mirror of
https://git.haproxy.org/git/haproxy.git/
synced 2025-08-06 07:07:04 +02:00
If a response varies on anything other than accept-encoding (origin or referer) but still contains an 'Encoding' header, the cached responses were never sent back. This is because of the 'set_secondary_key_encoding' call that always filled the accept-encoding part of the secondary signature with the response's actual encoding, regardless of whether the response varies on this or not. This meant that the accept-encoding part of the signature could be non-null in the cached entry which made the 'get_secondary_entry' calls in 'http_action_req_cache_use' always fail because in those cases the request's secondary signature always had a null accept-encoding part. This patch can be backported up to branch 2.4.
3171 lines
92 KiB
C
3171 lines
92 KiB
C
/*
|
|
* Cache management
|
|
*
|
|
* Copyright 2017 HAProxy Technologies
|
|
* William Lallemand <wlallemand@haproxy.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <import/eb32tree.h>
|
|
#include <import/sha1.h>
|
|
|
|
#include <haproxy/action-t.h>
|
|
#include <haproxy/api.h>
|
|
#include <haproxy/applet.h>
|
|
#include <haproxy/cfgparse.h>
|
|
#include <haproxy/channel.h>
|
|
#include <haproxy/cli.h>
|
|
#include <haproxy/errors.h>
|
|
#include <haproxy/filters.h>
|
|
#include <haproxy/hash.h>
|
|
#include <haproxy/http.h>
|
|
#include <haproxy/http_ana.h>
|
|
#include <haproxy/http_htx.h>
|
|
#include <haproxy/http_rules.h>
|
|
#include <haproxy/htx.h>
|
|
#include <haproxy/net_helper.h>
|
|
#include <haproxy/proxy.h>
|
|
#include <haproxy/sample.h>
|
|
#include <haproxy/sc_strm.h>
|
|
#include <haproxy/shctx.h>
|
|
#include <haproxy/stconn.h>
|
|
#include <haproxy/stream.h>
|
|
#include <haproxy/tools.h>
|
|
#include <haproxy/xxhash.h>
|
|
|
|
#define CACHE_FLT_F_IMPLICIT_DECL 0x00000001 /* The cache filtre was implicitly declared (ie without
|
|
* the filter keyword) */
|
|
#define CACHE_FLT_INIT 0x00000002 /* Whether the cache name was freed. */
|
|
|
|
static uint64_t cache_hash_seed = 0;
|
|
|
|
const char *cache_store_flt_id = "cache store filter";
|
|
|
|
extern struct applet http_cache_applet;
|
|
|
|
struct flt_ops cache_ops;
|
|
|
|
struct cache_tree {
|
|
struct eb_root entries; /* head of cache entries based on keys */
|
|
__decl_thread(HA_RWLOCK_T lock);
|
|
|
|
struct list cleanup_list;
|
|
__decl_thread(HA_SPINLOCK_T cleanup_lock);
|
|
} ALIGNED(64);
|
|
|
|
struct cache {
|
|
struct cache_tree trees[CACHE_TREE_NUM];
|
|
struct list list; /* cache linked list */
|
|
unsigned int maxage; /* max-age */
|
|
unsigned int maxblocks;
|
|
unsigned int maxobjsz; /* max-object-size (in bytes) */
|
|
unsigned int max_secondary_entries; /* maximum number of secondary entries with the same primary hash */
|
|
uint8_t vary_processing_enabled; /* boolean : manage Vary header (disabled by default) */
|
|
char id[33]; /* cache name */
|
|
};
|
|
|
|
/* the appctx context of a cache applet, stored in appctx->svcctx */
|
|
struct cache_appctx {
|
|
struct cache_tree *cache_tree;
|
|
struct cache_entry *entry; /* Entry to be sent from cache. */
|
|
unsigned int sent; /* The number of bytes already sent for this cache entry. */
|
|
unsigned int offset; /* start offset of remaining data relative to beginning of the next block */
|
|
unsigned int rem_data; /* Remaining bytes for the last data block (HTX only, 0 means process next block) */
|
|
unsigned int send_notmodified:1; /* In case of conditional request, we might want to send a "304 Not Modified" response instead of the stored data. */
|
|
unsigned int unused:31;
|
|
/* 4 bytes hole here */
|
|
struct shared_block *next; /* The next block of data to be sent for this cache entry. */
|
|
};
|
|
|
|
/* cache config for filters */
|
|
struct cache_flt_conf {
|
|
union {
|
|
struct cache *cache; /* cache used by the filter */
|
|
char *name; /* cache name used during conf parsing */
|
|
} c;
|
|
unsigned int flags; /* CACHE_FLT_F_* */
|
|
};
|
|
|
|
/* CLI context used during "show cache" */
|
|
struct show_cache_ctx {
|
|
struct cache *cache;
|
|
struct cache_tree *cache_tree;
|
|
uint next_key;
|
|
};
|
|
|
|
|
|
/*
|
|
* Vary-related structures and functions
|
|
*/
|
|
enum vary_header_bit {
|
|
VARY_ACCEPT_ENCODING = (1 << 0),
|
|
VARY_REFERER = (1 << 1),
|
|
VARY_ORIGIN = (1 << 2),
|
|
VARY_LAST /* should always be last */
|
|
};
|
|
|
|
/*
|
|
* Encoding list extracted from
|
|
* https://www.iana.org/assignments/http-parameters/http-parameters.xhtml
|
|
* and RFC7231#5.3.4.
|
|
*/
|
|
enum vary_encoding {
|
|
VARY_ENCODING_GZIP = (1 << 0),
|
|
VARY_ENCODING_DEFLATE = (1 << 1),
|
|
VARY_ENCODING_BR = (1 << 2),
|
|
VARY_ENCODING_COMPRESS = (1 << 3),
|
|
VARY_ENCODING_AES128GCM = (1 << 4),
|
|
VARY_ENCODING_EXI = (1 << 5),
|
|
VARY_ENCODING_PACK200_GZIP = (1 << 6),
|
|
VARY_ENCODING_ZSTD = (1 << 7),
|
|
VARY_ENCODING_IDENTITY = (1 << 8),
|
|
VARY_ENCODING_STAR = (1 << 9),
|
|
VARY_ENCODING_OTHER = (1 << 10)
|
|
};
|
|
|
|
struct vary_hashing_information {
|
|
struct ist hdr_name; /* Header name */
|
|
enum vary_header_bit value; /* Bit representing the header in a vary signature */
|
|
unsigned int hash_length; /* Size of the sub hash for this header's value */
|
|
int(*norm_fn)(struct htx*,struct ist hdr_name,char* buf,unsigned int* buf_len); /* Normalization function */
|
|
int(*cmp_fn)(const void *ref, const void *new, unsigned int len); /* Comparison function, should return 0 if the hashes are alike */
|
|
};
|
|
|
|
static int http_request_prebuild_full_secondary_key(struct stream *s);
|
|
static int http_request_build_secondary_key(struct stream *s, int vary_signature);
|
|
static int http_request_reduce_secondary_key(unsigned int vary_signature,
|
|
char prebuilt_key[HTTP_CACHE_SEC_KEY_LEN]);
|
|
|
|
static int parse_encoding_value(struct ist value, unsigned int *encoding_value,
|
|
unsigned int *has_null_weight);
|
|
|
|
static int accept_encoding_normalizer(struct htx *htx, struct ist hdr_name,
|
|
char *buf, unsigned int *buf_len);
|
|
static int default_normalizer(struct htx *htx, struct ist hdr_name,
|
|
char *buf, unsigned int *buf_len);
|
|
|
|
static int accept_encoding_bitmap_cmp(const void *ref, const void *new, unsigned int len);
|
|
|
|
/* Warning : do not forget to update HTTP_CACHE_SEC_KEY_LEN when new items are
|
|
* added to this array. */
|
|
const struct vary_hashing_information vary_information[] = {
|
|
{ IST("accept-encoding"), VARY_ACCEPT_ENCODING, sizeof(uint32_t), &accept_encoding_normalizer, &accept_encoding_bitmap_cmp },
|
|
{ IST("referer"), VARY_REFERER, sizeof(uint64_t), &default_normalizer, NULL },
|
|
{ IST("origin"), VARY_ORIGIN, sizeof(uint64_t), &default_normalizer, NULL },
|
|
};
|
|
|
|
|
|
static inline void cache_rdlock(struct cache_tree *cache)
|
|
{
|
|
HA_RWLOCK_RDLOCK(CACHE_LOCK, &cache->lock);
|
|
}
|
|
|
|
static inline void cache_rdunlock(struct cache_tree *cache)
|
|
{
|
|
HA_RWLOCK_RDUNLOCK(CACHE_LOCK, &cache->lock);
|
|
}
|
|
|
|
static inline void cache_wrlock(struct cache_tree *cache)
|
|
{
|
|
HA_RWLOCK_WRLOCK(CACHE_LOCK, &cache->lock);
|
|
}
|
|
|
|
static inline void cache_wrunlock(struct cache_tree *cache)
|
|
{
|
|
HA_RWLOCK_WRUNLOCK(CACHE_LOCK, &cache->lock);
|
|
}
|
|
|
|
/*
|
|
* cache ctx for filters
|
|
*/
|
|
struct cache_st {
|
|
struct shared_block *first_block;
|
|
struct list detached_head;
|
|
};
|
|
|
|
#define DEFAULT_MAX_SECONDARY_ENTRY 10
|
|
|
|
struct cache_entry {
|
|
unsigned int complete; /* An entry won't be valid until complete is not null. */
|
|
unsigned int latest_validation; /* latest validation date */
|
|
unsigned int expire; /* expiration date (wall clock time) */
|
|
unsigned int age; /* Origin server "Age" header value */
|
|
unsigned int body_size; /* Size of the body */
|
|
int refcount;
|
|
|
|
struct eb32_node eb; /* ebtree node used to hold the cache object */
|
|
char hash[20];
|
|
|
|
struct list cleanup_list;/* List used between the cache_free_blocks and cache_reserve_finish calls */
|
|
|
|
char secondary_key[HTTP_CACHE_SEC_KEY_LEN]; /* Optional secondary key. */
|
|
unsigned int secondary_key_signature; /* Bitfield of the HTTP headers that should be used
|
|
* to build secondary keys for this cache entry. */
|
|
unsigned int secondary_entries_count; /* Should only be filled in the last entry of a list of dup entries */
|
|
unsigned int last_clear_ts; /* Timestamp of the last call to clear_expired_duplicates. */
|
|
|
|
unsigned int etag_length; /* Length of the ETag value (if one was found in the response). */
|
|
unsigned int etag_offset; /* Offset of the ETag value in the data buffer. */
|
|
|
|
time_t last_modified; /* Origin server "Last-Modified" header value converted in
|
|
* seconds since epoch. If no "Last-Modified"
|
|
* header is found, use "Date" header value,
|
|
* otherwise use reception time. This field will
|
|
* be used in case of an "If-Modified-Since"-based
|
|
* conditional request. */
|
|
|
|
unsigned char data[0];
|
|
};
|
|
|
|
#define CACHE_BLOCKSIZE 1024
|
|
#define CACHE_ENTRY_MAX_AGE 2147483648U
|
|
|
|
static struct list caches = LIST_HEAD_INIT(caches);
|
|
static struct list caches_config = LIST_HEAD_INIT(caches_config); /* cache config to init */
|
|
static struct cache *tmp_cache_config = NULL;
|
|
|
|
DECLARE_STATIC_POOL(pool_head_cache_st, "cache_st", sizeof(struct cache_st));
|
|
|
|
static struct eb32_node *insert_entry(struct cache *cache, struct cache_tree *tree, struct cache_entry *new_entry);
|
|
static void delete_entry(struct cache_entry *del_entry);
|
|
static inline void release_entry_locked(struct cache_tree *cache, struct cache_entry *entry);
|
|
static inline void release_entry_unlocked(struct cache_tree *cache, struct cache_entry *entry);
|
|
|
|
/*
|
|
* Find a cache_entry in the <cache>'s tree that has the hash <hash>.
|
|
* If <delete_expired> is 0 then the entry is left untouched if it is found but
|
|
* is already expired, and NULL is returned. Otherwise, the expired entry is
|
|
* removed from the tree and NULL is returned.
|
|
* Returns a valid (not expired) cache_tree pointer.
|
|
* The returned entry is not retained, it should be explicitly retained only
|
|
* when necessary.
|
|
*
|
|
* This function must be called under a cache lock, either read if
|
|
* delete_expired==0, write otherwise.
|
|
*/
|
|
struct cache_entry *get_entry(struct cache_tree *cache_tree, char *hash, int delete_expired)
|
|
{
|
|
struct eb32_node *node;
|
|
struct cache_entry *entry;
|
|
|
|
node = eb32_lookup(&cache_tree->entries, read_u32(hash));
|
|
if (!node)
|
|
return NULL;
|
|
|
|
entry = eb32_entry(node, struct cache_entry, eb);
|
|
|
|
/* if that's not the right node */
|
|
if (memcmp(entry->hash, hash, sizeof(entry->hash)))
|
|
return NULL;
|
|
|
|
if (entry->expire > date.tv_sec) {
|
|
return entry;
|
|
} else if (delete_expired) {
|
|
release_entry_locked(cache_tree, entry);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Increment a cache_entry's reference counter.
|
|
*/
|
|
static void retain_entry(struct cache_entry *entry)
|
|
{
|
|
if (entry)
|
|
HA_ATOMIC_INC(&entry->refcount);
|
|
}
|
|
|
|
/*
|
|
* Decrement a cache_entry's reference counter and remove it from the <cache>'s
|
|
* tree if the reference counter becomes 0.
|
|
* If <needs_locking> is 0 then the cache lock was already taken by the caller,
|
|
* otherwise it must be taken in write mode before actually deleting the entry.
|
|
*/
|
|
static void release_entry(struct cache_tree *cache, struct cache_entry *entry, int needs_locking)
|
|
{
|
|
if (!entry)
|
|
return;
|
|
|
|
if (HA_ATOMIC_SUB_FETCH(&entry->refcount, 1) <= 0) {
|
|
if (needs_locking) {
|
|
cache_wrlock(cache);
|
|
/* The value might have changed between the last time we
|
|
* checked it and now, we need to recheck it just in
|
|
* case.
|
|
*/
|
|
if (HA_ATOMIC_LOAD(&entry->refcount) > 0) {
|
|
cache_wrunlock(cache);
|
|
return;
|
|
}
|
|
}
|
|
delete_entry(entry);
|
|
if (needs_locking) {
|
|
cache_wrunlock(cache);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Decrement a cache_entry's reference counter and remove it from the <cache>'s
|
|
* tree if the reference counter becomes 0.
|
|
* This function must be called under the cache lock in write mode.
|
|
*/
|
|
static inline void release_entry_locked(struct cache_tree *cache, struct cache_entry *entry)
|
|
{
|
|
release_entry(cache, entry, 0);
|
|
}
|
|
|
|
/*
|
|
* Decrement a cache_entry's reference counter and remove it from the <cache>'s
|
|
* tree if the reference counter becomes 0.
|
|
* This function must not be called under the cache lock or the shctx lock. The
|
|
* cache lock might be taken in write mode (if the entry gets deleted).
|
|
*/
|
|
static inline void release_entry_unlocked(struct cache_tree *cache, struct cache_entry *entry)
|
|
{
|
|
release_entry(cache, entry, 1);
|
|
}
|
|
|
|
|
|
/*
|
|
* Compare a newly built secondary key to the one found in a cache_entry.
|
|
* Every sub-part of the key is compared to the reference through the dedicated
|
|
* comparison function of the sub-part (that might do more than a simple
|
|
* memcmp).
|
|
* Returns 0 if the keys are alike.
|
|
*/
|
|
static int secondary_key_cmp(const char *ref_key, const char *new_key)
|
|
{
|
|
int retval = 0;
|
|
size_t idx = 0;
|
|
unsigned int offset = 0;
|
|
const struct vary_hashing_information *info;
|
|
|
|
for (idx = 0; idx < sizeof(vary_information)/sizeof(*vary_information) && !retval; ++idx) {
|
|
info = &vary_information[idx];
|
|
|
|
if (info->cmp_fn)
|
|
retval = info->cmp_fn(&ref_key[offset], &new_key[offset], info->hash_length);
|
|
else
|
|
retval = memcmp(&ref_key[offset], &new_key[offset], info->hash_length);
|
|
|
|
offset += info->hash_length;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* There can be multiple entries with the same primary key in the ebtree so in
|
|
* order to get the proper one out of the list, we use a secondary_key.
|
|
* This function simply iterates over all the entries with the same primary_key
|
|
* until it finds the right one.
|
|
* If <delete_expired> is 0 then the entry is left untouched if it is found but
|
|
* is already expired, and NULL is returned. Otherwise, the expired entry is
|
|
* removed from the tree and NULL is returned.
|
|
* Returns the cache_entry in case of success, NULL otherwise.
|
|
*
|
|
* This function must be called under a cache lock, either read if
|
|
* delete_expired==0, write otherwise.
|
|
*/
|
|
struct cache_entry *get_secondary_entry(struct cache_tree *cache, struct cache_entry *entry,
|
|
const char *secondary_key, int delete_expired)
|
|
{
|
|
struct eb32_node *node = &entry->eb;
|
|
|
|
if (!entry->secondary_key_signature)
|
|
return NULL;
|
|
|
|
while (entry && secondary_key_cmp(entry->secondary_key, secondary_key) != 0) {
|
|
node = eb32_next_dup(node);
|
|
|
|
/* Make the best use of this iteration and clear expired entries
|
|
* when we find them. Calling delete_entry would be too costly
|
|
* so we simply call eb32_delete. The secondary_entry count will
|
|
* be updated when we try to insert a new entry to this list. */
|
|
if (entry->expire <= date.tv_sec && delete_expired) {
|
|
release_entry_locked(cache, entry);
|
|
}
|
|
|
|
entry = node ? eb32_entry(node, struct cache_entry, eb) : NULL;
|
|
}
|
|
|
|
/* Expired entry */
|
|
if (entry && entry->expire <= date.tv_sec) {
|
|
if (delete_expired) {
|
|
release_entry_locked(cache, entry);
|
|
}
|
|
entry = NULL;
|
|
}
|
|
|
|
return entry;
|
|
}
|
|
|
|
static inline struct cache_tree *get_cache_tree_from_hash(struct cache *cache, unsigned int hash)
|
|
{
|
|
if (!cache)
|
|
return NULL;
|
|
|
|
return &cache->trees[hash % CACHE_TREE_NUM];
|
|
}
|
|
|
|
|
|
/*
|
|
* Remove all expired entries from a list of duplicates.
|
|
* Return the number of alive entries in the list and sets dup_tail to the
|
|
* current last item of the list.
|
|
*
|
|
* This function must be called under a cache write lock.
|
|
*/
|
|
static unsigned int clear_expired_duplicates(struct cache_tree *cache, struct eb32_node **dup_tail)
|
|
{
|
|
unsigned int entry_count = 0;
|
|
struct cache_entry *entry = NULL;
|
|
struct eb32_node *prev = *dup_tail;
|
|
struct eb32_node *tail = NULL;
|
|
|
|
while (prev) {
|
|
entry = container_of(prev, struct cache_entry, eb);
|
|
prev = eb32_prev_dup(prev);
|
|
if (entry->expire <= date.tv_sec) {
|
|
release_entry_locked(cache, entry);
|
|
}
|
|
else {
|
|
if (!tail)
|
|
tail = &entry->eb;
|
|
++entry_count;
|
|
}
|
|
}
|
|
|
|
*dup_tail = tail;
|
|
|
|
return entry_count;
|
|
}
|
|
|
|
|
|
/*
|
|
* This function inserts a cache_entry in the cache's ebtree. In case of
|
|
* duplicate entries (vary), it then checks that the number of entries did not
|
|
* reach the max number of secondary entries. If this entry should not have been
|
|
* created, remove it.
|
|
* In the regular case (unique entries), this function does not do more than a
|
|
* simple insert. In case of secondary entries, it will at most cost an
|
|
* insertion+max_sec_entries time checks and entry deletion.
|
|
* Returns the newly inserted node in case of success, NULL otherwise.
|
|
*
|
|
* This function must be called under a cache write lock.
|
|
*/
|
|
static struct eb32_node *insert_entry(struct cache *cache, struct cache_tree *tree, struct cache_entry *new_entry)
|
|
{
|
|
struct eb32_node *prev = NULL;
|
|
struct cache_entry *entry = NULL;
|
|
unsigned int entry_count = 0;
|
|
unsigned int last_clear_ts = date.tv_sec;
|
|
|
|
struct eb32_node *node = eb32_insert(&tree->entries, &new_entry->eb);
|
|
|
|
new_entry->refcount = 1;
|
|
|
|
/* We should not have multiple entries with the same primary key unless
|
|
* the entry has a non null vary signature. */
|
|
if (!new_entry->secondary_key_signature)
|
|
return node;
|
|
|
|
prev = eb32_prev_dup(node);
|
|
if (prev != NULL) {
|
|
/* The last entry of a duplicate list should contain the current
|
|
* number of entries in the list. */
|
|
entry = container_of(prev, struct cache_entry, eb);
|
|
entry_count = entry->secondary_entries_count;
|
|
last_clear_ts = entry->last_clear_ts;
|
|
|
|
if (entry_count >= cache->max_secondary_entries) {
|
|
/* Some entries of the duplicate list might be expired so
|
|
* we will iterate over all the items in order to free some
|
|
* space. In order to avoid going over the same list too
|
|
* often, we first check the timestamp of the last check
|
|
* performed. */
|
|
if (last_clear_ts == date.tv_sec) {
|
|
/* Too many entries for this primary key, clear the
|
|
* one that was inserted. */
|
|
release_entry_locked(tree, entry);
|
|
return NULL;
|
|
}
|
|
|
|
entry_count = clear_expired_duplicates(tree, &prev);
|
|
if (entry_count >= cache->max_secondary_entries) {
|
|
/* Still too many entries for this primary key, delete
|
|
* the newly inserted one. */
|
|
entry = container_of(prev, struct cache_entry, eb);
|
|
entry->last_clear_ts = date.tv_sec;
|
|
release_entry_locked(tree, entry);
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
new_entry->secondary_entries_count = entry_count + 1;
|
|
new_entry->last_clear_ts = last_clear_ts;
|
|
|
|
return node;
|
|
}
|
|
|
|
|
|
/*
|
|
* This function removes an entry from the ebtree. If the entry was a duplicate
|
|
* (in case of Vary), it updates the secondary entry counter in another
|
|
* duplicate entry (the last entry of the dup list).
|
|
*
|
|
* This function must be called under a cache write lock.
|
|
*/
|
|
static void delete_entry(struct cache_entry *del_entry)
|
|
{
|
|
struct eb32_node *prev = NULL, *next = NULL;
|
|
struct cache_entry *entry = NULL;
|
|
struct eb32_node *last = NULL;
|
|
|
|
/* The entry might have been removed from the cache before. In such a
|
|
* case calling eb32_next_dup would crash. */
|
|
if (del_entry->secondary_key_signature && del_entry->eb.key != 0) {
|
|
next = &del_entry->eb;
|
|
|
|
/* Look for last entry of the duplicates list. */
|
|
while ((next = eb32_next_dup(next))) {
|
|
last = next;
|
|
}
|
|
|
|
if (last) {
|
|
entry = container_of(last, struct cache_entry, eb);
|
|
--entry->secondary_entries_count;
|
|
}
|
|
else {
|
|
/* The current entry is the last one, look for the
|
|
* previous one to update its counter. */
|
|
prev = eb32_prev_dup(&del_entry->eb);
|
|
if (prev) {
|
|
entry = container_of(prev, struct cache_entry, eb);
|
|
entry->secondary_entries_count = del_entry->secondary_entries_count - 1;
|
|
}
|
|
}
|
|
}
|
|
eb32_delete(&del_entry->eb);
|
|
del_entry->eb.key = 0;
|
|
}
|
|
|
|
|
|
static inline struct shared_context *shctx_ptr(struct cache *cache)
|
|
{
|
|
return (struct shared_context *)((unsigned char *)cache - offsetof(struct shared_context, data));
|
|
}
|
|
|
|
static inline struct shared_block *block_ptr(struct cache_entry *entry)
|
|
{
|
|
return (struct shared_block *)((unsigned char *)entry - offsetof(struct shared_block, data));
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
cache_store_init(struct proxy *px, struct flt_conf *fconf)
|
|
{
|
|
fconf->flags |= FLT_CFG_FL_HTX;
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
cache_store_deinit(struct proxy *px, struct flt_conf *fconf)
|
|
{
|
|
struct cache_flt_conf *cconf = fconf->conf;
|
|
|
|
if (!(cconf->flags & CACHE_FLT_INIT))
|
|
free(cconf->c.name);
|
|
free(cconf);
|
|
}
|
|
|
|
static int
|
|
cache_store_check(struct proxy *px, struct flt_conf *fconf)
|
|
{
|
|
struct cache_flt_conf *cconf = fconf->conf;
|
|
struct flt_conf *f;
|
|
struct cache *cache;
|
|
int comp = 0;
|
|
|
|
/* Find the cache corresponding to the name in the filter config. The
|
|
* cache will not be referenced now in the filter config because it is
|
|
* not fully allocated. This step will be performed during the cache
|
|
* post_check.
|
|
*/
|
|
list_for_each_entry(cache, &caches_config, list) {
|
|
if (strcmp(cache->id, cconf->c.name) == 0)
|
|
goto found;
|
|
}
|
|
|
|
ha_alert("config: %s '%s': unable to find the cache '%s' referenced by the filter 'cache'.\n",
|
|
proxy_type_str(px), px->id, (char *)cconf->c.name);
|
|
return 1;
|
|
|
|
found:
|
|
/* Here <cache> points on the cache the filter must use and <cconf>
|
|
* points on the cache filter configuration. */
|
|
|
|
/* Check all filters for proxy <px> to know if the compression is
|
|
* enabled and if it is after the cache. When the compression is before
|
|
* the cache, an error is returned. Also check if the cache filter must
|
|
* be explicitly declaired or not. */
|
|
list_for_each_entry(f, &px->filter_configs, list) {
|
|
if (f == fconf) {
|
|
/* The compression filter must be evaluated after the cache. */
|
|
if (comp) {
|
|
ha_alert("config: %s '%s': unable to enable the compression filter before "
|
|
"the cache '%s'.\n", proxy_type_str(px), px->id, cache->id);
|
|
return 1;
|
|
}
|
|
}
|
|
else if (f->id == http_comp_flt_id)
|
|
comp = 1;
|
|
else if (f->id == fcgi_flt_id)
|
|
continue;
|
|
else if ((f->id != fconf->id) && (cconf->flags & CACHE_FLT_F_IMPLICIT_DECL)) {
|
|
/* Implicit declaration is only allowed with the
|
|
* compression and fcgi. For other filters, an implicit
|
|
* declaration is required. */
|
|
ha_alert("config: %s '%s': require an explicit filter declaration "
|
|
"to use the cache '%s'.\n", proxy_type_str(px), px->id, cache->id);
|
|
return 1;
|
|
}
|
|
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
cache_store_strm_init(struct stream *s, struct filter *filter)
|
|
{
|
|
struct cache_st *st;
|
|
|
|
st = pool_alloc(pool_head_cache_st);
|
|
if (st == NULL)
|
|
return -1;
|
|
|
|
st->first_block = NULL;
|
|
filter->ctx = st;
|
|
|
|
/* Register post-analyzer on AN_RES_WAIT_HTTP */
|
|
filter->post_analyzers |= AN_RES_WAIT_HTTP;
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
cache_store_strm_deinit(struct stream *s, struct filter *filter)
|
|
{
|
|
struct cache_st *st = filter->ctx;
|
|
struct cache_flt_conf *cconf = FLT_CONF(filter);
|
|
struct cache *cache = cconf->c.cache;
|
|
struct shared_context *shctx = shctx_ptr(cache);
|
|
|
|
/* Everything should be released in the http_end filter, but we need to do it
|
|
* there too, in case of errors */
|
|
if (st && st->first_block) {
|
|
struct cache_entry *object = (struct cache_entry *)st->first_block->data;
|
|
if (!object->complete) {
|
|
/* The stream was closed but the 'complete' flag was not
|
|
* set which means that cache_store_http_end was not
|
|
* called. The stream must have been closed before we
|
|
* could store the full answer in the cache.
|
|
*/
|
|
release_entry_unlocked(&cache->trees[object->eb.key % CACHE_TREE_NUM], object);
|
|
}
|
|
shctx_wrlock(shctx);
|
|
shctx_row_reattach(shctx, st->first_block);
|
|
shctx_wrunlock(shctx);
|
|
}
|
|
if (st) {
|
|
pool_free(pool_head_cache_st, st);
|
|
filter->ctx = NULL;
|
|
}
|
|
}
|
|
|
|
static int
|
|
cache_store_post_analyze(struct stream *s, struct filter *filter, struct channel *chn,
|
|
unsigned an_bit)
|
|
{
|
|
struct http_txn *txn = s->txn;
|
|
struct http_msg *msg = &txn->rsp;
|
|
struct cache_st *st = filter->ctx;
|
|
|
|
if (an_bit != AN_RES_WAIT_HTTP)
|
|
goto end;
|
|
|
|
/* Here we need to check if any compression filter precedes the cache
|
|
* filter. This is only possible when the compression is configured in
|
|
* the frontend while the cache filter is configured on the
|
|
* backend. This case cannot be detected during HAProxy startup. So in
|
|
* such cases, the cache is disabled.
|
|
*/
|
|
if (st && (msg->flags & HTTP_MSGF_COMPRESSING)) {
|
|
pool_free(pool_head_cache_st, st);
|
|
filter->ctx = NULL;
|
|
}
|
|
|
|
end:
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
cache_store_http_headers(struct stream *s, struct filter *filter, struct http_msg *msg)
|
|
{
|
|
struct cache_st *st = filter->ctx;
|
|
|
|
if (!(msg->chn->flags & CF_ISRESP) || !st)
|
|
return 1;
|
|
|
|
if (st->first_block)
|
|
register_data_filter(s, msg->chn, filter);
|
|
return 1;
|
|
}
|
|
|
|
static inline void disable_cache_entry(struct cache_st *st,
|
|
struct filter *filter, struct shared_context *shctx)
|
|
{
|
|
struct cache_entry *object;
|
|
struct cache *cache = (struct cache*)shctx->data;
|
|
|
|
object = (struct cache_entry *)st->first_block->data;
|
|
filter->ctx = NULL; /* disable cache */
|
|
release_entry_unlocked(&cache->trees[object->eb.key % CACHE_TREE_NUM], object);
|
|
shctx_wrlock(shctx);
|
|
shctx_row_reattach(shctx, st->first_block);
|
|
shctx_wrunlock(shctx);
|
|
pool_free(pool_head_cache_st, st);
|
|
}
|
|
|
|
static int
|
|
cache_store_http_payload(struct stream *s, struct filter *filter, struct http_msg *msg,
|
|
unsigned int offset, unsigned int len)
|
|
{
|
|
struct cache_flt_conf *cconf = FLT_CONF(filter);
|
|
struct shared_context *shctx = shctx_ptr(cconf->c.cache);
|
|
struct cache_st *st = filter->ctx;
|
|
struct htx *htx = htxbuf(&msg->chn->buf);
|
|
struct htx_blk *blk;
|
|
struct shared_block *fb;
|
|
struct htx_ret htxret;
|
|
size_t data_len = 0;
|
|
unsigned int orig_len, to_forward;
|
|
int ret;
|
|
|
|
if (!len)
|
|
return len;
|
|
|
|
if (!st->first_block) {
|
|
unregister_data_filter(s, msg->chn, filter);
|
|
return len;
|
|
}
|
|
|
|
chunk_reset(&trash);
|
|
orig_len = len;
|
|
to_forward = 0;
|
|
|
|
htxret = htx_find_offset(htx, offset);
|
|
blk = htxret.blk;
|
|
offset = htxret.ret;
|
|
for (; blk && len; blk = htx_get_next_blk(htx, blk)) {
|
|
enum htx_blk_type type = htx_get_blk_type(blk);
|
|
uint32_t info, sz = htx_get_blksz(blk);
|
|
struct ist v;
|
|
|
|
switch (type) {
|
|
case HTX_BLK_UNUSED:
|
|
break;
|
|
|
|
case HTX_BLK_DATA:
|
|
v = htx_get_blk_value(htx, blk);
|
|
v = istadv(v, offset);
|
|
v = isttrim(v, len);
|
|
|
|
info = (type << 28) + v.len;
|
|
chunk_memcat(&trash, (char *)&info, sizeof(info));
|
|
chunk_istcat(&trash, v);
|
|
to_forward += v.len;
|
|
data_len += v.len;
|
|
len -= v.len;
|
|
break;
|
|
|
|
default:
|
|
/* Here offset must always be 0 because only
|
|
* DATA blocks can be partially transferred. */
|
|
if (offset)
|
|
goto no_cache;
|
|
if (sz > len)
|
|
goto end;
|
|
|
|
chunk_memcat(&trash, (char *)&blk->info, sizeof(blk->info));
|
|
chunk_memcat(&trash, htx_get_blk_ptr(htx, blk), sz);
|
|
to_forward += sz;
|
|
len -= sz;
|
|
break;
|
|
}
|
|
|
|
offset = 0;
|
|
}
|
|
|
|
end:
|
|
|
|
fb = shctx_row_reserve_hot(shctx, st->first_block, trash.data);
|
|
if (!fb) {
|
|
goto no_cache;
|
|
}
|
|
|
|
/* disguise below to shut a warning on */
|
|
DISGUISE((struct cache_entry *)st->first_block->data)->body_size += data_len;
|
|
ret = shctx_row_data_append(shctx, st->first_block,
|
|
(unsigned char *)b_head(&trash), b_data(&trash));
|
|
if (ret < 0)
|
|
goto no_cache;
|
|
|
|
return to_forward;
|
|
|
|
no_cache:
|
|
disable_cache_entry(st, filter, shctx);
|
|
unregister_data_filter(s, msg->chn, filter);
|
|
return orig_len;
|
|
}
|
|
|
|
static int
|
|
cache_store_http_end(struct stream *s, struct filter *filter,
|
|
struct http_msg *msg)
|
|
{
|
|
struct cache_st *st = filter->ctx;
|
|
struct cache_flt_conf *cconf = FLT_CONF(filter);
|
|
struct cache *cache = cconf->c.cache;
|
|
struct shared_context *shctx = shctx_ptr(cache);
|
|
struct cache_entry *object;
|
|
|
|
if (!(msg->chn->flags & CF_ISRESP))
|
|
return 1;
|
|
|
|
if (st && st->first_block) {
|
|
|
|
object = (struct cache_entry *)st->first_block->data;
|
|
|
|
shctx_wrlock(shctx);
|
|
/* The whole payload was cached, the entry can now be used. */
|
|
object->complete = 1;
|
|
/* remove from the hotlist */
|
|
shctx_row_reattach(shctx, st->first_block);
|
|
shctx_wrunlock(shctx);
|
|
|
|
}
|
|
if (st) {
|
|
pool_free(pool_head_cache_st, st);
|
|
filter->ctx = NULL;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* This intends to be used when checking HTTP headers for some
|
|
* word=value directive. Return a pointer to the first character of value, if
|
|
* the word was not found or if there wasn't any value assigned to it return NULL
|
|
*/
|
|
char *directive_value(const char *sample, int slen, const char *word, int wlen)
|
|
{
|
|
int st = 0;
|
|
|
|
if (slen < wlen)
|
|
return 0;
|
|
|
|
while (wlen) {
|
|
char c = *sample ^ *word;
|
|
if (c && c != ('A' ^ 'a'))
|
|
return NULL;
|
|
sample++;
|
|
word++;
|
|
slen--;
|
|
wlen--;
|
|
}
|
|
|
|
while (slen) {
|
|
if (st == 0) {
|
|
if (*sample != '=')
|
|
return NULL;
|
|
sample++;
|
|
slen--;
|
|
st = 1;
|
|
continue;
|
|
} else {
|
|
return (char *)sample;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Return the maxage in seconds of an HTTP response.
|
|
* The returned value will always take the cache's configuration into account
|
|
* (cache->maxage) but the actual max age of the response will be set in the
|
|
* true_maxage parameter. It will be used to determine if a response is already
|
|
* stale or not.
|
|
* Compute the maxage using either:
|
|
* - the assigned max-age of the cache
|
|
* - the s-maxage directive
|
|
* - the max-age directive
|
|
* - (Expires - Data) headers
|
|
* - the default-max-age of the cache
|
|
*
|
|
*/
|
|
int http_calc_maxage(struct stream *s, struct cache *cache, int *true_maxage)
|
|
{
|
|
struct htx *htx = htxbuf(&s->res.buf);
|
|
struct http_hdr_ctx ctx = { .blk = NULL };
|
|
long smaxage = -1;
|
|
long maxage = -1;
|
|
int expires = -1;
|
|
struct tm tm = {};
|
|
time_t expires_val = 0;
|
|
char *endptr = NULL;
|
|
int offset = 0;
|
|
|
|
/* The Cache-Control max-age and s-maxage directives should be followed by
|
|
* a positive numerical value (see RFC 7234#5.2.1.1). According to the
|
|
* specs, a sender "should not" generate a quoted-string value but we will
|
|
* still accept this format since it isn't strictly forbidden. */
|
|
while (http_find_header(htx, ist("cache-control"), &ctx, 0)) {
|
|
char *value;
|
|
|
|
value = directive_value(ctx.value.ptr, ctx.value.len, "s-maxage", 8);
|
|
if (value) {
|
|
struct buffer *chk = get_trash_chunk();
|
|
|
|
chunk_memcat(chk, value, ctx.value.len - 8 + 1);
|
|
chunk_memcat(chk, "", 1);
|
|
offset = (*chk->area == '"') ? 1 : 0;
|
|
smaxage = strtol(chk->area + offset, &endptr, 10);
|
|
if (unlikely(smaxage < 0 || endptr == chk->area + offset))
|
|
return -1;
|
|
}
|
|
|
|
value = directive_value(ctx.value.ptr, ctx.value.len, "max-age", 7);
|
|
if (value) {
|
|
struct buffer *chk = get_trash_chunk();
|
|
|
|
chunk_memcat(chk, value, ctx.value.len - 7 + 1);
|
|
chunk_memcat(chk, "", 1);
|
|
offset = (*chk->area == '"') ? 1 : 0;
|
|
maxage = strtol(chk->area + offset, &endptr, 10);
|
|
if (unlikely(maxage < 0 || endptr == chk->area + offset))
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Look for Expires header if no s-maxage or max-age Cache-Control data
|
|
* was found. */
|
|
if (maxage == -1 && smaxage == -1) {
|
|
ctx.blk = NULL;
|
|
if (http_find_header(htx, ist("expires"), &ctx, 1)) {
|
|
if (parse_http_date(istptr(ctx.value), istlen(ctx.value), &tm)) {
|
|
expires_val = my_timegm(&tm);
|
|
/* A request having an expiring date earlier
|
|
* than the current date should be considered as
|
|
* stale. */
|
|
expires = (expires_val >= date.tv_sec) ?
|
|
(expires_val - date.tv_sec) : 0;
|
|
}
|
|
else {
|
|
/* Following RFC 7234#5.3, an invalid date
|
|
* format must be treated as a date in the past
|
|
* so the cache entry must be seen as already
|
|
* expired. */
|
|
expires = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
if (smaxage > 0) {
|
|
if (true_maxage)
|
|
*true_maxage = smaxage;
|
|
return MIN(smaxage, cache->maxage);
|
|
}
|
|
|
|
if (maxage > 0) {
|
|
if (true_maxage)
|
|
*true_maxage = maxage;
|
|
return MIN(maxage, cache->maxage);
|
|
}
|
|
|
|
if (expires >= 0) {
|
|
if (true_maxage)
|
|
*true_maxage = expires;
|
|
return MIN(expires, cache->maxage);
|
|
}
|
|
|
|
return cache->maxage;
|
|
|
|
}
|
|
|
|
|
|
static void cache_free_blocks(struct shared_block *first, void *data)
|
|
{
|
|
struct cache_entry *object = (struct cache_entry *)first->data;
|
|
struct cache *cache = (struct cache *)data;
|
|
struct cache_tree *cache_tree;
|
|
|
|
if (object->eb.key) {
|
|
object->complete = 0;
|
|
cache_tree = &cache->trees[object->eb.key % CACHE_TREE_NUM];
|
|
retain_entry(object);
|
|
HA_SPIN_LOCK(CACHE_LOCK, &cache_tree->cleanup_lock);
|
|
LIST_INSERT(&cache_tree->cleanup_list, &object->cleanup_list);
|
|
HA_SPIN_UNLOCK(CACHE_LOCK, &cache_tree->cleanup_lock);
|
|
}
|
|
}
|
|
|
|
static void cache_reserve_finish(struct shared_context *shctx)
|
|
{
|
|
struct cache_entry *object, *back;
|
|
struct cache *cache = (struct cache *)shctx->data;
|
|
struct cache_tree *cache_tree;
|
|
int cache_tree_idx = 0;
|
|
|
|
for (; cache_tree_idx < CACHE_TREE_NUM; ++cache_tree_idx) {
|
|
cache_tree = &cache->trees[cache_tree_idx];
|
|
|
|
cache_wrlock(cache_tree);
|
|
HA_SPIN_LOCK(CACHE_LOCK, &cache_tree->cleanup_lock);
|
|
|
|
list_for_each_entry_safe(object, back, &cache_tree->cleanup_list, cleanup_list) {
|
|
LIST_DELETE(&object->cleanup_list);
|
|
/*
|
|
* At this point we locked the cache tree in write mode
|
|
* so no new thread could retain the current entry
|
|
* because the only two places where it can happen is in
|
|
* the cache_use case which is under cache_rdlock and
|
|
* the reserve_hot case which would require the
|
|
* corresponding block to still be in the avail list,
|
|
* which is impossible (we reserved it for a thread and
|
|
* took it out of the avail list already). The only two
|
|
* references are then the default one (upon cache_entry
|
|
* creation) and the one in this cleanup list.
|
|
*/
|
|
BUG_ON(object->refcount > 2);
|
|
delete_entry(object);
|
|
}
|
|
|
|
HA_SPIN_UNLOCK(CACHE_LOCK, &cache_tree->cleanup_lock);
|
|
cache_wrunlock(cache_tree);
|
|
}
|
|
}
|
|
|
|
|
|
/* As per RFC 7234#4.3.2, in case of "If-Modified-Since" conditional request, the
|
|
* date value should be compared to a date determined by in a previous response (for
|
|
* the same entity). This date could either be the "Last-Modified" value, or the "Date"
|
|
* value of the response's reception time (by decreasing order of priority). */
|
|
static time_t get_last_modified_time(struct htx *htx)
|
|
{
|
|
time_t last_modified = 0;
|
|
struct http_hdr_ctx ctx = { .blk = NULL };
|
|
struct tm tm = {};
|
|
|
|
if (http_find_header(htx, ist("last-modified"), &ctx, 1)) {
|
|
if (parse_http_date(istptr(ctx.value), istlen(ctx.value), &tm)) {
|
|
last_modified = my_timegm(&tm);
|
|
}
|
|
}
|
|
|
|
if (!last_modified) {
|
|
ctx.blk = NULL;
|
|
if (http_find_header(htx, ist("date"), &ctx, 1)) {
|
|
if (parse_http_date(istptr(ctx.value), istlen(ctx.value), &tm)) {
|
|
last_modified = my_timegm(&tm);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Fallback on the current time if no "Last-Modified" or "Date" header
|
|
* was found. */
|
|
if (!last_modified)
|
|
last_modified = date.tv_sec;
|
|
|
|
return last_modified;
|
|
}
|
|
|
|
/*
|
|
* Checks the vary header's value. The headers on which vary should be applied
|
|
* must be explicitly supported in the vary_information array (see cache.c). If
|
|
* any other header is mentioned, we won't store the response.
|
|
* Returns 1 if Vary-based storage can work, 0 otherwise.
|
|
*/
|
|
static int http_check_vary_header(struct htx *htx, unsigned int *vary_signature)
|
|
{
|
|
unsigned int vary_idx;
|
|
unsigned int vary_info_count;
|
|
const struct vary_hashing_information *vary_info;
|
|
struct http_hdr_ctx ctx = { .blk = NULL };
|
|
|
|
int retval = 1;
|
|
|
|
*vary_signature = 0;
|
|
|
|
vary_info_count = sizeof(vary_information)/sizeof(*vary_information);
|
|
while (retval && http_find_header(htx, ist("Vary"), &ctx, 0)) {
|
|
for (vary_idx = 0; vary_idx < vary_info_count; ++vary_idx) {
|
|
vary_info = &vary_information[vary_idx];
|
|
if (isteqi(ctx.value, vary_info->hdr_name)) {
|
|
*vary_signature |= vary_info->value;
|
|
break;
|
|
}
|
|
}
|
|
retval = (vary_idx < vary_info_count);
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
/*
|
|
* Look for the accept-encoding part of the secondary_key and replace the
|
|
* encoding bitmap part of the hash with the actual encoding of the response,
|
|
* extracted from the content-encoding header value.
|
|
* Responses that have an unknown encoding will not be cached if they also
|
|
* "vary" on the accept-encoding value.
|
|
* Returns 0 if we found a known encoding in the response, -1 otherwise.
|
|
*/
|
|
static int set_secondary_key_encoding(struct htx *htx, unsigned int vary_signature, char *secondary_key)
|
|
{
|
|
unsigned int resp_encoding_bitmap = 0;
|
|
const struct vary_hashing_information *info = vary_information;
|
|
unsigned int offset = 0;
|
|
unsigned int count = 0;
|
|
unsigned int hash_info_count = sizeof(vary_information)/sizeof(*vary_information);
|
|
unsigned int encoding_value;
|
|
struct http_hdr_ctx ctx = { .blk = NULL };
|
|
|
|
/* We must not set the accept encoding part of the secondary signature
|
|
* if the response does not vary on 'Accept Encoding'. */
|
|
if (!(vary_signature & VARY_ACCEPT_ENCODING))
|
|
return 0;
|
|
|
|
/* Look for the accept-encoding part of the secondary_key. */
|
|
while (count < hash_info_count && info->value != VARY_ACCEPT_ENCODING) {
|
|
offset += info->hash_length;
|
|
++info;
|
|
++count;
|
|
}
|
|
|
|
if (count == hash_info_count)
|
|
return -1;
|
|
|
|
while (http_find_header(htx, ist("content-encoding"), &ctx, 0)) {
|
|
if (parse_encoding_value(ctx.value, &encoding_value, NULL))
|
|
return -1; /* Do not store responses with an unknown encoding */
|
|
resp_encoding_bitmap |= encoding_value;
|
|
}
|
|
|
|
if (!resp_encoding_bitmap)
|
|
resp_encoding_bitmap |= VARY_ENCODING_IDENTITY;
|
|
|
|
/* Rewrite the bitmap part of the hash with the new bitmap that only
|
|
* corresponds the the response's encoding. */
|
|
write_u32(secondary_key + offset, resp_encoding_bitmap);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* This function will store the headers of the response in a buffer and then
|
|
* register a filter to store the data
|
|
*/
|
|
enum act_return http_action_store_cache(struct act_rule *rule, struct proxy *px,
|
|
struct session *sess, struct stream *s, int flags)
|
|
{
|
|
int effective_maxage = 0;
|
|
int true_maxage = 0;
|
|
struct http_txn *txn = s->txn;
|
|
struct http_msg *msg = &txn->rsp;
|
|
struct filter *filter;
|
|
struct shared_block *first = NULL;
|
|
struct cache_flt_conf *cconf = rule->arg.act.p[0];
|
|
struct cache *cache = cconf->c.cache;
|
|
struct shared_context *shctx = shctx_ptr(cache);
|
|
struct cache_st *cache_ctx = NULL;
|
|
struct cache_entry *object, *old;
|
|
unsigned int key = read_u32(txn->cache_hash);
|
|
struct htx *htx;
|
|
struct http_hdr_ctx ctx;
|
|
size_t hdrs_len = 0;
|
|
int32_t pos;
|
|
unsigned int vary_signature = 0;
|
|
struct cache_tree *cache_tree = NULL;
|
|
|
|
/* Don't cache if the response came from a cache */
|
|
if ((obj_type(s->target) == OBJ_TYPE_APPLET) &&
|
|
s->target == &http_cache_applet.obj_type) {
|
|
goto out;
|
|
}
|
|
|
|
/* cache only HTTP/1.1 */
|
|
if (!(txn->req.flags & HTTP_MSGF_VER_11))
|
|
goto out;
|
|
|
|
cache_tree = get_cache_tree_from_hash(cache, read_u32(txn->cache_hash));
|
|
|
|
/* cache only GET method */
|
|
if (txn->meth != HTTP_METH_GET) {
|
|
/* In case of successful unsafe method on a stored resource, the
|
|
* cached entry must be invalidated (see RFC7234#4.4).
|
|
* A "non-error response" is one with a 2xx (Successful) or 3xx
|
|
* (Redirection) status code. */
|
|
if (txn->status >= 200 && txn->status < 400) {
|
|
switch (txn->meth) {
|
|
case HTTP_METH_OPTIONS:
|
|
case HTTP_METH_GET:
|
|
case HTTP_METH_HEAD:
|
|
case HTTP_METH_TRACE:
|
|
break;
|
|
|
|
default: /* Any unsafe method */
|
|
/* Discard any corresponding entry in case of successful
|
|
* unsafe request (such as PUT, POST or DELETE). */
|
|
cache_wrlock(cache_tree);
|
|
|
|
old = get_entry(cache_tree, txn->cache_hash, 1);
|
|
if (old)
|
|
release_entry_locked(cache_tree, old);
|
|
cache_wrunlock(cache_tree);
|
|
}
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
/* cache key was not computed */
|
|
if (!key)
|
|
goto out;
|
|
|
|
/* cache only 200 status code */
|
|
if (txn->status != 200)
|
|
goto out;
|
|
|
|
/* Find the corresponding filter instance for the current stream */
|
|
list_for_each_entry(filter, &s->strm_flt.filters, list) {
|
|
if (FLT_ID(filter) == cache_store_flt_id && FLT_CONF(filter) == cconf) {
|
|
/* No filter ctx, don't cache anything */
|
|
if (!filter->ctx)
|
|
goto out;
|
|
cache_ctx = filter->ctx;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* from there, cache_ctx is always defined */
|
|
htx = htxbuf(&s->res.buf);
|
|
|
|
/* Do not cache too big objects. */
|
|
if ((msg->flags & HTTP_MSGF_CNT_LEN) && shctx->max_obj_size > 0 &&
|
|
htx->data + htx->extra > shctx->max_obj_size)
|
|
goto out;
|
|
|
|
/* Only a subset of headers are supported in our Vary implementation. If
|
|
* any other header is present in the Vary header value, we won't be
|
|
* able to use the cache. Likewise, if Vary header support is disabled,
|
|
* avoid caching responses that contain such a header. */
|
|
ctx.blk = NULL;
|
|
if (cache->vary_processing_enabled) {
|
|
if (!http_check_vary_header(htx, &vary_signature))
|
|
goto out;
|
|
if (vary_signature) {
|
|
/* If something went wrong during the secondary key
|
|
* building, do not store the response. */
|
|
if (!(txn->flags & TX_CACHE_HAS_SEC_KEY))
|
|
goto out;
|
|
http_request_reduce_secondary_key(vary_signature, txn->cache_secondary_hash);
|
|
}
|
|
}
|
|
else if (http_find_header(htx, ist("Vary"), &ctx, 0)) {
|
|
goto out;
|
|
}
|
|
|
|
http_check_response_for_cacheability(s, &s->res);
|
|
|
|
if (!(txn->flags & TX_CACHEABLE) || !(txn->flags & TX_CACHE_COOK))
|
|
goto out;
|
|
|
|
cache_wrlock(cache_tree);
|
|
old = get_entry(cache_tree, txn->cache_hash, 1);
|
|
if (old) {
|
|
if (vary_signature)
|
|
old = get_secondary_entry(cache_tree, old,
|
|
txn->cache_secondary_hash, 1);
|
|
if (old) {
|
|
if (!old->complete) {
|
|
/* An entry with the same primary key is already being
|
|
* created, we should not try to store the current
|
|
* response because it will waste space in the cache. */
|
|
cache_wrunlock(cache_tree);
|
|
goto out;
|
|
}
|
|
release_entry_locked(cache_tree, old);
|
|
}
|
|
}
|
|
cache_wrunlock(cache_tree);
|
|
|
|
first = shctx_row_reserve_hot(shctx, NULL, sizeof(struct cache_entry));
|
|
if (!first) {
|
|
goto out;
|
|
}
|
|
|
|
/* the received memory is not initialized, we need at least to mark
|
|
* the object as not indexed yet.
|
|
*/
|
|
object = (struct cache_entry *)first->data;
|
|
memset(object, 0, sizeof(*object));
|
|
object->eb.key = key;
|
|
object->secondary_key_signature = vary_signature;
|
|
/* We need to temporarily set a valid expiring time until the actual one
|
|
* is set by the end of this function (in case of concurrent accesses to
|
|
* the same resource). This way the second access will find an existing
|
|
* but not yet usable entry in the tree and will avoid storing its data. */
|
|
object->expire = date.tv_sec + 2;
|
|
|
|
memcpy(object->hash, txn->cache_hash, sizeof(object->hash));
|
|
if (vary_signature)
|
|
memcpy(object->secondary_key, txn->cache_secondary_hash, HTTP_CACHE_SEC_KEY_LEN);
|
|
|
|
cache_wrlock(cache_tree);
|
|
/* Insert the entry in the tree even if the payload is not cached yet. */
|
|
if (insert_entry(cache, cache_tree, object) != &object->eb) {
|
|
object->eb.key = 0;
|
|
cache_wrunlock(cache_tree);
|
|
goto out;
|
|
}
|
|
cache_wrunlock(cache_tree);
|
|
|
|
/* reserve space for the cache_entry structure */
|
|
first->len = sizeof(struct cache_entry);
|
|
first->last_append = NULL;
|
|
|
|
/* Determine the entry's maximum age (taking into account the cache's
|
|
* configuration) as well as the response's explicit max age (extracted
|
|
* from cache-control directives or the expires header). */
|
|
effective_maxage = http_calc_maxage(s, cache, &true_maxage);
|
|
|
|
ctx.blk = NULL;
|
|
if (http_find_header(htx, ist("Age"), &ctx, 0)) {
|
|
long long hdr_age;
|
|
if (!strl2llrc(ctx.value.ptr, ctx.value.len, &hdr_age) && hdr_age > 0) {
|
|
if (unlikely(hdr_age > CACHE_ENTRY_MAX_AGE))
|
|
hdr_age = CACHE_ENTRY_MAX_AGE;
|
|
/* A response with an Age value greater than its
|
|
* announced max age is stale and should not be stored. */
|
|
object->age = hdr_age;
|
|
if (unlikely(object->age > true_maxage))
|
|
goto out;
|
|
}
|
|
else
|
|
goto out;
|
|
http_remove_header(htx, &ctx);
|
|
}
|
|
|
|
/* Build a last-modified time that will be stored in the cache_entry and
|
|
* compared to a future If-Modified-Since client header. */
|
|
object->last_modified = get_last_modified_time(htx);
|
|
|
|
chunk_reset(&trash);
|
|
for (pos = htx_get_first(htx); pos != -1; pos = htx_get_next(htx, pos)) {
|
|
struct htx_blk *blk = htx_get_blk(htx, pos);
|
|
enum htx_blk_type type = htx_get_blk_type(blk);
|
|
uint32_t sz = htx_get_blksz(blk);
|
|
|
|
hdrs_len += sizeof(*blk) + sz;
|
|
chunk_memcat(&trash, (char *)&blk->info, sizeof(blk->info));
|
|
chunk_memcat(&trash, htx_get_blk_ptr(htx, blk), sz);
|
|
|
|
/* Look for optional ETag header.
|
|
* We need to store the offset of the ETag value in order for
|
|
* future conditional requests to be able to perform ETag
|
|
* comparisons. */
|
|
if (type == HTX_BLK_HDR) {
|
|
struct ist header_name = htx_get_blk_name(htx, blk);
|
|
if (isteq(header_name, ist("etag"))) {
|
|
object->etag_length = sz - istlen(header_name);
|
|
object->etag_offset = sizeof(struct cache_entry) + b_data(&trash) - sz + istlen(header_name);
|
|
}
|
|
}
|
|
if (type == HTX_BLK_EOH)
|
|
break;
|
|
}
|
|
|
|
/* Do not cache objects if the headers are too big. */
|
|
if (hdrs_len > htx->size - global.tune.maxrewrite)
|
|
goto out;
|
|
|
|
/* If the response has a secondary_key, fill its key part related to
|
|
* encodings with the actual encoding of the response. This way any
|
|
* subsequent request having the same primary key will have its accepted
|
|
* encodings tested upon the cached response's one.
|
|
* We will not cache a response that has an unknown encoding (not
|
|
* explicitly supported in parse_encoding_value function). */
|
|
if (cache->vary_processing_enabled && vary_signature)
|
|
if (set_secondary_key_encoding(htx, vary_signature, object->secondary_key))
|
|
goto out;
|
|
|
|
if (!shctx_row_reserve_hot(shctx, first, trash.data)) {
|
|
goto out;
|
|
}
|
|
|
|
/* cache the headers in a http action because it allows to chose what
|
|
* to cache, for example you might want to cache a response before
|
|
* modifying some HTTP headers, or on the contrary after modifying
|
|
* those headers.
|
|
*/
|
|
/* does not need to be locked because it's in the "hot" list,
|
|
* copy the headers */
|
|
if (shctx_row_data_append(shctx, first, (unsigned char *)trash.area, trash.data) < 0)
|
|
goto out;
|
|
|
|
/* register the buffer in the filter ctx for filling it with data*/
|
|
if (cache_ctx) {
|
|
cache_ctx->first_block = first;
|
|
LIST_INIT(&cache_ctx->detached_head);
|
|
/* store latest value and expiration time */
|
|
object->latest_validation = date.tv_sec;
|
|
object->expire = date.tv_sec + effective_maxage;
|
|
return ACT_RET_CONT;
|
|
}
|
|
|
|
out:
|
|
/* if does not cache */
|
|
if (first) {
|
|
first->len = 0;
|
|
if (object->eb.key) {
|
|
release_entry_unlocked(cache_tree, object);
|
|
}
|
|
shctx_wrlock(shctx);
|
|
shctx_row_reattach(shctx, first);
|
|
shctx_wrunlock(shctx);
|
|
}
|
|
|
|
return ACT_RET_CONT;
|
|
}
|
|
|
|
#define HTX_CACHE_INIT 0 /* Initial state. */
|
|
#define HTX_CACHE_HEADER 1 /* Cache entry headers forwarding */
|
|
#define HTX_CACHE_DATA 2 /* Cache entry data forwarding */
|
|
#define HTX_CACHE_EOM 3 /* Cache entry completely forwarded. Finish the HTX message */
|
|
#define HTX_CACHE_END 4 /* Cache entry treatment terminated */
|
|
|
|
static void http_cache_applet_release(struct appctx *appctx)
|
|
{
|
|
struct cache_appctx *ctx = appctx->svcctx;
|
|
struct cache_flt_conf *cconf = appctx->rule->arg.act.p[0];
|
|
struct cache_entry *cache_ptr = ctx->entry;
|
|
struct cache *cache = cconf->c.cache;
|
|
struct shared_context *shctx = shctx_ptr(cache);
|
|
struct shared_block *first = block_ptr(cache_ptr);
|
|
|
|
release_entry(ctx->cache_tree, cache_ptr, 1);
|
|
|
|
shctx_wrlock(shctx);
|
|
shctx_row_reattach(shctx, first);
|
|
shctx_wrunlock(shctx);
|
|
}
|
|
|
|
|
|
static unsigned int htx_cache_dump_blk(struct appctx *appctx, struct htx *htx, enum htx_blk_type type,
|
|
uint32_t info, struct shared_block *shblk, unsigned int offset)
|
|
{
|
|
struct cache_appctx *ctx = appctx->svcctx;
|
|
struct cache_flt_conf *cconf = appctx->rule->arg.act.p[0];
|
|
struct shared_context *shctx = shctx_ptr(cconf->c.cache);
|
|
struct htx_blk *blk;
|
|
char *ptr;
|
|
unsigned int max, total;
|
|
uint32_t blksz;
|
|
|
|
max = htx_free_data_space(htx);
|
|
if (!max)
|
|
return 0;
|
|
blksz = ((type == HTX_BLK_HDR || type == HTX_BLK_TLR)
|
|
? (info & 0xff) + ((info >> 8) & 0xfffff)
|
|
: info & 0xfffffff);
|
|
if (blksz > max)
|
|
return 0;
|
|
|
|
blk = htx_add_blk(htx, type, blksz);
|
|
if (!blk)
|
|
return 0;
|
|
|
|
blk->info = info;
|
|
total = 4;
|
|
ptr = htx_get_blk_ptr(htx, blk);
|
|
while (blksz) {
|
|
max = MIN(blksz, shctx->block_size - offset);
|
|
memcpy(ptr, (const char *)shblk->data + offset, max);
|
|
offset += max;
|
|
blksz -= max;
|
|
total += max;
|
|
ptr += max;
|
|
if (blksz || offset == shctx->block_size) {
|
|
shblk = LIST_NEXT(&shblk->list, typeof(shblk), list);
|
|
offset = 0;
|
|
}
|
|
}
|
|
ctx->offset = offset;
|
|
ctx->next = shblk;
|
|
ctx->sent += total;
|
|
return total;
|
|
}
|
|
|
|
static unsigned int htx_cache_dump_data_blk(struct appctx *appctx, struct htx *htx,
|
|
uint32_t info, struct shared_block *shblk, unsigned int offset)
|
|
{
|
|
struct cache_appctx *ctx = appctx->svcctx;
|
|
struct cache_flt_conf *cconf = appctx->rule->arg.act.p[0];
|
|
struct shared_context *shctx = shctx_ptr(cconf->c.cache);
|
|
unsigned int max, total, rem_data, data_len;
|
|
uint32_t blksz;
|
|
|
|
max = htx_free_data_space(htx);
|
|
if (!max)
|
|
return 0;
|
|
|
|
data_len = 0;
|
|
rem_data = 0;
|
|
if (ctx->rem_data) {
|
|
blksz = ctx->rem_data;
|
|
total = 0;
|
|
}
|
|
else {
|
|
blksz = (info & 0xfffffff);
|
|
total = 4;
|
|
}
|
|
if (blksz > max) {
|
|
rem_data = blksz - max;
|
|
blksz = max;
|
|
}
|
|
|
|
while (blksz) {
|
|
size_t sz;
|
|
|
|
max = MIN(blksz, shctx->block_size - offset);
|
|
sz = htx_add_data(htx, ist2(shblk->data + offset, max));
|
|
offset += sz;
|
|
blksz -= sz;
|
|
total += sz;
|
|
data_len += sz;
|
|
if (sz < max)
|
|
break;
|
|
if (blksz || offset == shctx->block_size) {
|
|
shblk = LIST_NEXT(&shblk->list, typeof(shblk), list);
|
|
offset = 0;
|
|
}
|
|
}
|
|
|
|
ctx->offset = offset;
|
|
ctx->next = shblk;
|
|
ctx->sent += total;
|
|
ctx->rem_data = rem_data + blksz;
|
|
appctx->to_forward -= data_len;
|
|
return total;
|
|
}
|
|
|
|
static size_t htx_cache_dump_msg(struct appctx *appctx, struct htx *htx, unsigned int len,
|
|
enum htx_blk_type mark)
|
|
{
|
|
struct cache_appctx *ctx = appctx->svcctx;
|
|
struct cache_flt_conf *cconf = appctx->rule->arg.act.p[0];
|
|
struct shared_context *shctx = shctx_ptr(cconf->c.cache);
|
|
struct shared_block *shblk;
|
|
unsigned int offset, sz;
|
|
unsigned int ret, total = 0;
|
|
|
|
while (len) {
|
|
enum htx_blk_type type;
|
|
uint32_t info;
|
|
|
|
shblk = ctx->next;
|
|
offset = ctx->offset;
|
|
if (ctx->rem_data) {
|
|
type = HTX_BLK_DATA;
|
|
info = 0;
|
|
goto add_data_blk;
|
|
}
|
|
|
|
/* Get info of the next HTX block. May be split on 2 shblk */
|
|
sz = MIN(4, shctx->block_size - offset);
|
|
memcpy((char *)&info, (const char *)shblk->data + offset, sz);
|
|
offset += sz;
|
|
if (sz < 4) {
|
|
shblk = LIST_NEXT(&shblk->list, typeof(shblk), list);
|
|
memcpy(((char *)&info)+sz, (const char *)shblk->data, 4 - sz);
|
|
offset = (4 - sz);
|
|
}
|
|
|
|
/* Get payload of the next HTX block and insert it. */
|
|
type = (info >> 28);
|
|
if (type != HTX_BLK_DATA)
|
|
ret = htx_cache_dump_blk(appctx, htx, type, info, shblk, offset);
|
|
else {
|
|
add_data_blk:
|
|
ret = htx_cache_dump_data_blk(appctx, htx, info, shblk, offset);
|
|
}
|
|
|
|
if (!ret)
|
|
break;
|
|
total += ret;
|
|
len -= ret;
|
|
|
|
if (ctx->rem_data || type == mark)
|
|
break;
|
|
}
|
|
|
|
return total;
|
|
}
|
|
|
|
static unsigned int ff_cache_dump_data_blk(struct appctx *appctx, struct buffer *buf, unsigned int len,
|
|
uint32_t info, struct shared_block *shblk, unsigned int offset)
|
|
{
|
|
struct cache_appctx *ctx = appctx->svcctx;
|
|
struct cache_flt_conf *cconf = appctx->rule->arg.act.p[0];
|
|
struct shared_context *shctx = shctx_ptr(cconf->c.cache);
|
|
unsigned int total, rem_data, data_len;
|
|
uint32_t blksz;
|
|
|
|
total = 0;
|
|
data_len = 0;
|
|
rem_data = 0;
|
|
if (ctx->rem_data)
|
|
blksz = ctx->rem_data;
|
|
else {
|
|
blksz = (info & 0xfffffff);
|
|
ctx->sent += 4;
|
|
}
|
|
if (blksz > len) {
|
|
rem_data = blksz - len;
|
|
blksz = len;
|
|
}
|
|
|
|
while (blksz) {
|
|
size_t sz;
|
|
|
|
len = MIN(blksz, shctx->block_size - offset);
|
|
sz = b_putblk(buf, (char *)(shblk->data + offset), len);
|
|
offset += sz;
|
|
blksz -= sz;
|
|
total += sz;
|
|
data_len += sz;
|
|
if (sz < len)
|
|
break;
|
|
if (blksz || offset == shctx->block_size) {
|
|
shblk = LIST_NEXT(&shblk->list, typeof(shblk), list);
|
|
offset = 0;
|
|
}
|
|
}
|
|
|
|
ctx->offset = offset;
|
|
ctx->next = shblk;
|
|
ctx->sent += total;
|
|
ctx->rem_data = rem_data + blksz;
|
|
appctx->to_forward -= data_len;
|
|
return total;
|
|
}
|
|
|
|
static size_t ff_cache_dump_msg(struct appctx *appctx, struct buffer *buf, unsigned int len)
|
|
{
|
|
struct cache_appctx *ctx = appctx->svcctx;
|
|
struct cache_entry *cache_ptr = ctx->entry;
|
|
struct shared_block *first = block_ptr(cache_ptr);
|
|
struct cache_flt_conf *cconf = appctx->rule->arg.act.p[0];
|
|
struct shared_context *shctx = shctx_ptr(cconf->c.cache);
|
|
struct shared_block *shblk;
|
|
unsigned int offset, sz;
|
|
unsigned int ret, total = 0;
|
|
|
|
while (len && (ctx->sent != first->len - sizeof(*cache_ptr))) {
|
|
enum htx_blk_type type;
|
|
uint32_t info;
|
|
|
|
shblk = ctx->next;
|
|
offset = ctx->offset;
|
|
if (ctx->rem_data) {
|
|
type = HTX_BLK_DATA;
|
|
info = 0;
|
|
goto add_data_blk;
|
|
}
|
|
|
|
/* Get info of the next HTX block. May be split on 2 shblk */
|
|
sz = MIN(4, shctx->block_size - offset);
|
|
memcpy((char *)&info, (const char *)shblk->data + offset, sz);
|
|
offset += sz;
|
|
if (sz < 4) {
|
|
shblk = LIST_NEXT(&shblk->list, typeof(shblk), list);
|
|
memcpy(((char *)&info)+sz, (const char *)shblk->data, 4 - sz);
|
|
offset = (4 - sz);
|
|
}
|
|
|
|
/* Get payload of the next HTX block and insert it. */
|
|
type = (info >> 28);
|
|
if (type == HTX_BLK_DATA) {
|
|
add_data_blk:
|
|
ret = ff_cache_dump_data_blk(appctx, buf, len, info, shblk, offset);
|
|
}
|
|
else
|
|
ret = 0;
|
|
|
|
if (!ret)
|
|
break;
|
|
total += ret;
|
|
len -= ret;
|
|
|
|
if (ctx->rem_data)
|
|
break;
|
|
}
|
|
|
|
return total;
|
|
}
|
|
|
|
static int htx_cache_add_age_hdr(struct appctx *appctx, struct htx *htx)
|
|
{
|
|
struct cache_appctx *ctx = appctx->svcctx;
|
|
struct cache_entry *cache_ptr = ctx->entry;
|
|
unsigned int age;
|
|
char *end;
|
|
|
|
chunk_reset(&trash);
|
|
age = MAX(0, (int)(date.tv_sec - cache_ptr->latest_validation)) + cache_ptr->age;
|
|
if (unlikely(age > CACHE_ENTRY_MAX_AGE))
|
|
age = CACHE_ENTRY_MAX_AGE;
|
|
end = ultoa_o(age, b_head(&trash), b_size(&trash));
|
|
b_set_data(&trash, end - b_head(&trash));
|
|
if (!http_add_header(htx, ist("Age"), ist2(b_head(&trash), b_data(&trash))))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static size_t http_cache_fastfwd(struct appctx *appctx, struct buffer *buf, size_t count, unsigned int flags)
|
|
{
|
|
struct cache_appctx *ctx = appctx->svcctx;
|
|
struct cache_entry *cache_ptr = ctx->entry;
|
|
struct shared_block *first = block_ptr(cache_ptr);
|
|
size_t ret;
|
|
|
|
BUG_ON(!appctx->to_forward || count > appctx->to_forward);
|
|
|
|
ret = ff_cache_dump_msg(appctx, buf, count);
|
|
|
|
if (!appctx->to_forward) {
|
|
se_fl_clr(appctx->sedesc, SE_FL_MAY_FASTFWD_PROD);
|
|
applet_fl_clr(appctx, APPCTX_FL_FASTFWD);
|
|
if (ctx->sent == first->len - sizeof(*cache_ptr)) {
|
|
applet_set_eoi(appctx);
|
|
applet_set_eos(appctx);
|
|
appctx->st0 = HTX_CACHE_END;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void http_cache_io_handler(struct appctx *appctx)
|
|
{
|
|
struct cache_appctx *ctx = appctx->svcctx;
|
|
struct cache_entry *cache_ptr = ctx->entry;
|
|
struct shared_block *first = block_ptr(cache_ptr);
|
|
struct htx *res_htx = NULL;
|
|
struct buffer *errmsg;
|
|
unsigned int len;
|
|
size_t ret;
|
|
|
|
if (applet_fl_test(appctx, APPCTX_FL_OUTBLK_ALLOC|APPCTX_FL_OUTBLK_FULL))
|
|
goto exit;
|
|
|
|
if (applet_fl_test(appctx, APPCTX_FL_FASTFWD) && se_fl_test(appctx->sedesc, SE_FL_MAY_FASTFWD_PROD))
|
|
goto exit;
|
|
|
|
if (!appctx_get_buf(appctx, &appctx->outbuf)) {
|
|
applet_fl_set(appctx, APPCTX_FL_OUTBLK_ALLOC);
|
|
goto exit;
|
|
}
|
|
|
|
if (unlikely(applet_fl_test(appctx, APPCTX_FL_EOS|APPCTX_FL_ERROR))) {
|
|
goto exit;
|
|
}
|
|
|
|
res_htx = htx_from_buf(&appctx->outbuf);
|
|
|
|
len = first->len - sizeof(*cache_ptr) - ctx->sent;
|
|
res_htx = htx_from_buf(&appctx->outbuf);
|
|
|
|
if (appctx->st0 == HTX_CACHE_INIT) {
|
|
ctx->next = block_ptr(cache_ptr);
|
|
ctx->offset = sizeof(*cache_ptr);
|
|
ctx->sent = 0;
|
|
ctx->rem_data = 0;
|
|
appctx->st0 = HTX_CACHE_HEADER;
|
|
}
|
|
|
|
if (appctx->st0 == HTX_CACHE_HEADER) {
|
|
struct ist meth;
|
|
|
|
if (unlikely(applet_fl_test(appctx, APPCTX_FL_INBLK_ALLOC))) {
|
|
goto exit;
|
|
}
|
|
|
|
/* Headers must be dump at once. Otherwise it is an error */
|
|
ret = htx_cache_dump_msg(appctx, res_htx, len, HTX_BLK_EOH);
|
|
if (!ret || (htx_get_tail_type(res_htx) != HTX_BLK_EOH) ||
|
|
!htx_cache_add_age_hdr(appctx, res_htx))
|
|
goto error;
|
|
|
|
/* In case of a conditional request, we might want to send a
|
|
* "304 Not Modified" response instead of the stored data. */
|
|
if (ctx->send_notmodified) {
|
|
if (!http_replace_res_status(res_htx, ist("304"), ist("Not Modified"))) {
|
|
/* If replacing the status code fails we need to send the full response. */
|
|
ctx->send_notmodified = 0;
|
|
}
|
|
}
|
|
|
|
/* Skip response body for HEAD requests or in case of "304 Not
|
|
* Modified" response. */
|
|
meth = htx_sl_req_meth(http_get_stline(htxbuf(&appctx->inbuf)));
|
|
if (find_http_meth(istptr(meth), istlen(meth)) == HTTP_METH_HEAD || ctx->send_notmodified)
|
|
appctx->st0 = HTX_CACHE_EOM;
|
|
else {
|
|
if (!(global.tune.no_zero_copy_fwd & NO_ZERO_COPY_FWD_APPLET))
|
|
se_fl_set(appctx->sedesc, SE_FL_MAY_FASTFWD_PROD);
|
|
|
|
appctx->to_forward = cache_ptr->body_size;
|
|
len = first->len - sizeof(*cache_ptr) - ctx->sent;
|
|
appctx->st0 = HTX_CACHE_DATA;
|
|
}
|
|
}
|
|
|
|
if (appctx->st0 == HTX_CACHE_DATA) {
|
|
if (len) {
|
|
ret = htx_cache_dump_msg(appctx, res_htx, len, HTX_BLK_UNUSED);
|
|
if (ret < len) {
|
|
applet_fl_set(appctx, APPCTX_FL_OUTBLK_FULL);
|
|
goto out;
|
|
}
|
|
}
|
|
BUG_ON(appctx->to_forward);
|
|
appctx->st0 = HTX_CACHE_EOM;
|
|
}
|
|
|
|
if (appctx->st0 == HTX_CACHE_EOM) {
|
|
/* no more data are expected. */
|
|
res_htx->flags |= HTX_FL_EOM;
|
|
applet_set_eoi(appctx);
|
|
se_fl_clr(appctx->sedesc, SE_FL_MAY_FASTFWD_PROD);
|
|
applet_fl_clr(appctx, APPCTX_FL_FASTFWD);
|
|
appctx->st0 = HTX_CACHE_END;
|
|
}
|
|
|
|
end:
|
|
if (appctx->st0 == HTX_CACHE_END) {
|
|
applet_set_eos(appctx);
|
|
}
|
|
|
|
out:
|
|
if (res_htx)
|
|
htx_to_buf(res_htx, &appctx->outbuf);
|
|
|
|
exit:
|
|
/* eat the whole request */
|
|
b_reset(&appctx->inbuf);
|
|
applet_fl_clr(appctx, APPCTX_FL_INBLK_FULL);
|
|
appctx->sedesc->iobuf.flags &= ~IOBUF_FL_FF_BLOCKED;
|
|
return;
|
|
|
|
error:
|
|
/* Sent and HTTP error 500 */
|
|
b_reset(&appctx->outbuf);
|
|
errmsg = &http_err_chunks[HTTP_ERR_500];
|
|
appctx->outbuf.data = b_data(errmsg);
|
|
memcpy(appctx->outbuf.area, b_head(errmsg), b_data(errmsg));
|
|
res_htx = htx_from_buf(&appctx->outbuf);
|
|
|
|
applet_set_eos(appctx);
|
|
applet_set_error(appctx);
|
|
appctx->st0 = HTX_CACHE_END;
|
|
goto end;
|
|
}
|
|
|
|
|
|
static int parse_cache_rule(struct proxy *proxy, const char *name, struct act_rule *rule, char **err)
|
|
{
|
|
struct flt_conf *fconf;
|
|
struct cache_flt_conf *cconf = NULL;
|
|
|
|
if (!*name || strcmp(name, "if") == 0 || strcmp(name, "unless") == 0) {
|
|
memprintf(err, "expects a cache name");
|
|
goto err;
|
|
}
|
|
|
|
/* check if a cache filter was already registered with this cache
|
|
* name, if that's the case, must use it. */
|
|
list_for_each_entry(fconf, &proxy->filter_configs, list) {
|
|
if (fconf->id == cache_store_flt_id) {
|
|
cconf = fconf->conf;
|
|
if (cconf && strcmp((char *)cconf->c.name, name) == 0) {
|
|
rule->arg.act.p[0] = cconf;
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Create the filter cache config */
|
|
cconf = calloc(1, sizeof(*cconf));
|
|
if (!cconf) {
|
|
memprintf(err, "out of memory\n");
|
|
goto err;
|
|
}
|
|
cconf->flags = CACHE_FLT_F_IMPLICIT_DECL;
|
|
cconf->c.name = strdup(name);
|
|
if (!cconf->c.name) {
|
|
memprintf(err, "out of memory\n");
|
|
goto err;
|
|
}
|
|
|
|
/* register a filter to fill the cache buffer */
|
|
fconf = calloc(1, sizeof(*fconf));
|
|
if (!fconf) {
|
|
memprintf(err, "out of memory\n");
|
|
goto err;
|
|
}
|
|
fconf->id = cache_store_flt_id;
|
|
fconf->conf = cconf;
|
|
fconf->ops = &cache_ops;
|
|
LIST_APPEND(&proxy->filter_configs, &fconf->list);
|
|
|
|
rule->arg.act.p[0] = cconf;
|
|
return 1;
|
|
|
|
err:
|
|
free(cconf);
|
|
return 0;
|
|
}
|
|
|
|
enum act_parse_ret parse_cache_store(const char **args, int *orig_arg, struct proxy *proxy,
|
|
struct act_rule *rule, char **err)
|
|
{
|
|
rule->action = ACT_CUSTOM;
|
|
rule->action_ptr = http_action_store_cache;
|
|
|
|
if (!parse_cache_rule(proxy, args[*orig_arg], rule, err))
|
|
return ACT_RET_PRS_ERR;
|
|
|
|
(*orig_arg)++;
|
|
return ACT_RET_PRS_OK;
|
|
}
|
|
|
|
/* This produces a sha1 hash of the concatenation of the HTTP method,
|
|
* the first occurrence of the Host header followed by the path component
|
|
* if it begins with a slash ('/'). */
|
|
int sha1_hosturi(struct stream *s)
|
|
{
|
|
struct http_txn *txn = s->txn;
|
|
struct htx *htx = htxbuf(&s->req.buf);
|
|
struct htx_sl *sl;
|
|
struct http_hdr_ctx ctx;
|
|
struct ist uri;
|
|
blk_SHA_CTX sha1_ctx;
|
|
struct buffer *trash;
|
|
|
|
trash = get_trash_chunk();
|
|
ctx.blk = NULL;
|
|
|
|
sl = http_get_stline(htx);
|
|
uri = htx_sl_req_uri(sl); // whole uri
|
|
if (!uri.len)
|
|
return 0;
|
|
|
|
/* In HTTP/1, most URIs are seen in origin form ('/path/to/resource'),
|
|
* unless haproxy is deployed in front of an outbound cache. In HTTP/2,
|
|
* URIs are almost always sent in absolute form with their scheme. In
|
|
* this case, the scheme is almost always "https". In order to support
|
|
* sharing of cache objects between H1 and H2, we'll hash the absolute
|
|
* URI whenever known, or prepend "https://" + the Host header for
|
|
* relative URIs. The difference will only appear on absolute HTTP/1
|
|
* requests sent to an origin server, which practically is never met in
|
|
* the real world so we don't care about the ability to share the same
|
|
* key here.URIs are normalized from the absolute URI to an origin form as
|
|
* well.
|
|
*/
|
|
if (!(sl->flags & HTX_SL_F_HAS_AUTHORITY)) {
|
|
chunk_istcat(trash, ist("https://"));
|
|
if (!http_find_header(htx, ist("Host"), &ctx, 0))
|
|
return 0;
|
|
chunk_istcat(trash, ctx.value);
|
|
}
|
|
|
|
chunk_istcat(trash, uri);
|
|
|
|
/* hash everything */
|
|
blk_SHA1_Init(&sha1_ctx);
|
|
blk_SHA1_Update(&sha1_ctx, trash->area, trash->data);
|
|
blk_SHA1_Final((unsigned char *)txn->cache_hash, &sha1_ctx);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Looks for "If-None-Match" headers in the request and compares their value
|
|
* with the one that might have been stored in the cache_entry. If any of them
|
|
* matches, a "304 Not Modified" response should be sent instead of the cached
|
|
* data.
|
|
* Although unlikely in a GET/HEAD request, the "If-None-Match: *" syntax is
|
|
* valid and should receive a "304 Not Modified" response (RFC 7234#4.3.2).
|
|
*
|
|
* If no "If-None-Match" header was found, look for an "If-Modified-Since"
|
|
* header and compare its value (date) to the one stored in the cache_entry.
|
|
* If the request's date is later than the cached one, we also send a
|
|
* "304 Not Modified" response (see RFCs 7232#3.3 and 7234#4.3.2).
|
|
*
|
|
* Returns 1 if "304 Not Modified" should be sent, 0 otherwise.
|
|
*/
|
|
static int should_send_notmodified_response(struct cache *cache, struct htx *htx,
|
|
struct cache_entry *entry)
|
|
{
|
|
int retval = 0;
|
|
|
|
struct http_hdr_ctx ctx = { .blk = NULL };
|
|
struct ist cache_entry_etag = IST_NULL;
|
|
struct buffer *etag_buffer = NULL;
|
|
int if_none_match_found = 0;
|
|
|
|
struct tm tm = {};
|
|
time_t if_modified_since = 0;
|
|
|
|
/* If we find a "If-None-Match" header in the request, rebuild the
|
|
* cache_entry's ETag in order to perform comparisons.
|
|
* There could be multiple "if-none-match" header lines. */
|
|
while (http_find_header(htx, ist("if-none-match"), &ctx, 0)) {
|
|
if_none_match_found = 1;
|
|
|
|
/* A '*' matches everything. */
|
|
if (isteq(ctx.value, ist("*")) != 0) {
|
|
retval = 1;
|
|
break;
|
|
}
|
|
|
|
/* No need to rebuild an etag if none was stored in the cache. */
|
|
if (entry->etag_length == 0)
|
|
break;
|
|
|
|
/* Rebuild the stored ETag. */
|
|
if (etag_buffer == NULL) {
|
|
etag_buffer = get_trash_chunk();
|
|
|
|
if (shctx_row_data_get(shctx_ptr(cache), block_ptr(entry),
|
|
(unsigned char*)b_orig(etag_buffer),
|
|
entry->etag_offset, entry->etag_length) == 0) {
|
|
cache_entry_etag = ist2(b_orig(etag_buffer), entry->etag_length);
|
|
} else {
|
|
/* We could not rebuild the ETag in one go, we
|
|
* won't send a "304 Not Modified" response. */
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (http_compare_etags(cache_entry_etag, ctx.value) == 1) {
|
|
retval = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* If the request did not contain an "If-None-Match" header, we look for
|
|
* an "If-Modified-Since" header (see RFC 7232#3.3). */
|
|
if (retval == 0 && if_none_match_found == 0) {
|
|
ctx.blk = NULL;
|
|
if (http_find_header(htx, ist("if-modified-since"), &ctx, 1)) {
|
|
if (parse_http_date(istptr(ctx.value), istlen(ctx.value), &tm)) {
|
|
if_modified_since = my_timegm(&tm);
|
|
|
|
/* We send a "304 Not Modified" response if the
|
|
* entry's last modified date is earlier than
|
|
* the one found in the "If-Modified-Since"
|
|
* header. */
|
|
retval = (entry->last_modified <= if_modified_since);
|
|
}
|
|
}
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
enum act_return http_action_req_cache_use(struct act_rule *rule, struct proxy *px,
|
|
struct session *sess, struct stream *s, int flags)
|
|
{
|
|
|
|
struct http_txn *txn = s->txn;
|
|
struct cache_entry *res, *sec_entry = NULL;
|
|
struct cache_flt_conf *cconf = rule->arg.act.p[0];
|
|
struct cache *cache = cconf->c.cache;
|
|
struct shared_context *shctx = shctx_ptr(cache);
|
|
struct shared_block *entry_block;
|
|
|
|
struct cache_tree *cache_tree = NULL;
|
|
|
|
/* Ignore cache for HTTP/1.0 requests and for requests other than GET
|
|
* and HEAD */
|
|
if (!(txn->req.flags & HTTP_MSGF_VER_11) ||
|
|
(txn->meth != HTTP_METH_GET && txn->meth != HTTP_METH_HEAD))
|
|
txn->flags |= TX_CACHE_IGNORE;
|
|
|
|
http_check_request_for_cacheability(s, &s->req);
|
|
|
|
/* The request's hash has to be calculated for all requests, even POSTs
|
|
* or PUTs for instance because RFC7234 specifies that a successful
|
|
* "unsafe" method on a stored resource must invalidate it
|
|
* (see RFC7234#4.4). */
|
|
if (!sha1_hosturi(s))
|
|
return ACT_RET_CONT;
|
|
|
|
if (s->txn->flags & TX_CACHE_IGNORE)
|
|
return ACT_RET_CONT;
|
|
|
|
if (px == strm_fe(s))
|
|
_HA_ATOMIC_INC(&px->fe_counters.p.http.cache_lookups);
|
|
else
|
|
_HA_ATOMIC_INC(&px->be_counters.p.http.cache_lookups);
|
|
|
|
cache_tree = get_cache_tree_from_hash(cache, read_u32(s->txn->cache_hash));
|
|
|
|
if (!cache_tree)
|
|
return ACT_RET_CONT;
|
|
|
|
cache_rdlock(cache_tree);
|
|
res = get_entry(cache_tree, s->txn->cache_hash, 0);
|
|
/* We must not use an entry that is not complete but the check will be
|
|
* performed after we look for a potential secondary entry (in case of
|
|
* Vary). */
|
|
if (res) {
|
|
struct appctx *appctx;
|
|
int detached = 0;
|
|
|
|
retain_entry(res);
|
|
|
|
entry_block = block_ptr(res);
|
|
shctx_wrlock(shctx);
|
|
if (res->complete) {
|
|
shctx_row_detach(shctx, entry_block);
|
|
detached = 1;
|
|
} else {
|
|
release_entry(cache_tree, res, 0);
|
|
res = NULL;
|
|
}
|
|
shctx_wrunlock(shctx);
|
|
cache_rdunlock(cache_tree);
|
|
|
|
/* In case of Vary, we could have multiple entries with the same
|
|
* primary hash. We need to calculate the secondary hash in order
|
|
* to find the actual entry we want (if it exists). */
|
|
if (res && res->secondary_key_signature) {
|
|
if (!http_request_build_secondary_key(s, res->secondary_key_signature)) {
|
|
cache_rdlock(cache_tree);
|
|
sec_entry = get_secondary_entry(cache_tree, res,
|
|
s->txn->cache_secondary_hash, 0);
|
|
if (sec_entry && sec_entry != res) {
|
|
/* The wrong row was added to the hot list. */
|
|
release_entry(cache_tree, res, 0);
|
|
retain_entry(sec_entry);
|
|
shctx_wrlock(shctx);
|
|
if (detached)
|
|
shctx_row_reattach(shctx, entry_block);
|
|
entry_block = block_ptr(sec_entry);
|
|
shctx_row_detach(shctx, entry_block);
|
|
shctx_wrunlock(shctx);
|
|
}
|
|
res = sec_entry;
|
|
cache_rdunlock(cache_tree);
|
|
}
|
|
else {
|
|
release_entry(cache_tree, res, 1);
|
|
|
|
res = NULL;
|
|
shctx_wrlock(shctx);
|
|
shctx_row_reattach(shctx, entry_block);
|
|
shctx_wrunlock(shctx);
|
|
}
|
|
}
|
|
|
|
/* We either looked for a valid secondary entry and could not
|
|
* find one, or the entry we want to use is not complete. We
|
|
* can't use the cache's entry and must forward the request to
|
|
* the server. */
|
|
if (!res) {
|
|
return ACT_RET_CONT;
|
|
} else if (!res->complete) {
|
|
release_entry(cache_tree, res, 1);
|
|
return ACT_RET_CONT;
|
|
}
|
|
|
|
s->target = &http_cache_applet.obj_type;
|
|
if ((appctx = sc_applet_create(s->scb, objt_applet(s->target)))) {
|
|
struct cache_appctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
|
|
|
|
appctx->st0 = HTX_CACHE_INIT;
|
|
appctx->rule = rule;
|
|
ctx->cache_tree = cache_tree;
|
|
ctx->entry = res;
|
|
ctx->next = NULL;
|
|
ctx->sent = 0;
|
|
ctx->send_notmodified =
|
|
should_send_notmodified_response(cache, htxbuf(&s->req.buf), res);
|
|
|
|
if (px == strm_fe(s))
|
|
_HA_ATOMIC_INC(&px->fe_counters.p.http.cache_hits);
|
|
else
|
|
_HA_ATOMIC_INC(&px->be_counters.p.http.cache_hits);
|
|
return ACT_RET_CONT;
|
|
} else {
|
|
s->target = NULL;
|
|
release_entry(cache_tree, res, 1);
|
|
shctx_wrlock(shctx);
|
|
shctx_row_reattach(shctx, entry_block);
|
|
shctx_wrunlock(shctx);
|
|
return ACT_RET_CONT;
|
|
}
|
|
}
|
|
cache_rdunlock(cache_tree);
|
|
|
|
/* Shared context does not need to be locked while we calculate the
|
|
* secondary hash. */
|
|
if (!res && cache->vary_processing_enabled) {
|
|
/* Build a complete secondary hash until the server response
|
|
* tells us which fields should be kept (if any). */
|
|
http_request_prebuild_full_secondary_key(s);
|
|
}
|
|
return ACT_RET_CONT;
|
|
}
|
|
|
|
|
|
enum act_parse_ret parse_cache_use(const char **args, int *orig_arg, struct proxy *proxy,
|
|
struct act_rule *rule, char **err)
|
|
{
|
|
rule->action = ACT_CUSTOM;
|
|
rule->action_ptr = http_action_req_cache_use;
|
|
|
|
if (!parse_cache_rule(proxy, args[*orig_arg], rule, err))
|
|
return ACT_RET_PRS_ERR;
|
|
|
|
(*orig_arg)++;
|
|
return ACT_RET_PRS_OK;
|
|
}
|
|
|
|
int cfg_parse_cache(const char *file, int linenum, char **args, int kwm)
|
|
{
|
|
int err_code = 0;
|
|
|
|
if (strcmp(args[0], "cache") == 0) { /* new cache section */
|
|
|
|
if (!*args[1]) {
|
|
ha_alert("parsing [%s:%d] : '%s' expects a <name> argument\n",
|
|
file, linenum, args[0]);
|
|
err_code |= ERR_ALERT | ERR_ABORT;
|
|
goto out;
|
|
}
|
|
|
|
if (alertif_too_many_args(1, file, linenum, args, &err_code)) {
|
|
err_code |= ERR_ABORT;
|
|
goto out;
|
|
}
|
|
|
|
if (tmp_cache_config == NULL) {
|
|
struct cache *cache_config;
|
|
|
|
tmp_cache_config = calloc(1, sizeof(*tmp_cache_config));
|
|
if (!tmp_cache_config) {
|
|
ha_alert("parsing [%s:%d]: out of memory.\n", file, linenum);
|
|
err_code |= ERR_ALERT | ERR_ABORT;
|
|
goto out;
|
|
}
|
|
|
|
strlcpy2(tmp_cache_config->id, args[1], 33);
|
|
if (strlen(args[1]) > 32) {
|
|
ha_warning("parsing [%s:%d]: cache name is limited to 32 characters, truncate to '%s'.\n",
|
|
file, linenum, tmp_cache_config->id);
|
|
err_code |= ERR_WARN;
|
|
}
|
|
|
|
list_for_each_entry(cache_config, &caches_config, list) {
|
|
if (strcmp(tmp_cache_config->id, cache_config->id) == 0) {
|
|
ha_alert("parsing [%s:%d]: Duplicate cache name '%s'.\n",
|
|
file, linenum, tmp_cache_config->id);
|
|
err_code |= ERR_ALERT | ERR_ABORT;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
tmp_cache_config->maxage = 60;
|
|
tmp_cache_config->maxblocks = 0;
|
|
tmp_cache_config->maxobjsz = 0;
|
|
tmp_cache_config->max_secondary_entries = DEFAULT_MAX_SECONDARY_ENTRY;
|
|
}
|
|
} else if (strcmp(args[0], "total-max-size") == 0) {
|
|
unsigned long int maxsize;
|
|
char *err;
|
|
|
|
if (alertif_too_many_args(1, file, linenum, args, &err_code)) {
|
|
err_code |= ERR_ABORT;
|
|
goto out;
|
|
}
|
|
|
|
maxsize = strtoul(args[1], &err, 10);
|
|
if (err == args[1] || *err != '\0') {
|
|
ha_warning("parsing [%s:%d]: total-max-size wrong value '%s'\n",
|
|
file, linenum, args[1]);
|
|
err_code |= ERR_ABORT;
|
|
goto out;
|
|
}
|
|
|
|
if (maxsize > (UINT_MAX >> 20)) {
|
|
ha_warning("parsing [%s:%d]: \"total-max-size\" (%s) must not be greater than %u\n",
|
|
file, linenum, args[1], UINT_MAX >> 20);
|
|
err_code |= ERR_ABORT;
|
|
goto out;
|
|
}
|
|
|
|
/* size in megabytes */
|
|
maxsize *= 1024 * 1024 / CACHE_BLOCKSIZE;
|
|
tmp_cache_config->maxblocks = maxsize;
|
|
} else if (strcmp(args[0], "max-age") == 0) {
|
|
if (alertif_too_many_args(1, file, linenum, args, &err_code)) {
|
|
err_code |= ERR_ABORT;
|
|
goto out;
|
|
}
|
|
|
|
if (!*args[1]) {
|
|
ha_warning("parsing [%s:%d]: '%s' expects an age parameter in seconds.\n",
|
|
file, linenum, args[0]);
|
|
err_code |= ERR_WARN;
|
|
}
|
|
|
|
tmp_cache_config->maxage = atoi(args[1]);
|
|
} else if (strcmp(args[0], "max-object-size") == 0) {
|
|
unsigned int maxobjsz;
|
|
char *err;
|
|
|
|
if (alertif_too_many_args(1, file, linenum, args, &err_code)) {
|
|
err_code |= ERR_ABORT;
|
|
goto out;
|
|
}
|
|
|
|
if (!*args[1]) {
|
|
ha_warning("parsing [%s:%d]: '%s' expects a maximum file size parameter in bytes.\n",
|
|
file, linenum, args[0]);
|
|
err_code |= ERR_WARN;
|
|
}
|
|
|
|
maxobjsz = strtoul(args[1], &err, 10);
|
|
if (err == args[1] || *err != '\0') {
|
|
ha_warning("parsing [%s:%d]: max-object-size wrong value '%s'\n",
|
|
file, linenum, args[1]);
|
|
err_code |= ERR_ABORT;
|
|
goto out;
|
|
}
|
|
tmp_cache_config->maxobjsz = maxobjsz;
|
|
} else if (strcmp(args[0], "process-vary") == 0) {
|
|
if (alertif_too_many_args(1, file, linenum, args, &err_code)) {
|
|
err_code |= ERR_ABORT;
|
|
goto out;
|
|
}
|
|
|
|
if (!*args[1]) {
|
|
ha_warning("parsing [%s:%d]: '%s' expects \"on\" or \"off\" (enable or disable vary processing).\n",
|
|
file, linenum, args[0]);
|
|
err_code |= ERR_WARN;
|
|
}
|
|
if (strcmp(args[1], "on") == 0)
|
|
tmp_cache_config->vary_processing_enabled = 1;
|
|
else if (strcmp(args[1], "off") == 0)
|
|
tmp_cache_config->vary_processing_enabled = 0;
|
|
else {
|
|
ha_warning("parsing [%s:%d]: '%s' expects \"on\" or \"off\" (enable or disable vary processing).\n",
|
|
file, linenum, args[0]);
|
|
err_code |= ERR_WARN;
|
|
}
|
|
} else if (strcmp(args[0], "max-secondary-entries") == 0) {
|
|
unsigned int max_sec_entries;
|
|
char *err;
|
|
|
|
if (alertif_too_many_args(1, file, linenum, args, &err_code)) {
|
|
err_code |= ERR_ABORT;
|
|
goto out;
|
|
}
|
|
|
|
if (!*args[1]) {
|
|
ha_warning("parsing [%s:%d]: '%s' expects a strictly positive number.\n",
|
|
file, linenum, args[0]);
|
|
err_code |= ERR_WARN;
|
|
}
|
|
|
|
max_sec_entries = strtoul(args[1], &err, 10);
|
|
if (err == args[1] || *err != '\0' || max_sec_entries == 0) {
|
|
ha_warning("parsing [%s:%d]: max-secondary-entries wrong value '%s'\n",
|
|
file, linenum, args[1]);
|
|
err_code |= ERR_ABORT;
|
|
goto out;
|
|
}
|
|
tmp_cache_config->max_secondary_entries = max_sec_entries;
|
|
}
|
|
else if (*args[0] != 0) {
|
|
ha_alert("parsing [%s:%d] : unknown keyword '%s' in 'cache' section\n", file, linenum, args[0]);
|
|
err_code |= ERR_ALERT | ERR_FATAL;
|
|
goto out;
|
|
}
|
|
out:
|
|
return err_code;
|
|
}
|
|
|
|
/* once the cache section is parsed */
|
|
|
|
int cfg_post_parse_section_cache()
|
|
{
|
|
int err_code = 0;
|
|
|
|
if (tmp_cache_config) {
|
|
|
|
if (tmp_cache_config->maxblocks <= 0) {
|
|
ha_alert("Size not specified for cache '%s'\n", tmp_cache_config->id);
|
|
err_code |= ERR_FATAL | ERR_ALERT;
|
|
goto out;
|
|
}
|
|
|
|
if (!tmp_cache_config->maxobjsz) {
|
|
/* Default max. file size is a 256th of the cache size. */
|
|
tmp_cache_config->maxobjsz =
|
|
(tmp_cache_config->maxblocks * CACHE_BLOCKSIZE) >> 8;
|
|
}
|
|
else if (tmp_cache_config->maxobjsz > tmp_cache_config->maxblocks * CACHE_BLOCKSIZE / 2) {
|
|
ha_alert("\"max-object-size\" is limited to an half of \"total-max-size\" => %u\n", tmp_cache_config->maxblocks * CACHE_BLOCKSIZE / 2);
|
|
err_code |= ERR_FATAL | ERR_ALERT;
|
|
goto out;
|
|
}
|
|
|
|
/* add to the list of cache to init and reinit tmp_cache_config
|
|
* for next cache section, if any.
|
|
*/
|
|
LIST_APPEND(&caches_config, &tmp_cache_config->list);
|
|
tmp_cache_config = NULL;
|
|
return err_code;
|
|
}
|
|
out:
|
|
ha_free(&tmp_cache_config);
|
|
return err_code;
|
|
|
|
}
|
|
|
|
int post_check_cache()
|
|
{
|
|
struct proxy *px;
|
|
struct cache *back, *cache_config, *cache;
|
|
struct shared_context *shctx;
|
|
int ret_shctx;
|
|
int err_code = ERR_NONE;
|
|
int i;
|
|
|
|
list_for_each_entry_safe(cache_config, back, &caches_config, list) {
|
|
|
|
ret_shctx = shctx_init(&shctx, cache_config->maxblocks, CACHE_BLOCKSIZE,
|
|
cache_config->maxobjsz, sizeof(struct cache), cache_config->id);
|
|
|
|
if (ret_shctx <= 0) {
|
|
if (ret_shctx == SHCTX_E_INIT_LOCK)
|
|
ha_alert("Unable to initialize the lock for the cache.\n");
|
|
else
|
|
ha_alert("Unable to allocate cache.\n");
|
|
|
|
err_code |= ERR_FATAL | ERR_ALERT;
|
|
goto out;
|
|
}
|
|
shctx->free_block = cache_free_blocks;
|
|
shctx->reserve_finish = cache_reserve_finish;
|
|
shctx->cb_data = (void*)shctx->data;
|
|
/* the cache structure is stored in the shctx and added to the
|
|
* caches list, we can remove the entry from the caches_config
|
|
* list */
|
|
memcpy(shctx->data, cache_config, sizeof(struct cache));
|
|
cache = (struct cache *)shctx->data;
|
|
LIST_APPEND(&caches, &cache->list);
|
|
LIST_DELETE(&cache_config->list);
|
|
free(cache_config);
|
|
for (i = 0; i < CACHE_TREE_NUM; ++i) {
|
|
cache->trees[i].entries = EB_ROOT;
|
|
HA_RWLOCK_INIT(&cache->trees[i].lock);
|
|
|
|
LIST_INIT(&cache->trees[i].cleanup_list);
|
|
HA_SPIN_INIT(&cache->trees[i].cleanup_lock);
|
|
}
|
|
|
|
/* Find all references for this cache in the existing filters
|
|
* (over all proxies) and reference it in matching filters.
|
|
*/
|
|
for (px = proxies_list; px; px = px->next) {
|
|
struct flt_conf *fconf;
|
|
struct cache_flt_conf *cconf;
|
|
|
|
list_for_each_entry(fconf, &px->filter_configs, list) {
|
|
if (fconf->id != cache_store_flt_id)
|
|
continue;
|
|
|
|
cconf = fconf->conf;
|
|
if (strcmp(cache->id, cconf->c.name) == 0) {
|
|
free(cconf->c.name);
|
|
cconf->flags |= CACHE_FLT_INIT;
|
|
cconf->c.cache = cache;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
out:
|
|
return err_code;
|
|
|
|
}
|
|
|
|
struct flt_ops cache_ops = {
|
|
.init = cache_store_init,
|
|
.check = cache_store_check,
|
|
.deinit = cache_store_deinit,
|
|
|
|
/* Handle stream init/deinit */
|
|
.attach = cache_store_strm_init,
|
|
.detach = cache_store_strm_deinit,
|
|
|
|
/* Handle channels activity */
|
|
.channel_post_analyze = cache_store_post_analyze,
|
|
|
|
/* Filter HTTP requests and responses */
|
|
.http_headers = cache_store_http_headers,
|
|
.http_payload = cache_store_http_payload,
|
|
.http_end = cache_store_http_end,
|
|
};
|
|
|
|
|
|
#define CHECK_ENCODING(str, encoding_name, encoding_value) \
|
|
({ \
|
|
int retval = 0; \
|
|
if (istmatch(str, (struct ist){ .ptr = encoding_name+1, .len = sizeof(encoding_name) - 2 })) { \
|
|
retval = encoding_value; \
|
|
encoding = istadv(encoding, sizeof(encoding_name) - 2); \
|
|
} \
|
|
(retval); \
|
|
})
|
|
|
|
/*
|
|
* Parse the encoding <encoding> and try to match the encoding part upon an
|
|
* encoding list of explicitly supported encodings (which all have a specific
|
|
* bit in an encoding bitmap). If a weight is included in the value, find out if
|
|
* it is null or not. The bit value will be set in the <encoding_value>
|
|
* parameter and the <has_null_weight> will be set to 1 if the weight is strictly
|
|
* 0, 1 otherwise.
|
|
* The encodings list is extracted from
|
|
* https://www.iana.org/assignments/http-parameters/http-parameters.xhtml.
|
|
* Returns 0 in case of success and -1 in case of error.
|
|
*/
|
|
static int parse_encoding_value(struct ist encoding, unsigned int *encoding_value,
|
|
unsigned int *has_null_weight)
|
|
{
|
|
int retval = 0;
|
|
|
|
if (!encoding_value)
|
|
return -1;
|
|
|
|
if (!istlen(encoding))
|
|
return -1; /* Invalid encoding */
|
|
|
|
*encoding_value = 0;
|
|
if (has_null_weight)
|
|
*has_null_weight = 0;
|
|
|
|
switch (*encoding.ptr) {
|
|
case 'a':
|
|
encoding = istnext(encoding);
|
|
*encoding_value = CHECK_ENCODING(encoding, "aes128gcm", VARY_ENCODING_AES128GCM);
|
|
break;
|
|
case 'b':
|
|
encoding = istnext(encoding);
|
|
*encoding_value = CHECK_ENCODING(encoding, "br", VARY_ENCODING_BR);
|
|
break;
|
|
case 'c':
|
|
encoding = istnext(encoding);
|
|
*encoding_value = CHECK_ENCODING(encoding, "compress", VARY_ENCODING_COMPRESS);
|
|
break;
|
|
case 'd':
|
|
encoding = istnext(encoding);
|
|
*encoding_value = CHECK_ENCODING(encoding, "deflate", VARY_ENCODING_DEFLATE);
|
|
break;
|
|
case 'e':
|
|
encoding = istnext(encoding);
|
|
*encoding_value = CHECK_ENCODING(encoding, "exi", VARY_ENCODING_EXI);
|
|
break;
|
|
case 'g':
|
|
encoding = istnext(encoding);
|
|
*encoding_value = CHECK_ENCODING(encoding, "gzip", VARY_ENCODING_GZIP);
|
|
break;
|
|
case 'i':
|
|
encoding = istnext(encoding);
|
|
*encoding_value = CHECK_ENCODING(encoding, "identity", VARY_ENCODING_IDENTITY);
|
|
break;
|
|
case 'p':
|
|
encoding = istnext(encoding);
|
|
*encoding_value = CHECK_ENCODING(encoding, "pack200-gzip", VARY_ENCODING_PACK200_GZIP);
|
|
break;
|
|
case 'x':
|
|
encoding = istnext(encoding);
|
|
*encoding_value = CHECK_ENCODING(encoding, "x-gzip", VARY_ENCODING_GZIP);
|
|
if (!*encoding_value)
|
|
*encoding_value = CHECK_ENCODING(encoding, "x-compress", VARY_ENCODING_COMPRESS);
|
|
break;
|
|
case 'z':
|
|
encoding = istnext(encoding);
|
|
*encoding_value = CHECK_ENCODING(encoding, "zstd", VARY_ENCODING_ZSTD);
|
|
break;
|
|
case '*':
|
|
encoding = istnext(encoding);
|
|
*encoding_value = VARY_ENCODING_STAR;
|
|
break;
|
|
default:
|
|
retval = -1; /* Unmanaged encoding */
|
|
break;
|
|
}
|
|
|
|
/* Process the optional weight part of the encoding. */
|
|
if (*encoding_value) {
|
|
encoding = http_trim_leading_spht(encoding);
|
|
if (istlen(encoding)) {
|
|
if (*encoding.ptr != ';')
|
|
return -1;
|
|
|
|
if (has_null_weight) {
|
|
encoding = istnext(encoding);
|
|
|
|
encoding = http_trim_leading_spht(encoding);
|
|
|
|
*has_null_weight = isteq(encoding, ist("q=0"));
|
|
}
|
|
}
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
#define ACCEPT_ENCODING_MAX_ENTRIES 16
|
|
/*
|
|
* Build a bitmap of the accept-encoding header.
|
|
*
|
|
* The bitmap is built by matching every sub-part of the accept-encoding value
|
|
* with a subset of explicitly supported encodings, which all have their own bit
|
|
* in the bitmap. This bitmap will be used to determine if a response can be
|
|
* served to a client (that is if it has an encoding that is accepted by the
|
|
* client). Any unknown encodings will be indicated by the VARY_ENCODING_OTHER
|
|
* bit.
|
|
*
|
|
* Returns 0 in case of success and -1 in case of error.
|
|
*/
|
|
static int accept_encoding_normalizer(struct htx *htx, struct ist hdr_name,
|
|
char *buf, unsigned int *buf_len)
|
|
{
|
|
size_t count = 0;
|
|
uint32_t encoding_bitmap = 0;
|
|
unsigned int encoding_bmp_bl = -1;
|
|
struct http_hdr_ctx ctx = { .blk = NULL };
|
|
unsigned int encoding_value;
|
|
unsigned int rejected_encoding;
|
|
|
|
/* A user agent always accepts an unencoded value unless it explicitly
|
|
* refuses it through an "identity;q=0" accept-encoding value. */
|
|
encoding_bitmap |= VARY_ENCODING_IDENTITY;
|
|
|
|
/* Iterate over all the ACCEPT_ENCODING_MAX_ENTRIES first accept-encoding
|
|
* values that might span acrosse multiple accept-encoding headers. */
|
|
while (http_find_header(htx, hdr_name, &ctx, 0) && count < ACCEPT_ENCODING_MAX_ENTRIES) {
|
|
count++;
|
|
|
|
/* As per RFC7231#5.3.4, "An Accept-Encoding header field with a
|
|
* combined field-value that is empty implies that the user agent
|
|
* does not want any content-coding in response."
|
|
*
|
|
* We must (and did) count the existence of this empty header to not
|
|
* hit the `count == 0` case below, but must ignore the value to not
|
|
* include VARY_ENCODING_OTHER into the final bitmap.
|
|
*/
|
|
if (istlen(ctx.value) == 0)
|
|
continue;
|
|
|
|
/* Turn accept-encoding value to lower case */
|
|
ist2bin_lc(istptr(ctx.value), ctx.value);
|
|
|
|
/* Try to identify a known encoding and to manage null weights. */
|
|
if (!parse_encoding_value(ctx.value, &encoding_value, &rejected_encoding)) {
|
|
if (rejected_encoding)
|
|
encoding_bmp_bl &= ~encoding_value;
|
|
else
|
|
encoding_bitmap |= encoding_value;
|
|
}
|
|
else {
|
|
/* Unknown encoding */
|
|
encoding_bitmap |= VARY_ENCODING_OTHER;
|
|
}
|
|
}
|
|
|
|
/* If a "*" was found in the accepted encodings (without a null weight),
|
|
* all the encoding are accepted except the ones explicitly rejected. */
|
|
if (encoding_bitmap & VARY_ENCODING_STAR) {
|
|
encoding_bitmap = ~0;
|
|
}
|
|
|
|
/* Clear explicitly rejected encodings from the bitmap */
|
|
encoding_bitmap &= encoding_bmp_bl;
|
|
|
|
/* As per RFC7231#5.3.4, "If no Accept-Encoding field is in the request,
|
|
* any content-coding is considered acceptable by the user agent". */
|
|
if (count == 0)
|
|
encoding_bitmap = ~0;
|
|
|
|
/* A request with more than ACCEPT_ENCODING_MAX_ENTRIES accepted
|
|
* encodings might be illegitimate so we will not use it. */
|
|
if (count == ACCEPT_ENCODING_MAX_ENTRIES)
|
|
return -1;
|
|
|
|
write_u32(buf, encoding_bitmap);
|
|
*buf_len = sizeof(encoding_bitmap);
|
|
|
|
/* This function fills the hash buffer correctly even if no header was
|
|
* found, hence the 0 return value (success). */
|
|
return 0;
|
|
}
|
|
#undef ACCEPT_ENCODING_MAX_ENTRIES
|
|
|
|
/*
|
|
* Normalizer used by default for the Referer and Origin header. It only
|
|
* calculates a hash of the whole value using xxhash algorithm.
|
|
* Only the first occurrence of the header will be taken into account in the
|
|
* hash.
|
|
* Returns 0 in case of success, 1 if the hash buffer should be filled with 0s
|
|
* and -1 in case of error.
|
|
*/
|
|
static int default_normalizer(struct htx *htx, struct ist hdr_name,
|
|
char *buf, unsigned int *buf_len)
|
|
{
|
|
int retval = 1;
|
|
struct http_hdr_ctx ctx = { .blk = NULL };
|
|
|
|
if (http_find_header(htx, hdr_name, &ctx, 1)) {
|
|
retval = 0;
|
|
write_u64(buf, XXH3(istptr(ctx.value), istlen(ctx.value), cache_hash_seed));
|
|
*buf_len = sizeof(uint64_t);
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Accept-Encoding bitmap comparison function.
|
|
* Returns 0 if the bitmaps are compatible.
|
|
*/
|
|
static int accept_encoding_bitmap_cmp(const void *ref, const void *new, unsigned int len)
|
|
{
|
|
uint32_t ref_bitmap = read_u32(ref);
|
|
uint32_t new_bitmap = read_u32(new);
|
|
|
|
if (!(ref_bitmap & VARY_ENCODING_OTHER)) {
|
|
/* All the bits set in the reference bitmap correspond to the
|
|
* stored response' encoding and should all be set in the new
|
|
* encoding bitmap in order for the client to be able to manage
|
|
* the response.
|
|
*
|
|
* If this is the case the cached response has encodings that
|
|
* are accepted by the client. It can be served directly by
|
|
* the cache (as far as the accept-encoding part is concerned).
|
|
*/
|
|
|
|
return (ref_bitmap & new_bitmap) != ref_bitmap;
|
|
}
|
|
else {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Pre-calculate the hashes of all the supported headers (in our Vary
|
|
* implementation) of a given request. We have to calculate all the hashes
|
|
* in advance because the actual Vary signature won't be known until the first
|
|
* response.
|
|
* Only the first occurrence of every header will be taken into account in the
|
|
* hash.
|
|
* If the header is not present, the hash portion of the given header will be
|
|
* filled with zeros.
|
|
* Returns 0 in case of success.
|
|
*/
|
|
static int http_request_prebuild_full_secondary_key(struct stream *s)
|
|
{
|
|
/* The fake signature (second parameter) will ensure that every part of the
|
|
* secondary key is calculated. */
|
|
return http_request_build_secondary_key(s, ~0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Calculate the secondary key for a request for which we already have a known
|
|
* vary signature. The key is made by aggregating hashes calculated for every
|
|
* header mentioned in the vary signature.
|
|
* Only the first occurrence of every header will be taken into account in the
|
|
* hash.
|
|
* If the header is not present, the hash portion of the given header will be
|
|
* filled with zeros.
|
|
* Returns 0 in case of success.
|
|
*/
|
|
static int http_request_build_secondary_key(struct stream *s, int vary_signature)
|
|
{
|
|
struct http_txn *txn = s->txn;
|
|
struct htx *htx = htxbuf(&s->req.buf);
|
|
|
|
unsigned int idx;
|
|
const struct vary_hashing_information *info = NULL;
|
|
unsigned int hash_length = 0;
|
|
int retval = 0;
|
|
int offset = 0;
|
|
|
|
for (idx = 0; idx < sizeof(vary_information)/sizeof(*vary_information) && retval >= 0; ++idx) {
|
|
info = &vary_information[idx];
|
|
|
|
/* The normalizing functions will be in charge of getting the
|
|
* header values from the htx. This way they can manage multiple
|
|
* occurrences of their processed header. */
|
|
if ((vary_signature & info->value) && info->norm_fn != NULL &&
|
|
!(retval = info->norm_fn(htx, info->hdr_name, &txn->cache_secondary_hash[offset], &hash_length))) {
|
|
offset += hash_length;
|
|
}
|
|
else {
|
|
/* Fill hash with 0s. */
|
|
hash_length = info->hash_length;
|
|
memset(&txn->cache_secondary_hash[offset], 0, hash_length);
|
|
offset += hash_length;
|
|
}
|
|
}
|
|
|
|
if (retval >= 0)
|
|
txn->flags |= TX_CACHE_HAS_SEC_KEY;
|
|
|
|
return (retval < 0);
|
|
}
|
|
|
|
/*
|
|
* Build the actual secondary key of a given request out of the prebuilt key and
|
|
* the actual vary signature (extracted from the response).
|
|
* Returns 0 in case of success.
|
|
*/
|
|
static int http_request_reduce_secondary_key(unsigned int vary_signature,
|
|
char prebuilt_key[HTTP_CACHE_SEC_KEY_LEN])
|
|
{
|
|
int offset = 0;
|
|
int global_offset = 0;
|
|
int vary_info_count = 0;
|
|
int keep = 0;
|
|
unsigned int vary_idx;
|
|
const struct vary_hashing_information *vary_info;
|
|
|
|
vary_info_count = sizeof(vary_information)/sizeof(*vary_information);
|
|
for (vary_idx = 0; vary_idx < vary_info_count; ++vary_idx) {
|
|
vary_info = &vary_information[vary_idx];
|
|
keep = (vary_signature & vary_info->value) ? 0xff : 0;
|
|
|
|
for (offset = 0; offset < vary_info->hash_length; ++offset,++global_offset) {
|
|
prebuilt_key[global_offset] &= keep;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
parse_cache_flt(char **args, int *cur_arg, struct proxy *px,
|
|
struct flt_conf *fconf, char **err, void *private)
|
|
{
|
|
struct flt_conf *f, *back;
|
|
struct cache_flt_conf *cconf = NULL;
|
|
char *name = NULL;
|
|
int pos = *cur_arg;
|
|
|
|
/* Get the cache filter name. <pos> point on "cache" keyword */
|
|
if (!*args[pos + 1]) {
|
|
memprintf(err, "%s : expects a <name> argument", args[pos]);
|
|
goto error;
|
|
}
|
|
name = strdup(args[pos + 1]);
|
|
if (!name) {
|
|
memprintf(err, "%s '%s' : out of memory", args[pos], args[pos + 1]);
|
|
goto error;
|
|
}
|
|
pos += 2;
|
|
|
|
/* Check if an implicit filter with the same name already exists. If so,
|
|
* we remove the implicit filter to use the explicit one. */
|
|
list_for_each_entry_safe(f, back, &px->filter_configs, list) {
|
|
if (f->id != cache_store_flt_id)
|
|
continue;
|
|
|
|
cconf = f->conf;
|
|
if (strcmp(name, cconf->c.name) != 0) {
|
|
cconf = NULL;
|
|
continue;
|
|
}
|
|
|
|
if (!(cconf->flags & CACHE_FLT_F_IMPLICIT_DECL)) {
|
|
cconf = NULL;
|
|
memprintf(err, "%s: multiple explicit declarations of the cache filter '%s'",
|
|
px->id, name);
|
|
goto error;
|
|
}
|
|
|
|
/* Remove the implicit filter. <cconf> is kept for the explicit one */
|
|
LIST_DELETE(&f->list);
|
|
free(f);
|
|
free(name);
|
|
break;
|
|
}
|
|
|
|
/* No implicit cache filter found, create configuration for the explicit one */
|
|
if (!cconf) {
|
|
cconf = calloc(1, sizeof(*cconf));
|
|
if (!cconf) {
|
|
memprintf(err, "%s: out of memory", args[*cur_arg]);
|
|
goto error;
|
|
}
|
|
cconf->c.name = name;
|
|
}
|
|
|
|
cconf->flags = 0;
|
|
fconf->id = cache_store_flt_id;
|
|
fconf->conf = cconf;
|
|
fconf->ops = &cache_ops;
|
|
|
|
*cur_arg = pos;
|
|
return 0;
|
|
|
|
error:
|
|
free(name);
|
|
free(cconf);
|
|
return -1;
|
|
}
|
|
|
|
/* It reserves a struct show_cache_ctx for the local variables */
|
|
static int cli_parse_show_cache(char **args, char *payload, struct appctx *appctx, void *private)
|
|
{
|
|
struct show_cache_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
|
|
|
|
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
|
|
return 1;
|
|
|
|
ctx->cache = LIST_ELEM((caches).n, typeof(struct cache *), list);
|
|
return 0;
|
|
}
|
|
|
|
/* It uses a struct show_cache_ctx for the local variables */
|
|
static int cli_io_handler_show_cache(struct appctx *appctx)
|
|
{
|
|
struct show_cache_ctx *ctx = appctx->svcctx;
|
|
struct cache* cache = ctx->cache;
|
|
struct buffer *buf = alloc_trash_chunk();
|
|
|
|
if (buf == NULL)
|
|
return 1;
|
|
|
|
list_for_each_entry_from(cache, &caches, list) {
|
|
struct eb32_node *node = NULL;
|
|
unsigned int next_key;
|
|
struct cache_entry *entry;
|
|
unsigned int i;
|
|
struct shared_context *shctx = shctx_ptr(cache);
|
|
int cache_tree_index = 0;
|
|
struct cache_tree *cache_tree = NULL;
|
|
|
|
next_key = ctx->next_key;
|
|
if (!next_key) {
|
|
shctx_rdlock(shctx);
|
|
chunk_printf(buf, "%p: %s (shctx:%p, available blocks:%d)\n", cache, cache->id, shctx_ptr(cache), shctx_ptr(cache)->nbav);
|
|
shctx_rdunlock(shctx);
|
|
if (applet_putchk(appctx, buf) == -1) {
|
|
goto yield;
|
|
}
|
|
}
|
|
|
|
ctx->cache = cache;
|
|
|
|
if (ctx->cache_tree)
|
|
cache_tree_index = (ctx->cache_tree - ctx->cache->trees);
|
|
|
|
for (;cache_tree_index < CACHE_TREE_NUM; ++cache_tree_index) {
|
|
|
|
ctx->cache_tree = cache_tree = &ctx->cache->trees[cache_tree_index];
|
|
|
|
cache_rdlock(cache_tree);
|
|
|
|
while (1) {
|
|
node = eb32_lookup_ge(&cache_tree->entries, next_key);
|
|
if (!node) {
|
|
ctx->next_key = 0;
|
|
break;
|
|
}
|
|
|
|
entry = container_of(node, struct cache_entry, eb);
|
|
next_key = node->key + 1;
|
|
|
|
if (entry->expire > date.tv_sec) {
|
|
chunk_printf(buf, "%p hash:%u vary:0x", entry, read_u32(entry->hash));
|
|
for (i = 0; i < HTTP_CACHE_SEC_KEY_LEN; ++i)
|
|
chunk_appendf(buf, "%02x", (unsigned char)entry->secondary_key[i]);
|
|
chunk_appendf(buf, " size:%u (%u blocks), refcount:%u, expire:%d\n",
|
|
block_ptr(entry)->len, block_ptr(entry)->block_count,
|
|
block_ptr(entry)->refcount, entry->expire - (int)date.tv_sec);
|
|
}
|
|
|
|
ctx->next_key = next_key;
|
|
|
|
if (applet_putchk(appctx, buf) == -1) {
|
|
cache_rdunlock(cache_tree);
|
|
goto yield;
|
|
}
|
|
}
|
|
cache_rdunlock(cache_tree);
|
|
}
|
|
}
|
|
|
|
free_trash_chunk(buf);
|
|
return 1;
|
|
|
|
yield:
|
|
free_trash_chunk(buf);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* boolean, returns true if response was built out of a cache entry.
|
|
*/
|
|
static int
|
|
smp_fetch_res_cache_hit(const struct arg *args, struct sample *smp,
|
|
const char *kw, void *private)
|
|
{
|
|
smp->data.type = SMP_T_BOOL;
|
|
smp->data.u.sint = (smp->strm ? (smp->strm->target == &http_cache_applet.obj_type) : 0);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* string, returns cache name (if response came from a cache).
|
|
*/
|
|
static int
|
|
smp_fetch_res_cache_name(const struct arg *args, struct sample *smp,
|
|
const char *kw, void *private)
|
|
{
|
|
struct appctx *appctx = NULL;
|
|
|
|
struct cache_flt_conf *cconf = NULL;
|
|
struct cache *cache = NULL;
|
|
|
|
if (!smp->strm || smp->strm->target != &http_cache_applet.obj_type)
|
|
return 0;
|
|
|
|
/* Get appctx from the stream connector. */
|
|
appctx = sc_appctx(smp->strm->scb);
|
|
if (appctx && appctx->rule) {
|
|
cconf = appctx->rule->arg.act.p[0];
|
|
if (cconf) {
|
|
cache = cconf->c.cache;
|
|
|
|
smp->data.type = SMP_T_STR;
|
|
smp->flags = SMP_F_CONST;
|
|
smp->data.u.str.area = cache->id;
|
|
smp->data.u.str.data = strlen(cache->id);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* early boot initialization */
|
|
static void cache_init()
|
|
{
|
|
cache_hash_seed = ha_random64();
|
|
}
|
|
|
|
INITCALL0(STG_PREPARE, cache_init);
|
|
|
|
/* Declare the filter parser for "cache" keyword */
|
|
static struct flt_kw_list filter_kws = { "CACHE", { }, {
|
|
{ "cache", parse_cache_flt, NULL },
|
|
{ NULL, NULL, NULL },
|
|
}
|
|
};
|
|
|
|
INITCALL1(STG_REGISTER, flt_register_keywords, &filter_kws);
|
|
|
|
static struct cli_kw_list cli_kws = {{},{
|
|
{ { "show", "cache", NULL }, "show cache : show cache status", cli_parse_show_cache, cli_io_handler_show_cache, NULL, NULL },
|
|
{{},}
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);
|
|
|
|
static struct action_kw_list http_res_actions = {
|
|
.kw = {
|
|
{ "cache-store", parse_cache_store },
|
|
{ NULL, NULL }
|
|
}
|
|
};
|
|
|
|
INITCALL1(STG_REGISTER, http_res_keywords_register, &http_res_actions);
|
|
|
|
static struct action_kw_list http_req_actions = {
|
|
.kw = {
|
|
{ "cache-use", parse_cache_use },
|
|
{ NULL, NULL }
|
|
}
|
|
};
|
|
|
|
INITCALL1(STG_REGISTER, http_req_keywords_register, &http_req_actions);
|
|
|
|
struct applet http_cache_applet = {
|
|
.obj_type = OBJ_TYPE_APPLET,
|
|
.name = "<CACHE>", /* used for logging */
|
|
.fct = http_cache_io_handler,
|
|
.rcv_buf = appctx_htx_rcv_buf,
|
|
.snd_buf = appctx_htx_snd_buf,
|
|
.fastfwd = http_cache_fastfwd,
|
|
.release = http_cache_applet_release,
|
|
};
|
|
|
|
|
|
/* config parsers for this section */
|
|
REGISTER_CONFIG_SECTION("cache", cfg_parse_cache, cfg_post_parse_section_cache);
|
|
REGISTER_POST_CHECK(post_check_cache);
|
|
|
|
|
|
/* Note: must not be declared <const> as its list will be overwritten */
|
|
static struct sample_fetch_kw_list sample_fetch_keywords = {ILH, {
|
|
{ "res.cache_hit", smp_fetch_res_cache_hit, 0, NULL, SMP_T_BOOL, SMP_USE_HRSHP, SMP_VAL_RESPONSE },
|
|
{ "res.cache_name", smp_fetch_res_cache_name, 0, NULL, SMP_T_STR, SMP_USE_HRSHP, SMP_VAL_RESPONSE },
|
|
{ /* END */ },
|
|
}
|
|
};
|
|
|
|
INITCALL1(STG_REGISTER, sample_register_fetches, &sample_fetch_keywords);
|