haproxy/src/mux_spop.c
Christopher Faulet 8c4bb8cab3 BUG/MINOR: mux-spop: Fix null-pointer deref on SPOP stream allocation failure
When we try to allocate a new SPOP stream, if an error is encountered,
spop_strm_destroy() is called to released the eventually allocated
stream. But, it must only be called if a stream was allocated. If the
reported error is an SPOP stream allocation failure, we must just leave to
avoid null-pointer dereference.

This patch should fix point 1 of the issue #2993. It must be backported as
far as 3.1.
2025-06-04 08:48:49 +02:00

3724 lines
127 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
#include <import/ist.h>
#include <import/eb32tree.h>
#include <haproxy/api.h>
#include <haproxy/cfgparse.h>
#include <haproxy/connection.h>
#include <haproxy/dynbuf.h>
#include <haproxy/list.h>
#include <haproxy/mux_spop-t.h>
#include <haproxy/net_helper.h>
#include <haproxy/proxy.h>
#include <haproxy/spoe.h>
#include <haproxy/session.h>
#include <haproxy/stconn.h>
#include <haproxy/task.h>
#include <haproxy/trace.h>
/* 32 buffers: one for the ring's root, rest for the mbuf itself */
#define SPOP_C_MBUF_CNT 32
/* SPOP connection descriptor */
struct spop_conn {
struct connection *conn;
enum spop_conn_st state; /* SPOP connection state */
enum spop_error errcode; /* SPOP error code (SPOP_ERR_*) */
uint32_t streams_limit; /* maximum number of concurrent streams the peer supports */
uint32_t max_id; /* highest ID known on this connection, <0 before HELLO handshake */
uint32_t flags; /* Connection flags: SPOP_CF_* */
int32_t dsi; /* dmux stream ID (<0 = idle ) */
uint32_t dfi; /* dmux frame ID (if dsi >= 0) */
uint32_t dfl; /* demux frame length (if dsi >= 0) */
uint32_t dff; /* demux frame flags */
uint8_t dft; /* demux frame type (if dsi >= 0) */
struct buffer dbuf; /* demux buffer */
struct buffer mbuf[SPOP_C_MBUF_CNT]; /* mux buffers (ring) */
int timeout; /* idle timeout duration in ticks */
int shut_timeout; /* idle timeout duration in ticks after shutdown */
unsigned int max_frame_size; /* the negotiated max-frame-size value */
unsigned int nb_streams; /* number of streams in the tree */
unsigned int nb_sc; /* number of attached stream connectors */
unsigned int nb_reserved; /* number of reserved streams */
unsigned int stream_cnt; /* total number of streams seen */
uint32_t term_evts_log; /* Termination events log: first 4 events reported */
struct proxy *proxy; /* the proxy this connection was created for */
struct spoe_agent *agent; /* SPOE agent used by this mux */
struct task *task; /* timeout management task */
struct eb_root streams_by_id; /* all active streams by their ID */
struct list send_list; /* list of blocked streams requesting to send */
struct buffer_wait buf_wait; /* Wait list for buffer allocation */
struct wait_event wait_event; /* To be used if we're waiting for I/Os */
};
/* SPOP stream descriptor */
struct spop_strm {
struct sedesc *sd;
struct session *sess;
struct spop_conn *spop_conn;
int32_t id; /* stream ID */
uint32_t fid; /* frame ID */
uint32_t flags; /* Connection flags: SPOP_SF_* */
enum spop_error errcode; /* SPOP error code (SPOP_ERR_*) */
enum spop_strm_st state; /* SPOP stream state */
struct buffer rxbuf; /* receive buffer, always valid (buf_empty or real buffer) */
struct eb32_node by_id; /* place in spop_conn's streams_by_id */
struct wait_event *subs; /* Address of the wait_event the stream connector associated is waiting on */
struct list list; /* To be used when adding in spop_conn->send_list */
};
/* descriptor for an SPOP frame header */
struct spop_frame_header {
uint32_t len; /* length, host order */
uint32_t flags; /* frame flags */
uint64_t sid; /* stream id, host order */
uint64_t fid; /* frame id, host order */
uint8_t type; /* frame type */
};
/* trace source and events */
static void spop_trace(enum trace_level level, uint64_t mask,
const struct trace_source *src,
const struct ist where, const struct ist func,
const void *a1, const void *a2, const void *a3, const void *a4);
/* The event representation is split like this :
* spop_conn - internal SPOP connection
* spop_strm - internal SPOP stream
* strm - application layer
* rx - data receipt
* tx - data transmission
*/
static const struct trace_event spop_trace_events[] = {
#define SPOP_EV_SPOP_CONN_NEW (1ULL << 0)
{ .mask = SPOP_EV_SPOP_CONN_NEW, .name = "spop_conn_new", .desc = "new SPOP connection" },
#define SPOP_EV_SPOP_CONN_RECV (1ULL << 1)
{ .mask = SPOP_EV_SPOP_CONN_RECV, .name = "spop_conn_recv", .desc = "Rx on SPOP connection" },
#define SPOP_EV_SPOP_CONN_SEND (1ULL << 2)
{ .mask = SPOP_EV_SPOP_CONN_SEND, .name = "spop_conn_send", .desc = "Tx on SPOP connection" },
#define SPOP_EV_SPOP_CONN_BLK (1ULL << 3)
{ .mask = SPOP_EV_SPOP_CONN_BLK, .name = "spop_conn_blk", .desc = "SPOP connection blocked" },
#define SPOP_EV_SPOP_CONN_WAKE (1ULL << 4)
{ .mask = SPOP_EV_SPOP_CONN_WAKE, .name = "spop_conn_wake", .desc = "SPOP connection woken up" },
#define SPOP_EV_SPOP_CONN_END (1ULL << 5)
{ .mask = SPOP_EV_SPOP_CONN_END, .name = "spop_conn_end", .desc = "SPOP connection terminated" },
#define SPOP_EV_SPOP_CONN_ERR (1ULL << 6)
{ .mask = SPOP_EV_SPOP_CONN_ERR, .name = "spop_conn_err", .desc = "error on SPOP connection" },
#define SPOP_EV_RX_FHDR (1ULL << 7)
{ .mask = SPOP_EV_RX_FHDR, .name = "rx_fhdr", .desc = "SPOP frame header received" },
#define SPOP_EV_RX_FRAME (1ULL << 8)
{ .mask = SPOP_EV_RX_FRAME, .name = "rx_frame", .desc = "receipt of any SPOP frame" },
#define SPOP_EV_RX_EOI (1ULL << 9)
{ .mask = SPOP_EV_RX_EOI, .name = "rx_eoi", .desc = "receipt of end of SPOP input" },
#define SPOP_EV_RX_HELLO (1ULL << 10)
{ .mask = SPOP_EV_RX_HELLO, .name = "rx_hello", .desc = "receipt of SPOP AGENT HELLO frame" },
#define SPOP_EV_RX_ACK (1ULL << 11)
{ .mask = SPOP_EV_RX_ACK, .name = "rx_ack", .desc = "receipt of SPOP AGENT ACK frame" },
#define SPOP_EV_RX_DISCO (1ULL << 12)
{ .mask = SPOP_EV_RX_DISCO, .name = "rx_disconnect", .desc = "receipt of SPOP AGENT DISCONNECT frame" },
#define SPOP_EV_TX_FRAME (1ULL << 13)
{ .mask = SPOP_EV_TX_FRAME, .name = "tx_frame", .desc = "transmission of any SPOP frame" },
#define SPOP_EV_TX_EOI (1ULL << 14)
{ .mask = SPOP_EV_TX_EOI, .name = "tx_eoi", .desc = "transmission of SPOP end of input" },
#define SPOP_EV_TX_HELLO (1ULL << 15)
{ .mask = SPOP_EV_TX_HELLO, .name = "tx_hello", .desc = "transmission of SPOP HAPROXY HELLO frame" },
#define SPOP_EV_TX_NOTIFY (1ULL << 16)
{ .mask = SPOP_EV_TX_NOTIFY, .name = "tx_notify", .desc = "transmission of SPOP HAPROXY NOTIFY frame" },
#define SPOP_EV_TX_DISCO (1ULL << 17)
{ .mask = SPOP_EV_TX_DISCO, .name = "tx_disconnect", .desc = "transmission of SPOP HAPROXY DISCONNECT frame" },
#define SPOP_EV_SPOP_STRM_NEW (1ULL << 18)
{ .mask = SPOP_EV_SPOP_STRM_NEW, .name = "spop_strm_new", .desc = "new SPOP stream" },
#define SPOP_EV_SPOP_STRM_BLK (1ULL << 19)
{ .mask = SPOP_EV_SPOP_STRM_BLK, .name = "spop_strm_blk", .desc = "SPOP stream blocked" },
#define SPOP_EV_SPOP_STRM_END (1ULL << 20)
{ .mask = SPOP_EV_SPOP_STRM_END, .name = "spop_strm_end", .desc = "SPOP stream terminated" },
#define SPOP_EV_SPOP_STRM_ERR (1ULL << 21)
{ .mask = SPOP_EV_SPOP_STRM_ERR, .name = "spop_strm_err", .desc = "error on SPOP stream" },
#define SPOP_EV_STRM_NEW (1ULL << 22)
{ .mask = SPOP_EV_STRM_NEW, .name = "strm_new", .desc = "app-layer stream creation" },
#define SPOP_EV_STRM_RECV (1ULL << 23)
{ .mask = SPOP_EV_STRM_RECV, .name = "strm_recv", .desc = "receiving data for stream" },
#define SPOP_EV_STRM_SEND (1ULL << 24)
{ .mask = SPOP_EV_STRM_SEND, .name = "strm_send", .desc = "sending data for stream" },
#define SPOP_EV_STRM_FULL (1ULL << 25)
{ .mask = SPOP_EV_STRM_FULL, .name = "strm_full", .desc = "stream buffer full" },
#define SPOP_EV_STRM_WAKE (1ULL << 26)
{ .mask = SPOP_EV_STRM_WAKE, .name = "strm_wake", .desc = "stream woken up" },
#define SPOP_EV_STRM_SHUT (1ULL << 27)
{ .mask = SPOP_EV_STRM_SHUT, .name = "strm_shut", .desc = "stream shutdown" },
#define SPOP_EV_STRM_END (1ULL << 28)
{ .mask = SPOP_EV_STRM_END, .name = "strm_end", .desc = "detaching app-layer stream" },
#define SPOP_EV_STRM_ERR (1ULL << 29)
{ .mask = SPOP_EV_STRM_ERR, .name = "strm_err", .desc = "stream error" },
{ }
};
static const struct name_desc spop_trace_lockon_args[4] = {
/* arg1 */ { /* already used by the connection */ },
/* arg2 */ { .name="spop_strm", .desc="SPOP stream" },
/* arg3 */ { },
/* arg4 */ { }
};
static const struct name_desc spop_trace_decoding[] = {
#define SPOP_VERB_CLEAN 1
{ .name="clean", .desc="only user-friendly stuff, generally suitable for level \"user\"" },
#define SPOP_VERB_MINIMAL 2
{ .name="minimal", .desc="report only spop_conn/spop_strm state and flags, no real decoding" },
#define SPOP_VERB_SIMPLE 3
{ .name="simple", .desc="add request/response status line or htx info when available" },
#define SPOP_VERB_ADVANCED 4
{ .name="advanced", .desc="add header fields or record decoding when available" },
#define SPOP_VERB_COMPLETE 5
{ .name="complete", .desc="add full data dump when available" },
{ /* end */ }
};
static struct trace_source trace_spop __read_mostly = {
.name = IST("spop"),
.desc = "SPOP multiplexer",
.arg_def = TRC_ARG1_CONN, // TRACE()'s first argument is always a connection
.default_cb = spop_trace,
.known_events = spop_trace_events,
.lockon_args = spop_trace_lockon_args,
.decoding = spop_trace_decoding,
.report_events = ~0, // report everything by default
};
#define TRACE_SOURCE &trace_spop
INITCALL1(STG_REGISTER, trace_register_source, TRACE_SOURCE);
/* SPOP connection and stream pools */
DECLARE_STATIC_POOL(pool_head_spop_conn, "spop_conn", sizeof(struct spop_conn));
DECLARE_STATIC_POOL(pool_head_spop_strm, "spop_strm", sizeof(struct spop_strm));
const struct ist spop_err_reasons[SPOP_ERR_ENTRIES] = {
[SPOP_ERR_NONE] = IST("normal"),
[SPOP_ERR_IO] = IST("I/O error"),
[SPOP_ERR_TOUT] = IST("a timeout occurred"),
[SPOP_ERR_TOO_BIG] = IST("frame is too big"),
[SPOP_ERR_INVALID] = IST("invalid frame received"),
[SPOP_ERR_NO_VSN] = IST("version value not found"),
[SPOP_ERR_NO_FRAME_SIZE] = IST("max-frame-size value not found"),
[SPOP_ERR_NO_CAP] = IST("capabilities value not found"),
[SPOP_ERR_BAD_VSN] = IST("unsupported version"),
[SPOP_ERR_BAD_FRAME_SIZE] = IST("max-frame-size too big or too small"),
[SPOP_ERR_FRAG_NOT_SUPPORTED] = IST("fragmentation not supported"),
[SPOP_ERR_INTERLACED_FRAMES] = IST("invalid interlaced frames"),
[SPOP_ERR_FRAMEID_NOTFOUND] = IST("frame-id not found"),
[SPOP_ERR_RES] = IST("resource allocation error"),
[SPOP_ERR_UNKNOWN] = IST("an unknown error occurred"),
};
/* Helper to get static string length, excluding the terminating null byte */
#define SPOP_SLEN(str) (sizeof(str)-1)
/* Predefined key used in HELLO/DISCONNECT frames */
#define SPOP_SUPPORTED_VERSIONS_KEY "supported-versions"
#define SPOP_VERSION_KEY "version"
#define SPOP_MAX_FRAME_SIZE_KEY "max-frame-size"
#define SPOP_CAPABILITIES_KEY "capabilities"
#define SPOP_ENGINE_ID_KEY "engine-id"
#define SPOP_HEALTHCHECK_KEY "healthcheck"
#define SPOP_STATUS_CODE_KEY "status-code"
#define SPOP_MSG_KEY "message"
/* All supported versions */
const struct spop_version spop_supported_versions[] = {
/* 1.0 is now unsupported because of a bug about frame's flags*/
{"2.0", 2000, 2000},
{NULL, 0, 0}
};
/* Comma-separated list of supported versions */
#define SPOP_SUPPORTED_VERSIONS_VAL "2.0"
static struct task *spop_timeout_task(struct task *t, void *context, unsigned int state);
static int spop_process(struct spop_conn *spop_conn);
static struct task *spop_io_cb(struct task *t, void *ctx, unsigned int state);
static inline struct spop_strm *spop_conn_st_by_id(struct spop_conn *spop_conn, int id);
static struct spop_strm *spop_stconn_new(struct spop_conn *spop_conn, struct stconn *sc, struct session *sess);
static void spop_strm_notify_recv(struct spop_strm *spop_strm);
static void spop_strm_notify_send(struct spop_strm *spop_strm);
static void spop_strm_alert(struct spop_strm *spop_strm);
static inline void spop_remove_from_list(struct spop_strm *spop_strm);
static inline void spop_conn_restart_reading(const struct spop_conn *spop_conn, int consider_buffer);
static int spop_dump_spop_conn_info(struct buffer *msg, struct spop_conn *spop_conn, const char *pfx);
static int spop_dump_spop_strm_info(struct buffer *msg, const struct spop_strm *spop_strm, const char *pfx);
/* a dummy closed endpoint */
static const struct sedesc closed_ep = {
.sc = NULL,
.flags = SE_FL_DETACHED,
};
/* a dmumy closed stream */
static const struct spop_strm *spop_closed_stream = &(const struct spop_strm){
.sd = (struct sedesc *)&closed_ep,
.spop_conn = NULL,
.state = SPOP_SS_CLOSED,
.flags = SPOP_SF_NONE,
.id = 0,
};
/* a dummy idle stream for use with any unknown stream */
static const struct spop_strm *spop_unknown_stream = &(const struct spop_strm){
.sd = (struct sedesc*)&closed_ep,
.spop_conn = NULL,
.state = SPOP_SS_IDLE,
.flags = SPOP_SF_NONE,
.id = 0,
};
/* returns the stconn associated to the stream */
static forceinline struct stconn *spop_strm_sc(const struct spop_strm *spop_strm)
{
return spop_strm->sd->sc;
}
static inline struct sedesc *spop_strm_opposite_sd(struct spop_strm *spop_strm)
{
return se_opposite(spop_strm->sd);
}
static inline void spop_trace_buf(const struct buffer *buf, size_t ofs, size_t len)
{
size_t block1, block2;
int line, ptr, newptr;
block1 = b_contig_data(buf, ofs);
block2 = 0;
if (block1 > len)
block1 = len;
block2 = len - block1;
ofs = b_peek_ofs(buf, ofs);
line = 0;
ptr = ofs;
while (ptr < ofs + block1) {
newptr = dump_text_line(&trace_buf, b_orig(buf), b_size(buf), ofs + block1, &line, ptr);
if (newptr == ptr)
break;
ptr = newptr;
}
line = ptr = 0;
while (ptr < block2) {
newptr = dump_text_line(&trace_buf, b_orig(buf), b_size(buf), block2, &line, ptr);
if (newptr == ptr)
break;
ptr = newptr;
}
}
/* the SPOP traces always expect that arg1, if non-null, is of type connection
* (from which we can derive spop_conn), that arg2, if non-null, is of type spop_strm,
* and that arg3, if non-null, is a buffer for rx/tx headers.
*/
static void spop_trace(enum trace_level level, uint64_t mask, const struct trace_source *src,
const struct ist where, const struct ist func,
const void *a1, const void *a2, const void *a3, const void *a4)
{
const struct connection *conn = a1;
struct spop_conn *spop_conn = conn ? conn->ctx : NULL;
const struct spop_strm *spop_strm = a2;
const struct buffer *buf = a3;
const size_t *val = a4;
if (!spop_conn)
spop_conn = (spop_strm ? spop_strm->spop_conn : NULL);
if (!spop_conn || src->verbosity < SPOP_VERB_CLEAN)
return;
if (src->verbosity == SPOP_VERB_CLEAN)
return;
/* Display the value to the 4th argument (level > STATE) */
if (src->level > TRACE_LEVEL_STATE && val)
chunk_appendf(&trace_buf, " - VAL=%lu", (long)*val);
/* Display spop_conn info and, if defined, spop_strm info */
chunk_appendf(&trace_buf, " - spop_conn=%p(%s,0x%08x)", spop_conn, spop_conn_st_to_str(spop_conn->state), spop_conn->flags);
if (spop_conn->conn)
chunk_appendf(&trace_buf, " conn=%p(0x%08x)", spop_conn->conn, spop_conn->conn->flags);
if (spop_conn->errcode)
chunk_appendf(&trace_buf, " err=%02x", spop_conn->errcode);
if (spop_strm) {
if (spop_strm->id <= 0)
chunk_appendf(&trace_buf, " dsi=%d dfi=%d", spop_conn->dsi, spop_conn->dfi);
if (spop_strm != spop_closed_stream && spop_strm != spop_unknown_stream) {
chunk_appendf(&trace_buf, " spop_strm=%p(%d,%s,0x%08x)", spop_strm, spop_strm->id, spop_strm_st_to_str(spop_strm->state), spop_strm->flags);
if (spop_strm->sd) {
chunk_appendf(&trace_buf, " sd=%p(0x%08x)", spop_strm->sd, se_fl_get(spop_strm->sd));
if (spop_strm_sc(spop_strm))
chunk_appendf(&trace_buf, " sc=%p(0x%08x)", spop_strm_sc(spop_strm), spop_strm_sc(spop_strm)->flags);
}
if (spop_strm->errcode)
chunk_appendf(&trace_buf, " err=%02x", spop_strm->errcode);
}
}
if (src->verbosity == SPOP_VERB_MINIMAL)
return;
/* Display mbuf and dbuf info (level > USER & verbosity > SIMPLE) */
if (src->level > TRACE_LEVEL_USER) {
if (src->verbosity == SPOP_VERB_COMPLETE ||
(src->verbosity == SPOP_VERB_ADVANCED && (mask & (SPOP_EV_SPOP_CONN_RECV|SPOP_EV_RX_FRAME))))
chunk_appendf(&trace_buf, " dbuf=%u@%p+%u/%u",
(unsigned int)b_data(&spop_conn->dbuf), b_orig(&spop_conn->dbuf),
(unsigned int)b_head_ofs(&spop_conn->dbuf), (unsigned int)b_size(&spop_conn->dbuf));
if (src->verbosity == SPOP_VERB_COMPLETE ||
(src->verbosity == SPOP_VERB_ADVANCED && (mask & (SPOP_EV_SPOP_CONN_SEND|SPOP_EV_TX_FRAME)))) {
struct buffer *hmbuf = br_head(spop_conn->mbuf);
struct buffer *tmbuf = br_tail(spop_conn->mbuf);
chunk_appendf(&trace_buf, " .mbuf=[%u..%u|%u],h=[%u@%p+%u/%u],t=[%u@%p+%u/%u]",
br_head_idx(spop_conn->mbuf), br_tail_idx(spop_conn->mbuf), br_size(spop_conn->mbuf),
(unsigned int)b_data(hmbuf), b_orig(hmbuf),
(unsigned int)b_head_ofs(hmbuf), (unsigned int)b_size(hmbuf),
(unsigned int)b_data(tmbuf), b_orig(tmbuf),
(unsigned int)b_head_ofs(tmbuf), (unsigned int)b_size(tmbuf));
}
if (spop_strm && (src->verbosity == SPOP_VERB_COMPLETE ||
(src->verbosity == SPOP_VERB_ADVANCED && (mask & (SPOP_EV_STRM_RECV)))))
chunk_appendf(&trace_buf, " rxbuf=%u@%p+%u/%u",
(unsigned int)b_data(&spop_strm->rxbuf), b_orig(&spop_strm->rxbuf),
(unsigned int)b_head_ofs(&spop_strm->rxbuf), (unsigned int)b_size(&spop_strm->rxbuf));
}
/* Display htx info if defined (level > USER) */
if (src->level > TRACE_LEVEL_USER && buf) {
int full = 0, max = 3000, chunk = 1024;
/* Full info (level > STATE && verbosity > SIMPLE) */
if (src->level > TRACE_LEVEL_STATE) {
if (src->verbosity == SPOP_VERB_COMPLETE)
full = 1;
else if (src->verbosity == SPOP_VERB_ADVANCED) {
full = 1;
max = 256;
chunk = 64;
}
}
chunk_appendf(&trace_buf, " buf=%u@%p+%u/%u",
(unsigned int)b_data(buf), b_orig(buf),
(unsigned int)b_head_ofs(buf), (unsigned int)b_size(buf));
if (b_data(buf) && full) {
chunk_memcat(&trace_buf, "\n", 1);
if (b_data(buf) < max)
spop_trace_buf(buf, 0, b_data(buf));
else {
spop_trace_buf(buf, 0, chunk);
chunk_memcat(&trace_buf, " ...\n", 6);
spop_trace_buf(buf, b_data(buf) - chunk, chunk);
}
}
}
}
/*****************************************************/
/* functions below are for dynamic buffer management */
/*****************************************************/
/* Tries to grab a buffer and to re-enable processing on mux <target>. The
* spop_conn flags are used to figure what buffer was requested. It returns 1 if
* the allocation succeeds, in which case the connection is woken up, or 0 if
* it's impossible to wake up and we prefer to be woken up later.
*/
static int spop_buf_available(void *target)
{
struct spop_conn *spop_conn = target;
struct spop_strm *spop_strm;
if ((spop_conn->flags & SPOP_CF_DEM_DALLOC) && b_alloc(&spop_conn->dbuf, DB_MUX_RX)) {
TRACE_STATE("unblocking spop_conn, dbuf allocated", SPOP_EV_SPOP_CONN_RECV|SPOP_EV_SPOP_CONN_BLK|SPOP_EV_SPOP_CONN_WAKE, spop_conn->conn);
spop_conn->flags &= ~SPOP_CF_DEM_DALLOC;
spop_conn_restart_reading(spop_conn, 1);
return 1;
}
if ((spop_conn->flags & SPOP_CF_MUX_MALLOC) && b_alloc(br_tail(spop_conn->mbuf), DB_MUX_TX)) {
TRACE_STATE("unblocking spop_conn, mbuf allocated", SPOP_EV_SPOP_CONN_SEND|SPOP_EV_SPOP_CONN_BLK|SPOP_EV_SPOP_CONN_WAKE, spop_conn->conn);
spop_conn->flags &= ~SPOP_CF_MUX_MALLOC;
if (spop_conn->flags & SPOP_CF_DEM_MROOM) {
spop_conn->flags &= ~SPOP_CF_DEM_MROOM;
spop_conn_restart_reading(spop_conn, 1);
}
return 1;
}
if ((spop_conn->flags & SPOP_CF_DEM_SALLOC) &&
(spop_strm = spop_conn_st_by_id(spop_conn, spop_conn->dsi)) && spop_strm_sc(spop_strm) &&
b_alloc(&spop_strm->rxbuf, DB_SE_RX)) {
TRACE_STATE("unblocking spop_strm, rxbuf allocated", SPOP_EV_STRM_RECV|SPOP_EV_SPOP_STRM_BLK|SPOP_EV_STRM_WAKE, spop_conn->conn, spop_strm);
spop_conn->flags &= ~SPOP_CF_DEM_SALLOC;
spop_conn_restart_reading(spop_conn, 1);
return 1;
}
return 0;
}
static inline struct buffer *spop_get_buf(struct spop_conn *spop_conn, struct buffer *bptr)
{
struct buffer *buf = NULL;
if (likely(!LIST_INLIST(&spop_conn->buf_wait.list)) &&
unlikely((buf = b_alloc(bptr, DB_MUX_RX)) == NULL)) {
b_queue(DB_MUX_RX, &spop_conn->buf_wait, spop_conn, spop_buf_available);
}
return buf;
}
static inline void spop_release_buf(struct spop_conn *spop_conn, struct buffer *bptr)
{
if (bptr->size) {
b_free(bptr);
offer_buffers(NULL, 1);
}
}
static inline void spop_release_mbuf(struct spop_conn *spop_conn)
{
struct buffer *buf;
unsigned int count = 0;
while (b_size(buf = br_head_pick(spop_conn->mbuf))) {
b_free(buf);
count++;
}
spop_conn->flags &= ~(SPOP_CF_MUX_MFULL | SPOP_CF_DEM_MROOM);
if (count)
offer_buffers(NULL, count);
}
/*****************************************************************/
/* functions below are dedicated to the mux setup and management */
/*****************************************************************/
/* Indicates whether or not the we may call the spop_recv() function to attempt
* to receive data into the buffer and/or demux pending data. The condition is
* a bit complex due to some API limits for now. The rules are the following :
* - if an error or a shutdown was detected on the connection and the buffer
* is empty, we must not attempt to receive
* - if the demux buf failed to be allocated, we must not try to receive and
* we know there is nothing pending
* - if no flag indicates a blocking condition, we may attempt to receive,
* regardless of whether the demux buffer is full or not, so that only
* de demux part decides whether or not to block. This is needed because
* the connection API indeed prevents us from re-enabling receipt that is
* already enabled in a polled state, so we must always immediately stop
* as soon as the demux can't proceed so as never to hit an end of read
* with data pending in the buffers.
* - otherwise must may not attempt
*/
static inline int spop_recv_allowed(const struct spop_conn *spop_conn)
{
if (b_data(&spop_conn->dbuf) == 0 &&
((spop_conn->flags & (SPOP_CF_RCVD_SHUT|SPOP_CF_ERROR)) || spop_conn->state == SPOP_CS_CLOSED))
return 0;
if (!(spop_conn->flags & SPOP_CF_DEM_DALLOC) &&
!(spop_conn->flags & SPOP_CF_DEM_BLOCK_ANY))
return 1;
return 0;
}
static inline void spop_conn_report_term_evt(struct spop_conn *spop_conn, enum muxc_term_event_type type)
{
enum term_event_loc loc = tevt_loc_muxc + 8; /* Always on backend side for now */
spop_conn->term_evts_log = tevt_report_event(spop_conn->term_evts_log, loc, type);
}
/* Restarts reading on the connection if it was not enabled */
static inline void spop_conn_restart_reading(const struct spop_conn *spop_conn, int consider_buffer)
{
if (!spop_recv_allowed(spop_conn))
return;
if ((!consider_buffer || !b_data(&spop_conn->dbuf)) &&
(spop_conn->wait_event.events & SUB_RETRY_RECV))
return;
tasklet_wakeup(spop_conn->wait_event.tasklet);
}
/* Returns the number of allocatable outgoing streams for the connection taking
* the number reserved streams into account.
*/
static inline int spop_streams_left(const struct spop_conn *spop_conn)
{
int ret;
ret = (unsigned int)(0x7FFFFFFF - spop_conn->max_id) - spop_conn->nb_reserved - 1;
if (ret < 0)
ret = 0;
return ret;
}
/* Returns the number of streams in use on a connection to figure if it's
* idle or not. We check nb_sc and not nb_streams as the caller will want
* to know if it was the last one after a detach().
*/
static int spop_used_streams(struct connection *conn)
{
struct spop_conn *spop_conn = conn->ctx;
return spop_conn->nb_sc;
}
/* Returns the number of concurrent streams available on the connection */
static int spop_avail_streams(struct connection *conn)
{
struct server *srv = objt_server(conn->target);
struct spop_conn *spop_conn = conn->ctx;
int ret1, ret2;
/* Don't open new stream if the connection is closed */
if (spop_conn->state >= SPOP_CS_ERROR || (spop_conn->flags & (SPOP_CF_ERR_PENDING|SPOP_CF_ERROR)))
return 0;
/* May be negative if this setting has changed */
ret1 = (spop_conn->streams_limit - spop_conn->nb_streams);
/* we must also consider the limit imposed by stream IDs */
ret2 = spop_streams_left(spop_conn);
ret1 = MIN(ret1, ret2);
if (ret1 > 0 && srv && srv->max_reuse >= 0) {
ret2 = ((spop_conn->stream_cnt <= srv->max_reuse) ? srv->max_reuse - spop_conn->stream_cnt + 1: 0);
ret1 = MIN(ret1, ret2);
}
return ret1;
}
/* Initializes the mux once it's attached. Only outgoing connections are
* supported. So the context is already initialized before installing the
* mux. <input> is always used as Input buffer and may contain data. It is the
* caller responsibility to not reuse it anymore. Returns < 0 on error.
*/
static int spop_init(struct connection *conn, struct proxy *px, struct session *sess,
struct buffer *input)
{
struct spop_conn *spop_conn;
struct spop_strm *spop_strm;
struct sedesc *sdo = NULL;
struct task *t = NULL;
void *conn_ctx = conn->ctx;
TRACE_ENTER(SPOP_EV_SPOP_CONN_NEW);
spop_conn = pool_alloc(pool_head_spop_conn);
if (!spop_conn) {
TRACE_ERROR("spop_conn allocation failure", SPOP_EV_SPOP_CONN_NEW|SPOP_EV_SPOP_CONN_END|SPOP_EV_SPOP_CONN_ERR);
goto fail_conn;
}
spop_conn->shut_timeout = spop_conn->timeout = px->timeout.server;
if (tick_isset(px->timeout.serverfin))
spop_conn->shut_timeout = px->timeout.serverfin;
spop_conn->flags = SPOP_CF_NONE;
spop_conn->proxy = px;
spop_conn->agent = NULL;
spop_conn->task = NULL;
if (tick_isset(spop_conn->timeout)) {
t = task_new_here();
if (!t) {
TRACE_ERROR("spop_conn task allocation failure", SPOP_EV_SPOP_CONN_NEW|SPOP_EV_SPOP_CONN_END|SPOP_EV_SPOP_CONN_ERR);
goto fail;
}
spop_conn->task = t;
t->process = spop_timeout_task;
t->context = spop_conn;
t->expire = tick_add(now_ms, spop_conn->timeout);
}
spop_conn->wait_event.tasklet = tasklet_new();
if (!spop_conn->wait_event.tasklet)
goto fail;
spop_conn->wait_event.tasklet->process = spop_io_cb;
spop_conn->wait_event.tasklet->context = spop_conn;
spop_conn->wait_event.events = 0;
/* Initialise the context. */
spop_conn->state = SPOP_CS_HA_HELLO;
spop_conn->errcode = SPOP_ERR_NONE;
spop_conn->conn = conn;
spop_conn->max_frame_size = SPOP_MAX_FRAME_SIZE;
spop_conn->streams_limit = 1;
spop_conn->max_id = -1;
spop_conn->nb_streams = 0;
spop_conn->nb_sc = 0;
spop_conn->nb_reserved = 0;
spop_conn->stream_cnt = 0;
spop_conn->term_evts_log = 0;
spop_conn->dbuf = *input;
spop_conn->dsi = -1;
br_init(spop_conn->mbuf, sizeof(spop_conn->mbuf) / sizeof(spop_conn->mbuf[0]));
spop_conn->streams_by_id = EB_ROOT;
LIST_INIT(&spop_conn->send_list);
LIST_INIT(&spop_conn->buf_wait.list);
conn->ctx = spop_conn;
if (t)
task_queue(t);
/* FIXME: this is temporary, for outgoing connections we need to
* immediately allocate a stream until the code is modified so that the
* caller calls ->attach(). For now the outgoing sc is stored as
* conn->ctx by the caller and saved in conn_ctx.
*/
spop_strm = spop_stconn_new(spop_conn, conn_ctx, sess);
if (!spop_strm)
goto fail;
/* Retrieve the SPOE agent attached to the opposite endpoint. Only
* undefined when there is no opposite endpoint (healthcheck)
*/
sdo = spop_strm_opposite_sd(spop_strm);
if (sdo) {
spop_conn->agent = spoe_appctx_agent(sc_appctx(sdo->sc));
spop_conn->max_frame_size = spop_conn->agent->max_frame_size;
if (spop_conn->agent->flags & SPOE_FL_PIPELINING)
spop_conn->streams_limit = 20;
BUG_ON(!spop_conn->agent);
}
/* Repare to read something */
spop_conn_restart_reading(spop_conn, 1);
TRACE_LEAVE(SPOP_EV_SPOP_CONN_NEW, conn);
return 0;
fail:
task_destroy(t);
tasklet_free(spop_conn->wait_event.tasklet);
pool_free(pool_head_spop_conn, spop_conn);
fail_conn:
conn->ctx = conn_ctx; // restore saved ctx
TRACE_DEVEL("leaving in error", SPOP_EV_SPOP_CONN_NEW|SPOP_EV_SPOP_CONN_END|SPOP_EV_SPOP_CONN_ERR);
return -1;
}
/* Release function. This one should be called to free all resources allocated
* to the mux.
*/
static void spop_release(struct spop_conn *spop_conn)
{
struct connection *conn = spop_conn->conn;
TRACE_POINT(SPOP_EV_SPOP_CONN_END);
b_dequeue(&spop_conn->buf_wait);
spop_release_buf(spop_conn, &spop_conn->dbuf);
spop_release_mbuf(spop_conn);
if (spop_conn->task) {
spop_conn->task->context = NULL;
task_wakeup(spop_conn->task, TASK_WOKEN_OTHER);
spop_conn->task = NULL;
}
tasklet_free(spop_conn->wait_event.tasklet);
if (conn) {
if (spop_conn->wait_event.events != 0)
conn->xprt->unsubscribe(conn, conn->xprt_ctx, spop_conn->wait_event.events,
&spop_conn->wait_event);
spop_conn_report_term_evt(spop_conn, muxc_tevt_type_shutw);
}
pool_free(pool_head_spop_conn, spop_conn);
if (conn) {
conn->mux = NULL;
conn->ctx = NULL;
TRACE_DEVEL("freeing conn", SPOP_EV_SPOP_CONN_END, conn);
conn_stop_tracking(conn);
conn_full_close(conn);
if (conn->destroy_cb)
conn->destroy_cb(conn);
conn_free(conn);
}
}
/* Returns the next allocatable outgoing stream ID for the SPOP connection, or
* -1 if no more is allocatable.
*/
static inline int32_t spop_conn_get_next_sid(const struct spop_conn *spop_conn)
{
int32_t id = (spop_conn->max_id + 1) | 1;
if ((id & 0x80000000U))
id = -1;
return id;
}
/* Returns the stream associated with id <id> or NULL if not found */
static inline struct spop_strm *spop_conn_st_by_id(struct spop_conn *spop_conn, int id)
{
struct eb32_node *node;
if (id == 0)
return (struct spop_strm *)spop_closed_stream;
if (id > spop_conn->max_id)
return (struct spop_strm *)spop_unknown_stream;
node = eb32_lookup(&spop_conn->streams_by_id, id);
if (!node)
return (struct spop_strm *)spop_unknown_stream;
return container_of(node, struct spop_strm, by_id);
}
/* Detect a pending read0 for a SPOP connection. It happens if a read0 was
* already reported on a previous xprt->rcvbuf() AND a frame parser failed
* to parse pending data, confirming no more progress is possible because
* we're facing a truncated frame. The function returns 1 to report a read0
* or 0 otherwise.
*/
static int spop_conn_read0_pending(struct spop_conn *spop_conn)
{
return !!(spop_conn->flags & SPOP_CF_END_REACHED);
}
/* returns true if the connection is allowed to expire, false otherwise. A
* connection may expire when it has no attached streams. As long as streams
* are attached, the application layer is responsible for timeout management,
* and each layer will detach when it doesn't want to wait anymore. When the
* last one leaves, the connection must take over timeout management.
*/
static inline int spop_conn_may_expire(const struct spop_conn *spop_conn)
{
return !spop_conn->nb_sc;
}
// TODO: spop_conn_max_concurrent_streams() : default 20 but add a agent parameter !
/* Returns true if the SPOP connection must be release */
static inline int spop_conn_is_dead(struct spop_conn *spop_conn)
{
if (eb_is_empty(&spop_conn->streams_by_id) && /* don't close if streams exist */
((spop_conn->flags & SPOP_CF_ERROR) || /* errors close immediately */
(spop_conn->flags & SPOP_CF_ERR_PENDING && spop_conn->state < SPOP_CS_RUNNING) || /* early error during connect */
(spop_conn->state == SPOP_CS_CLOSED && !spop_conn->task) ||/* a timeout stroke earlier */
(!(spop_conn->conn->owner)) || /* Nobody's left to take care of the connection, drop it now */
(!br_data(spop_conn->mbuf) && /* mux buffer empty, also process clean events below */
(spop_conn->flags & SPOP_CF_RCVD_SHUT))))
return 1;
return 0;
}
/* update spop_conn timeout if needed */
static void spop_conn_update_timeout(struct spop_conn *spop_conn)
{
int is_idle_conn = 0;
if (!spop_conn->task)
goto leave;
TRACE_ENTER(SPOP_EV_SPOP_CONN_WAKE, spop_conn->conn);
if (spop_conn_may_expire(spop_conn)) {
/* no more streams attached */
if (br_data(spop_conn->mbuf)) {
/* pending output data: always the regular data timeout */
spop_conn->task->expire = tick_add_ifset(now_ms, spop_conn->timeout);
}
else {
if (spop_conn->flags & (SPOP_CF_DISCO_SENT|SPOP_CF_DISCO_FAILED)) {
/* DISCONNECT sent (or failed), closing in progress */
int exp = tick_add_ifset(now_ms, spop_conn->shut_timeout);
spop_conn->task->expire = tick_first(spop_conn->task->expire, exp);
is_idle_conn = 1;
}
/* if a timeout above was not set, fall back to the default one */
if (!tick_isset(spop_conn->task->expire))
spop_conn->task->expire = tick_add_ifset(now_ms, spop_conn->timeout);
}
if ((spop_conn->proxy->flags & (PR_FL_DISABLED|PR_FL_STOPPED)) &&
is_idle_conn && tick_isset(global.close_spread_end)) {
/* If a soft-stop is in progress and a close-spread-time
* is set, we want to spread idle connection closing roughly
* evenly across the defined window. This should only
* act on idle frontend connections.
* If the window end is already in the past, we wake the
* timeout task up immediately so that it can be closed.
*/
int remaining_window = tick_remain(now_ms, global.close_spread_end);
if (remaining_window) {
/* We don't need to reset the expire if it would
* already happen before the close window end.
*/
if (tick_isset(spop_conn->task->expire) &&
tick_is_le(global.close_spread_end, spop_conn->task->expire)) {
/* Set an expire value shorter than the current value
* because the close spread window end comes earlier.
*/
spop_conn->task->expire = tick_add(now_ms, statistical_prng_range(remaining_window));
}
}
else {
/* We are past the soft close window end, wake the timeout
* task up immediately.
*/
task_wakeup(spop_conn->task, TASK_WOKEN_TIMER);
}
}
}
else
spop_conn->task->expire = TICK_ETERNITY;
task_queue(spop_conn->task);
TRACE_LEAVE(SPOP_EV_SPOP_CONN_WAKE, spop_conn->conn, 0, 0, (size_t[]){spop_conn->task->expire});
leave:
return;
}
/********************************************************/
/* functions below are for the SPOP protocol processing */
/********************************************************/
/* Marks an error on the connection. Before HELLO frame are sent, we must not send
* a DISCONNECT frame, so we set SPOP_CF_DISCO_FAILED to make sure it will not
* even try.. */
static inline void spop_conn_error(struct spop_conn *spop_conn, enum spop_error err)
{
TRACE_POINT(SPOP_EV_SPOP_CONN_ERR, spop_conn->conn, 0, 0, (size_t[]){err});
spop_conn->errcode = err;
if (spop_conn->state == SPOP_CS_HA_HELLO)
spop_conn->flags |= SPOP_CF_DISCO_FAILED;
spop_conn->state = SPOP_CS_ERROR;
}
/* Marks an error on the stream */
static inline void spop_strm_error(struct spop_strm *spop_strm, enum spop_error err)
{
if (spop_strm->id && spop_strm->state != SPOP_SS_ERROR) {
TRACE_POINT(SPOP_EV_SPOP_STRM_ERR, spop_strm->spop_conn->conn, spop_strm);
spop_strm->errcode = err;
if (spop_strm->state < SPOP_SS_ERROR) {
spop_strm->state = SPOP_SS_ERROR;
TRACE_STATE("switching to ERROR", SPOP_EV_SPOP_STRM_ERR, spop_strm->spop_conn->conn, spop_strm);
}
se_fl_set_error(spop_strm->sd);
if (!spop_strm->sd->abort_info.info) {
spop_strm->sd->abort_info.info = (SE_ABRT_SRC_MUX_SPOP << SE_ABRT_SRC_SHIFT);
spop_strm->sd->abort_info.code = spop_strm->errcode;
}
}
}
/* Attempts to notify the data layer of recv availability */
static void spop_strm_notify_recv(struct spop_strm *spop_strm)
{
if (spop_strm->subs && (spop_strm->subs->events & SUB_RETRY_RECV)) {
TRACE_POINT(SPOP_EV_STRM_WAKE, spop_strm->spop_conn->conn, spop_strm);
tasklet_wakeup(spop_strm->subs->tasklet);
spop_strm->subs->events &= ~SUB_RETRY_RECV;
if (!spop_strm->subs->events)
spop_strm->subs = NULL;
}
}
/* Attempts to notify the data layer of send availability */
static void spop_strm_notify_send(struct spop_strm *spop_strm)
{
if (spop_strm->subs && (spop_strm->subs->events & SUB_RETRY_SEND)) {
TRACE_POINT(SPOP_EV_STRM_WAKE, spop_strm->spop_conn->conn, spop_strm);
spop_strm->flags |= SPOP_SF_NOTIFIED;
tasklet_wakeup(spop_strm->subs->tasklet);
spop_strm->subs->events &= ~SUB_RETRY_SEND;
if (!spop_strm->subs->events)
spop_strm->subs = NULL;
}
}
/* Alerts the data layer, trying to wake it up by all means, following
* this sequence :
* - if the spop stream' data layer is subscribed to recv, then it's woken up
* for recv
* - if its subscribed to send, then it's woken up for send
* - if it was subscribed to neither, its ->wake() callback is called
* It is safe to call this function with a closed stream which doesn't have a
* stream connector anymore.
*/
static void spop_strm_alert(struct spop_strm *spop_strm)
{
TRACE_POINT(SPOP_EV_STRM_WAKE, spop_strm->spop_conn->conn, spop_strm);
if (spop_strm->subs) {
spop_strm_notify_recv(spop_strm);
spop_strm_notify_send(spop_strm);
}
else if (spop_strm_sc(spop_strm) && spop_strm_sc(spop_strm)->app_ops->wake != NULL) {
TRACE_POINT(SPOP_EV_STRM_WAKE, spop_strm->spop_conn->conn, spop_strm);
spop_strm_sc(spop_strm)->app_ops->wake(spop_strm_sc(spop_strm));
}
}
/* Writes the 32-bit frame size <len> at address <frame> */
static inline void spop_set_frame_size(void *frame, uint32_t len)
{
write_n32(frame, len);
}
/* reads <bytes> bytes from buffer <b> starting at relative offset <o> from the
* current pointer, dealing with wrapping, and stores the result in <dst>. It's
* the caller's responsibility to verify that there are at least <bytes> bytes
* available in the buffer's input prior to calling this function. The buffer
* is assumed not to hold any output data.
*/
static inline __maybe_unused void spop_get_buf_bytes(void *dst, size_t bytes,
const struct buffer *b, int o)
{
readv_bytes(dst, bytes, b_peek(b, o), b_wrap(b) - b_peek(b, o), b_orig(b));
}
static inline __maybe_unused uint16_t spop_get_n16(const struct buffer *b, int o)
{
return readv_n16(b_peek(b, o), b_wrap(b) - b_peek(b, o), b_orig(b));
}
static inline __maybe_unused uint32_t spop_get_n32(const struct buffer *b, int o)
{
return readv_n32(b_peek(b, o), b_wrap(b) - b_peek(b, o), b_orig(b));
}
static inline __maybe_unused uint64_t spop_get_n64(const struct buffer *b, int o)
{
return readv_n64(b_peek(b, o), b_wrap(b) - b_peek(b, o), b_orig(b));
}
static __maybe_unused int spop_get_varint(const struct buffer *b, int o, uint64_t *i)
{
unsigned char *p;
size_t idx = o;
int r;
if (idx > b_data(b))
return -1;
p = (unsigned char *)b_peek(b, idx++);
*i = (uint64_t)*p;
if (*i < 240)
return 1;
r = 4;
do {
if (idx > b_data(b))
return -1;
p = (unsigned char *)b_peek(b, idx++);
*i += (uint64_t)*p << r;
r += 7;
} while (*p >= 128);
return (idx - o);
}
/* Peeks an SPOP frame header from offset <o> of buffer <b> into descriptor <h>.
* Returns zero if some bytes are missing, otherwise the number of read bytes is
* returned on success. The buffer is assumed not to contain any output data.
*/
static int spop_peek_frame_hdr(const struct buffer *b, int o, struct spop_frame_header *hdr)
{
int o1, o2;
if (b_data(b) < o + 11)
return 0;
o1 = o;
hdr->len = spop_get_n32(b, o1);
hdr->type = *(uint8_t*)b_peek(b, o1+4);
hdr->flags = spop_get_n32(b, o1+5);
o1 += 9;
/* Get the stream-id and the frame-id */
o2 = spop_get_varint(b, o1, &hdr->sid);
if (o2 == -1)
return 0;
o1 += o2;
o2 = spop_get_varint(b, o1, &hdr->fid);
if (o2 == -1)
return 0;
o1 += o2;
/* Remove the header length from the frame length */
hdr->len -= o1 - (o + 4);
return (o1 - o);
}
/* skip the <o> bytes corresponding to the frame header possibly parsed by
* spop_peek_frame_hdr() above.
*/
static inline void spop_skip_frame_hdr(struct buffer *b, size_t o)
{
b_del(b, o);
}
/* same as above, automatically advances the buffer on success */
static inline int spop_get_frame_hdr(struct buffer *b, struct spop_frame_header *hdr)
{
int ret;
ret = spop_peek_frame_hdr(b, 0, hdr);
if (ret > 0)
spop_skip_frame_hdr(b, ret);
return ret;
}
/* Marks a SPOP stream as CLOSED and decrement the number of active streams for
* its connection if the stream was not yet closed. Please use this exclusively
* before closing a stream to ensure stream count is well maintained.
*/
static inline void spop_strm_close(struct spop_strm *spop_strm)
{
if (spop_strm->state != SPOP_SS_CLOSED) {
TRACE_ENTER(SPOP_EV_SPOP_STRM_END, spop_strm->spop_conn->conn, spop_strm);
spop_strm->spop_conn->nb_streams--;
if (!spop_strm->id)
spop_strm->spop_conn->nb_reserved--;
if (spop_strm_sc(spop_strm)) {
if (!se_fl_test(spop_strm->sd, SE_FL_EOS) && !b_data(&spop_strm->rxbuf))
spop_strm_notify_recv(spop_strm);
}
spop_strm->state = SPOP_SS_CLOSED;
TRACE_STATE("switching to CLOSED", SPOP_EV_SPOP_STRM_END, spop_strm->spop_conn->conn, spop_strm);
TRACE_LEAVE(SPOP_EV_SPOP_STRM_END, spop_strm->spop_conn->conn, spop_strm);
}
}
/* Check spop_conn and spop_strm flags to evaluate if EOI/EOS/ERR_PENDING/ERROR flags must
* be set on the SE.
*/
static inline void spop_strm_propagate_term_flags(struct spop_conn *spop_conn, struct spop_strm *spop_strm)
{
if (spop_strm->flags & SPOP_SF_ACK_RCVD) {
se_fl_set(spop_strm->sd, SE_FL_EOI);
}
if (spop_conn_read0_pending(spop_conn) || spop_strm->state == SPOP_SS_CLOSED) {
se_fl_set(spop_strm->sd, SE_FL_EOS);
if (!se_fl_test(spop_strm->sd, SE_FL_EOI)) {
se_fl_set(spop_strm->sd, SE_FL_ERROR);
se_report_term_evt(spop_strm->sd, (spop_conn->flags & SPOP_CF_ERROR ? se_tevt_type_truncated_rcv_err : se_tevt_type_truncated_eos));
}
else
se_report_term_evt(spop_strm->sd, (spop_conn->flags & SPOP_CF_ERROR ? se_tevt_type_rcv_err : se_tevt_type_eos));
}
if (se_fl_test(spop_strm->sd, SE_FL_ERR_PENDING))
se_fl_set(spop_strm->sd, SE_FL_ERROR);
}
/* Detaches a SPOP stream from its SPOP connection and releases it to the
* spop_strm pool.
*/
static void spop_strm_destroy(struct spop_strm *spop_strm)
{
struct connection *conn = spop_strm->spop_conn->conn;
TRACE_ENTER(SPOP_EV_SPOP_STRM_END, conn, spop_strm);
spop_strm_close(spop_strm);
eb32_delete(&spop_strm->by_id);
if (b_size(&spop_strm->rxbuf)) {
b_free(&spop_strm->rxbuf);
offer_buffers(NULL, 1);
}
if (spop_strm->subs)
spop_strm->subs->events = 0;
/* There's no need to explicitly call unsubscribe here, the only
* reference left would be in the spop_conn send_list/fctl_list, and if
* we're in it, we're getting out anyway
*/
spop_remove_from_list(spop_strm);
BUG_ON(spop_strm->sd && !se_fl_test(spop_strm->sd, SE_FL_ORPHAN));
sedesc_free(spop_strm->sd);
pool_free(pool_head_spop_strm, spop_strm);
TRACE_LEAVE(SPOP_EV_SPOP_STRM_END, conn);
}
/* Allocates a new stream <id> for connection <spop_conn> and adds it into spop_conn's
* stream tree. In case of error, nothing is added and NULL is returned. The
* causes of errors can be any failed memory allocation. The caller is
* responsible for checking if the connection may support an extra stream prior
* to calling this function.
*/
static struct spop_strm *spop_strm_new(struct spop_conn *spop_conn, int id)
{
struct spop_strm *spop_strm;
TRACE_ENTER(SPOP_EV_SPOP_STRM_NEW, spop_conn->conn);
spop_strm = pool_alloc(pool_head_spop_strm);
if (!spop_strm) {
TRACE_ERROR("spop_strm allocation failure", SPOP_EV_SPOP_STRM_NEW|SPOP_EV_SPOP_STRM_ERR|SPOP_EV_SPOP_STRM_END, spop_conn->conn);
goto out;
}
spop_strm->subs = NULL;
LIST_INIT(&spop_strm->list);
spop_strm->spop_conn = spop_conn;
spop_strm->sd = NULL;
spop_strm->flags = SPOP_SF_NONE;
spop_strm->state = SPOP_SS_IDLE;
spop_strm->rxbuf = BUF_NULL;
spop_strm->by_id.key = spop_strm->id = id;
spop_strm->fid = 0;
if (id > 0) {
spop_conn->max_id = id;
spop_strm->state = SPOP_SS_OPEN;
}
else
spop_conn->nb_reserved++;
eb32_insert(&spop_conn->streams_by_id, &spop_strm->by_id);
spop_conn->nb_streams++;
spop_conn->stream_cnt++;
TRACE_LEAVE(SPOP_EV_SPOP_STRM_NEW, spop_conn->conn, spop_strm);
return spop_strm;
out:
TRACE_DEVEL("leaving in error", SPOP_EV_SPOP_STRM_NEW|SPOP_EV_SPOP_STRM_ERR|SPOP_EV_SPOP_STRM_END, spop_conn->conn);
return NULL;
}
/* Allocates a new stream associated to stream connector <sc> on the SPOP connection
* <spop_conn> and returns it, or NULL in case of memory allocation error or if the
* highest possible stream ID was reached.
*/
static struct spop_strm *spop_stconn_new(struct spop_conn *spop_conn, struct stconn *sc,
struct session *sess)
{
struct spop_strm *spop_strm = NULL;
TRACE_ENTER(SPOP_EV_SPOP_STRM_NEW, spop_conn->conn);
if (spop_conn->nb_streams >= spop_conn->streams_limit) {
TRACE_ERROR("streams_limit reached", SPOP_EV_SPOP_STRM_NEW|SPOP_EV_SPOP_STRM_END|SPOP_EV_SPOP_STRM_ERR, spop_conn->conn);
goto out;
}
if (spop_streams_left(spop_conn) < 1) {
TRACE_ERROR("!streams_left", SPOP_EV_SPOP_STRM_NEW|SPOP_EV_SPOP_STRM_END|SPOP_EV_SPOP_STRM_ERR, spop_conn->conn);
goto out;
}
/* Defer choosing the ID until we send the first message to create the stream */
spop_strm = spop_strm_new(spop_conn, 0);
if (!spop_strm) {
TRACE_ERROR("fstream allocation failure", SPOP_EV_SPOP_STRM_NEW|SPOP_EV_SPOP_STRM_END|SPOP_EV_SPOP_STRM_ERR, spop_conn->conn);
goto out;
}
if (sc_attach_mux(sc, spop_strm, spop_conn->conn) < 0)
goto out;
spop_strm->sd = sc->sedesc;
spop_strm->sess = sess;
spop_conn->nb_sc++;
TRACE_LEAVE(SPOP_EV_SPOP_STRM_NEW, spop_conn->conn, spop_strm);
return spop_strm;
out:
TRACE_DEVEL("leaving on error", SPOP_EV_SPOP_STRM_NEW|SPOP_EV_SPOP_STRM_END|SPOP_EV_SPOP_STRM_ERR, spop_conn->conn);
if (spop_strm)
spop_strm_destroy(spop_strm);
return NULL;
}
/* Wakes a specific stream and assign its stream connector some SE_FL_* flags among
* SE_FL_ERR_PENDING and SE_FL_ERROR if needed. The stream's state is
* automatically updated accordingly. If the stream is orphaned, it is
* destroyed.
*/
static void spop_strm_wake_one_stream(struct spop_strm *spop_strm)
{
struct spop_conn *spop_conn = spop_strm->spop_conn;
TRACE_ENTER(SPOP_EV_STRM_WAKE, spop_conn->conn, spop_strm);
if (!spop_strm_sc(spop_strm)) {
/* this stream was already orphaned */
spop_strm_destroy(spop_strm);
TRACE_DEVEL("leaving with no spop_strm", SPOP_EV_STRM_WAKE, spop_conn->conn);
return;
}
if (spop_conn_read0_pending(spop_conn)) {
if (spop_strm->state == SPOP_SS_OPEN) {
spop_strm->state = SPOP_SS_HREM;
TRACE_STATE("switching to HREM", SPOP_EV_STRM_WAKE|SPOP_EV_SPOP_STRM_END, spop_conn->conn, spop_strm);
}
else if (spop_strm->state == SPOP_SS_HLOC)
spop_strm_close(spop_strm);
}
if (!(spop_strm->flags & SPOP_SF_ACK_RCVD) && (spop_conn->state == SPOP_CS_CLOSED || (spop_conn->flags & (SPOP_CF_ERR_PENDING|SPOP_CF_ERROR)))) {
se_fl_set_error(spop_strm->sd);
spop_strm_propagate_term_flags(spop_conn, spop_strm);
if (!spop_strm->sd->abort_info.info) {
spop_strm->sd->abort_info.info = (SE_ABRT_SRC_MUX_SPOP << SE_ABRT_SRC_SHIFT);
spop_strm->sd->abort_info.code = spop_conn->errcode;
}
if (spop_strm->state < SPOP_SS_ERROR) {
spop_strm->state = SPOP_SS_ERROR;
TRACE_STATE("switching to ERROR", SPOP_EV_STRM_WAKE|SPOP_EV_SPOP_STRM_END, spop_conn->conn, spop_strm);
}
}
spop_strm_alert(spop_strm);
TRACE_LEAVE(SPOP_EV_STRM_WAKE, spop_conn->conn, spop_strm);
}
/* Wakes unassigned streams (ID == 0) attached to the connection. */
static void spop_wake_unassigned_streams(struct spop_conn *spop_conn)
{
struct eb32_node *node;
struct spop_strm *spop_strm;
node = eb32_lookup(&spop_conn->streams_by_id, 0);
while (node) {
spop_strm = container_of(node, struct spop_strm, by_id);
if (spop_strm->id > 0)
break;
node = eb32_next(node);
spop_strm_wake_one_stream(spop_strm);
}
}
/* Wakes the streams attached to the connection, whose id is greater than <last>
* or unassigned.
*/
static void spop_wake_some_streams(struct spop_conn *spop_conn, int last)
{
struct eb32_node *node;
struct spop_strm *spop_strm;
TRACE_ENTER(SPOP_EV_STRM_WAKE, spop_conn->conn);
/* Wake all streams with ID > last */
node = eb32_lookup_ge(&spop_conn->streams_by_id, last + 1);
while (node) {
spop_strm = container_of(node, struct spop_strm, by_id);
node = eb32_next(node);
spop_strm_wake_one_stream(spop_strm);
}
spop_wake_unassigned_streams(spop_conn);
TRACE_LEAVE(SPOP_EV_STRM_WAKE, spop_conn->conn);
}
/* Sends a HAPROXY HELLO frame. Returns > 0 on success, 0 if it couldn't do
* anything. It is highly unexpected, but if the frame is larger than a buffer
* and cannot be encoded in one time, an error is triggered and the connection is
* closed. HEELO frame cannot be split.
*/
static int spop_conn_send_hello(struct spop_conn *spop_conn)
{
struct buffer outbuf;
struct buffer *mbuf;
struct buffer *chk;
char *p, *end;
size_t sz;
int ret = 0;
TRACE_ENTER(SPOP_EV_TX_FRAME|SPOP_EV_TX_HELLO, spop_conn->conn);
mbuf = br_tail(spop_conn->mbuf);
retry:
if (!spop_get_buf(spop_conn, mbuf)) {
spop_conn->flags |= SPOP_CF_MUX_MALLOC;
spop_conn->flags |= SPOP_CF_DEM_MROOM;
TRACE_STATE("waiting for fconn mbuf ring allocation", SPOP_EV_TX_FRAME|SPOP_EV_SPOP_CONN_BLK, spop_conn->conn);
ret = 0;
goto end;
}
while (1) {
outbuf = b_make(b_tail(mbuf), b_contig_space(mbuf), 0, 0);
if (outbuf.size >= 11 || !b_space_wraps(mbuf))
break;
realign_again:
b_slow_realign(mbuf, trash.area, b_data(mbuf));
}
if (outbuf.size < 11)
goto full;
/* len: 4-bytes (fill later) type: (1)HAPROXY-HELLO, flags: 4-bytes (FIN=1)
* stream-id: 0x00, frame-id: 0x00 */
memcpy(outbuf.area, "\x00\x00\x00\x00\x01\x00\x00\x00\x01\x00\x00", 11);
outbuf.data = 11;
p = b_tail(&outbuf);
end = b_orig(&outbuf) + b_size(&outbuf);
/* "supported-versions" K/V item */
sz = SPOP_SLEN(SPOP_SUPPORTED_VERSIONS_KEY);
if (spoe_encode_buffer(SPOP_SUPPORTED_VERSIONS_KEY, sz, &p, end) == -1)
goto full;
*p++ = SPOP_DATA_T_STR;
sz = SPOP_SLEN(SPOP_SUPPORTED_VERSIONS_VAL);
if (spoe_encode_buffer(SPOP_SUPPORTED_VERSIONS_VAL, sz, &p, end) == -1)
goto full;
/* "max-fram-size" K/V item */
sz = SPOP_SLEN(SPOP_MAX_FRAME_SIZE_KEY);
if (spoe_encode_buffer(SPOP_MAX_FRAME_SIZE_KEY, sz, &p, end) == -1)
goto full;
*p++ = SPOP_DATA_T_UINT32;
if (encode_varint(spop_conn->max_frame_size, &p, end) == -1)
goto full;
/* "capabilities" K/V item */
sz = SPOP_SLEN(SPOP_CAPABILITIES_KEY);
if (spoe_encode_buffer(SPOP_CAPABILITIES_KEY, sz, &p, end) == -1)
goto full;
*p++ = SPOP_DATA_T_STR;
chk = get_trash_chunk();
if (spop_conn->agent && (spop_conn->agent->flags & SPOE_FL_PIPELINING)) {
memcpy(chk->area, "pipelining", 10);
chk->data += 10;
}
if (spoe_encode_buffer(chk->area, chk->data, &p, end) == -1)
goto full;
/* (optional) "engine-id" K/V item, if present */
if (spop_conn->agent && spop_conn->agent->engine_id != NULL) {
sz = SPOP_SLEN(SPOP_ENGINE_ID_KEY);
if (spoe_encode_buffer(SPOP_ENGINE_ID_KEY, sz, &p, end) == -1)
goto full;
*p++ = SPOP_DATA_T_STR;
sz = strlen(spop_conn->agent->engine_id);
if (spoe_encode_buffer(spop_conn->agent->engine_id, sz, &p, end) == -1)
goto full;
}
/* If there is no agent attached to the opposite endpoint, it means it is a standalone connection.
* This only happens for healthchecks
*/
if (!spop_conn->agent) {
/* Add "healthcheck" K/V item */
sz = SPOP_SLEN(SPOP_HEALTHCHECK_KEY);
if (spoe_encode_buffer(SPOP_HEALTHCHECK_KEY, sz, &p, end) == -1)
goto full;
*p++ = (SPOP_DATA_T_BOOL | SPOP_DATA_FL_TRUE);
}
outbuf.data += p - b_tail(&outbuf);
/* update the frame's size now */
TRACE_PROTO("SPOP HAPROXY HELLO frame xferred", SPOP_EV_TX_FRAME|SPOP_EV_TX_HELLO, spop_conn->conn, 0, 0, (size_t[]){outbuf.data});
spop_set_frame_size(outbuf.area, outbuf.data - 4);
b_add(mbuf, outbuf.data);
ret = 1;
end:
TRACE_LEAVE(SPOP_EV_TX_FRAME|SPOP_EV_TX_HELLO, spop_conn->conn);
return ret;
full:
/* Too large to be encoded. For HELLO frame, it is an error */
if (!b_data(mbuf)) {
TRACE_ERROR("HAPROXY HELLO frame too large", SPOP_EV_TX_FRAME|SPOP_EV_TX_HELLO|SPOP_EV_SPOP_CONN_ERR, spop_conn->conn);
goto fail;
}
if ((mbuf = br_tail_add(spop_conn->mbuf)) != NULL)
goto retry;
spop_conn->flags |= SPOP_CF_MUX_MFULL;
spop_conn->flags |= SPOP_CF_DEM_MROOM;
TRACE_STATE("mbuf ring full", SPOP_EV_TX_FRAME|SPOP_EV_SPOP_CONN_BLK, spop_conn->conn);
ret = 0;
goto end;
fail:
spop_conn->state = SPOP_CS_CLOSED;
TRACE_STATE("switching to CLOSED", SPOP_EV_TX_FRAME|SPOP_EV_TX_HELLO|SPOP_EV_SPOP_CONN_END, spop_conn->conn);
TRACE_DEVEL("leaving on error", SPOP_EV_TX_FRAME|SPOP_EV_TX_HELLO|SPOP_EV_SPOP_CONN_ERR, spop_conn->conn);
return 0;
}
/* Sends an DISCONNECT frame for each active streams. Closed streams are
* excluded, as the streams which already received the end-of-stream. It returns
* > 0 if the record was sent tp all streams. Otherwise it returns 0.
*/
static int spop_conn_send_disconnect(struct spop_conn *spop_conn)
{
struct ist reason;
struct buffer outbuf;
struct buffer *mbuf;
char *p, *end;
size_t sz;
int ret = 0;
TRACE_ENTER(SPOP_EV_TX_FRAME|SPOP_EV_TX_DISCO, spop_conn->conn);
mbuf = br_tail(spop_conn->mbuf);
retry:
if (!spop_get_buf(spop_conn, mbuf)) {
spop_conn->flags |= SPOP_CF_MUX_MALLOC;
spop_conn->flags |= SPOP_CF_DEM_MROOM;
TRACE_STATE("waiting for fconn mbuf ring allocation", SPOP_EV_TX_FRAME|SPOP_EV_SPOP_CONN_BLK, spop_conn->conn);
ret = 0;
goto end;
}
while (1) {
outbuf = b_make(b_tail(mbuf), b_contig_space(mbuf), 0, 0);
if (outbuf.size >= 11 || !b_space_wraps(mbuf))
break;
realign_again:
b_slow_realign(mbuf, trash.area, b_data(mbuf));
}
if (outbuf.size < 11)
goto full;
/* len: 4-bytes (fill later) type: (2)HAPROXY-DISCONNECT, flags: 4-bytes (FIN=1)
* stream-id: 0x00, frame-id: 0x00 */
memcpy(outbuf.area, "\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00", 11);
outbuf.data = 11;
p = b_tail(&outbuf);
end = b_orig(&outbuf) + b_size(&outbuf);
/* "status-code" K/V item */
sz = SPOP_SLEN(SPOP_STATUS_CODE_KEY);
if (spoe_encode_buffer(SPOP_STATUS_CODE_KEY, sz, &p, end) == -1)
goto full;
*p++ = SPOP_DATA_T_UINT32;
if (encode_varint(spop_conn->errcode, &p, end) == -1)
goto full;
/* "message" K/V item */
sz = SPOP_SLEN(SPOP_MSG_KEY);
if (spoe_encode_buffer(SPOP_MSG_KEY, sz, &p, end) == -1)
goto full;
/*Get the message corresponding to the status code */
reason = spop_err_reasons[spop_conn->errcode];
*p++ = SPOP_DATA_T_STR;
if (spoe_encode_buffer(istptr(reason), istlen(reason), &p, end) == -1)
goto full;
outbuf.data += p - b_tail(&outbuf);
if (outbuf.data - 4 > spop_conn->max_frame_size)
goto too_big;
/* update the frame's size now */
TRACE_PROTO("SPOP HAPROXY DISCONNECT frame xferred", SPOP_EV_TX_FRAME|SPOP_EV_TX_DISCO, spop_conn->conn, 0, 0, (size_t[]){outbuf.data});
spop_set_frame_size(outbuf.area, outbuf.data - 4);
b_add(mbuf, outbuf.data);
spop_conn->flags |= SPOP_CF_DISCO_SENT;
spop_conn->state = SPOP_CS_CLOSING;
ret = 1;
switch (spop_conn->errcode) {
case SPOP_ERR_NONE:
spop_conn_report_term_evt(spop_conn, muxc_tevt_type_graceful_shut);
break;
case SPOP_ERR_IO:
spop_conn_report_term_evt(spop_conn, muxc_tevt_type_other_err);
break;
case SPOP_ERR_TOUT:
spop_conn_report_term_evt(spop_conn, muxc_tevt_type_tout);
break;
case SPOP_ERR_TOO_BIG:
case SPOP_ERR_INVALID:
case SPOP_ERR_NO_VSN:
case SPOP_ERR_NO_FRAME_SIZE:
case SPOP_ERR_NO_CAP:
case SPOP_ERR_BAD_VSN:
case SPOP_ERR_BAD_FRAME_SIZE:
case SPOP_ERR_FRAG_NOT_SUPPORTED:
case SPOP_ERR_INTERLACED_FRAMES:
case SPOP_ERR_FRAMEID_NOTFOUND:
spop_conn_report_term_evt(spop_conn, muxc_tevt_type_proto_err);
break;
case SPOP_ERR_RES:
case SPOP_ERR_UNKNOWN:
spop_conn_report_term_evt(spop_conn, muxc_tevt_type_internal_err);
break;
default:
spop_conn_report_term_evt(spop_conn, muxc_tevt_type_tout);
break;
}
end:
TRACE_LEAVE(SPOP_EV_TX_FRAME|SPOP_EV_TX_DISCO, spop_conn->conn);
return ret;
full:
/* Too large to be encoded. For DISCONNECT frame, it is an error */
if (!b_data(mbuf))
goto too_big;
if ((mbuf = br_tail_add(spop_conn->mbuf)) != NULL)
goto retry;
spop_conn->flags |= SPOP_CF_MUX_MFULL;
spop_conn->flags |= SPOP_CF_DEM_MROOM;
TRACE_STATE("mbuf ring full", SPOP_EV_TX_FRAME|SPOP_EV_SPOP_CONN_BLK, spop_conn->conn);
ret = 0;
goto end;
too_big:
TRACE_ERROR("SPOP HAPROXY DISCO frame too large", SPOP_EV_TX_FRAME|SPOP_EV_TX_DISCO|SPOP_EV_SPOP_CONN_ERR, spop_conn->conn);
fail:
spop_conn->state = SPOP_CS_CLOSED;
TRACE_STATE("switching to CLOSED", SPOP_EV_TX_FRAME|SPOP_EV_TX_DISCO|SPOP_EV_SPOP_CONN_END, spop_conn->conn);
TRACE_DEVEL("leaving on error", SPOP_EV_TX_FRAME|SPOP_EV_TX_DISCO|SPOP_EV_SPOP_CONN_ERR, spop_conn->conn);
return 0;
}
/* Processes an AGENT HELLO frame. Returns > 0 on success, 0 if it couldn't do
* anything. It is highly unexpected, but if the frame is larger than a buffer
* and cannot be decoded in one time, an error is triggered and the connection
* is closed. HELLO frame cannot be split.
*/
static int spop_conn_handle_hello(struct spop_conn *spop_conn)
{
struct buffer *dbuf;
char *p, *end;
int vsn, max_frame_size;
unsigned int flags;
TRACE_ENTER(SPOP_EV_RX_FRAME|SPOP_EV_RX_HELLO, spop_conn->conn);
dbuf = &spop_conn->dbuf;
/* Record too large to be fully decoded */
if (b_size(dbuf) < (spop_conn->dfl))
goto fail;
/* process full record only */
if (b_data(dbuf) < (spop_conn->dfl)) {
spop_conn->flags |= SPOP_CF_DEM_SHORT_READ;
TRACE_DEVEL("leaving on missing data", SPOP_EV_RX_FRAME|SPOP_EV_RX_HELLO, spop_conn->conn);
return 0;
}
if (unlikely(b_contig_data(dbuf, b_head_ofs(dbuf)) < spop_conn->dfl)) {
/* Realign the dmux buffer if the frame wraps. It is unexpected
* at this stage because it should be the first record received
* from the FCGI application.
*/
b_slow_realign_ofs(dbuf, trash.area, 0);
}
p = b_head(dbuf);
end = p + spop_conn->dfl;
/* There are 3 mandatory items: "version", "max-frame-size" and
* "capabilities" */
/* Loop on K/V items */
vsn = flags = 0;
max_frame_size = spop_conn->max_frame_size;
while (p < end) {
char *str;
uint64_t sz;
int ret;
/* Decode the item key */
ret = spoe_decode_buffer(&p, end, &str, &sz);
if (ret == -1 || !sz) {
spop_conn_error(spop_conn, SPOP_ERR_INVALID);
goto fail;
}
/* Check "version" K/V item */
if (sz >= strlen(SPOP_VERSION_KEY) && !memcmp(str, SPOP_VERSION_KEY, strlen(SPOP_VERSION_KEY))) {
int type = *p++;
/* The value must be a string */
if ((type & SPOP_DATA_T_MASK) != SPOP_DATA_T_STR) {
spop_conn_error(spop_conn, SPOP_ERR_INVALID);
goto fail;
}
if (spoe_decode_buffer(&p, end, &str, &sz) == -1) {
spop_conn_error(spop_conn, SPOP_ERR_INVALID);
goto fail;
}
vsn = spoe_str_to_vsn(str, sz);
if (vsn == -1) {
spop_conn_error(spop_conn, SPOP_ERR_INVALID);
goto fail;
}
if (spoe_check_vsn(vsn) == -1) {
spop_conn_error(spop_conn, SPOP_ERR_BAD_VSN);
goto fail;
}
}
/* Check "max-frame-size" K/V item */
else if (sz >= strlen(SPOP_MAX_FRAME_SIZE_KEY) && !memcmp(str, SPOP_MAX_FRAME_SIZE_KEY, SPOP_SLEN(SPOP_MAX_FRAME_SIZE_KEY))) {
int type = *p++;
/* The value must be integer */
if ((type & SPOP_DATA_T_MASK) != SPOP_DATA_T_INT32 &&
(type & SPOP_DATA_T_MASK) != SPOP_DATA_T_INT64 &&
(type & SPOP_DATA_T_MASK) != SPOP_DATA_T_UINT32 &&
(type & SPOP_DATA_T_MASK) != SPOP_DATA_T_UINT64) {
spop_conn_error(spop_conn, SPOP_ERR_INVALID);
goto fail;
}
if (decode_varint(&p, end, &sz) == -1) {
spop_conn_error(spop_conn, SPOP_ERR_INVALID);
goto fail;
}
if (sz < SPOP_MIN_FRAME_SIZE || sz > spop_conn->max_frame_size) {
spop_conn_error(spop_conn, SPOP_ERR_BAD_FRAME_SIZE);
goto fail;
}
max_frame_size = sz;
}
/* Check "capabilities" K/V item */
else if (sz >= strlen(SPOP_CAPABILITIES_KEY) && !memcmp(str, SPOP_CAPABILITIES_KEY, SPOP_SLEN(SPOP_CAPABILITIES_KEY))) {
int type = *p++;
/* The value must be a string */
if ((type & SPOP_DATA_T_MASK) != SPOP_DATA_T_STR) {
spop_conn_error(spop_conn, SPOP_ERR_INVALID);
goto fail;
}
if (spoe_decode_buffer(&p, end, &str, &sz) == -1) {
spop_conn_error(spop_conn, SPOP_ERR_INVALID);
goto fail;
}
while (sz) {
char *delim;
/* Skip leading spaces */
for (; isspace((unsigned char)*str) && sz; str++, sz--);
if (sz >= 10 && !strncmp(str, "pipelining", 10)) {
str += 10; sz -= 10;
if (!sz || isspace((unsigned char)*str) || *str == ',')
flags |= SPOE_FL_PIPELINING;
}
/* Get the next comma or break */
if (!sz || (delim = memchr(str, ',', sz)) == NULL)
break;
delim++;
sz -= (delim - str);
str = delim;
}
}
else {
/* Silently ignore unknown item */
if (spoe_skip_data(&p, end) == -1) {
spop_conn_error(spop_conn, SPOP_ERR_INVALID);
goto fail;
}
}
}
/* Final checks */
if (!vsn) {
spop_conn_error(spop_conn, SPOP_ERR_NO_VSN);
goto fail;
}
if (!max_frame_size) {
spop_conn_error(spop_conn, SPOP_ERR_NO_FRAME_SIZE);
goto fail;
}
if (!(flags & SPOE_FL_PIPELINING))
spop_conn->streams_limit = 1;
spop_conn->max_frame_size = (unsigned int)max_frame_size;
TRACE_PROTO("SPOP AGENT HELLO frame rcvd", SPOP_EV_RX_FRAME|SPOP_EV_RX_HELLO, spop_conn->conn, 0, 0, (size_t[]){spop_conn->dfl});
b_del(&spop_conn->dbuf, spop_conn->dfl);
spop_conn->dfl = 0;
spop_conn->state = SPOP_CS_RUNNING;
spop_wake_unassigned_streams(spop_conn);
TRACE_LEAVE(SPOP_EV_RX_FRAME|SPOP_EV_RX_HELLO, spop_conn->conn);
return 1;
fail:
TRACE_DEVEL("leaving on error", SPOP_EV_RX_FRAME|SPOP_EV_RX_HELLO|SPOP_EV_SPOP_CONN_ERR, spop_conn->conn);
return 0;
}
/* Processes an AGENT DISCONNECT frame. Returns > 0 on success, 0 if it couldn't
* do anything. It is highly unexpected, but if the frame is larger than a
* buffer and cannot be decoded in one time, an error is triggered and the
* connection is closed. DISCONNECT frame cannot be split.
*/
static int spop_conn_handle_disconnect(struct spop_conn *spop_conn)
{
struct buffer *dbuf;
char *p, *end;
//struct ist reason;
unsigned int status_code, flags;
TRACE_ENTER(SPOP_EV_RX_FRAME|SPOP_EV_RX_DISCO, spop_conn->conn);
dbuf = &spop_conn->dbuf;
/* Record too large to be fully decoded */
if (b_size(dbuf) < (spop_conn->dfl))
goto fail;
/* process full record only */
if (b_data(dbuf) < (spop_conn->dfl)) {
spop_conn->flags |= SPOP_CF_DEM_SHORT_READ;
TRACE_DEVEL("leaving on missing data", SPOP_EV_RX_FRAME|SPOP_EV_RX_DISCO, spop_conn->conn);
return 0;
}
if (unlikely(b_contig_data(dbuf, b_head_ofs(dbuf)) < spop_conn->dfl)) {
/* Realign the dmux buffer if the frame wraps. It is unexpected
* at this stage because it should be the first record received
* from the FCGI application.
*/
b_slow_realign_ofs(dbuf, trash.area, 0);
}
p = b_head(dbuf);
end = p + spop_conn->dfl;
/* There are 2 mandatory items: "status-code" and "message" */
/* Loop on K/V items */
status_code = flags = 0;
while (p < end) {
char *str;
uint64_t sz;
int ret;
/* Decode the item key */
ret = spoe_decode_buffer(&p, end, &str, &sz);
if (ret == -1 || !sz) {
spop_conn_error(spop_conn, SPOP_ERR_INVALID);
goto fail;
}
/* Check "status-code" K/V item */
if (sz >= strlen(SPOP_STATUS_CODE_KEY) && !memcmp(str, SPOP_STATUS_CODE_KEY, strlen(SPOP_STATUS_CODE_KEY))) {
int type = *p++;
/* The value must be an integer */
if ((type & SPOP_DATA_T_MASK) != SPOP_DATA_T_INT32 &&
(type & SPOP_DATA_T_MASK) != SPOP_DATA_T_INT64 &&
(type & SPOP_DATA_T_MASK) != SPOP_DATA_T_UINT32 &&
(type & SPOP_DATA_T_MASK) != SPOP_DATA_T_UINT64) {
spop_conn_error(spop_conn, SPOP_ERR_INVALID);
goto fail;
}
if (decode_varint(&p, end, &sz) == -1) {
spop_conn_error(spop_conn, SPOP_ERR_INVALID);
goto fail;
}
status_code = sz;
}
// TODO: for now skip the reason
/* /\* Check "message" K/V item *\/ */
/* else if (sz >= strlen(SPOP_MSG_KEY) && !memcmp(str, SPOP_MSG_KEY, strlen(SPOP_MSG_KEY))) { */
/* int type = *p++; */
/* /\* The value must be a string *\/ */
/* if ((type & SPOP_DATA_T_MASK) != SPOP_DATA_T_STR) { */
/* spop_conn_error(spop_conn, SPOP_ERR_INVALID); */
/* goto fail; */
/* } */
/* ret = spoe_decode_buffer(&p, end, &str, &sz); */
/* if (ret == -1 || sz > 255) { */
/* spop_conn_error(spop_conn, SPOP_ERR_INVALID); */
/* goto fail; */
/* } */
/* reason = ist2(str, sz); */
/* } */
else {
/* Silently ignore unknown item */
if (spoe_skip_data(&p, end) == -1) {
spop_conn_error(spop_conn, SPOP_ERR_INVALID);
goto fail;
}
}
}
TRACE_PROTO("SPOP AGENT DISCONNECT frame rcvd", SPOP_EV_RX_FRAME|SPOP_EV_RX_DISCO, spop_conn->conn, 0, 0, (size_t[]){spop_conn->dfl});
b_del(&spop_conn->dbuf, spop_conn->dfl);
spop_conn->dfl = 0;
spop_conn_error(spop_conn, status_code);
spop_conn->state = SPOP_CS_CLOSED;
spop_wake_some_streams(spop_conn, 0/*last*/);
spop_conn_report_term_evt(spop_conn, muxc_tevt_type_goaway_rcvd);
TRACE_LEAVE(SPOP_EV_RX_FRAME|SPOP_EV_RX_DISCO, spop_conn->conn);
return 1;
fail:
spop_conn->state = SPOP_CS_CLOSED;
TRACE_STATE("switching to CLOSED", SPOP_EV_RX_FRAME|SPOP_EV_RX_DISCO, spop_conn->conn);
TRACE_DEVEL("leaving on error", SPOP_EV_RX_FRAME|SPOP_EV_RX_DISCO|SPOP_EV_SPOP_CONN_ERR, spop_conn->conn);
return 0;
}
/* Processes an AGENT ACK frame. Returns > 0 on success, 0 if it couldn't
* do anything.
*
* TODO: for now cannot be fragmented.
*/
static int spop_conn_handle_ack(struct spop_conn *spop_conn, struct spop_strm *spop_strm)
{
struct buffer *dbuf, *rxbuf;
unsigned int flen, sent = 0;
TRACE_ENTER(SPOP_EV_RX_FRAME|SPOP_EV_RX_ACK, spop_conn->conn, spop_strm);
dbuf = &spop_conn->dbuf;
/* Record too large to be fully decoded */
if (b_size(dbuf) < (spop_conn->dfl))
goto fail;
/* process full record only */
if (b_data(dbuf) < (spop_conn->dfl)) {
spop_conn->flags |= SPOP_CF_DEM_SHORT_READ;
TRACE_DEVEL("leaving on missing data", SPOP_EV_RX_FRAME|SPOP_EV_RX_DISCO, spop_conn->conn);
return 0;
}
if (unlikely(b_contig_data(dbuf, b_head_ofs(dbuf)) < spop_conn->dfl)) {
/* Realign the dmux buffer if the frame wraps. It is unexpected
* at this stage because it should be the first record received
* from the FCGI application.
*/
b_slow_realign_ofs(dbuf, trash.area, 0);
}
spop_conn->flags &= ~SPOP_CF_DEM_SFULL;
rxbuf = spop_get_buf(spop_conn, &spop_strm->rxbuf);
if (!rxbuf) {
spop_conn->flags |= SPOP_CF_DEM_SALLOC;
TRACE_STATE("waiting for an spop_strm rxbuf", SPOP_EV_RX_FRAME|SPOP_EV_RX_ACK|SPOP_EV_SPOP_STRM_BLK, spop_conn->conn, spop_strm);
goto fail;
}
flen = spop_conn->dfl;
if (!flen) {
if (!b_room(rxbuf)) {
spop_conn->flags |= SPOP_CF_DEM_SFULL;
TRACE_STATE("spop_strm rxbuf is full", SPOP_EV_RX_FRAME|SPOP_EV_RX_ACK|SPOP_EV_SPOP_STRM_BLK, spop_conn->conn, spop_strm);
goto fail;
}
b_putchr(rxbuf, SPOP_ACT_T_NOOP);
sent = 1;
goto end;
}
// TODO: For now we know all data were received
/* if (flen > b_data(&h2c->dbuf)) { */
/* flen = b_data(&h2c->dbuf); */
/* if (!flen) */
/* goto fail; */
/* } */
// TODO: for now, we take care to xfer all data at once !
if (flen > b_room(rxbuf)) {
spop_conn->flags |= SPOP_CF_DEM_SFULL;
TRACE_STATE("spop_strm rxbuf is full", SPOP_EV_RX_FRAME|SPOP_EV_RX_ACK|SPOP_EV_SPOP_STRM_BLK, spop_conn->conn, spop_strm);
goto fail;
}
sent = b_xfer(rxbuf, dbuf, flen);
BUG_ON(sent != flen);
spop_conn->dfl -= sent;
end:
if (spop_strm->state == SPOP_SS_OPEN)
spop_strm->state = SPOP_SS_HREM;
else
spop_strm_close(spop_strm);
spop_strm->flags |= SPOP_SF_ACK_RCVD;
TRACE_PROTO("SPOP AGENT ACK frame rcvd", SPOP_EV_RX_FRAME|SPOP_EV_RX_ACK, spop_conn->conn, spop_strm, 0, (size_t[]){sent});
TRACE_LEAVE(SPOP_EV_RX_FRAME|SPOP_EV_RX_ACK, spop_conn->conn, spop_strm);
return 1;
fail:
TRACE_DEVEL("leaving on error", SPOP_EV_RX_FRAME|SPOP_EV_RX_ACK|SPOP_EV_SPOP_CONN_ERR, spop_conn->conn, spop_strm);
return 0;
}
/* resume each spop_strm eligible for sending in list head <head> */
static void spop_resume_each_sending_spop_strm(struct spop_conn *spop_conn, struct list *head)
{
struct spop_strm *spop_strm, *spop_strm_back;
TRACE_ENTER(SPOP_EV_SPOP_CONN_SEND|SPOP_EV_STRM_WAKE, spop_conn->conn);
list_for_each_entry_safe(spop_strm, spop_strm_back, head, list) {
if (spop_conn->flags & SPOP_CF_MUX_BLOCK_ANY ||
spop_conn->state >= SPOP_CS_ERROR)
break;
spop_strm->flags &= ~SPOP_SF_BLK_ANY;
if (spop_strm->flags & SPOP_SF_NOTIFIED)
continue;
/* If the sender changed his mind and unsubscribed, let's just
* remove the stream from the send_list.
*/
if (!spop_strm->subs || !(spop_strm->subs->events & SUB_RETRY_SEND)) {
LIST_DEL_INIT(&spop_strm->list);
continue;
}
if (spop_strm->subs && spop_strm->subs->events & SUB_RETRY_SEND) {
spop_strm->flags |= SPOP_SF_NOTIFIED;
tasklet_wakeup(spop_strm->subs->tasklet);
spop_strm->subs->events &= ~SUB_RETRY_SEND;
if (!spop_strm->subs->events)
spop_strm->subs = NULL;
}
}
TRACE_LEAVE(SPOP_EV_SPOP_CONN_SEND|SPOP_EV_STRM_WAKE, spop_conn->conn);
}
/* removes a stream from the list it may be in. If a stream has recently been
* appended to the send_list, it might have been waiting on this one when
* entering spop_snd_buf() and expecting it to complete before starting to send
* in turn. For this reason we check (and clear) SPOP_CF_WAIT_INLIST to detect
* this condition, and we try to resume sending streams if it happens. Note
* that we don't need to do it for fctl_list as this list is relevant before
* (only consulted after) a window update on the connection, and not because
* of any competition with other streams.
*/
static inline void spop_remove_from_list(struct spop_strm *spop_strm)
{
struct spop_conn *spop_conn = spop_strm->spop_conn;
if (!LIST_INLIST(&spop_strm->list))
return;
LIST_DEL_INIT(&spop_strm->list);
if (spop_conn->flags & SPOP_CF_WAIT_INLIST) {
spop_conn->flags &= ~SPOP_CF_WAIT_INLIST;
spop_resume_each_sending_spop_strm(spop_conn, &spop_conn->send_list);
}
}
/* process Rx records to be demultiplexed */
static void spop_process_demux(struct spop_conn *spop_conn)
{
struct spop_strm *spop_strm = NULL, *tmp_spop_strm;
struct spop_frame_header hdr;
TRACE_ENTER(SPOP_EV_SPOP_CONN_WAKE, spop_conn->conn);
if (spop_conn->state == SPOP_CS_CLOSED)
goto out;
if (unlikely(spop_conn->state < SPOP_CS_RUNNING || spop_conn->state == SPOP_CS_CLOSING)) {
if (spop_conn->state == SPOP_CS_HA_HELLO) {
TRACE_STATE("waiting AGENT HELLO frame to be sent", SPOP_EV_RX_FRAME|SPOP_EV_RX_FHDR|SPOP_EV_RX_HELLO, spop_conn->conn);
goto out;
}
else { /* AGENT_HELLO OR CLOSING */
/* ensure that what is pending is a valid AGENT HELLO/DISCONNECT frame. */
TRACE_STATE("receiving AGENT HELLO/DISCONNECT frame header", SPOP_EV_RX_FRAME|SPOP_EV_RX_FHDR, spop_conn->conn);
if (!spop_get_frame_hdr(&spop_conn->dbuf, &hdr)) {
spop_conn->flags |= SPOP_CF_DEM_SHORT_READ;
TRACE_DEVEL("header frame not available yet", SPOP_EV_RX_FRAME|SPOP_EV_RX_FHDR, spop_conn->conn);
goto done;
}
if (spop_conn->state == SPOP_CS_AGENT_HELLO && hdr.type != SPOP_FRM_T_AGENT_HELLO) {
spop_conn_error(spop_conn, SPOP_ERR_INVALID);
spop_conn->state = SPOP_CS_CLOSED;
TRACE_ERROR("unexpected frame type (AGENT HELLO expected)", SPOP_EV_RX_FRAME|SPOP_EV_RX_FHDR|SPOP_EV_RX_HELLO|SPOP_EV_SPOP_CONN_ERR, spop_conn->conn);
TRACE_STATE("switching to CLOSED", SPOP_EV_RX_FRAME|SPOP_EV_RX_FHDR|SPOP_EV_RX_HELLO|SPOP_EV_SPOP_CONN_ERR, spop_conn->conn);
goto done;
}
if ((hdr.type == SPOP_FRM_T_AGENT_HELLO || hdr.type == SPOP_FRM_T_AGENT_DISCON) && (hdr.sid || hdr.fid || !(hdr.flags & SPOP_FRM_FL_FIN))) {
spop_conn_error(spop_conn, SPOP_ERR_INVALID);
spop_conn->state = SPOP_CS_CLOSED;
TRACE_ERROR("unexpected frame meta-data", SPOP_EV_RX_FRAME|SPOP_EV_RX_FHDR|SPOP_EV_RX_HELLO|SPOP_EV_SPOP_CONN_ERR, spop_conn->conn);
TRACE_STATE("switching to CLOSED", SPOP_EV_RX_FRAME|SPOP_EV_RX_FHDR|SPOP_EV_RX_HELLO|SPOP_EV_SPOP_CONN_ERR, spop_conn->conn);
goto done;
}
if ((int)hdr.len < 0 || (int)hdr.len > spop_conn->max_frame_size) {
spop_conn_error(spop_conn, SPOP_ERR_BAD_FRAME_SIZE);
spop_conn->state = SPOP_CS_CLOSED;
TRACE_ERROR("invalid AGENT HELLO frame length", SPOP_EV_RX_FRAME|SPOP_EV_RX_FHDR|SPOP_EV_RX_HELLO|SPOP_EV_SPOP_CONN_ERR, spop_conn->conn);
TRACE_STATE("switching to CLOSED", SPOP_EV_RX_FRAME|SPOP_EV_RX_FHDR|SPOP_EV_RX_HELLO|SPOP_EV_SPOP_CONN_ERR, spop_conn->conn);
goto done;
}
goto new_frame;
}
}
/* process as many incoming frames as possible below */
while (1) {
int ret = 0;
if (!b_data(&spop_conn->dbuf)) {
TRACE_DEVEL("no more Rx data", SPOP_EV_RX_FRAME, spop_conn->conn);
spop_conn->flags |= SPOP_CF_DEM_SHORT_READ;
break;
}
if (spop_conn->state == SPOP_CS_CLOSED) {
TRACE_STATE("end of connection reported", SPOP_EV_RX_FRAME|SPOP_EV_RX_EOI, spop_conn->conn);
break;
}
if (spop_conn->dsi == -1) {
TRACE_PROTO("receiving SPOP frame header", SPOP_EV_RX_FRAME|SPOP_EV_RX_FHDR, spop_conn->conn);
if (!spop_get_frame_hdr(&spop_conn->dbuf, &hdr)) {
spop_conn->flags |= SPOP_CF_DEM_SHORT_READ;
break;
}
if ((int)hdr.len < 0 || (int)hdr.len > spop_conn->max_frame_size) {
spop_conn_error(spop_conn, SPOP_ERR_BAD_FRAME_SIZE);
TRACE_ERROR("invalid SPOP frame length", SPOP_EV_RX_FRAME|SPOP_EV_RX_FHDR|SPOP_EV_SPOP_CONN_ERR, spop_conn->conn);
TRACE_STATE("switching to ERROR", SPOP_EV_RX_FRAME|SPOP_EV_RX_FHDR|SPOP_EV_SPOP_CONN_ERR, spop_conn->conn);
break;
}
new_frame:
spop_conn->dsi = hdr.sid;
spop_conn->dfi = hdr.fid;
spop_conn->dft = hdr.type;
spop_conn->dfl = hdr.len;
spop_conn->dff = hdr.flags;
TRACE_STATE("SPOP frame header rcvd", SPOP_EV_RX_FRAME|SPOP_EV_RX_FHDR, spop_conn->conn);
/* Perform sanity check on the frame header */
if (!(spop_conn->dff & SPOP_FRM_FL_FIN)) {
spop_conn_error(spop_conn, SPOP_ERR_FRAG_NOT_SUPPORTED);
TRACE_ERROR("frame fragmentation not supported", SPOP_EV_RX_FRAME|SPOP_EV_RX_FHDR|SPOP_EV_SPOP_CONN_ERR, spop_conn->conn);
TRACE_STATE("switching to ERROR", SPOP_EV_RX_FRAME|SPOP_EV_RX_FHDR|SPOP_EV_SPOP_CONN_ERR, spop_conn->conn);
break;
}
if (!spop_conn->dsi && spop_conn->dft == SPOP_FRM_T_AGENT_ACK) {
spop_conn_error(spop_conn, SPOP_ERR_INVALID);
TRACE_ERROR("invalid SPOP frame (ACK && dsi == 0)", SPOP_EV_RX_FRAME|SPOP_EV_RX_FHDR|SPOP_EV_SPOP_CONN_ERR, spop_conn->conn);
TRACE_STATE("switching to ERROR", SPOP_EV_RX_FRAME|SPOP_EV_RX_FHDR|SPOP_EV_SPOP_CONN_ERR, spop_conn->conn);
break;
}
if (spop_conn->dsi && !spop_conn->dfi) {
spop_conn_error(spop_conn, SPOP_ERR_INVALID);
TRACE_ERROR("invalid SPOP frame (dsi != 0 && dfi == 0)", SPOP_EV_RX_FRAME|SPOP_EV_RX_FHDR|SPOP_EV_SPOP_CONN_ERR, spop_conn->conn);
TRACE_STATE("switching to ERROR", SPOP_EV_RX_FRAME|SPOP_EV_RX_FHDR|SPOP_EV_SPOP_CONN_ERR, spop_conn->conn);
break;
}
}
tmp_spop_strm = spop_conn_st_by_id(spop_conn, spop_conn->dsi);
if (tmp_spop_strm != spop_strm && spop_strm && spop_strm_sc(spop_strm) &&
(b_data(&spop_strm->rxbuf) ||
spop_conn_read0_pending(spop_conn) ||
spop_strm->state == SPOP_SS_CLOSED ||
(spop_strm->flags & SPOP_SF_ACK_RCVD) ||
se_fl_test(spop_strm->sd, SE_FL_ERROR | SE_FL_ERR_PENDING | SE_FL_EOS))) {
/* we may have to signal the upper layers */
TRACE_DEVEL("notifying stream before switching SID", SPOP_EV_RX_FRAME|SPOP_EV_STRM_WAKE, spop_conn->conn, spop_strm);
se_fl_set(spop_strm->sd, SE_FL_RCV_MORE);
spop_strm_notify_recv(spop_strm);
}
spop_strm = tmp_spop_strm;
/* Perform sanity checks on the SPOP stream */
if (spop_strm == spop_unknown_stream) {
if (spop_conn->dsi > spop_conn->max_id) {
spop_conn_error(spop_conn, SPOP_ERR_FRAMEID_NOTFOUND);
TRACE_ERROR("invalid SPOP frame (dsi > max_id)", SPOP_EV_RX_FRAME|SPOP_EV_RX_FHDR|SPOP_EV_SPOP_CONN_ERR, spop_conn->conn);
TRACE_STATE("switching to CLOSED", SPOP_EV_RX_FRAME|SPOP_EV_RX_FHDR|SPOP_EV_SPOP_CONN_ERR, spop_conn->conn);
break;
}
else {
/* stream not found, probably because it aborted */
goto ignore_frame;
}
}
else if (spop_strm == spop_closed_stream) {
if (spop_conn->dft != SPOP_FRM_T_AGENT_HELLO && spop_conn->dft != SPOP_FRM_T_AGENT_DISCON) {
spop_conn_error(spop_conn, SPOP_ERR_INVALID);
TRACE_ERROR("invalid SPOP frame (dsi == 0)", SPOP_EV_RX_FRAME|SPOP_EV_RX_FHDR|SPOP_EV_SPOP_CONN_ERR, spop_conn->conn);
TRACE_STATE("switching to CLOSED", SPOP_EV_RX_FRAME|SPOP_EV_RX_FHDR|SPOP_EV_SPOP_CONN_ERR, spop_conn->conn);
break;
}
}
else {
if (spop_conn->dfi == spop_strm->fid) {
// OK, no problem
}
else if (spop_conn->dfi > spop_strm->fid) {
spop_conn_error(spop_conn, SPOP_ERR_FRAMEID_NOTFOUND);
TRACE_ERROR("invalid SPOP frame (dfi > frame-id)", SPOP_EV_RX_FRAME|SPOP_EV_RX_FHDR|SPOP_EV_SPOP_CONN_ERR, spop_conn->conn);
TRACE_STATE("switching to CLOSED", SPOP_EV_RX_FRAME|SPOP_EV_RX_FHDR|SPOP_EV_SPOP_CONN_ERR, spop_conn->conn);
break;
}
else {
/* frame id not found, probably because it aborted */
goto ignore_frame;
}
}
switch (spop_conn->dft) {
case SPOP_FRM_T_AGENT_HELLO:
if (spop_conn->dsi == 0)
ret = spop_conn_handle_hello(spop_conn);
break;
case SPOP_FRM_T_AGENT_DISCON:
if (spop_conn->dsi == 0)
ret = spop_conn_handle_disconnect(spop_conn);
break;
case SPOP_FRM_T_AGENT_ACK:
if (spop_conn->dsi > 0)
ret = spop_conn_handle_ack(spop_conn, spop_strm);
break;
default:
ignore_frame:
TRACE_PROTO("receiving SPOP ignored frame", SPOP_EV_RX_FRAME, spop_conn->conn, spop_strm);
/* drop frames that we ignore. */
ret = MIN(b_data(&spop_conn->dbuf), spop_conn->dfl);
b_del(&spop_conn->dbuf, ret);
spop_conn->dfl -= ret;
ret = (spop_conn->dfl == 0);
break;
}
// TODO: SS_ERROR to CS_ERROR ?
if (spop_conn->state == SPOP_CS_ERROR) {
TRACE_PROTO("sending SPOP HAPROXY DISCONNECT frame", SPOP_EV_TX_FRAME|SPOP_EV_TX_DISCO|SPOP_EV_TX_EOI, spop_conn->conn, spop_strm);
ret = spop_conn_send_disconnect(spop_conn);
}
/* error or missing data condition met above ? */
if (ret <= 0)
break;
if (spop_conn->dsi >= 0) {
if (spop_conn->dfl) {
TRACE_DEVEL("skipping remaining frame payload", SPOP_EV_RX_FRAME, spop_conn->conn, spop_strm);
ret = MIN(b_data(&spop_conn->dbuf), spop_conn->dfl);
b_del(&spop_conn->dbuf, ret);
spop_conn->dfl -= ret;
}
if (!spop_conn->dfl) {
TRACE_STATE("reset dsi", SPOP_EV_RX_FRAME|SPOP_EV_RX_FHDR, spop_conn->conn);
spop_conn->dsi = -1;
}
}
}
done:
if (spop_conn->state >= SPOP_CS_ERROR || (spop_conn->flags & SPOP_CF_DEM_SHORT_READ)) {
if (spop_conn->flags & SPOP_CF_RCVD_SHUT)
spop_conn->flags |= SPOP_CF_END_REACHED;
}
if (spop_conn_read0_pending(spop_conn) && (spop_conn->flags & SPOP_CF_DEM_SHORT_READ) && b_data(&spop_conn->dbuf)) {
spop_conn_error(spop_conn, SPOP_ERR_INVALID);
spop_conn->state = SPOP_CS_CLOSED;
TRACE_ERROR("truncated data", SPOP_EV_RX_FRAME|SPOP_EV_RX_FHDR|SPOP_EV_SPOP_CONN_ERR, spop_conn->conn);
TRACE_STATE("switching to CLOSED", SPOP_EV_RX_FRAME|SPOP_EV_RX_FHDR|SPOP_EV_SPOP_CONN_ERR, spop_conn->conn);
}
if (spop_conn->flags & SPOP_CF_ERROR)
spop_conn_report_term_evt(spop_conn, ((eb_is_empty(&spop_conn->streams_by_id) && (spop_conn->state == SPOP_CS_RUNNING) && spop_conn->dsi == -1)
? muxc_tevt_type_rcv_err
: muxc_tevt_type_truncated_rcv_err));
else if (spop_conn->flags & SPOP_CF_END_REACHED)
spop_conn_report_term_evt(spop_conn, ((eb_is_empty(&spop_conn->streams_by_id) && (spop_conn->state == SPOP_CS_RUNNING) && spop_conn->dsi == -1)
? muxc_tevt_type_shutr
: muxc_tevt_type_truncated_shutr));
if (spop_strm && spop_strm_sc(spop_strm) &&
(b_data(&spop_strm->rxbuf) ||
spop_conn_read0_pending(spop_conn) ||
spop_strm->state == SPOP_SS_CLOSED ||
(spop_strm->flags & SPOP_SF_ACK_RCVD) ||
se_fl_test(spop_strm->sd, SE_FL_ERROR | SE_FL_ERR_PENDING | SE_FL_EOS))) {
/* we may have to signal the upper layers */
TRACE_DEVEL("notifying stream before switching SID", SPOP_EV_RX_FRAME|SPOP_EV_STRM_WAKE, spop_conn->conn, spop_strm);
se_fl_set(spop_strm->sd, SE_FL_RCV_MORE);
spop_strm_notify_recv(spop_strm);
}
spop_conn_restart_reading(spop_conn, 0);
out:
TRACE_LEAVE(SPOP_EV_SPOP_CONN_WAKE, spop_conn->conn);
return;
}
/* process Tx records from streams to be multiplexed. Returns > 0 if it reached
* the end.
*/
static int spop_process_mux(struct spop_conn *spop_conn)
{
TRACE_ENTER(SPOP_EV_SPOP_CONN_WAKE, spop_conn->conn);
if (unlikely(spop_conn->state < SPOP_CS_RUNNING)) {
if (unlikely(spop_conn->state == SPOP_CS_HA_HELLO)) {
TRACE_PROTO("sending SPOP HAPROXY HELLO fraame", SPOP_EV_TX_FRAME, spop_conn->conn);
if (unlikely(!spop_conn_send_hello(spop_conn)))
goto fail;
spop_conn->state = SPOP_CS_AGENT_HELLO;
TRACE_STATE("waiting for SPOP AGENT HELLO reply", SPOP_EV_TX_FRAME|SPOP_EV_RX_FRAME, spop_conn->conn);
}
/* need to wait for the other side */
if (spop_conn->state < SPOP_CS_RUNNING)
goto done;
}
spop_conn->flags &= ~SPOP_CF_WAIT_INLIST;
spop_resume_each_sending_spop_strm(spop_conn, &spop_conn->send_list);
fail:
/* Nothing to do */
done:
TRACE_LEAVE(SPOP_EV_SPOP_CONN_WAKE, spop_conn->conn);
return 1;
}
/* Attempt to read data, and subscribe if none available.
* The function returns 1 if data has been received, otherwise zero.
*/
static int spop_recv(struct spop_conn *spop_conn)
{
struct connection *conn = spop_conn->conn;
struct buffer *buf;
int max;
size_t ret;
TRACE_ENTER(SPOP_EV_SPOP_CONN_RECV, conn);
if (spop_conn->wait_event.events & SUB_RETRY_RECV) {
TRACE_DEVEL("leaving on sub_recv", SPOP_EV_SPOP_CONN_RECV, conn);
return (b_data(&spop_conn->dbuf));
}
if (!spop_recv_allowed(spop_conn)) {
TRACE_DEVEL("leaving on !recv_allowed", SPOP_EV_SPOP_CONN_RECV, conn);
return 1;
}
buf = spop_get_buf(spop_conn, &spop_conn->dbuf);
if (!buf) {
TRACE_DEVEL("waiting for spop_conn dbuf allocation", SPOP_EV_SPOP_CONN_RECV|SPOP_EV_SPOP_CONN_BLK, conn);
spop_conn->flags |= SPOP_CF_DEM_DALLOC;
return 0;
}
max = b_room(buf);
ret = max ? conn->xprt->rcv_buf(conn, conn->xprt_ctx, buf, max, 0) : 0;
if (max && !ret && spop_recv_allowed(spop_conn)) {
TRACE_DATA("failed to receive data, subscribing", SPOP_EV_SPOP_CONN_RECV, conn);
conn->xprt->subscribe(conn, conn->xprt_ctx, SUB_RETRY_RECV, &spop_conn->wait_event);
}
else
TRACE_DATA("recv data", SPOP_EV_SPOP_CONN_RECV, conn, 0, 0, (size_t[]){ret});
if (conn_xprt_read0_pending(conn)) {
TRACE_DATA("received read0", SPOP_EV_SPOP_CONN_RECV, conn);
spop_conn->flags |= SPOP_CF_RCVD_SHUT;
}
if ((conn->flags & CO_FL_ERROR) &&
(!b_data(&spop_conn->dbuf) || (spop_conn->flags & SPOP_CF_DEM_SHORT_READ))) {
TRACE_DATA("connection error", SPOP_EV_SPOP_CONN_RECV, conn);
spop_conn->flags |= SPOP_CF_ERROR;
}
if (!b_data(buf)) {
spop_release_buf(spop_conn, &spop_conn->dbuf);
goto end;
}
if (ret == max) {
TRACE_DEVEL("spop_conn dbuf full", SPOP_EV_SPOP_CONN_RECV|SPOP_EV_SPOP_CONN_BLK, conn);
spop_conn->flags |= SPOP_CF_DEM_DFULL;
}
end:
TRACE_LEAVE(SPOP_EV_SPOP_CONN_RECV, conn);
return !!ret || (spop_conn->flags & (SPOP_CF_RCVD_SHUT|SPOP_CF_ERROR));
}
/* Try to send data if possible.
* The function returns 1 if data have been sent, otherwise zero.
*/
static int spop_send(struct spop_conn *spop_conn)
{
struct connection *conn = spop_conn->conn;
int done;
int sent = 0;
TRACE_ENTER(SPOP_EV_SPOP_CONN_SEND, conn);
if (spop_conn->flags & (SPOP_CF_ERROR|SPOP_CF_ERR_PENDING)) {
TRACE_DEVEL("leaving on connection error", SPOP_EV_SPOP_CONN_SEND, conn);
if (spop_conn->flags & SPOP_CF_END_REACHED)
spop_conn->flags |= SPOP_CF_ERROR;
b_reset(br_tail(spop_conn->mbuf));
return 1;
}
if (conn->flags & CO_FL_WAIT_XPRT) {
/* a handshake was requested */
goto schedule;
}
/* This loop is quite simple : it tries to fill as much as it can from
* pending streams into the existing buffer until it's reportedly full
* or the end of send requests is reached. Then it tries to send this
* buffer's contents out, marks it not full if at least one byte could
* be sent, and tries again.
*
* The snd_buf() function normally takes a "flags" argument which may
* be made of a combination of CO_SFL_MSG_MORE to indicate that more
* data immediately comes and CO_SFL_STREAMER to indicate that the
* connection is streaming lots of data (used to increase TLS record
* size at the expense of latency). The former can be sent any time
* there's a buffer full flag, as it indicates at least one stream
* attempted to send and failed so there are pending data. An
* alternative would be to set it as long as there's an active stream
* but that would be problematic for ACKs until we have an absolute
* guarantee that all waiters have at least one byte to send. The
* latter should possibly not be set for now.
*/
done = 0;
while (!done) {
unsigned int flags = 0;
unsigned int released = 0;
struct buffer *buf;
/* fill as much as we can into the current buffer */
while (((spop_conn->flags & (SPOP_CF_MUX_MFULL|SPOP_CF_MUX_MALLOC)) == 0) && !done)
done = spop_process_mux(spop_conn);
if (spop_conn->flags & SPOP_CF_MUX_MALLOC)
done = 1; // we won't go further without extra buffers
if (conn->flags & CO_FL_ERROR)
break;
if (spop_conn->flags & (SPOP_CF_MUX_MFULL | SPOP_CF_DEM_MROOM))
flags |= CO_SFL_MSG_MORE;
for (buf = br_head(spop_conn->mbuf); b_size(buf); buf = br_del_head(spop_conn->mbuf)) {
if (b_data(buf)) {
int ret;
ret = conn->xprt->snd_buf(conn, conn->xprt_ctx, buf, b_data(buf), flags);
if (!ret) {
done = 1;
break;
}
sent = 1;
TRACE_DATA("send data", SPOP_EV_SPOP_CONN_SEND, conn, 0, 0, (size_t[]){ret});
b_del(buf, ret);
if (b_data(buf)) {
done = 1;
break;
}
}
b_free(buf);
released++;
}
if (released)
offer_buffers(NULL, released);
/* wrote at least one byte, the buffer is not full anymore */
if (spop_conn->flags & (SPOP_CF_MUX_MFULL | SPOP_CF_DEM_MROOM))
TRACE_STATE("spop_conn mbuf ring not fill anymore", SPOP_EV_SPOP_CONN_SEND|SPOP_EV_SPOP_CONN_BLK, conn);
spop_conn->flags &= ~(SPOP_CF_MUX_MFULL | SPOP_CF_DEM_MROOM);
}
if (conn->flags & CO_FL_ERROR) {
spop_conn->flags |= SPOP_CF_ERR_PENDING;
spop_conn_report_term_evt(spop_conn, muxc_tevt_type_snd_err);
if (spop_conn->flags & SPOP_CF_END_REACHED)
spop_conn->flags |= SPOP_CF_ERROR;
b_reset(br_tail(spop_conn->mbuf));
}
/* We're not full anymore, so we can wake any task that are waiting
* for us.
*/
if (!(spop_conn->flags & (SPOP_CF_MUX_MFULL | SPOP_CF_DEM_MROOM)) && spop_conn->state >= SPOP_CS_RUNNING) {
spop_conn->flags &= ~SPOP_CF_WAIT_INLIST;
spop_resume_each_sending_spop_strm(spop_conn, &spop_conn->send_list);
}
/* We're done, no more to send */
if (!br_data(spop_conn->mbuf)) {
TRACE_DEVEL("leaving with everything sent", SPOP_EV_SPOP_CONN_SEND, conn);
goto end;
}
schedule:
if (!(conn->flags & CO_FL_ERROR) && !(spop_conn->wait_event.events & SUB_RETRY_SEND)) {
TRACE_STATE("more data to send, subscribing", SPOP_EV_SPOP_CONN_SEND, conn);
conn->xprt->subscribe(conn, conn->xprt_ctx, SUB_RETRY_SEND, &spop_conn->wait_event);
}
TRACE_DEVEL("leaving with some data left to send", SPOP_EV_SPOP_CONN_SEND, conn);
end:
return sent || (spop_conn->flags & (SPOP_CF_ERR_PENDING|SPOP_CF_ERROR));
}
/* this is the tasklet referenced in spop_conn->wait_event.tasklet */
static struct task *spop_io_cb(struct task *t, void *ctx, unsigned int state)
{
struct connection *conn;
struct spop_conn *spop_conn = ctx;
struct tasklet *tl = (struct tasklet *)t;
int conn_in_list;
int ret = 0;
if (state & TASK_F_USR1) {
/* the tasklet was idling on an idle connection, it might have
* been stolen, let's be careful!
*/
HA_SPIN_LOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
if (tl->context == NULL) {
/* The connection has been taken over by another thread,
* we're no longer responsible for it, so just free the
* tasklet, and do nothing.
*/
HA_SPIN_UNLOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
tasklet_free(tl);
return NULL;
}
conn = spop_conn->conn;
TRACE_POINT(SPOP_EV_SPOP_CONN_WAKE, conn);
conn_in_list = conn->flags & CO_FL_LIST_MASK;
if (conn_in_list)
conn_delete_from_tree(conn);
HA_SPIN_UNLOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
} else {
/* we're certain the connection was not in an idle list */
conn = spop_conn->conn;
TRACE_ENTER(SPOP_EV_SPOP_CONN_WAKE, conn);
conn_in_list = 0;
}
if (!(spop_conn->wait_event.events & SUB_RETRY_SEND))
ret = spop_send(spop_conn);
if (!(spop_conn->wait_event.events & SUB_RETRY_RECV))
ret |= spop_recv(spop_conn);
if (ret || b_data(&spop_conn->dbuf))
ret = spop_process(spop_conn);
/* If we were in an idle list, we want to add it back into it,
* unless spop_process() returned -1, which mean it has destroyed
* the connection (testing !ret is enough, if spop_process() wasn't
* called then ret will be 0 anyway.
*/
if (ret < 0)
t = NULL;
if (!ret && conn_in_list) {
struct server *srv = __objt_server(conn->target);
HA_SPIN_LOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
_srv_add_idle(srv, conn, conn_in_list == CO_FL_SAFE_LIST);
HA_SPIN_UNLOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
}
return t;
}
/* callback called on any event by the connection handler.
* It applies changes and returns zero, or < 0 if it wants immediate
* destruction of the connection (which normally doesn not happen in SPOP).
*/
static int spop_process(struct spop_conn *spop_conn)
{
struct connection *conn = spop_conn->conn;
TRACE_POINT(SPOP_EV_SPOP_CONN_WAKE, conn);
if (!(spop_conn->flags & SPOP_CF_DEM_BLOCK_ANY) &&
(b_data(&spop_conn->dbuf) || (spop_conn->flags & SPOP_CF_RCVD_SHUT))) {
spop_process_demux(spop_conn);
if (spop_conn->state >= SPOP_CS_ERROR || (spop_conn->flags & SPOP_CF_ERROR))
b_reset(&spop_conn->dbuf);
if (b_room(&spop_conn->dbuf))
spop_conn->flags &= ~SPOP_CF_DEM_DFULL;
}
spop_send(spop_conn);
/*
* If we received early data, and the handshake is done, wake
* any stream that was waiting for it.
*/
if (!(spop_conn->flags & SPOP_CF_WAIT_FOR_HS) &&
(conn->flags & (CO_FL_EARLY_SSL_HS | CO_FL_WAIT_XPRT | CO_FL_EARLY_DATA)) == CO_FL_EARLY_DATA) {
struct eb32_node *node;
struct spop_strm *spop_strm;
spop_conn->flags |= SPOP_CF_WAIT_FOR_HS;
node = eb32_lookup_ge(&spop_conn->streams_by_id, 1);
while (node) {
spop_strm = container_of(node, struct spop_strm, by_id);
if (spop_strm_sc(spop_strm) && se_fl_test(spop_strm->sd, SE_FL_WAIT_FOR_HS))
spop_strm_notify_recv(spop_strm);
node = eb32_next(node);
}
}
if ((spop_conn->flags & SPOP_CF_ERROR) || spop_conn_read0_pending(spop_conn) ||
spop_conn->state == SPOP_CS_CLOSED || (spop_conn->flags & SPOP_CF_DISCO_FAILED)) {
spop_wake_some_streams(spop_conn, 0);
if (eb_is_empty(&spop_conn->streams_by_id)) {
/* no more stream, kill the connection now */
spop_release(spop_conn);
TRACE_DEVEL("leaving after releasing the connection", SPOP_EV_SPOP_CONN_WAKE);
return -1;
}
/* connections in error must be removed from the idle lists */
if (conn->flags & CO_FL_LIST_MASK) {
HA_SPIN_LOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
conn_delete_from_tree(conn);
HA_SPIN_UNLOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
}
}
if (!b_data(&spop_conn->dbuf))
spop_release_buf(spop_conn, &spop_conn->dbuf);
if (spop_conn->state == SPOP_CS_CLOSED || (spop_conn->flags & SPOP_CF_DISCO_FAILED) ||
(!br_data(spop_conn->mbuf) && ((spop_conn->flags & SPOP_CF_MUX_BLOCK_ANY) || LIST_ISEMPTY(&spop_conn->send_list))))
spop_release_mbuf(spop_conn);
spop_conn_update_timeout(spop_conn);
spop_send(spop_conn);
TRACE_LEAVE(SPOP_EV_SPOP_CONN_WAKE, conn);
return 0;
}
/* wake-up function called by the connection layer (mux_ops.wake) */
static int spop_wake(struct connection *conn)
{
struct spop_conn *spop_conn = conn->ctx;
TRACE_POINT(SPOP_EV_SPOP_CONN_WAKE, conn);
return (spop_process(spop_conn));
}
static int spop_ctl(struct connection *conn, enum mux_ctl_type mux_ctl, void *output)
{
struct spop_conn *spop_conn = conn->ctx;
int ret = 0;
switch (mux_ctl) {
case MUX_CTL_STATUS:
if (spop_conn->state == SPOP_CS_RUNNING &&
!(spop_conn->flags & (SPOP_CF_ERROR|SPOP_CF_ERR_PENDING|SPOP_CF_END_REACHED|SPOP_CF_RCVD_SHUT|SPOP_CF_DISCO_SENT|SPOP_CF_DISCO_FAILED)))
ret |= MUX_STATUS_READY;
return ret;
case MUX_CTL_EXIT_STATUS:
return MUX_ES_UNKNOWN;
case MUX_CTL_GET_NBSTRM:
return spop_conn->nb_streams;
case MUX_CTL_GET_MAXSTRM:
return spop_conn->streams_limit;
case MUX_CTL_TEVTS:
return spop_conn->term_evts_log;
default:
return -1;
}
}
static int spop_sctl(struct stconn *sc, enum mux_sctl_type mux_sctl, void *output)
{
int ret = 0;
struct spop_strm *spop_strm = __sc_mux_strm(sc);
union mux_sctl_dbg_str_ctx *dbg_ctx;
struct buffer *buf;
switch (mux_sctl) {
case MUX_SCTL_SID:
if (output)
*((int64_t *)output) = spop_strm->id;
return ret;
case MUX_SCTL_DBG_STR:
dbg_ctx = output;
buf = get_trash_chunk();
if (dbg_ctx->arg.debug_flags & MUX_SCTL_DBG_STR_L_MUXS)
spop_dump_spop_strm_info(buf, spop_strm, NULL);
if (dbg_ctx->arg.debug_flags & MUX_SCTL_DBG_STR_L_MUXC)
spop_dump_spop_conn_info(buf, spop_strm->spop_conn, NULL);
if (dbg_ctx->arg.debug_flags & MUX_SCTL_DBG_STR_L_CONN)
chunk_appendf(buf, " conn.flg=%#08x conn.err_code=%u conn.evts=%s",
spop_strm->spop_conn->conn->flags, spop_strm->spop_conn->conn->err_code,
tevt_evts2str(spop_strm->spop_conn->conn->term_evts_log));
/* other layers not implemented */
dbg_ctx->ret.buf = *buf;
return ret;
case MUX_SCTL_TEVTS:
return spop_strm->sd->term_evts_log;
default:
return -1;
}
}
/* Connection timeout management. The principle is that if there's no receipt
* nor sending for a certain amount of time, the connection is closed. If the
* MUX buffer still has lying data or is not allocatable, the connection is
* immediately killed. If it's allocatable and empty, we attempt to send a
* ABORT records.
*/
static struct task *spop_timeout_task(struct task *t, void *context, unsigned int state)
{
struct spop_conn *spop_conn = context;
int expired = tick_is_expired(t->expire, now_ms);
TRACE_ENTER(SPOP_EV_SPOP_CONN_WAKE, (spop_conn ? spop_conn->conn : NULL));
if (spop_conn) {
HA_SPIN_LOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
/* Somebody already stole the connection from us, so we should not
* free it, we just have to free the task.
*/
if (!t->context) {
HA_SPIN_UNLOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
spop_conn = NULL;
goto do_leave;
}
if (!expired) {
HA_SPIN_UNLOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
TRACE_DEVEL("leaving (not expired)", SPOP_EV_SPOP_CONN_WAKE, spop_conn->conn);
return t;
}
/* We're about to destroy the connection, so make sure nobody attempts
* to steal it from us.
*/
if (spop_conn->conn->flags & CO_FL_LIST_MASK)
conn_delete_from_tree(spop_conn->conn);
HA_SPIN_UNLOCK(IDLE_CONNS_LOCK, &idle_conns[tid].idle_conns_lock);
spop_conn_report_term_evt(spop_conn, muxc_tevt_type_tout);
}
do_leave:
task_destroy(t);
if (!spop_conn) {
/* resources were already deleted */
TRACE_DEVEL("leaving (not more spop_conn)", SPOP_EV_SPOP_CONN_WAKE);
return NULL;
}
spop_conn->task = NULL;
spop_conn->state = SPOP_CS_CLOSED;
spop_wake_some_streams(spop_conn, 0);
if (br_data(spop_conn->mbuf)) {
/* don't even try to send aborts, the buffer is stuck */
spop_conn->flags |= SPOP_CF_DISCO_FAILED;
goto end;
}
/* try to send but no need to insist */
if (!spop_conn_send_disconnect(spop_conn))
spop_conn->flags |= SPOP_CF_DISCO_FAILED;
if (br_data(spop_conn->mbuf) && !(spop_conn->flags & SPOP_CF_DISCO_FAILED) &&
conn_xprt_ready(spop_conn->conn)) {
unsigned int released = 0;
struct buffer *buf;
for (buf = br_head(spop_conn->mbuf); b_size(buf); buf = br_del_head(spop_conn->mbuf)) {
if (b_data(buf)) {
int ret = spop_conn->conn->xprt->snd_buf(spop_conn->conn, spop_conn->conn->xprt_ctx,
buf, b_data(buf), 0);
if (!ret)
break;
b_del(buf, ret);
if (b_data(buf))
break;
b_free(buf);
released++;
}
}
if (released)
offer_buffers(NULL, released);
}
end:
/* either we can release everything now or it will be done later once
* the last stream closes.
*/
if (eb_is_empty(&spop_conn->streams_by_id))
spop_release(spop_conn);
TRACE_LEAVE(SPOP_EV_SPOP_CONN_WAKE);
return NULL;
}
/*******************************************/
/* functions below are used by the streams */
/*******************************************/
/* Append the description of what is present in error snapshot <es> into <out>.
* The description must be small enough to always fit in a buffer. The output
* buffer may be the trash so the trash must not be used inside this function.
*/
static __maybe_unused void spop_show_error_snapshot(struct buffer *out, const struct error_snapshot *es)
{
// TODO !!!
}
/*
* Capture a bad response and archive it in the proxy's structure. By default
* it tries to report the error position as h1m->err_pos. However if this one is
* not set, it will then report h1m->next, which is the last known parsing
* point. The function is able to deal with wrapping buffers. It always displays
* buffers as a contiguous area starting at buf->p. The direction is determined
* thanks to the h1m's flags.
*/
static __maybe_unused void spop_strm_capture_bad_message(struct spop_conn *spop_conn, struct spop_strm *spop_strm,
struct buffer *buf)
{
// TODO !!!
}
// PARSING FUNCTIONS
/*
* Attach a new stream to a connection
* (Used for outgoing connections)
*/
static int spop_attach(struct connection *conn, struct sedesc *sd, struct session *sess)
{
struct spop_strm *spop_strm;
struct spop_conn *spop_conn = conn->ctx;
TRACE_ENTER(SPOP_EV_SPOP_STRM_NEW, conn);
spop_strm = spop_stconn_new(spop_conn, sd->sc, sess);
if (!spop_strm)
goto err;
/* the connection is not idle anymore, let's mark this */
HA_ATOMIC_AND(&spop_conn->wait_event.tasklet->state, ~TASK_F_USR1);
xprt_set_used(conn, conn->xprt, conn->xprt_ctx);
TRACE_LEAVE(SPOP_EV_SPOP_STRM_NEW, conn, spop_strm);
return 0;
err:
TRACE_DEVEL("leaving on error", SPOP_EV_SPOP_STRM_NEW|SPOP_EV_SPOP_STRM_ERR, conn);
return -1;
}
/* Retrieves the first valid stream connector from this connection, or returns NULL.
* We have to scan because we may have some orphan streams. It might be
* beneficial to scan backwards from the end to reduce the likeliness to find
* orphans.
*/
static struct stconn *spop_get_first_sc(const struct connection *conn)
{
struct spop_conn *spop_conn = conn->ctx;
struct spop_strm *spop_strm;
struct eb32_node *node;
node = eb32_first(&spop_conn->streams_by_id);
while (node) {
spop_strm = container_of(node, struct spop_strm, by_id);
if (spop_strm_sc(spop_strm))
return spop_strm_sc(spop_strm);
node = eb32_next(node);
}
return NULL;
}
/*
* Destroy the mux and the associated connection, if it is no longer used
*/
static void spop_destroy(void *ctx)
{
struct spop_conn *spop_conn = ctx;
TRACE_POINT(SPOP_EV_SPOP_CONN_END, spop_conn->conn);
if (eb_is_empty(&spop_conn->streams_by_id)) {
BUG_ON(spop_conn->conn->ctx != spop_conn);
spop_release(spop_conn);
}
}
/*
* Detach the stream from the connection and possibly release the connection.
*/
static void spop_detach(struct sedesc *sd)
{
struct spop_strm *spop_strm = sd->se;
struct spop_conn *spop_conn;
struct session *sess;
TRACE_ENTER(SPOP_EV_STRM_END, (spop_strm ? spop_strm->spop_conn->conn : NULL), spop_strm);
if (!spop_strm) {
TRACE_LEAVE(SPOP_EV_STRM_END);
return;
}
/* there's no txbuf so we're certain no to be able to send anything */
spop_strm->flags &= ~SPOP_SF_NOTIFIED;
sess = spop_strm->sess;
spop_conn = spop_strm->spop_conn;
spop_conn->nb_sc--;
/* this stream may be blocked waiting for some data to leave, so orphan
* it in this case.
*/
if (!(spop_conn->flags & (SPOP_CF_ERR_PENDING|SPOP_CF_ERROR)) &&
(spop_conn->state != SPOP_CS_CLOSED) &&
(spop_strm->flags & (SPOP_SF_BLK_MBUSY|SPOP_SF_BLK_MROOM)) &&
spop_strm->subs) {
TRACE_DEVEL("leaving on stream blocked", SPOP_EV_STRM_END|SPOP_EV_SPOP_STRM_BLK, spop_conn->conn, spop_strm);
/* refresh the timeout if none was active, so that the last
* leaving stream may arm it.
*/
if (spop_conn->task && !tick_isset(spop_conn->task->expire))
spop_conn_update_timeout(spop_conn);
return;
}
if ((spop_conn->flags & SPOP_CF_DEM_BLOCK_ANY && spop_strm->id == spop_conn->dsi)) {
/* unblock the connection if it was blocked on this stream. */
spop_conn->flags &= ~SPOP_CF_DEM_BLOCK_ANY;
spop_conn->flags &= ~SPOP_CF_MUX_BLOCK_ANY;
spop_conn_restart_reading(spop_conn, 1);
}
spop_strm_destroy(spop_strm);
if (!(spop_conn->flags & (SPOP_CF_RCVD_SHUT|SPOP_CF_ERR_PENDING|SPOP_CF_ERROR))) {
if (spop_conn->conn->flags & CO_FL_PRIVATE) {
/* Add the connection in the session server list, if not already done */
if (!session_add_conn(sess, spop_conn->conn, spop_conn->conn->target)) {
spop_conn->conn->owner = NULL;
if (eb_is_empty(&spop_conn->streams_by_id)) {
spop_conn->conn->mux->destroy(spop_conn);
TRACE_DEVEL("leaving on error after killing outgoing connection", SPOP_EV_STRM_END|SPOP_EV_SPOP_CONN_ERR);
return;
}
}
if (eb_is_empty(&spop_conn->streams_by_id)) {
/* mark that the tasklet may lose its context to another thread and
* that the handler needs to check it under the idle conns lock.
*/
HA_ATOMIC_OR(&spop_conn->wait_event.tasklet->state, TASK_F_USR1);
if (session_check_idle_conn(spop_conn->conn->owner, spop_conn->conn) != 0) {
/* At this point either the connection is destroyed, or it's been added to the server idle list, just stop */
TRACE_DEVEL("leaving without reusable idle connection", SPOP_EV_STRM_END);
return;
}
}
}
else {
if (eb_is_empty(&spop_conn->streams_by_id)) {
/* If the connection is owned by the session, first remove it
* from its list
*/
if (spop_conn->conn->owner) {
session_unown_conn(spop_conn->conn->owner, spop_conn->conn);
spop_conn->conn->owner = NULL;
}
/* mark that the tasklet may lose its context to another thread and
* that the handler needs to check it under the idle conns lock.
*/
HA_ATOMIC_OR(&spop_conn->wait_event.tasklet->state, TASK_F_USR1);
xprt_set_idle(spop_conn->conn, spop_conn->conn->xprt, spop_conn->conn->xprt_ctx);
if (!srv_add_to_idle_list(objt_server(spop_conn->conn->target), spop_conn->conn, 1)) {
/* The server doesn't want it, let's kill the connection right away */
spop_conn->conn->mux->destroy(spop_conn);
TRACE_DEVEL("leaving on error after killing outgoing connection", SPOP_EV_STRM_END|SPOP_EV_SPOP_CONN_ERR);
return;
}
/* At this point, the connection has been added to the
* server idle list, so another thread may already have
* hijacked it, so we can't do anything with it.
*/
TRACE_DEVEL("reusable idle connection", SPOP_EV_STRM_END);
return;
}
else if (!spop_conn->conn->hash_node->node.node.leaf_p &&
spop_avail_streams(spop_conn->conn) > 0 && objt_server(spop_conn->conn->target) &&
!LIST_INLIST(&spop_conn->conn->sess_el)) {
srv_add_to_avail_list(__objt_server(spop_conn->conn->target), spop_conn->conn);
}
}
}
/* We don't want to close right now unless we're removing the last
* stream and the connection is in error.
*/
if (spop_conn_is_dead(spop_conn)) {
/* no more stream will come, kill it now */
TRACE_DEVEL("leaving, killing dead connection", SPOP_EV_STRM_END, spop_conn->conn);
spop_release(spop_conn);
}
else if (spop_conn->task) {
spop_conn_update_timeout(spop_conn);
TRACE_DEVEL("leaving, refreshing connection's timeout", SPOP_EV_STRM_END, spop_conn->conn);
}
else
TRACE_DEVEL("leaving", SPOP_EV_STRM_END, spop_conn->conn);
}
/* Performs a synchronous or asynchronous shutr(). */
static void spop_do_shutr(struct spop_strm *spop_strm)
{
struct spop_conn *spop_conn = spop_strm->spop_conn;
TRACE_ENTER(SPOP_EV_STRM_SHUT, spop_conn->conn, spop_strm);
if (spop_strm->state == SPOP_SS_CLOSED)
goto done;
/* a connstream may require us to immediately kill the whole connection
* for example because of a "tcp-request content reject" rule that is
* normally used to limit abuse.
*/
if (se_fl_test(spop_strm->sd, SE_FL_KILL_CONN) &&
!(spop_conn->flags & (SPOP_CF_DISCO_SENT|SPOP_CF_DISCO_FAILED))) {
TRACE_STATE("stream wants to kill the connection", SPOP_EV_STRM_SHUT, spop_conn->conn, spop_strm);
spop_conn->state = SPOP_CS_CLOSED;
}
spop_strm_close(spop_strm);
if (!(spop_conn->wait_event.events & SUB_RETRY_SEND))
tasklet_wakeup(spop_conn->wait_event.tasklet);
done:
TRACE_LEAVE(SPOP_EV_STRM_SHUT, spop_conn->conn, spop_strm);
return;
}
/* Performs a synchronous or asynchronous shutw(). */
static void spop_do_shutw(struct spop_strm *spop_strm)
{
struct spop_conn *spop_conn = spop_strm->spop_conn;
TRACE_ENTER(SPOP_EV_STRM_SHUT, spop_conn->conn, spop_strm);
if (spop_strm->state == SPOP_SS_HLOC || spop_strm->state == SPOP_SS_CLOSED)
goto done;
if (spop_strm->state == SPOP_SS_OPEN)
spop_strm->state = SPOP_SS_HLOC;
else if (spop_strm->state == SPOP_SS_HREM)
spop_strm_close(spop_strm);
else {
/* a connstream may require us to immediately kill the whole connection
* for example because of a "tcp-request content reject" rule that is
* normally used to limit abuse.
*/
if (se_fl_test(spop_strm->sd, SE_FL_KILL_CONN)) {
TRACE_STATE("stream wants to kill the connection", SPOP_EV_STRM_SHUT, spop_conn->conn, spop_strm);
spop_conn->state = SPOP_CS_CLOSED;
}
}
if (!(spop_conn->wait_event.events & SUB_RETRY_SEND))
tasklet_wakeup(spop_conn->wait_event.tasklet);
done:
TRACE_LEAVE(SPOP_EV_STRM_SHUT, spop_conn->conn, spop_strm);
return;
}
static void spop_shut(struct stconn *sc, enum se_shut_mode mode, struct se_abort_info *reason)
{
struct spop_strm *spop_strm = __sc_mux_strm(sc);
TRACE_ENTER(SPOP_EV_STRM_SHUT, spop_strm->spop_conn->conn, spop_strm);
if (mode & (SE_SHW_SILENT|SE_SHW_NORMAL))
spop_do_shutw(spop_strm);
if (mode & SE_SHR_RESET)
spop_do_shutr(spop_strm);
TRACE_LEAVE(SPOP_EV_STRM_SHUT, spop_strm->spop_conn->conn, spop_strm);
}
/* Called from the upper layer, to subscribe <es> to events <event_type>. The
* event subscriber <es> is not allowed to change from a previous call as long
* as at least one event is still subscribed. The <event_type> must only be a
* combination of SUB_RETRY_RECV and SUB_RETRY_SEND. It always returns 0.
*/
static int spop_subscribe(struct stconn *sc, int event_type, struct wait_event *es)
{
struct spop_strm *spop_strm = __sc_mux_strm(sc);
struct spop_conn *spop_conn = spop_strm->spop_conn;
BUG_ON(event_type & ~(SUB_RETRY_SEND|SUB_RETRY_RECV));
BUG_ON(spop_strm->subs && spop_strm->subs != es);
es->events |= event_type;
spop_strm->subs = es;
if (event_type & SUB_RETRY_RECV)
TRACE_DEVEL("unsubscribe(recv)", SPOP_EV_STRM_RECV, spop_conn->conn, spop_strm);
if (event_type & SUB_RETRY_SEND) {
TRACE_DEVEL("unsubscribe(send)", SPOP_EV_STRM_SEND, spop_conn->conn, spop_strm);
if (!LIST_INLIST(&spop_strm->list))
LIST_APPEND(&spop_conn->send_list, &spop_strm->list);
}
return 0;
}
/* Called from the upper layer, to unsubscribe <es> from events <event_type>
* (undo spop_subscribe). The <es> pointer is not allowed to differ from the one
* passed to the subscribe() call. It always returns zero.
*/
static int spop_unsubscribe(struct stconn *sc, int event_type, struct wait_event *es)
{
struct spop_strm *spop_strm = __sc_mux_strm(sc);
struct spop_conn *spop_conn = spop_strm->spop_conn;
BUG_ON(event_type & ~(SUB_RETRY_SEND|SUB_RETRY_RECV));
BUG_ON(spop_strm->subs && spop_strm->subs != es);
es->events &= ~event_type;
if (!es->events)
spop_strm->subs = NULL;
if (event_type & SUB_RETRY_RECV)
TRACE_DEVEL("subscribe(recv)", SPOP_EV_STRM_RECV, spop_conn->conn, spop_strm);
if (event_type & SUB_RETRY_SEND) {
TRACE_DEVEL("subscribe(send)", SPOP_EV_STRM_SEND, spop_conn->conn, spop_strm);
spop_strm->flags &= ~SPOP_SF_NOTIFIED;
LIST_DEL_INIT(&spop_strm->list);
}
return 0;
}
/* Try to send a NOTIFY frame. Returns the number of bytes sent. The caller
* must check the stream's status to detect any error which might have happened
* subsequently to a successful send. Data are automatically removed from the
* buffer. Content of the frame is assumed to be valid since produced from
* the internal code.
*/
static size_t spop_strm_send_notify(struct spop_strm *spop_strm, struct buffer *buf, size_t count)
{
struct spop_conn *spop_conn = spop_strm->spop_conn;
struct buffer outbuf;
struct buffer *mbuf;
char *p, *end;
size_t sz;
int ret = 0;
TRACE_ENTER(SPOP_EV_TX_FRAME|SPOP_EV_TX_NOTIFY, spop_conn->conn, spop_strm);
mbuf = br_tail(spop_conn->mbuf);
retry:
if (!spop_get_buf(spop_conn, mbuf)) {
spop_conn->flags |= SPOP_CF_MUX_MALLOC;
spop_strm->flags |= SPOP_SF_BLK_MROOM;
TRACE_STATE("waiting for fconn mbuf ring allocation", SPOP_EV_TX_FRAME|SPOP_EV_TX_NOTIFY|SPOP_EV_SPOP_STRM_BLK, spop_conn->conn, spop_strm);
ret = 0;
goto end;
}
while (1) {
outbuf = b_make(b_tail(mbuf), b_contig_space(mbuf), 0, 0);
if (outbuf.size >= 11 || !b_space_wraps(mbuf))
break;
realign_again:
b_slow_realign(mbuf, trash.area, b_data(mbuf));
}
if (outbuf.size < 11)
goto full;
/* len: 4-bytes (fill later) type: (2)HAPROXY-NOTIFY, flags: 4-bytes (FIN=1) */
memcpy(outbuf.area, "\x00\x00\x00\x00\x03\x00\x00\x00\x01", 9);
outbuf.data = 9;
p = b_tail(&outbuf);
end = b_orig(&outbuf) + b_size(&outbuf);
if (encode_varint(spop_strm->id, &p, end) == -1)
goto full;
if (encode_varint(spop_strm->fid+1, &p, end) == -1)
goto full;
sz = count - 1; /* Skip the frame type */
if (p + sz > end)
goto full;
memcpy(p, b_peek(buf,1), sz);
p += sz;
outbuf.data += p - b_tail(&outbuf);
if (outbuf.data - 4 > spop_conn->max_frame_size)
goto too_big;
/* update the frame's size now */
TRACE_PROTO("SPOP HAPROXY NOTIFY frame xferred", SPOP_EV_TX_FRAME|SPOP_EV_TX_NOTIFY, spop_conn->conn, spop_strm, 0, (size_t[]){outbuf.data});
spop_set_frame_size(outbuf.area, outbuf.data - 4);
spop_strm->fid++;
b_add(mbuf, outbuf.data);
b_del(buf, count);
ret = count;
end:
TRACE_LEAVE(SPOP_EV_TX_FRAME|SPOP_EV_TX_NOTIFY, spop_conn->conn, spop_strm);
return ret;
full:
/* Too large to be encoded. For NOTIFY frame, it is an error */
if (!b_data(mbuf))
goto too_big;
if ((mbuf = br_tail_add(spop_conn->mbuf)) != NULL)
goto retry;
spop_conn->flags |= SPOP_CF_MUX_MFULL;
spop_strm->flags |= SPOP_SF_BLK_MROOM;
TRACE_STATE("mbuf ring full", SPOP_EV_TX_FRAME|SPOP_EV_TX_NOTIFY|SPOP_EV_SPOP_STRM_BLK, spop_conn->conn, spop_strm);
ret = 0;
goto end;
too_big:
TRACE_ERROR("SPOP HAPROXY NOTIFY frame too large", SPOP_EV_TX_FRAME|SPOP_EV_TX_NOTIFY|SPOP_EV_SPOP_STRM_ERR, spop_conn->conn, spop_strm);
spop_strm_error(spop_strm, SPOP_ERR_TOO_BIG);
fail:
TRACE_DEVEL("leaving on error", SPOP_EV_TX_FRAME|SPOP_EV_TX_NOTIFY|SPOP_EV_SPOP_STRM_ERR, spop_conn->conn, spop_strm);
return 0;
}
/* Called from the upper layer, to receive data
*
* The caller is responsible for defragmenting <buf> if necessary. But <flags>
* must be tested to know the calling context. If CO_RFL_BUF_FLUSH is set, it
* means the caller wants to flush input data (from the mux buffer and the
* channel buffer) to be able to use kernel splicing or any kind of mux-to-mux
* xfer. If CO_RFL_KEEP_RECV is set, the mux must always subscribe for read
* events before giving back. CO_RFL_BUF_WET is set if <buf> is congested with
* data scheduled for leaving soon. CO_RFL_BUF_NOT_STUCK is set to instruct the
* mux it may optimize the data copy to <buf> if necessary. Otherwise, it should
* copy as much data as possible.
*/
static size_t spop_rcv_buf(struct stconn *sc, struct buffer *buf, size_t count, int flags)
{
struct spop_strm *spop_strm = __sc_mux_strm(sc);
struct spop_conn *spop_conn = spop_strm->spop_conn;
size_t ret = 0;
TRACE_ENTER(SPOP_EV_STRM_RECV, spop_conn->conn, spop_strm, 0, (size_t[]){count});
ret = b_xfer(buf, &spop_strm->rxbuf, MIN(b_data(&spop_strm->rxbuf), count));
if (b_data(&spop_strm->rxbuf))
se_fl_set(spop_strm->sd, SE_FL_RCV_MORE | SE_FL_WANT_ROOM);
else {
se_fl_clr(spop_strm->sd, SE_FL_RCV_MORE | SE_FL_WANT_ROOM);
spop_strm_propagate_term_flags(spop_conn, spop_strm);
if (b_size(&spop_strm->rxbuf)) {
b_free(&spop_strm->rxbuf);
offer_buffers(NULL, 1);
}
}
if (ret && spop_conn->dsi == spop_strm->id) {
/* demux is blocking on this stream's buffer */
spop_conn->flags &= ~SPOP_CF_DEM_SFULL;
spop_conn_restart_reading(spop_conn, 1);
}
TRACE_LEAVE(SPOP_EV_STRM_RECV, spop_conn->conn, spop_strm, 0, (size_t[]){ret});
return ret;
}
/* Called from the upper layer, to send data from buffer <buf> for no more than
* <count> bytes. Returns the number of bytes effectively sent. Some status
* flags may be updated on the stream connector.
*/
static size_t spop_snd_buf(struct stconn *sc, struct buffer *buf, size_t count, int flags)
{
struct spop_strm *spop_strm = __sc_mux_strm(sc);
struct spop_conn *spop_conn = spop_strm->spop_conn;
size_t total = 0;
size_t ret;
TRACE_ENTER(SPOP_EV_STRM_SEND, spop_conn->conn, spop_strm, 0, (size_t[]){count});
/* If we were not just woken because we wanted to send but couldn't,
* and there's somebody else that is waiting to send, do nothing,
* we will subscribe later and be put at the end of the list
*/
if (!(spop_strm->flags & SPOP_SF_NOTIFIED) && !LIST_ISEMPTY(&spop_conn->send_list)) {
if (LIST_INLIST(&spop_strm->list))
TRACE_DEVEL("stream already waiting, leaving", SPOP_EV_STRM_SEND|SPOP_EV_SPOP_STRM_BLK, spop_conn->conn, spop_strm);
else {
TRACE_DEVEL("other streams already waiting, going to the queue and leaving", SPOP_EV_STRM_SEND|SPOP_EV_SPOP_STRM_BLK,
spop_conn->conn, spop_strm);
spop_conn->flags |= SPOP_CF_WAIT_INLIST;
}
return 0;
}
spop_strm->flags &= ~SPOP_SF_NOTIFIED;
if (spop_conn->state < SPOP_CS_RUNNING) {
TRACE_DEVEL("connection not ready, leaving", SPOP_EV_STRM_SEND|SPOP_EV_SPOP_STRM_BLK, spop_conn->conn, spop_strm);
return 0;
}
if (spop_conn->state >= SPOP_CS_ERROR) {
se_fl_set(spop_strm->sd, SE_FL_ERROR);
se_report_term_evt(spop_strm->sd, se_tevt_type_snd_err);
TRACE_DEVEL("connection is in error, leaving in error", SPOP_EV_STRM_SEND|SPOP_EV_SPOP_STRM_ERR|SPOP_EV_STRM_ERR,
spop_conn->conn, spop_strm);
return 0;
}
if (spop_strm->id == 0) {
int32_t id = spop_conn_get_next_sid(spop_conn);
if (id < 0) {
se_fl_set(spop_strm->sd, SE_FL_ERROR);
TRACE_DEVEL("couldn't get a stream ID, leaving in error", SPOP_EV_STRM_SEND|SPOP_EV_SPOP_STRM_ERR|SPOP_EV_STRM_ERR,
spop_conn->conn, spop_strm);
return 0;
}
eb32_delete(&spop_strm->by_id);
spop_strm->by_id.key = spop_strm->id = id;
spop_strm->state = SPOP_SS_OPEN;
spop_conn->max_id = id;
spop_conn->nb_reserved--;
eb32_insert(&spop_conn->streams_by_id, &spop_strm->by_id);
}
while (spop_strm->state < SPOP_SS_HLOC && !(spop_strm->flags & SPOP_SF_BLK_ANY) && count) {
enum spop_frame_type type = *b_peek(buf, 0);
switch (type) {
case SPOP_FRM_T_HAPROXY_NOTIFY:
ret = spop_strm_send_notify(spop_strm, buf, count);
if (ret > 0) {
total += ret;
count -= ret;
}
break;
default:
TRACE_DEVEL("Unsupported frame type", SPOP_EV_STRM_SEND|SPOP_EV_STRM_ERR|SPOP_EV_SPOP_STRM_ERR,
spop_conn->conn, spop_strm, 0, (size_t[]){type});
spop_strm_error(spop_strm, SPOP_ERR_INVALID);
break;
}
}
if (spop_strm->state >= SPOP_SS_HLOC) {
/* trim any possibly pending data after we close */
total += count;
count = 0;
}
/* RST are sent similarly to frame acks */
if (spop_strm->state == SPOP_SS_ERROR) {
TRACE_DEVEL("reporting error to the app-layer stream", SPOP_EV_STRM_SEND|SPOP_EV_STRM_ERR|SPOP_EV_SPOP_STRM_ERR, spop_conn->conn, spop_strm);
se_fl_set_error(spop_strm->sd);
spop_strm_close(spop_strm);
}
if (total > 0) {
if (!(spop_conn->wait_event.events & SUB_RETRY_SEND)) {
TRACE_DEVEL("data queued, waking up spop_conn sender", SPOP_EV_STRM_SEND|SPOP_EV_SPOP_CONN_SEND, spop_conn->conn, spop_strm);
if (spop_send(spop_conn))
tasklet_wakeup(spop_conn->wait_event.tasklet);
}
}
if (total > 0) {
/* Ok we managed to send something, leave the send_list if we were still there */
spop_remove_from_list(spop_strm);
TRACE_DEVEL("Removed from spop_strm list", SPOP_EV_STRM_SEND|SPOP_EV_SPOP_CONN_SEND, spop_conn->conn, spop_strm);
}
TRACE_LEAVE(SPOP_EV_STRM_SEND, spop_conn->conn, spop_strm, 0, (size_t[]){total});
return total;
}
/* appends some info about stream <spop_strm> to buffer <msg>, or does nothing
* if <spop_strm> is NULL. Returns non-zero if the stream is considered
* suspicious. May emit multiple lines, each new one being prefixed with <pfx>,
* if <pfx> is not NULL, otherwise a single line is used.
*/
static int spop_dump_spop_strm_info(struct buffer *msg, const struct spop_strm *spop_strm, const char *pfx)
{
int ret = 0;
if (!spop_strm)
return ret;
chunk_appendf(msg, " .id=%d .flg=0x%04x .rxbuf=%u@%p+%u/%u .sc=%p",
spop_strm->id, spop_strm->flags,
(unsigned int)b_data(&spop_strm->rxbuf), b_orig(&spop_strm->rxbuf),
(unsigned int)b_head_ofs(&spop_strm->rxbuf), (unsigned int)b_size(&spop_strm->rxbuf),
spop_strm_sc(spop_strm));
if (pfx && spop_strm->subs)
chunk_appendf(msg, "\n%s", pfx);
chunk_appendf(msg, " .sd.flg=0x%08x .sd.evts=%s", se_fl_get(spop_strm->sd), tevt_evts2str(spop_strm->sd->term_evts_log));
if (!se_fl_test(spop_strm->sd, SE_FL_ORPHAN))
chunk_appendf(msg, " .sc.flg=0x%08x .sc.app=%p .sc.evts=%s",
spop_strm_sc(spop_strm)->flags, spop_strm_sc(spop_strm)->app, tevt_evts2str(spop_strm_sc(spop_strm)->term_evts_log));
if (pfx && spop_strm->subs)
chunk_appendf(msg, "\n%s", pfx);
chunk_appendf(msg, " .subs=%p", spop_strm->subs);
if (spop_strm->subs) {
chunk_appendf(msg, "(ev=%d tl=%p", spop_strm->subs->events, spop_strm->subs->tasklet);
chunk_appendf(msg, " tl.calls=%d tl.ctx=%p tl.fct=",
spop_strm->subs->tasklet->calls,
spop_strm->subs->tasklet->context);
if (spop_strm->subs->tasklet->calls >= 1000000)
ret = 1;
resolve_sym_name(msg, NULL, spop_strm->subs->tasklet->process);
chunk_appendf(msg, ")");
}
return ret;
}
/* appends some info about connection <spop_conn> to buffer <msg>, or does
* nothing if <spop_conn> is NULL. Returns non-zero if the connection is
* considered suspicious. May emit multiple lines, each new one being prefixed
* with <pfx>, if <pfx> is not NULL, otherwise a single line is used.
*/
static int spop_dump_spop_conn_info(struct buffer *msg, struct spop_conn *spop_conn, const char *pfx)
{
const struct buffer *hmbuf, *tmbuf;
struct spop_strm *spop_strm = NULL;
struct eb32_node *node;
int send_cnt = 0;
int tree_cnt = 0;
int orph_cnt = 0;
int ret = 0;
if (!spop_conn)
return ret;
list_for_each_entry(spop_strm, &spop_conn->send_list, list)
send_cnt++;
spop_strm = NULL;
node = eb32_first(&spop_conn->streams_by_id);
while (node) {
spop_strm = container_of(node, struct spop_strm, by_id);
tree_cnt++;
if (!spop_strm_sc(spop_strm))
orph_cnt++;
node = eb32_next(node);
}
hmbuf = br_head(spop_conn->mbuf);
tmbuf = br_tail(spop_conn->mbuf);
chunk_appendf(msg, " spop_conn.st0=%d .maxid=%d .flg=0x%04x .nbst=%u .nbcs=%u .evts=%s",
spop_conn->state, spop_conn->max_id, spop_conn->flags,
spop_conn->nb_streams, spop_conn->nb_sc,
tevt_evts2str(spop_conn->term_evts_log));
if (pfx)
chunk_appendf(msg, "\n%s", pfx);
chunk_appendf(msg, ".send_cnt=%d .tree_cnt=%d .orph_cnt=%d .sub=%d .dsi=%d .dbuf=%u@%p+%u/%u",
send_cnt, tree_cnt, orph_cnt, spop_conn->wait_event.events, spop_conn->dsi,
(unsigned int)b_data(&spop_conn->dbuf), b_orig(&spop_conn->dbuf),
(unsigned int)b_head_ofs(&spop_conn->dbuf), (unsigned int)b_size(&spop_conn->dbuf));
if (pfx)
chunk_appendf(msg, "\n%s", pfx);
chunk_appendf(msg, ".mbuf=[%u..%u|%u],h=[%u@%p+%u/%u],t=[%u@%p+%u/%u]",
br_head_idx(spop_conn->mbuf), br_tail_idx(spop_conn->mbuf), br_size(spop_conn->mbuf),
(unsigned int)b_data(hmbuf), b_orig(hmbuf),
(unsigned int)b_head_ofs(hmbuf), (unsigned int)b_size(hmbuf),
(unsigned int)b_data(tmbuf), b_orig(tmbuf),
(unsigned int)b_head_ofs(tmbuf), (unsigned int)b_size(tmbuf));
chunk_appendf(msg, " .task=%p", spop_conn->task);
if (spop_conn->task) {
chunk_appendf(msg, " .exp=%s",
spop_conn->task->expire ? tick_is_expired(spop_conn->task->expire, now_ms) ? "<PAST>" :
human_time(TICKS_TO_MS(spop_conn->task->expire - now_ms), TICKS_TO_MS(1000)) : "<NEVER>");
}
return ret;
}
/* for debugging with CLI's "show fd" command */
static int spop_show_fd(struct buffer *msg, struct connection *conn)
{
struct spop_conn *spop_conn = conn->ctx;
struct spop_strm *spop_strm = NULL;
struct eb32_node *node;
int ret = 0;
if (!spop_conn)
return ret;
ret |= spop_dump_spop_conn_info(msg, spop_conn, NULL);
node = eb32_first(&spop_conn->streams_by_id);
if (node) {
spop_strm = container_of(node, struct spop_strm, by_id);
chunk_appendf(msg, " last_spop_strm=%p", spop_strm);
ret |= spop_dump_spop_strm_info(msg, spop_strm, NULL);
}
return ret;
}
/* for debugging with CLI's "show sess" command. May emit multiple lines, each
* new one being prefixed with <pfx>, if <pfx> is not NULL, otherwise a single
* line is used. Each field starts with a space so it's safe to print it after
* existing fields.
*/
static int spop_show_sd(struct buffer *msg, struct sedesc *sd, const char *pfx)
{
struct spop_strm *spop_strm = sd->se;
int ret = 0;
if (!spop_strm)
return ret;
chunk_appendf(msg, " spop_strm=%p", spop_strm);
ret |= spop_dump_spop_strm_info(msg, spop_strm, pfx);
if (pfx)
chunk_appendf(msg, "\n%s", pfx);
chunk_appendf(msg, " spop_conn=%p", spop_strm->spop_conn);
ret |= spop_dump_spop_conn_info(msg, spop_strm->spop_conn, pfx);
return ret;
}
/* Migrate the the connection to the current thread.
* Return 0 if successful, non-zero otherwise.
* Expected to be called with the old thread lock held.
*/
static int spop_takeover(struct connection *conn, int orig_tid, int release)
{
struct spop_conn *spop_conn = conn->ctx;
struct task *task;
struct task *new_task = NULL;
struct tasklet *new_tasklet = NULL;
/* Pre-allocate tasks so that we don't have to roll back after the xprt
* has been migrated.
*/
if (!release) {
/* If the connection is attached to a buffer_wait (extremely
* rare), it will be woken up at any instant by its own thread
* and we can't undo it anyway, so let's give up on this one.
* It's not interesting anyway since it's not usable right now.
*/
if (LIST_INLIST(&spop_conn->buf_wait.list))
goto fail;
new_task = task_new_here();
new_tasklet = tasklet_new();
if (!new_task || !new_tasklet)
goto fail;
}
if (fd_takeover(conn->handle.fd, conn) != 0)
goto fail;
if (conn->xprt->takeover && conn->xprt->takeover(conn, conn->xprt_ctx, orig_tid, release) != 0) {
/* We failed to takeover the xprt, even if the connection may
* still be valid, flag it as error'd, as we have already
* taken over the fd, and wake the tasklet, so that it will
* destroy it.
*/
conn->flags |= CO_FL_ERROR;
tasklet_wakeup_on(spop_conn->wait_event.tasklet, orig_tid);
goto fail;
}
if (spop_conn->wait_event.events)
spop_conn->conn->xprt->unsubscribe(spop_conn->conn, spop_conn->conn->xprt_ctx,
spop_conn->wait_event.events, &spop_conn->wait_event);
task = spop_conn->task;
if (task) {
/* only assign a task if there was already one, otherwise
* the preallocated new task will be released.
*/
task->context = NULL;
spop_conn->task = NULL;
__ha_barrier_store();
task_kill(task);
spop_conn->task = new_task;
new_task = NULL;
if (!release) {
spop_conn->task->process = spop_timeout_task;
spop_conn->task->context = spop_conn;
}
}
/* To let the tasklet know it should free itself, and do nothing else,
* set its context to NULL;
*/
spop_conn->wait_event.tasklet->context = NULL;
tasklet_wakeup_on(spop_conn->wait_event.tasklet, orig_tid);
spop_conn->wait_event.tasklet = new_tasklet;
if (!release) {
spop_conn->wait_event.tasklet->process = spop_io_cb;
spop_conn->wait_event.tasklet->context = spop_conn;
spop_conn->conn->xprt->subscribe(spop_conn->conn, spop_conn->conn->xprt_ctx,
SUB_RETRY_RECV, &spop_conn->wait_event);
}
if (release) {
/* we're being called for a server deletion and are running
* under thread isolation. That's the only way we can
* unregister a possible subscription of the original
* connection from its owner thread's queue, as this involves
* manipulating thread-unsafe areas. Note that it is not
* possible to just call b_dequeue() here as it would update
* the current thread's bufq_map and not the original one.
*/
BUG_ON(!thread_isolated());
if (LIST_INLIST(&spop_conn->buf_wait.list))
_b_dequeue(&spop_conn->buf_wait, orig_tid);
}
if (new_task)
__task_free(new_task);
return 0;
fail:
if (new_task)
__task_free(new_task);
tasklet_free(new_tasklet);
return -1;
}
static const struct mux_ops mux_spop_ops = {
.init = spop_init,
.wake = spop_wake,
.attach = spop_attach,
.get_first_sc = spop_get_first_sc,
.detach = spop_detach,
.destroy = spop_destroy,
.avail_streams = spop_avail_streams,
.used_streams = spop_used_streams,
.rcv_buf = spop_rcv_buf,
.snd_buf = spop_snd_buf,
.subscribe = spop_subscribe,
.unsubscribe = spop_unsubscribe,
.shut = spop_shut,
.ctl = spop_ctl,
.sctl = spop_sctl,
.show_fd = spop_show_fd,
.show_sd = spop_show_sd,
.takeover = spop_takeover,
.flags = MX_FL_HOL_RISK|MX_FL_NO_UPG,
.name = "SPOP",
};
static struct mux_proto_list mux_proto_spop =
{ .token = IST("spop"), .mode = PROTO_MODE_SPOP, .side = PROTO_SIDE_BE, .mux = &mux_spop_ops };
static struct mux_proto_list mux_proto_default_spop =
{ .token = IST(""), .mode = PROTO_MODE_SPOP, .side = PROTO_SIDE_BE, .mux = &mux_spop_ops };
INITCALL1(STG_REGISTER, register_mux_proto, &mux_proto_spop);
INITCALL1(STG_REGISTER, register_mux_proto, &mux_proto_default_spop);
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/