mirror of
https://git.haproxy.org/git/haproxy.git/
synced 2025-08-06 07:07:04 +02:00
1751 lines
53 KiB
C
1751 lines
53 KiB
C
/*
|
|
* functions about threads.
|
|
*
|
|
* Copyright (C) 2017 Christopher Fauet - cfaulet@haproxy.com
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#define _GNU_SOURCE
|
|
#include <unistd.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <signal.h>
|
|
#include <unistd.h>
|
|
#ifdef _POSIX_PRIORITY_SCHEDULING
|
|
#include <sched.h>
|
|
#endif
|
|
|
|
#ifdef USE_THREAD
|
|
# include <pthread.h>
|
|
#endif
|
|
|
|
#ifdef USE_CPU_AFFINITY
|
|
# include <sched.h>
|
|
# if defined(__FreeBSD__) || defined(__DragonFly__)
|
|
# include <sys/param.h>
|
|
# ifdef __FreeBSD__
|
|
# include <sys/cpuset.h>
|
|
# endif
|
|
# include <pthread_np.h>
|
|
# endif
|
|
# ifdef __APPLE__
|
|
# include <mach/mach_types.h>
|
|
# include <mach/thread_act.h>
|
|
# include <mach/thread_policy.h>
|
|
# endif
|
|
# include <haproxy/cpuset.h>
|
|
#endif
|
|
|
|
#include <haproxy/cfgparse.h>
|
|
#include <haproxy/clock.h>
|
|
#include <haproxy/fd.h>
|
|
#include <haproxy/global.h>
|
|
#include <haproxy/log.h>
|
|
#include <haproxy/thread.h>
|
|
#include <haproxy/tools.h>
|
|
|
|
struct tgroup_info ha_tgroup_info[MAX_TGROUPS] = { };
|
|
THREAD_LOCAL const struct tgroup_info *tg = &ha_tgroup_info[0];
|
|
|
|
struct thread_info ha_thread_info[MAX_THREADS] = { };
|
|
THREAD_LOCAL const struct thread_info *ti = &ha_thread_info[0];
|
|
|
|
struct tgroup_ctx ha_tgroup_ctx[MAX_TGROUPS] = { };
|
|
THREAD_LOCAL struct tgroup_ctx *tg_ctx = &ha_tgroup_ctx[0];
|
|
|
|
struct thread_ctx ha_thread_ctx[MAX_THREADS] = { };
|
|
THREAD_LOCAL struct thread_ctx *th_ctx = &ha_thread_ctx[0];
|
|
|
|
#ifdef USE_THREAD
|
|
|
|
volatile unsigned long all_tgroups_mask __read_mostly = 1; // nbtgroup 1 assumed by default
|
|
volatile unsigned int rdv_requests = 0; // total number of threads requesting RDV
|
|
volatile unsigned int isolated_thread = ~0; // ID of the isolated thread, or ~0 when none
|
|
THREAD_LOCAL unsigned int tgid = 1; // thread ID starts at 1
|
|
THREAD_LOCAL unsigned int tid = 0;
|
|
int thread_cpus_enabled_at_boot = 1;
|
|
static pthread_t ha_pthread[MAX_THREADS] = { };
|
|
|
|
/* Marks the thread as harmless until the last thread using the rendez-vous
|
|
* point quits. Given that we can wait for a long time, sched_yield() is
|
|
* used when available to offer the CPU resources to competing threads if
|
|
* needed.
|
|
*/
|
|
void thread_harmless_till_end()
|
|
{
|
|
_HA_ATOMIC_OR(&tg_ctx->threads_harmless, ti->ltid_bit);
|
|
while (_HA_ATOMIC_LOAD(&rdv_requests) != 0) {
|
|
ha_thread_relax();
|
|
}
|
|
}
|
|
|
|
/* Isolates the current thread : request the ability to work while all other
|
|
* threads are harmless, as defined by thread_harmless_now() (i.e. they're not
|
|
* going to touch any visible memory area). Only returns once all of them are
|
|
* harmless, with the current thread's bit in &tg_ctx->threads_harmless cleared.
|
|
* Needs to be completed using thread_release().
|
|
*/
|
|
void thread_isolate()
|
|
{
|
|
uint tgrp, thr;
|
|
|
|
_HA_ATOMIC_OR(&tg_ctx->threads_harmless, ti->ltid_bit);
|
|
__ha_barrier_atomic_store();
|
|
_HA_ATOMIC_INC(&rdv_requests);
|
|
|
|
/* wait for all threads to become harmless. They cannot change their
|
|
* mind once seen thanks to rdv_requests above, unless they pass in
|
|
* front of us.
|
|
*/
|
|
while (1) {
|
|
for (tgrp = 0; tgrp < global.nbtgroups; tgrp++) {
|
|
do {
|
|
ulong te = _HA_ATOMIC_LOAD(&ha_tgroup_info[tgrp].threads_enabled);
|
|
ulong th = _HA_ATOMIC_LOAD(&ha_tgroup_ctx[tgrp].threads_harmless);
|
|
|
|
if ((th & te) == te)
|
|
break;
|
|
ha_thread_relax();
|
|
} while (1);
|
|
}
|
|
|
|
/* Now we've seen all threads marked harmless, we can try to run
|
|
* by competing with other threads to win the race of the isolated
|
|
* thread. It eventually converges since winners will enventually
|
|
* relax their request and go back to wait for this to be over.
|
|
* Competing on this only after seeing all threads harmless limits
|
|
* the write contention.
|
|
*/
|
|
thr = _HA_ATOMIC_LOAD(&isolated_thread);
|
|
if (thr == ~0U && _HA_ATOMIC_CAS(&isolated_thread, &thr, tid))
|
|
break; // we won!
|
|
ha_thread_relax();
|
|
}
|
|
|
|
/* the thread is no longer harmless as it runs */
|
|
_HA_ATOMIC_AND(&tg_ctx->threads_harmless, ~ti->ltid_bit);
|
|
|
|
/* the thread is isolated until it calls thread_release() which will
|
|
* 1) reset isolated_thread to ~0;
|
|
* 2) decrement rdv_requests.
|
|
*/
|
|
}
|
|
|
|
/* Isolates the current thread : request the ability to work while all other
|
|
* threads are idle, as defined by thread_idle_now(). It only returns once
|
|
* all of them are both harmless and idle, with the current thread's bit in
|
|
* &tg_ctx->threads_harmless and idle_mask cleared. Needs to be completed using
|
|
* thread_release(). By doing so the thread also engages in being safe against
|
|
* any actions that other threads might be about to start under the same
|
|
* conditions. This specifically targets destruction of any internal structure,
|
|
* which implies that the current thread may not hold references to any object.
|
|
*
|
|
* Note that a concurrent thread_isolate() will usually win against
|
|
* thread_isolate_full() as it doesn't consider the idle_mask, allowing it to
|
|
* get back to the poller or any other fully idle location, that will
|
|
* ultimately release this one.
|
|
*/
|
|
void thread_isolate_full()
|
|
{
|
|
uint tgrp, thr;
|
|
|
|
_HA_ATOMIC_OR(&tg_ctx->threads_idle, ti->ltid_bit);
|
|
_HA_ATOMIC_OR(&tg_ctx->threads_harmless, ti->ltid_bit);
|
|
__ha_barrier_atomic_store();
|
|
_HA_ATOMIC_INC(&rdv_requests);
|
|
|
|
/* wait for all threads to become harmless. They cannot change their
|
|
* mind once seen thanks to rdv_requests above, unless they pass in
|
|
* front of us.
|
|
*/
|
|
while (1) {
|
|
for (tgrp = 0; tgrp < global.nbtgroups; tgrp++) {
|
|
do {
|
|
ulong te = _HA_ATOMIC_LOAD(&ha_tgroup_info[tgrp].threads_enabled);
|
|
ulong th = _HA_ATOMIC_LOAD(&ha_tgroup_ctx[tgrp].threads_harmless);
|
|
ulong id = _HA_ATOMIC_LOAD(&ha_tgroup_ctx[tgrp].threads_idle);
|
|
|
|
if ((th & id & te) == te)
|
|
break;
|
|
ha_thread_relax();
|
|
} while (1);
|
|
}
|
|
|
|
/* Now we've seen all threads marked harmless and idle, we can
|
|
* try to run by competing with other threads to win the race
|
|
* of the isolated thread. It eventually converges since winners
|
|
* will enventually relax their request and go back to wait for
|
|
* this to be over. Competing on this only after seeing all
|
|
* threads harmless+idle limits the write contention.
|
|
*/
|
|
thr = _HA_ATOMIC_LOAD(&isolated_thread);
|
|
if (thr == ~0U && _HA_ATOMIC_CAS(&isolated_thread, &thr, tid))
|
|
break; // we won!
|
|
ha_thread_relax();
|
|
}
|
|
|
|
/* we're not idle nor harmless anymore at this point. Other threads
|
|
* waiting on this condition will need to wait until out next pass to
|
|
* the poller, or our next call to thread_isolate_full().
|
|
*/
|
|
_HA_ATOMIC_AND(&tg_ctx->threads_idle, ~ti->ltid_bit);
|
|
_HA_ATOMIC_AND(&tg_ctx->threads_harmless, ~ti->ltid_bit);
|
|
}
|
|
|
|
/* Cancels the effect of thread_isolate() by resetting the ID of the isolated
|
|
* thread and decrementing the number of RDV requesters. This immediately allows
|
|
* other threads to expect to be executed, though they will first have to wait
|
|
* for this thread to become harmless again (possibly by reaching the poller
|
|
* again).
|
|
*/
|
|
void thread_release()
|
|
{
|
|
HA_ATOMIC_STORE(&isolated_thread, ~0U);
|
|
HA_ATOMIC_DEC(&rdv_requests);
|
|
}
|
|
|
|
/* Sets up threads, signals and masks, and starts threads 2 and above.
|
|
* Does nothing when threads are disabled.
|
|
*/
|
|
void setup_extra_threads(void *(*handler)(void *))
|
|
{
|
|
sigset_t blocked_sig, old_sig;
|
|
int i;
|
|
|
|
/* ensure the signals will be blocked in every thread */
|
|
sigfillset(&blocked_sig);
|
|
sigdelset(&blocked_sig, SIGPROF);
|
|
sigdelset(&blocked_sig, SIGBUS);
|
|
sigdelset(&blocked_sig, SIGFPE);
|
|
sigdelset(&blocked_sig, SIGILL);
|
|
sigdelset(&blocked_sig, SIGSEGV);
|
|
pthread_sigmask(SIG_SETMASK, &blocked_sig, &old_sig);
|
|
|
|
/* Create nbthread-1 thread. The first thread is the current process */
|
|
ha_pthread[0] = pthread_self();
|
|
for (i = 1; i < global.nbthread; i++)
|
|
pthread_create(&ha_pthread[i], NULL, handler, &ha_thread_info[i]);
|
|
}
|
|
|
|
/* waits for all threads to terminate. Does nothing when threads are
|
|
* disabled.
|
|
*/
|
|
void wait_for_threads_completion()
|
|
{
|
|
int i;
|
|
|
|
/* Wait the end of other threads */
|
|
for (i = 1; i < global.nbthread; i++)
|
|
pthread_join(ha_pthread[i], NULL);
|
|
|
|
#if defined(DEBUG_THREAD) || defined(DEBUG_FULL)
|
|
show_lock_stats();
|
|
#endif
|
|
}
|
|
|
|
/* Tries to set the current thread's CPU affinity according to the cpu_map */
|
|
void set_thread_cpu_affinity()
|
|
{
|
|
#if defined(USE_CPU_AFFINITY)
|
|
/* no affinity setting for the master process */
|
|
if (master)
|
|
return;
|
|
|
|
/* Now the CPU affinity for all threads */
|
|
if (ha_cpuset_count(&cpu_map[tgid - 1].proc))
|
|
ha_cpuset_and(&cpu_map[tgid - 1].thread[ti->ltid], &cpu_map[tgid - 1].proc);
|
|
|
|
if (ha_cpuset_count(&cpu_map[tgid - 1].thread[ti->ltid])) {/* only do this if the thread has a THREAD map */
|
|
# if defined(__APPLE__)
|
|
/* Note: this API is limited to the first 32/64 CPUs */
|
|
unsigned long set = cpu_map[tgid - 1].thread[ti->ltid].cpuset;
|
|
int j;
|
|
|
|
while ((j = ffsl(set)) > 0) {
|
|
thread_affinity_policy_data_t cpu_set = { j - 1 };
|
|
thread_port_t mthread;
|
|
|
|
mthread = pthread_mach_thread_np(ha_pthread[tid]);
|
|
thread_policy_set(mthread, THREAD_AFFINITY_POLICY, (thread_policy_t)&cpu_set, 1);
|
|
set &= ~(1UL << (j - 1));
|
|
}
|
|
# else
|
|
struct hap_cpuset *set = &cpu_map[tgid - 1].thread[ti->ltid];
|
|
|
|
pthread_setaffinity_np(ha_pthread[tid], sizeof(set->cpuset), &set->cpuset);
|
|
# endif
|
|
}
|
|
#endif /* USE_CPU_AFFINITY */
|
|
}
|
|
|
|
/* Retrieves the opaque pthread_t of thread <thr> cast to an unsigned long long
|
|
* since POSIX took great care of not specifying its representation, making it
|
|
* hard to export for post-mortem analysis. For this reason we copy it into a
|
|
* union and will use the smallest scalar type at least as large as its size,
|
|
* which will keep endianness and alignment for all regular sizes. As a last
|
|
* resort we end up with a long long ligned to the first bytes in memory, which
|
|
* will be endian-dependent if pthread_t is larger than a long long (not seen
|
|
* yet).
|
|
*/
|
|
unsigned long long ha_get_pthread_id(unsigned int thr)
|
|
{
|
|
union {
|
|
pthread_t t;
|
|
unsigned long long ll;
|
|
unsigned int i;
|
|
unsigned short s;
|
|
unsigned char c;
|
|
} u = { 0 };
|
|
|
|
u.t = ha_pthread[thr];
|
|
|
|
if (sizeof(u.t) <= sizeof(u.c))
|
|
return u.c;
|
|
else if (sizeof(u.t) <= sizeof(u.s))
|
|
return u.s;
|
|
else if (sizeof(u.t) <= sizeof(u.i))
|
|
return u.i;
|
|
return u.ll;
|
|
}
|
|
|
|
/* send signal <sig> to thread <thr> */
|
|
void ha_tkill(unsigned int thr, int sig)
|
|
{
|
|
pthread_kill(ha_pthread[thr], sig);
|
|
}
|
|
|
|
/* send signal <sig> to all threads. The calling thread is signaled last in
|
|
* order to allow all threads to synchronize in the handler.
|
|
*/
|
|
void ha_tkillall(int sig)
|
|
{
|
|
unsigned int thr;
|
|
|
|
for (thr = 0; thr < global.nbthread; thr++) {
|
|
if (!(ha_thread_info[thr].tg->threads_enabled & ha_thread_info[thr].ltid_bit))
|
|
continue;
|
|
if (thr == tid)
|
|
continue;
|
|
pthread_kill(ha_pthread[thr], sig);
|
|
}
|
|
raise(sig);
|
|
}
|
|
|
|
void ha_thread_relax(void)
|
|
{
|
|
#ifdef _POSIX_PRIORITY_SCHEDULING
|
|
sched_yield();
|
|
#else
|
|
pl_cpu_relax();
|
|
#endif
|
|
}
|
|
|
|
/* these calls are used as callbacks at init time when debugging is on */
|
|
void ha_spin_init(HA_SPINLOCK_T *l)
|
|
{
|
|
HA_SPIN_INIT(l);
|
|
}
|
|
|
|
/* these calls are used as callbacks at init time when debugging is on */
|
|
void ha_rwlock_init(HA_RWLOCK_T *l)
|
|
{
|
|
HA_RWLOCK_INIT(l);
|
|
}
|
|
|
|
/* returns the number of CPUs the current process is enabled to run on,
|
|
* regardless of any MAX_THREADS limitation.
|
|
*/
|
|
static int thread_cpus_enabled()
|
|
{
|
|
int ret = 1;
|
|
|
|
#ifdef USE_CPU_AFFINITY
|
|
#if defined(__linux__) && defined(CPU_COUNT)
|
|
cpu_set_t mask;
|
|
|
|
if (sched_getaffinity(0, sizeof(mask), &mask) == 0)
|
|
ret = CPU_COUNT(&mask);
|
|
#elif defined(__FreeBSD__) && defined(USE_CPU_AFFINITY)
|
|
cpuset_t cpuset;
|
|
if (cpuset_getaffinity(CPU_LEVEL_CPUSET, CPU_WHICH_PID, -1,
|
|
sizeof(cpuset), &cpuset) == 0)
|
|
ret = CPU_COUNT(&cpuset);
|
|
#elif defined(__APPLE__)
|
|
ret = (int)sysconf(_SC_NPROCESSORS_ONLN);
|
|
#endif
|
|
#endif
|
|
ret = MAX(ret, 1);
|
|
return ret;
|
|
}
|
|
|
|
/* Returns 1 if the cpu set is currently restricted for the process else 0.
|
|
* Currently only implemented for the Linux platform.
|
|
*/
|
|
int thread_cpu_mask_forced()
|
|
{
|
|
#if defined(__linux__)
|
|
const int cpus_avail = sysconf(_SC_NPROCESSORS_ONLN);
|
|
return cpus_avail != thread_cpus_enabled();
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/* Below come the lock-debugging functions */
|
|
|
|
#if defined(DEBUG_THREAD) || defined(DEBUG_FULL)
|
|
|
|
struct lock_stat lock_stats[LOCK_LABELS];
|
|
|
|
/* this is only used below */
|
|
static const char *lock_label(enum lock_label label)
|
|
{
|
|
switch (label) {
|
|
case TASK_RQ_LOCK: return "TASK_RQ";
|
|
case TASK_WQ_LOCK: return "TASK_WQ";
|
|
case LISTENER_LOCK: return "LISTENER";
|
|
case PROXY_LOCK: return "PROXY";
|
|
case SERVER_LOCK: return "SERVER";
|
|
case LBPRM_LOCK: return "LBPRM";
|
|
case SIGNALS_LOCK: return "SIGNALS";
|
|
case STK_TABLE_LOCK: return "STK_TABLE";
|
|
case STK_SESS_LOCK: return "STK_SESS";
|
|
case APPLETS_LOCK: return "APPLETS";
|
|
case PEER_LOCK: return "PEER";
|
|
case SHCTX_LOCK: return "SHCTX";
|
|
case SSL_LOCK: return "SSL";
|
|
case SSL_GEN_CERTS_LOCK: return "SSL_GEN_CERTS";
|
|
case PATREF_LOCK: return "PATREF";
|
|
case PATEXP_LOCK: return "PATEXP";
|
|
case VARS_LOCK: return "VARS";
|
|
case COMP_POOL_LOCK: return "COMP_POOL";
|
|
case LUA_LOCK: return "LUA";
|
|
case NOTIF_LOCK: return "NOTIF";
|
|
case SPOE_APPLET_LOCK: return "SPOE_APPLET";
|
|
case DNS_LOCK: return "DNS";
|
|
case PID_LIST_LOCK: return "PID_LIST";
|
|
case EMAIL_ALERTS_LOCK: return "EMAIL_ALERTS";
|
|
case PIPES_LOCK: return "PIPES";
|
|
case TLSKEYS_REF_LOCK: return "TLSKEYS_REF";
|
|
case AUTH_LOCK: return "AUTH";
|
|
case LOGSRV_LOCK: return "LOGSRV";
|
|
case DICT_LOCK: return "DICT";
|
|
case PROTO_LOCK: return "PROTO";
|
|
case QUEUE_LOCK: return "QUEUE";
|
|
case CKCH_LOCK: return "CKCH";
|
|
case SNI_LOCK: return "SNI";
|
|
case SSL_SERVER_LOCK: return "SSL_SERVER";
|
|
case SFT_LOCK: return "SFT";
|
|
case IDLE_CONNS_LOCK: return "IDLE_CONNS";
|
|
case QUIC_LOCK: return "QUIC";
|
|
case OCSP_LOCK: return "OCSP";
|
|
case OTHER_LOCK: return "OTHER";
|
|
case DEBUG1_LOCK: return "DEBUG1";
|
|
case DEBUG2_LOCK: return "DEBUG2";
|
|
case DEBUG3_LOCK: return "DEBUG3";
|
|
case DEBUG4_LOCK: return "DEBUG4";
|
|
case DEBUG5_LOCK: return "DEBUG5";
|
|
case LOCK_LABELS: break; /* keep compiler happy */
|
|
};
|
|
/* only way to come here is consecutive to an internal bug */
|
|
abort();
|
|
}
|
|
|
|
void show_lock_stats()
|
|
{
|
|
int lbl;
|
|
|
|
for (lbl = 0; lbl < LOCK_LABELS; lbl++) {
|
|
if (!lock_stats[lbl].num_write_locked &&
|
|
!lock_stats[lbl].num_seek_locked &&
|
|
!lock_stats[lbl].num_read_locked) {
|
|
fprintf(stderr,
|
|
"Stats about Lock %s: not used\n",
|
|
lock_label(lbl));
|
|
continue;
|
|
}
|
|
|
|
fprintf(stderr,
|
|
"Stats about Lock %s: \n",
|
|
lock_label(lbl));
|
|
|
|
if (lock_stats[lbl].num_write_locked)
|
|
fprintf(stderr,
|
|
"\t # write lock : %llu\n"
|
|
"\t # write unlock: %llu (%lld)\n"
|
|
"\t # wait time for write : %.3f msec\n"
|
|
"\t # wait time for write/lock: %.3f nsec\n",
|
|
(ullong)lock_stats[lbl].num_write_locked,
|
|
(ullong)lock_stats[lbl].num_write_unlocked,
|
|
(llong)(lock_stats[lbl].num_write_unlocked - lock_stats[lbl].num_write_locked),
|
|
(double)lock_stats[lbl].nsec_wait_for_write / 1000000.0,
|
|
lock_stats[lbl].num_write_locked ? ((double)lock_stats[lbl].nsec_wait_for_write / (double)lock_stats[lbl].num_write_locked) : 0);
|
|
|
|
if (lock_stats[lbl].num_seek_locked)
|
|
fprintf(stderr,
|
|
"\t # seek lock : %llu\n"
|
|
"\t # seek unlock : %llu (%lld)\n"
|
|
"\t # wait time for seek : %.3f msec\n"
|
|
"\t # wait time for seek/lock : %.3f nsec\n",
|
|
(ullong)lock_stats[lbl].num_seek_locked,
|
|
(ullong)lock_stats[lbl].num_seek_unlocked,
|
|
(llong)(lock_stats[lbl].num_seek_unlocked - lock_stats[lbl].num_seek_locked),
|
|
(double)lock_stats[lbl].nsec_wait_for_seek / 1000000.0,
|
|
lock_stats[lbl].num_seek_locked ? ((double)lock_stats[lbl].nsec_wait_for_seek / (double)lock_stats[lbl].num_seek_locked) : 0);
|
|
|
|
if (lock_stats[lbl].num_read_locked)
|
|
fprintf(stderr,
|
|
"\t # read lock : %llu\n"
|
|
"\t # read unlock : %llu (%lld)\n"
|
|
"\t # wait time for read : %.3f msec\n"
|
|
"\t # wait time for read/lock : %.3f nsec\n",
|
|
(ullong)lock_stats[lbl].num_read_locked,
|
|
(ullong)lock_stats[lbl].num_read_unlocked,
|
|
(llong)(lock_stats[lbl].num_read_unlocked - lock_stats[lbl].num_read_locked),
|
|
(double)lock_stats[lbl].nsec_wait_for_read / 1000000.0,
|
|
lock_stats[lbl].num_read_locked ? ((double)lock_stats[lbl].nsec_wait_for_read / (double)lock_stats[lbl].num_read_locked) : 0);
|
|
}
|
|
}
|
|
|
|
void __ha_rwlock_init(struct ha_rwlock *l)
|
|
{
|
|
memset(l, 0, sizeof(struct ha_rwlock));
|
|
__RWLOCK_INIT(&l->lock);
|
|
}
|
|
|
|
void __ha_rwlock_destroy(struct ha_rwlock *l)
|
|
{
|
|
__RWLOCK_DESTROY(&l->lock);
|
|
memset(l, 0, sizeof(struct ha_rwlock));
|
|
}
|
|
|
|
|
|
void __ha_rwlock_wrlock(enum lock_label lbl, struct ha_rwlock *l,
|
|
const char *func, const char *file, int line)
|
|
{
|
|
ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1;
|
|
struct ha_rwlock_state *st = &l->info.st[tgid-1];
|
|
uint64_t start_time;
|
|
|
|
if ((st->cur_readers | st->cur_seeker | st->cur_writer) & tbit)
|
|
abort();
|
|
|
|
HA_ATOMIC_OR(&st->wait_writers, tbit);
|
|
|
|
start_time = now_mono_time();
|
|
__RWLOCK_WRLOCK(&l->lock);
|
|
HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_write, (now_mono_time() - start_time));
|
|
|
|
HA_ATOMIC_INC(&lock_stats[lbl].num_write_locked);
|
|
|
|
st->cur_writer = tbit;
|
|
l->info.last_location.function = func;
|
|
l->info.last_location.file = file;
|
|
l->info.last_location.line = line;
|
|
|
|
HA_ATOMIC_AND(&st->wait_writers, ~tbit);
|
|
}
|
|
|
|
int __ha_rwlock_trywrlock(enum lock_label lbl, struct ha_rwlock *l,
|
|
const char *func, const char *file, int line)
|
|
{
|
|
ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1;
|
|
struct ha_rwlock_state *st = &l->info.st[tgid-1];
|
|
uint64_t start_time;
|
|
int r;
|
|
|
|
if ((st->cur_readers | st->cur_seeker | st->cur_writer) & tbit)
|
|
abort();
|
|
|
|
/* We set waiting writer because trywrlock could wait for readers to quit */
|
|
HA_ATOMIC_OR(&st->wait_writers, tbit);
|
|
|
|
start_time = now_mono_time();
|
|
r = __RWLOCK_TRYWRLOCK(&l->lock);
|
|
HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_write, (now_mono_time() - start_time));
|
|
if (unlikely(r)) {
|
|
HA_ATOMIC_AND(&st->wait_writers, ~tbit);
|
|
return r;
|
|
}
|
|
HA_ATOMIC_INC(&lock_stats[lbl].num_write_locked);
|
|
|
|
st->cur_writer = tbit;
|
|
l->info.last_location.function = func;
|
|
l->info.last_location.file = file;
|
|
l->info.last_location.line = line;
|
|
|
|
HA_ATOMIC_AND(&st->wait_writers, ~tbit);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __ha_rwlock_wrunlock(enum lock_label lbl,struct ha_rwlock *l,
|
|
const char *func, const char *file, int line)
|
|
{
|
|
ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1;
|
|
struct ha_rwlock_state *st = &l->info.st[tgid-1];
|
|
|
|
if (unlikely(!(st->cur_writer & tbit))) {
|
|
/* the thread is not owning the lock for write */
|
|
abort();
|
|
}
|
|
|
|
st->cur_writer = 0;
|
|
l->info.last_location.function = func;
|
|
l->info.last_location.file = file;
|
|
l->info.last_location.line = line;
|
|
|
|
__RWLOCK_WRUNLOCK(&l->lock);
|
|
|
|
HA_ATOMIC_INC(&lock_stats[lbl].num_write_unlocked);
|
|
}
|
|
|
|
void __ha_rwlock_rdlock(enum lock_label lbl,struct ha_rwlock *l)
|
|
{
|
|
ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1;
|
|
struct ha_rwlock_state *st = &l->info.st[tgid-1];
|
|
uint64_t start_time;
|
|
|
|
if ((st->cur_readers | st->cur_seeker | st->cur_writer) & tbit)
|
|
abort();
|
|
|
|
HA_ATOMIC_OR(&st->wait_readers, tbit);
|
|
|
|
start_time = now_mono_time();
|
|
__RWLOCK_RDLOCK(&l->lock);
|
|
HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_read, (now_mono_time() - start_time));
|
|
HA_ATOMIC_INC(&lock_stats[lbl].num_read_locked);
|
|
|
|
HA_ATOMIC_OR(&st->cur_readers, tbit);
|
|
|
|
HA_ATOMIC_AND(&st->wait_readers, ~tbit);
|
|
}
|
|
|
|
int __ha_rwlock_tryrdlock(enum lock_label lbl,struct ha_rwlock *l)
|
|
{
|
|
ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1;
|
|
struct ha_rwlock_state *st = &l->info.st[tgid-1];
|
|
int r;
|
|
|
|
if ((st->cur_readers | st->cur_seeker | st->cur_writer) & tbit)
|
|
abort();
|
|
|
|
/* try read should never wait */
|
|
r = __RWLOCK_TRYRDLOCK(&l->lock);
|
|
if (unlikely(r))
|
|
return r;
|
|
HA_ATOMIC_INC(&lock_stats[lbl].num_read_locked);
|
|
|
|
HA_ATOMIC_OR(&st->cur_readers, tbit);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __ha_rwlock_rdunlock(enum lock_label lbl,struct ha_rwlock *l)
|
|
{
|
|
ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1;
|
|
struct ha_rwlock_state *st = &l->info.st[tgid-1];
|
|
|
|
if (unlikely(!(st->cur_readers & tbit))) {
|
|
/* the thread is not owning the lock for read */
|
|
abort();
|
|
}
|
|
|
|
HA_ATOMIC_AND(&st->cur_readers, ~tbit);
|
|
|
|
__RWLOCK_RDUNLOCK(&l->lock);
|
|
|
|
HA_ATOMIC_INC(&lock_stats[lbl].num_read_unlocked);
|
|
}
|
|
|
|
void __ha_rwlock_wrtord(enum lock_label lbl, struct ha_rwlock *l,
|
|
const char *func, const char *file, int line)
|
|
{
|
|
ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1;
|
|
struct ha_rwlock_state *st = &l->info.st[tgid-1];
|
|
uint64_t start_time;
|
|
|
|
if ((st->cur_readers | st->cur_seeker) & tbit)
|
|
abort();
|
|
|
|
if (!(st->cur_writer & tbit))
|
|
abort();
|
|
|
|
HA_ATOMIC_OR(&st->wait_readers, tbit);
|
|
|
|
start_time = now_mono_time();
|
|
__RWLOCK_WRTORD(&l->lock);
|
|
HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_read, (now_mono_time() - start_time));
|
|
|
|
HA_ATOMIC_INC(&lock_stats[lbl].num_read_locked);
|
|
|
|
HA_ATOMIC_OR(&st->cur_readers, tbit);
|
|
HA_ATOMIC_AND(&st->cur_writer, ~tbit);
|
|
l->info.last_location.function = func;
|
|
l->info.last_location.file = file;
|
|
l->info.last_location.line = line;
|
|
|
|
HA_ATOMIC_AND(&st->wait_readers, ~tbit);
|
|
}
|
|
|
|
void __ha_rwlock_wrtosk(enum lock_label lbl, struct ha_rwlock *l,
|
|
const char *func, const char *file, int line)
|
|
{
|
|
ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1;
|
|
struct ha_rwlock_state *st = &l->info.st[tgid-1];
|
|
uint64_t start_time;
|
|
|
|
if ((st->cur_readers | st->cur_seeker) & tbit)
|
|
abort();
|
|
|
|
if (!(st->cur_writer & tbit))
|
|
abort();
|
|
|
|
HA_ATOMIC_OR(&st->wait_seekers, tbit);
|
|
|
|
start_time = now_mono_time();
|
|
__RWLOCK_WRTOSK(&l->lock);
|
|
HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_seek, (now_mono_time() - start_time));
|
|
|
|
HA_ATOMIC_INC(&lock_stats[lbl].num_seek_locked);
|
|
|
|
HA_ATOMIC_OR(&st->cur_seeker, tbit);
|
|
HA_ATOMIC_AND(&st->cur_writer, ~tbit);
|
|
l->info.last_location.function = func;
|
|
l->info.last_location.file = file;
|
|
l->info.last_location.line = line;
|
|
|
|
HA_ATOMIC_AND(&st->wait_seekers, ~tbit);
|
|
}
|
|
|
|
void __ha_rwlock_sklock(enum lock_label lbl, struct ha_rwlock *l,
|
|
const char *func, const char *file, int line)
|
|
{
|
|
ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1;
|
|
struct ha_rwlock_state *st = &l->info.st[tgid-1];
|
|
uint64_t start_time;
|
|
|
|
if ((st->cur_readers | st->cur_seeker | st->cur_writer) & tbit)
|
|
abort();
|
|
|
|
HA_ATOMIC_OR(&st->wait_seekers, tbit);
|
|
|
|
start_time = now_mono_time();
|
|
__RWLOCK_SKLOCK(&l->lock);
|
|
HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_seek, (now_mono_time() - start_time));
|
|
|
|
HA_ATOMIC_INC(&lock_stats[lbl].num_seek_locked);
|
|
|
|
HA_ATOMIC_OR(&st->cur_seeker, tbit);
|
|
l->info.last_location.function = func;
|
|
l->info.last_location.file = file;
|
|
l->info.last_location.line = line;
|
|
|
|
HA_ATOMIC_AND(&st->wait_seekers, ~tbit);
|
|
}
|
|
|
|
void __ha_rwlock_sktowr(enum lock_label lbl, struct ha_rwlock *l,
|
|
const char *func, const char *file, int line)
|
|
{
|
|
ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1;
|
|
struct ha_rwlock_state *st = &l->info.st[tgid-1];
|
|
uint64_t start_time;
|
|
|
|
if ((st->cur_readers | st->cur_writer) & tbit)
|
|
abort();
|
|
|
|
if (!(st->cur_seeker & tbit))
|
|
abort();
|
|
|
|
HA_ATOMIC_OR(&st->wait_writers, tbit);
|
|
|
|
start_time = now_mono_time();
|
|
__RWLOCK_SKTOWR(&l->lock);
|
|
HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_write, (now_mono_time() - start_time));
|
|
|
|
HA_ATOMIC_INC(&lock_stats[lbl].num_write_locked);
|
|
|
|
HA_ATOMIC_OR(&st->cur_writer, tbit);
|
|
HA_ATOMIC_AND(&st->cur_seeker, ~tbit);
|
|
l->info.last_location.function = func;
|
|
l->info.last_location.file = file;
|
|
l->info.last_location.line = line;
|
|
|
|
HA_ATOMIC_AND(&st->wait_writers, ~tbit);
|
|
}
|
|
|
|
void __ha_rwlock_sktord(enum lock_label lbl, struct ha_rwlock *l,
|
|
const char *func, const char *file, int line)
|
|
{
|
|
ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1;
|
|
struct ha_rwlock_state *st = &l->info.st[tgid-1];
|
|
uint64_t start_time;
|
|
|
|
if ((st->cur_readers | st->cur_writer) & tbit)
|
|
abort();
|
|
|
|
if (!(st->cur_seeker & tbit))
|
|
abort();
|
|
|
|
HA_ATOMIC_OR(&st->wait_readers, tbit);
|
|
|
|
start_time = now_mono_time();
|
|
__RWLOCK_SKTORD(&l->lock);
|
|
HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_read, (now_mono_time() - start_time));
|
|
|
|
HA_ATOMIC_INC(&lock_stats[lbl].num_read_locked);
|
|
|
|
HA_ATOMIC_OR(&st->cur_readers, tbit);
|
|
HA_ATOMIC_AND(&st->cur_seeker, ~tbit);
|
|
l->info.last_location.function = func;
|
|
l->info.last_location.file = file;
|
|
l->info.last_location.line = line;
|
|
|
|
HA_ATOMIC_AND(&st->wait_readers, ~tbit);
|
|
}
|
|
|
|
void __ha_rwlock_skunlock(enum lock_label lbl,struct ha_rwlock *l,
|
|
const char *func, const char *file, int line)
|
|
{
|
|
ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1;
|
|
struct ha_rwlock_state *st = &l->info.st[tgid-1];
|
|
if (!(st->cur_seeker & tbit))
|
|
abort();
|
|
|
|
HA_ATOMIC_AND(&st->cur_seeker, ~tbit);
|
|
l->info.last_location.function = func;
|
|
l->info.last_location.file = file;
|
|
l->info.last_location.line = line;
|
|
|
|
__RWLOCK_SKUNLOCK(&l->lock);
|
|
|
|
HA_ATOMIC_INC(&lock_stats[lbl].num_seek_unlocked);
|
|
}
|
|
|
|
int __ha_rwlock_trysklock(enum lock_label lbl, struct ha_rwlock *l,
|
|
const char *func, const char *file, int line)
|
|
{
|
|
ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1;
|
|
struct ha_rwlock_state *st = &l->info.st[tgid-1];
|
|
uint64_t start_time;
|
|
int r;
|
|
|
|
if ((st->cur_readers | st->cur_seeker | st->cur_writer) & tbit)
|
|
abort();
|
|
|
|
HA_ATOMIC_OR(&st->wait_seekers, tbit);
|
|
|
|
start_time = now_mono_time();
|
|
r = __RWLOCK_TRYSKLOCK(&l->lock);
|
|
HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_seek, (now_mono_time() - start_time));
|
|
|
|
if (likely(!r)) {
|
|
/* got the lock ! */
|
|
HA_ATOMIC_INC(&lock_stats[lbl].num_seek_locked);
|
|
HA_ATOMIC_OR(&st->cur_seeker, tbit);
|
|
l->info.last_location.function = func;
|
|
l->info.last_location.file = file;
|
|
l->info.last_location.line = line;
|
|
}
|
|
|
|
HA_ATOMIC_AND(&st->wait_seekers, ~tbit);
|
|
return r;
|
|
}
|
|
|
|
int __ha_rwlock_tryrdtosk(enum lock_label lbl, struct ha_rwlock *l,
|
|
const char *func, const char *file, int line)
|
|
{
|
|
ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1;
|
|
struct ha_rwlock_state *st = &l->info.st[tgid-1];
|
|
uint64_t start_time;
|
|
int r;
|
|
|
|
if ((st->cur_writer | st->cur_seeker) & tbit)
|
|
abort();
|
|
|
|
if (!(st->cur_readers & tbit))
|
|
abort();
|
|
|
|
HA_ATOMIC_OR(&st->wait_seekers, tbit);
|
|
|
|
start_time = now_mono_time();
|
|
r = __RWLOCK_TRYRDTOSK(&l->lock);
|
|
HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_seek, (now_mono_time() - start_time));
|
|
|
|
if (likely(!r)) {
|
|
/* got the lock ! */
|
|
HA_ATOMIC_INC(&lock_stats[lbl].num_seek_locked);
|
|
HA_ATOMIC_OR(&st->cur_seeker, tbit);
|
|
HA_ATOMIC_AND(&st->cur_readers, ~tbit);
|
|
l->info.last_location.function = func;
|
|
l->info.last_location.file = file;
|
|
l->info.last_location.line = line;
|
|
}
|
|
|
|
HA_ATOMIC_AND(&st->wait_seekers, ~tbit);
|
|
return r;
|
|
}
|
|
|
|
void __spin_init(struct ha_spinlock *l)
|
|
{
|
|
memset(l, 0, sizeof(struct ha_spinlock));
|
|
__SPIN_INIT(&l->lock);
|
|
}
|
|
|
|
void __spin_destroy(struct ha_spinlock *l)
|
|
{
|
|
__SPIN_DESTROY(&l->lock);
|
|
memset(l, 0, sizeof(struct ha_spinlock));
|
|
}
|
|
|
|
void __spin_lock(enum lock_label lbl, struct ha_spinlock *l,
|
|
const char *func, const char *file, int line)
|
|
{
|
|
ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1;
|
|
struct ha_spinlock_state *st = &l->info.st[tgid-1];
|
|
uint64_t start_time;
|
|
|
|
if (unlikely(st->owner & tbit)) {
|
|
/* the thread is already owning the lock */
|
|
abort();
|
|
}
|
|
|
|
HA_ATOMIC_OR(&st->waiters, tbit);
|
|
|
|
start_time = now_mono_time();
|
|
__SPIN_LOCK(&l->lock);
|
|
HA_ATOMIC_ADD(&lock_stats[lbl].nsec_wait_for_write, (now_mono_time() - start_time));
|
|
|
|
HA_ATOMIC_INC(&lock_stats[lbl].num_write_locked);
|
|
|
|
|
|
st->owner = tbit;
|
|
l->info.last_location.function = func;
|
|
l->info.last_location.file = file;
|
|
l->info.last_location.line = line;
|
|
|
|
HA_ATOMIC_AND(&st->waiters, ~tbit);
|
|
}
|
|
|
|
int __spin_trylock(enum lock_label lbl, struct ha_spinlock *l,
|
|
const char *func, const char *file, int line)
|
|
{
|
|
ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1;
|
|
struct ha_spinlock_state *st = &l->info.st[tgid-1];
|
|
int r;
|
|
|
|
if (unlikely(st->owner & tbit)) {
|
|
/* the thread is already owning the lock */
|
|
abort();
|
|
}
|
|
|
|
/* try read should never wait */
|
|
r = __SPIN_TRYLOCK(&l->lock);
|
|
if (unlikely(r))
|
|
return r;
|
|
HA_ATOMIC_INC(&lock_stats[lbl].num_write_locked);
|
|
|
|
st->owner = tbit;
|
|
l->info.last_location.function = func;
|
|
l->info.last_location.file = file;
|
|
l->info.last_location.line = line;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __spin_unlock(enum lock_label lbl, struct ha_spinlock *l,
|
|
const char *func, const char *file, int line)
|
|
{
|
|
ulong tbit = (ti && ti->ltid_bit) ? ti->ltid_bit : 1;
|
|
struct ha_spinlock_state *st = &l->info.st[tgid-1];
|
|
|
|
if (unlikely(!(st->owner & tbit))) {
|
|
/* the thread is not owning the lock */
|
|
abort();
|
|
}
|
|
|
|
st->owner = 0;
|
|
l->info.last_location.function = func;
|
|
l->info.last_location.file = file;
|
|
l->info.last_location.line = line;
|
|
|
|
__SPIN_UNLOCK(&l->lock);
|
|
HA_ATOMIC_INC(&lock_stats[lbl].num_write_unlocked);
|
|
}
|
|
|
|
#endif // defined(DEBUG_THREAD) || defined(DEBUG_FULL)
|
|
|
|
|
|
#if defined(USE_PTHREAD_EMULATION)
|
|
|
|
/* pthread rwlock emulation using plocks (to avoid expensive futexes).
|
|
* these are a direct mapping on Progressive Locks, with the exception that
|
|
* since there's a common unlock operation in pthreads, we need to know if
|
|
* we need to unlock for reads or writes, so we set the topmost bit to 1 when
|
|
* a write lock is acquired to indicate that a write unlock needs to be
|
|
* performed. It's not a problem since this bit will never be used given that
|
|
* haproxy won't support as many threads as the plocks.
|
|
*
|
|
* The storage is the pthread_rwlock_t cast as an ulong
|
|
*/
|
|
|
|
int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock, const pthread_rwlockattr_t *restrict attr)
|
|
{
|
|
ulong *lock = (ulong *)rwlock;
|
|
|
|
*lock = 0;
|
|
return 0;
|
|
}
|
|
|
|
int pthread_rwlock_destroy(pthread_rwlock_t *rwlock)
|
|
{
|
|
ulong *lock = (ulong *)rwlock;
|
|
|
|
*lock = 0;
|
|
return 0;
|
|
}
|
|
|
|
int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock)
|
|
{
|
|
pl_lorw_rdlock((unsigned long *)rwlock);
|
|
return 0;
|
|
}
|
|
|
|
int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock)
|
|
{
|
|
return !!pl_cmpxchg((unsigned long *)rwlock, 0, PLOCK_LORW_SHR_BASE);
|
|
}
|
|
|
|
int pthread_rwlock_timedrdlock(pthread_rwlock_t *restrict rwlock, const struct timespec *restrict abstime)
|
|
{
|
|
return pthread_rwlock_tryrdlock(rwlock);
|
|
}
|
|
|
|
int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock)
|
|
{
|
|
pl_lorw_wrlock((unsigned long *)rwlock);
|
|
return 0;
|
|
}
|
|
|
|
int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock)
|
|
{
|
|
return !!pl_cmpxchg((unsigned long *)rwlock, 0, PLOCK_LORW_EXC_BASE);
|
|
}
|
|
|
|
int pthread_rwlock_timedwrlock(pthread_rwlock_t *restrict rwlock, const struct timespec *restrict abstime)
|
|
{
|
|
return pthread_rwlock_trywrlock(rwlock);
|
|
}
|
|
|
|
int pthread_rwlock_unlock(pthread_rwlock_t *rwlock)
|
|
{
|
|
pl_lorw_unlock((unsigned long *)rwlock);
|
|
return 0;
|
|
}
|
|
#endif // defined(USE_PTHREAD_EMULATION)
|
|
|
|
/* Depending on the platform and how libpthread was built, pthread_exit() may
|
|
* involve some code in libgcc_s that would be loaded on exit for the first
|
|
* time, causing aborts if the process is chrooted. It's harmless bit very
|
|
* dirty. There isn't much we can do to make sure libgcc_s is loaded only if
|
|
* needed, so what we do here is that during early boot we create a dummy
|
|
* thread that immediately exits. This will lead to libgcc_s being loaded
|
|
* during boot on the platforms where it's required.
|
|
*/
|
|
static void *dummy_thread_function(void *data)
|
|
{
|
|
pthread_exit(NULL);
|
|
return NULL;
|
|
}
|
|
|
|
static inline void preload_libgcc_s(void)
|
|
{
|
|
pthread_t dummy_thread;
|
|
pthread_create(&dummy_thread, NULL, dummy_thread_function, NULL);
|
|
pthread_join(dummy_thread, NULL);
|
|
}
|
|
|
|
static void __thread_init(void)
|
|
{
|
|
char *ptr = NULL;
|
|
|
|
preload_libgcc_s();
|
|
|
|
thread_cpus_enabled_at_boot = thread_cpus_enabled();
|
|
thread_cpus_enabled_at_boot = MIN(thread_cpus_enabled_at_boot, MAX_THREADS);
|
|
|
|
memprintf(&ptr, "Built with multi-threading support (MAX_TGROUPS=%d, MAX_THREADS=%d, default=%d).",
|
|
MAX_TGROUPS, MAX_THREADS, thread_cpus_enabled_at_boot);
|
|
hap_register_build_opts(ptr, 1);
|
|
|
|
#if defined(DEBUG_THREAD) || defined(DEBUG_FULL)
|
|
memset(lock_stats, 0, sizeof(lock_stats));
|
|
#endif
|
|
}
|
|
INITCALL0(STG_PREPARE, __thread_init);
|
|
|
|
#else
|
|
|
|
/* send signal <sig> to thread <thr> (send to process in fact) */
|
|
void ha_tkill(unsigned int thr, int sig)
|
|
{
|
|
raise(sig);
|
|
}
|
|
|
|
/* send signal <sig> to all threads (send to process in fact) */
|
|
void ha_tkillall(int sig)
|
|
{
|
|
raise(sig);
|
|
}
|
|
|
|
void ha_thread_relax(void)
|
|
{
|
|
#ifdef _POSIX_PRIORITY_SCHEDULING
|
|
sched_yield();
|
|
#endif
|
|
}
|
|
|
|
REGISTER_BUILD_OPTS("Built without multi-threading support (USE_THREAD not set).");
|
|
|
|
#endif // USE_THREAD
|
|
|
|
|
|
/* scans the configured thread mapping and establishes the final one. Returns <0
|
|
* on failure, >=0 on success.
|
|
*/
|
|
int thread_map_to_groups()
|
|
{
|
|
int t, g, ut, ug;
|
|
int q, r;
|
|
ulong m __maybe_unused;
|
|
|
|
ut = ug = 0; // unassigned threads & groups
|
|
|
|
for (t = 0; t < global.nbthread; t++) {
|
|
if (!ha_thread_info[t].tg)
|
|
ut++;
|
|
}
|
|
|
|
for (g = 0; g < global.nbtgroups; g++) {
|
|
if (!ha_tgroup_info[g].count)
|
|
ug++;
|
|
ha_tgroup_info[g].tgid_bit = 1UL << g;
|
|
}
|
|
|
|
if (ug > ut) {
|
|
ha_alert("More unassigned thread-groups (%d) than threads (%d). Please reduce thread-groups\n", ug, ut);
|
|
return -1;
|
|
}
|
|
|
|
/* look for first unassigned thread */
|
|
for (t = 0; t < global.nbthread && ha_thread_info[t].tg; t++)
|
|
;
|
|
|
|
/* assign threads to empty groups */
|
|
for (g = 0; ug && ut; ) {
|
|
/* due to sparse thread assignment we can end up with more threads
|
|
* per group on last assigned groups than former ones, so we must
|
|
* always try to pack the maximum remaining ones together first.
|
|
*/
|
|
q = ut / ug;
|
|
r = ut % ug;
|
|
if ((q + !!r) > MAX_THREADS_PER_GROUP) {
|
|
ha_alert("Too many remaining unassigned threads (%d) for thread groups (%d). Please increase thread-groups or make sure to keep thread numbers contiguous\n", ut, ug);
|
|
return -1;
|
|
}
|
|
|
|
/* thread <t> is the next unassigned one. Let's look for next
|
|
* unassigned group, we know there are some left
|
|
*/
|
|
while (ut >= ug && ha_tgroup_info[g].count)
|
|
g++;
|
|
|
|
/* group g is unassigned, try to fill it with consecutive threads */
|
|
while (ut && ut >= ug && ha_tgroup_info[g].count < q + !!r &&
|
|
(!ha_tgroup_info[g].count || t == ha_tgroup_info[g].base + ha_tgroup_info[g].count)) {
|
|
|
|
if (!ha_tgroup_info[g].count) {
|
|
/* assign new group */
|
|
ha_tgroup_info[g].base = t;
|
|
ug--;
|
|
}
|
|
|
|
ha_tgroup_info[g].count++;
|
|
ha_thread_info[t].tgid = g + 1;
|
|
ha_thread_info[t].tg = &ha_tgroup_info[g];
|
|
ha_thread_info[t].tg_ctx = &ha_tgroup_ctx[g];
|
|
|
|
ut--;
|
|
/* switch to next unassigned thread */
|
|
while (++t < global.nbthread && ha_thread_info[t].tg)
|
|
;
|
|
}
|
|
}
|
|
|
|
if (ut) {
|
|
ha_alert("Remaining unassigned threads found (%d) because all groups are in use. Please increase 'thread-groups', reduce 'nbthreads' or remove or extend 'thread-group' enumerations.\n", ut);
|
|
return -1;
|
|
}
|
|
|
|
for (t = 0; t < global.nbthread; t++) {
|
|
ha_thread_info[t].tid = t;
|
|
ha_thread_info[t].ltid = t - ha_thread_info[t].tg->base;
|
|
ha_thread_info[t].ltid_bit = 1UL << ha_thread_info[t].ltid;
|
|
}
|
|
|
|
m = 0;
|
|
for (g = 0; g < global.nbtgroups; g++) {
|
|
ha_tgroup_info[g].threads_enabled = nbits(ha_tgroup_info[g].count);
|
|
/* for now, additional threads are not started, so we should
|
|
* consider them as harmless and idle.
|
|
* This will get automatically updated when such threads are
|
|
* started in run_thread_poll_loop()
|
|
* Without this, thread_isolate() and thread_isolate_full()
|
|
* will fail to work as long as secondary threads did not enter
|
|
* the polling loop at least once.
|
|
*/
|
|
ha_tgroup_ctx[g].threads_harmless = ha_tgroup_info[g].threads_enabled;
|
|
ha_tgroup_ctx[g].threads_idle = ha_tgroup_info[g].threads_enabled;
|
|
if (!ha_tgroup_info[g].count)
|
|
continue;
|
|
m |= 1UL << g;
|
|
|
|
}
|
|
|
|
#ifdef USE_THREAD
|
|
all_tgroups_mask = m;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/* Converts a configuration thread set based on either absolute or relative
|
|
* thread numbers into a global group+mask. This is essentially for use with
|
|
* the "thread" directive on "bind" lines, where "thread 4-6,10-12" might be
|
|
* turned to "2/1-3,4/1-3". It cannot be used before the thread mapping above
|
|
* was completed and the thread group numbers configured. The thread_set is
|
|
* replaced by the resolved group-based one. It is possible to force a single
|
|
* default group for unspecified sets instead of enabling all groups by passing
|
|
* this group's non-zero value to defgrp.
|
|
*
|
|
* Returns <0 on failure, >=0 on success.
|
|
*/
|
|
int thread_resolve_group_mask(struct thread_set *ts, int defgrp, char **err)
|
|
{
|
|
struct thread_set new_ts = { };
|
|
ulong mask, imask;
|
|
uint g;
|
|
|
|
if (!ts->nbgrp) {
|
|
/* unspecified group, IDs are global */
|
|
if (thread_set_is_empty(ts)) {
|
|
/* all threads of all groups, unless defgrp is set and
|
|
* we then set it as the only group.
|
|
*/
|
|
for (g = defgrp ? defgrp-1 : 0; g < (defgrp ? defgrp : global.nbtgroups); g++) {
|
|
new_ts.rel[g] = ha_tgroup_info[g].threads_enabled;
|
|
new_ts.nbgrp++;
|
|
}
|
|
} else {
|
|
/* some absolute threads are set, we must remap them to
|
|
* relative ones. Each group cannot have more than
|
|
* LONGBITS threads, thus it spans at most two absolute
|
|
* blocks.
|
|
*/
|
|
for (g = 0; g < global.nbtgroups; g++) {
|
|
uint block = ha_tgroup_info[g].base / LONGBITS;
|
|
uint base = ha_tgroup_info[g].base % LONGBITS;
|
|
|
|
mask = ts->abs[block] >> base;
|
|
if (base &&
|
|
(block + 1) < sizeof(ts->abs) / sizeof(ts->abs[0]) &&
|
|
ha_tgroup_info[g].count > (LONGBITS - base))
|
|
mask |= ts->abs[block + 1] << (LONGBITS - base);
|
|
mask &= nbits(ha_tgroup_info[g].count);
|
|
mask &= ha_tgroup_info[g].threads_enabled;
|
|
|
|
/* now the mask exactly matches the threads to be enabled
|
|
* in this group.
|
|
*/
|
|
if (!new_ts.rel[g] && mask)
|
|
new_ts.nbgrp++;
|
|
new_ts.rel[g] |= mask;
|
|
}
|
|
}
|
|
} else {
|
|
/* groups were specified */
|
|
for (g = 0; g < MAX_TGROUPS; g++) {
|
|
imask = ts->rel[g];
|
|
if (!imask)
|
|
continue;
|
|
|
|
if (g >= global.nbtgroups) {
|
|
memprintf(err, "'thread' directive references non-existing thread group %u", g+1);
|
|
return -1;
|
|
}
|
|
|
|
/* some relative threads are set. Keep only existing ones for this group */
|
|
mask = nbits(ha_tgroup_info[g].count);
|
|
|
|
if (!(mask & imask)) {
|
|
/* no intersection between the thread group's
|
|
* threads and the bind line's.
|
|
*/
|
|
#ifdef THREAD_AUTO_ADJUST_GROUPS
|
|
unsigned long new_mask = 0;
|
|
|
|
while (imask) {
|
|
new_mask |= imask & mask;
|
|
imask >>= ha_tgroup_info[g].count;
|
|
}
|
|
imask = new_mask;
|
|
#else
|
|
memprintf(err, "'thread' directive only references threads not belonging to group %u", g+1);
|
|
return -1;
|
|
#endif
|
|
}
|
|
|
|
new_ts.rel[g] = imask & mask;
|
|
new_ts.nbgrp++;
|
|
}
|
|
}
|
|
|
|
/* update the thread_set */
|
|
if (!thread_set_nth_group(&new_ts, 0)) {
|
|
memprintf(err, "'thread' directive only references non-existing threads");
|
|
return -1;
|
|
}
|
|
|
|
*ts = new_ts;
|
|
return 0;
|
|
}
|
|
|
|
/* Parse a string representing a thread set in one of the following forms:
|
|
*
|
|
* - { "all" | "odd" | "even" | <abs_num> [ "-" <abs_num> ] }[,...]
|
|
* => these are (lists of) absolute thread numbers
|
|
*
|
|
* - <tgnum> "/" { "all" | "odd" | "even" | <rel_num> [ "-" <rel_num> ][,...]
|
|
* => these are (lists of) per-group relative thread numbers. All numbers
|
|
* must be lower than or equal to LONGBITS. When multiple list elements
|
|
* are provided, each of them must contain the thread group number.
|
|
*
|
|
* Minimum value for a thread or group number is always 1. Maximum value for an
|
|
* absolute thread number is MAX_THREADS, maximum value for a relative thread
|
|
* number is MAX_THREADS_PER_GROUP, an maximum value for a thread group is
|
|
* MAX_TGROUPS. "all", "even" and "odd" will be bound by MAX_THREADS and/or
|
|
* MAX_THREADS_PER_GROUP in any case. In ranges, a missing digit before "-"
|
|
* is implicitly 1, and a missing digit after "-" is implicitly the highest of
|
|
* its class. As such "-" is equivalent to "all", allowing to build strings
|
|
* such as "${MIN}-${MAX}" where both MIN and MAX are optional.
|
|
*
|
|
* It is not valid to mix absolute and relative numbers. As such:
|
|
* - all valid (all absolute threads)
|
|
* - 12-19,24-31 valid (abs threads 12 to 19 and 24 to 31)
|
|
* - 1/all valid (all 32 or 64 threads of group 1)
|
|
* - 1/1-4,1/8-10,2/1 valid
|
|
* - 1/1-4,8-10 invalid (mixes relatve "1/1-4" with absolute "8-10")
|
|
* - 1-4,8-10,2/1 invalid (mixes absolute "1-4,8-10" with relative "2/1")
|
|
* - 1/odd-4 invalid (mixes range with boundary)
|
|
*
|
|
* The target thread set is *completed* with supported threads, which means
|
|
* that it's the caller's responsibility for pre-initializing it. If the target
|
|
* thread set is NULL, it's not updated and the function only verifies that the
|
|
* input parses.
|
|
*
|
|
* On success, it returns 0. otherwise it returns non-zero with an error
|
|
* message in <err>.
|
|
*/
|
|
int parse_thread_set(const char *arg, struct thread_set *ts, char **err)
|
|
{
|
|
const char *set;
|
|
const char *sep;
|
|
int v, min, max, tg;
|
|
int is_rel;
|
|
|
|
/* search for the first delimiter (',', '-' or '/') to decide whether
|
|
* we're facing an absolute or relative form. The relative form always
|
|
* starts with a number followed by a slash.
|
|
*/
|
|
for (sep = arg; isdigit((uchar)*sep); sep++)
|
|
;
|
|
|
|
is_rel = (/*sep > arg &&*/ *sep == '/'); /* relative form */
|
|
|
|
/* from there we have to cut the thread spec around commas */
|
|
|
|
set = arg;
|
|
tg = 0;
|
|
while (*set) {
|
|
/* note: we can't use strtol() here because "-3" would parse as
|
|
* (-3) while we want to stop before the "-", so we find the
|
|
* separator ourselves and rely on atoi() whose value we may
|
|
* ignore depending where the separator is.
|
|
*/
|
|
for (sep = set; isdigit((uchar)*sep); sep++)
|
|
;
|
|
|
|
if (sep != set && *sep && *sep != '/' && *sep != '-' && *sep != ',') {
|
|
memprintf(err, "invalid character '%c' in thread set specification: '%s'.", *sep, set);
|
|
return -1;
|
|
}
|
|
|
|
v = (sep != set) ? atoi(set) : 0;
|
|
|
|
/* Now we know that the string is made of an optional series of digits
|
|
* optionally followed by one of the delimiters above, or that it
|
|
* starts with a different character.
|
|
*/
|
|
|
|
/* first, let's search for the thread group (digits before '/') */
|
|
|
|
if (tg || !is_rel) {
|
|
/* thread group already specified or not expected if absolute spec */
|
|
if (*sep == '/') {
|
|
if (tg)
|
|
memprintf(err, "redundant thread group specification '%s' for group %d", set, tg);
|
|
else
|
|
memprintf(err, "group-relative thread specification '%s' is not permitted after a absolute thread range.", set);
|
|
return -1;
|
|
}
|
|
} else {
|
|
/* this is a group-relative spec, first field is the group number */
|
|
if (sep == set && *sep == '/') {
|
|
memprintf(err, "thread group number expected before '%s'.", set);
|
|
return -1;
|
|
}
|
|
|
|
if (*sep != '/') {
|
|
memprintf(err, "absolute thread specification '%s' is not permitted after a group-relative thread range.", set);
|
|
return -1;
|
|
}
|
|
|
|
if (v < 1 || v > MAX_TGROUPS) {
|
|
memprintf(err, "invalid thread group number '%d', permitted range is 1..%d in '%s'.", v, MAX_TGROUPS, set);
|
|
return -1;
|
|
}
|
|
|
|
tg = v;
|
|
|
|
/* skip group number and go on with set,sep,v as if
|
|
* there was no group number.
|
|
*/
|
|
set = sep + 1;
|
|
continue;
|
|
}
|
|
|
|
/* Now 'set' starts at the min thread number, whose value is in v if any,
|
|
* and preset the max to it, unless the range is filled at once via "all"
|
|
* (stored as 1:0), "odd" (stored as) 1:-1, or "even" (stored as 1:-2).
|
|
* 'sep' points to the next non-digit which may be set itself e.g. for
|
|
* "all" etc or "-xx".
|
|
*/
|
|
|
|
if (!*set) {
|
|
/* empty set sets no restriction */
|
|
min = 1;
|
|
max = is_rel ? MAX_THREADS_PER_GROUP : MAX_THREADS;
|
|
}
|
|
else {
|
|
if (sep != set && *sep && *sep != '-' && *sep != ',') {
|
|
// Only delimiters are permitted around digits.
|
|
memprintf(err, "invalid character '%c' in thread set specification: '%s'.", *sep, set);
|
|
return -1;
|
|
}
|
|
|
|
/* for non-digits, find next delim */
|
|
for (; *sep && *sep != '-' && *sep != ','; sep++)
|
|
;
|
|
|
|
min = max = 1;
|
|
if (sep != set) {
|
|
/* non-empty first thread */
|
|
if (isteq(ist2(set, sep-set), ist("all")))
|
|
max = 0;
|
|
else if (isteq(ist2(set, sep-set), ist("odd")))
|
|
max = -1;
|
|
else if (isteq(ist2(set, sep-set), ist("even")))
|
|
max = -2;
|
|
else if (v)
|
|
min = max = v;
|
|
else
|
|
max = min = 0; // throw an error below
|
|
}
|
|
|
|
if (min < 1 || min > MAX_THREADS || (is_rel && min > MAX_THREADS_PER_GROUP)) {
|
|
memprintf(err, "invalid first thread number '%s', permitted range is 1..%d, or 'all', 'odd', 'even'.",
|
|
set, is_rel ? MAX_THREADS_PER_GROUP : MAX_THREADS);
|
|
return -1;
|
|
}
|
|
|
|
/* is this a range ? */
|
|
if (*sep == '-') {
|
|
if (min != max) {
|
|
memprintf(err, "extraneous range after 'all', 'odd' or 'even': '%s'.", set);
|
|
return -1;
|
|
}
|
|
|
|
/* this is a seemingly valid range, there may be another number */
|
|
for (set = ++sep; isdigit((uchar)*sep); sep++)
|
|
;
|
|
v = atoi(set);
|
|
|
|
if (sep == set) { // no digit: to the max
|
|
max = is_rel ? MAX_THREADS_PER_GROUP : MAX_THREADS;
|
|
if (*sep && *sep != ',')
|
|
max = 0; // throw an error below
|
|
} else
|
|
max = v;
|
|
|
|
if (max < 1 || max > MAX_THREADS || (is_rel && max > MAX_THREADS_PER_GROUP)) {
|
|
memprintf(err, "invalid last thread number '%s', permitted range is 1..%d.",
|
|
set, is_rel ? MAX_THREADS_PER_GROUP : MAX_THREADS);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* here sep points to the first non-digit after the thread spec,
|
|
* must be a valid delimiter.
|
|
*/
|
|
if (*sep && *sep != ',') {
|
|
memprintf(err, "invalid character '%c' after thread set specification: '%s'.", *sep, set);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* store values */
|
|
if (ts) {
|
|
if (is_rel) {
|
|
/* group-relative thread numbers */
|
|
if (!ts->rel[tg - 1])
|
|
ts->nbgrp++;
|
|
|
|
if (max >= min) {
|
|
for (v = min; v <= max; v++)
|
|
ts->rel[tg - 1] |= 1UL << (v - 1);
|
|
} else {
|
|
memset(&ts->rel[tg - 1],
|
|
(max == 0) ? 0xff /* all */ : (max == -1) ? 0x55 /* odd */: 0xaa /* even */,
|
|
sizeof(ts->rel[tg - 1]));
|
|
}
|
|
} else {
|
|
/* absolute thread numbers */
|
|
if (max >= min) {
|
|
for (v = min; v <= max; v++)
|
|
ts->abs[(v - 1) / LONGBITS] |= 1UL << ((v - 1) % LONGBITS);
|
|
} else {
|
|
memset(&ts->abs,
|
|
(max == 0) ? 0xff /* all */ : (max == -1) ? 0x55 /* odd */: 0xaa /* even */,
|
|
sizeof(ts->abs));
|
|
}
|
|
}
|
|
}
|
|
|
|
set = *sep ? sep + 1 : sep;
|
|
tg = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Parse the "nbthread" global directive, which takes an integer argument that
|
|
* contains the desired number of threads.
|
|
*/
|
|
static int cfg_parse_nbthread(char **args, int section_type, struct proxy *curpx,
|
|
const struct proxy *defpx, const char *file, int line,
|
|
char **err)
|
|
{
|
|
long nbthread;
|
|
char *errptr;
|
|
|
|
if (too_many_args(1, args, err, NULL))
|
|
return -1;
|
|
|
|
if (non_global_section_parsed == 1) {
|
|
memprintf(err, "'%s' not allowed if a non-global section was previously defined. This parameter must be declared in the first global section", args[0]);
|
|
return -1;
|
|
}
|
|
|
|
nbthread = strtol(args[1], &errptr, 10);
|
|
if (!*args[1] || *errptr) {
|
|
memprintf(err, "'%s' passed a missing or unparsable integer value in '%s'", args[0], args[1]);
|
|
return -1;
|
|
}
|
|
|
|
#ifndef USE_THREAD
|
|
if (nbthread != 1) {
|
|
memprintf(err, "'%s' specified with a value other than 1 while HAProxy is not compiled with threads support. Please check build options for USE_THREAD", args[0]);
|
|
return -1;
|
|
}
|
|
#else
|
|
if (nbthread < 1 || nbthread > MAX_THREADS) {
|
|
memprintf(err, "'%s' value must be between 1 and %d (was %ld)", args[0], MAX_THREADS, nbthread);
|
|
return -1;
|
|
}
|
|
#endif
|
|
|
|
HA_DIAG_WARNING_COND(global.nbthread,
|
|
"parsing [%s:%d] : '%s' is already defined and will be overridden.\n",
|
|
file, line, args[0]);
|
|
|
|
global.nbthread = nbthread;
|
|
return 0;
|
|
}
|
|
|
|
/* Parse the "thread-group" global directive, which takes an integer argument
|
|
* that designates a thread group, and a list of threads to put into that group.
|
|
*/
|
|
static int cfg_parse_thread_group(char **args, int section_type, struct proxy *curpx,
|
|
const struct proxy *defpx, const char *file, int line,
|
|
char **err)
|
|
{
|
|
char *errptr;
|
|
long tnum, tend, tgroup;
|
|
int arg, tot;
|
|
|
|
if (non_global_section_parsed == 1) {
|
|
memprintf(err, "'%s' not allowed if a non-global section was previously defined. This parameter must be declared in the first global section", args[0]);
|
|
return -1;
|
|
}
|
|
|
|
tgroup = strtol(args[1], &errptr, 10);
|
|
if (!*args[1] || *errptr) {
|
|
memprintf(err, "'%s' passed a missing or unparsable integer value in '%s'", args[0], args[1]);
|
|
return -1;
|
|
}
|
|
|
|
if (tgroup < 1 || tgroup > MAX_TGROUPS) {
|
|
memprintf(err, "'%s' thread-group number must be between 1 and %d (was %ld)", args[0], MAX_TGROUPS, tgroup);
|
|
return -1;
|
|
}
|
|
|
|
/* look for a preliminary definition of any thread pointing to this
|
|
* group, and remove them.
|
|
*/
|
|
if (ha_tgroup_info[tgroup-1].count) {
|
|
ha_warning("parsing [%s:%d] : '%s %ld' was already defined and will be overridden.\n",
|
|
file, line, args[0], tgroup);
|
|
|
|
for (tnum = ha_tgroup_info[tgroup-1].base;
|
|
tnum < ha_tgroup_info[tgroup-1].base + ha_tgroup_info[tgroup-1].count;
|
|
tnum++) {
|
|
if (ha_thread_info[tnum-1].tg == &ha_tgroup_info[tgroup-1]) {
|
|
ha_thread_info[tnum-1].tg = NULL;
|
|
ha_thread_info[tnum-1].tgid = 0;
|
|
ha_thread_info[tnum-1].tg_ctx = NULL;
|
|
}
|
|
}
|
|
ha_tgroup_info[tgroup-1].count = ha_tgroup_info[tgroup-1].base = 0;
|
|
}
|
|
|
|
tot = 0;
|
|
for (arg = 2; args[arg] && *args[arg]; arg++) {
|
|
tend = tnum = strtol(args[arg], &errptr, 10);
|
|
|
|
if (*errptr == '-')
|
|
tend = strtol(errptr + 1, &errptr, 10);
|
|
|
|
if (*errptr || tnum < 1 || tend < 1 || tnum > MAX_THREADS || tend > MAX_THREADS) {
|
|
memprintf(err, "'%s %ld' passed an unparsable or invalid thread number '%s' (valid range is 1 to %d)", args[0], tgroup, args[arg], MAX_THREADS);
|
|
return -1;
|
|
}
|
|
|
|
for(; tnum <= tend; tnum++) {
|
|
if (ha_thread_info[tnum-1].tg == &ha_tgroup_info[tgroup-1]) {
|
|
ha_warning("parsing [%s:%d] : '%s %ld': thread %ld assigned more than once on the same line.\n",
|
|
file, line, args[0], tgroup, tnum);
|
|
} else if (ha_thread_info[tnum-1].tg) {
|
|
ha_warning("parsing [%s:%d] : '%s %ld': thread %ld was previously assigned to thread group %ld and will be overridden.\n",
|
|
file, line, args[0], tgroup, tnum,
|
|
(long)(ha_thread_info[tnum-1].tg - &ha_tgroup_info[0] + 1));
|
|
}
|
|
|
|
if (!ha_tgroup_info[tgroup-1].count) {
|
|
ha_tgroup_info[tgroup-1].base = tnum-1;
|
|
ha_tgroup_info[tgroup-1].count = 1;
|
|
}
|
|
else if (tnum >= ha_tgroup_info[tgroup-1].base + ha_tgroup_info[tgroup-1].count) {
|
|
ha_tgroup_info[tgroup-1].count = tnum - ha_tgroup_info[tgroup-1].base;
|
|
}
|
|
else if (tnum < ha_tgroup_info[tgroup-1].base) {
|
|
ha_tgroup_info[tgroup-1].count += ha_tgroup_info[tgroup-1].base - tnum-1;
|
|
ha_tgroup_info[tgroup-1].base = tnum - 1;
|
|
}
|
|
|
|
ha_thread_info[tnum-1].tgid = tgroup;
|
|
ha_thread_info[tnum-1].tg = &ha_tgroup_info[tgroup-1];
|
|
ha_thread_info[tnum-1].tg_ctx = &ha_tgroup_ctx[tgroup-1];
|
|
tot++;
|
|
}
|
|
}
|
|
|
|
if (ha_tgroup_info[tgroup-1].count > tot) {
|
|
memprintf(err, "'%s %ld' assigned sparse threads, only contiguous supported", args[0], tgroup);
|
|
return -1;
|
|
}
|
|
|
|
if (ha_tgroup_info[tgroup-1].count > MAX_THREADS_PER_GROUP) {
|
|
memprintf(err, "'%s %ld' assigned too many threads (%d, max=%d)", args[0], tgroup, tot, MAX_THREADS_PER_GROUP);
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Parse the "thread-groups" global directive, which takes an integer argument
|
|
* that contains the desired number of thread groups.
|
|
*/
|
|
static int cfg_parse_thread_groups(char **args, int section_type, struct proxy *curpx,
|
|
const struct proxy *defpx, const char *file, int line,
|
|
char **err)
|
|
{
|
|
long nbtgroups;
|
|
char *errptr;
|
|
|
|
if (too_many_args(1, args, err, NULL))
|
|
return -1;
|
|
|
|
if (non_global_section_parsed == 1) {
|
|
memprintf(err, "'%s' not allowed if a non-global section was previously defined. This parameter must be declared in the first global section", args[0]);
|
|
return -1;
|
|
}
|
|
|
|
nbtgroups = strtol(args[1], &errptr, 10);
|
|
if (!*args[1] || *errptr) {
|
|
memprintf(err, "'%s' passed a missing or unparsable integer value in '%s'", args[0], args[1]);
|
|
return -1;
|
|
}
|
|
|
|
#ifndef USE_THREAD
|
|
if (nbtgroups != 1) {
|
|
memprintf(err, "'%s' specified with a value other than 1 while HAProxy is not compiled with threads support. Please check build options for USE_THREAD", args[0]);
|
|
return -1;
|
|
}
|
|
#else
|
|
if (nbtgroups < 1 || nbtgroups > MAX_TGROUPS) {
|
|
memprintf(err, "'%s' value must be between 1 and %d (was %ld)", args[0], MAX_TGROUPS, nbtgroups);
|
|
return -1;
|
|
}
|
|
#endif
|
|
|
|
HA_DIAG_WARNING_COND(global.nbtgroups,
|
|
"parsing [%s:%d] : '%s' is already defined and will be overridden.\n",
|
|
file, line, args[0]);
|
|
|
|
global.nbtgroups = nbtgroups;
|
|
return 0;
|
|
}
|
|
|
|
/* config keyword parsers */
|
|
static struct cfg_kw_list cfg_kws = {ILH, {
|
|
{ CFG_GLOBAL, "nbthread", cfg_parse_nbthread, 0 },
|
|
{ CFG_GLOBAL, "thread-group", cfg_parse_thread_group, 0 },
|
|
{ CFG_GLOBAL, "thread-groups", cfg_parse_thread_groups, 0 },
|
|
{ 0, NULL, NULL }
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws);
|