|
|
/* first becomes the nodeless leaf since we only keep its leaf */
|
|
first->b[0] = first->b[1] = _ceb_dotag(first, 1);
|
|
}
|
|
/* first becomes a leaf, it must be tagged */
|
|
if (last != first)
|
|
_ceb_untag(last->b[1], 1)->b[0] = _ceb_dotag(first, 1);
|
|
/* done */
|
|
} else {
|
|
/* case 3: the node to delete is a dup, we only have to
|
|
* manipulate the list.
|
|
*/
|
|
ret = node;
|
|
((node == first) ? last : _ceb_untag(node->b[0], 1))->b[1] = node->b[1];
|
|
*((node == last) ? &lparent->b[lpside] : &_ceb_untag(node->b[1], 1)->b[0]) = node->b[0];
|
|
/* done */
|
|
}
|
|
goto mark_and_leave;
|
|
}
|
|
|
|
/* ok below the returned value is a real leaf, we have to adjust the tree */
|
|
|
|
if (ret == node || !node) {
|
|
if (&lparent->b[0] == root) {
|
|
/* there was a single entry, this one, so we're just
|
|
* deleting the nodeless leaf.
|
|
*/
|
|
*root = NULL;
|
|
goto mark_and_leave;
|
|
}
|
|
|
|
/* then we necessarily have a gparent */
|
|
gparent->b[gpside] = lparent->b[!lpside];
|
|
|
|
if (lparent == ret) {
|
|
/* we're removing the leaf and node together, nothing
|
|
* more to do.
|
|
*/
|
|
goto mark_and_leave;
|
|
}
|
|
|
|
if (ret->b[0] == ret->b[1]) {
|
|
/* we're removing the node-less item, the parent will
|
|
* take this role.
|
|
*/
|
|
lparent->b[0] = lparent->b[1] = _ceb_dotag(lparent, 1);
|
|
goto mark_and_leave;
|
|
}
|
|
|
|
/* more complicated, the node was split from the leaf, we have
|
|
* to find a spare one to switch it. The parent node is not
|
|
* needed anymore so we can reuse it.
|
|
*/
|
|
lparent->b[0] = ret->b[0];
|
|
lparent->b[1] = ret->b[1];
|
|
nparent->b[npside] = _ceb_dotag(lparent, 0);
|
|
|
|
mark_and_leave:
|
|
/* now mark the node as deleted */
|
|
ret->b[0] = NULL;
|
|
}
|
|
done:
|
|
return ret;
|
|
}
|
|
|
|
//#if defined(CEB_ENABLE_DUMP)
|
|
/* The dump functions are in cebtree-dbg.c */
|
|
|
|
void ceb_imm_default_dump_root(ptrdiff_t kofs, enum ceb_key_type key_type, struct ceb_root *const *root, const void *ctx, int sub);
|
|
void ceb_imm_default_dump_node(ptrdiff_t kofs, enum ceb_key_type key_type, const struct ceb_node *node, int level, const void *ctx, int sub);
|
|
void ceb_imm_default_dump_dups(ptrdiff_t kofs, enum ceb_key_type key_type, const struct ceb_node *node, int level, const void *ctx, int sub);
|
|
void ceb_imm_default_dump_leaf(ptrdiff_t kofs, enum ceb_key_type key_type, const struct ceb_node *node, int level, const void *ctx, int sub);
|
|
const struct ceb_node *ceb_imm_default_dump_tree(ptrdiff_t kofs, enum ceb_key_type key_type, struct ceb_root *const *root,
|
|
uint64_t pxor, const void *last, int level, const void *ctx, int sub,
|
|
void (*root_dump)(ptrdiff_t kofs, enum ceb_key_type key_type, struct ceb_root *const *root, const void *ctx, int sub),
|
|
void (*node_dump)(ptrdiff_t kofs, enum ceb_key_type key_type, const struct ceb_node *node, int level, const void *ctx, int sub),
|
|
void (*dups_dump)(ptrdiff_t kofs, enum ceb_key_type key_type, const struct ceb_node *node, int level, const void *ctx, int sub),
|
|
void (*leaf_dump)(ptrdiff_t kofs, enum ceb_key_type key_type, const struct ceb_node *node, int level, const void *ctx, int sub));
|
|
//#endif /* CEB_ENABLE_DUMP */
|
|
|
|
#endif /* _CEBTREE_PRV_H */
|