/* * HTTP compression. * * Copyright 2012 Exceliance, David Du Colombier * William Lallemand * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #if defined(USE_SLZ) #include #elif defined(USE_ZLIB) /* Note: the crappy zlib and openssl libs both define the "free_func" type. * That's a very clever idea to use such a generic name in general purpose * libraries, really... The zlib one is easier to redefine than openssl's, * so let's only fix this one. */ #define free_func zlib_free_func #include #undef free_func #endif /* USE_ZLIB */ #include #include #include #include #include #include #include #include #include #ifdef USE_ZLIB static void *alloc_zlib(void *opaque, unsigned int items, unsigned int size); static void free_zlib(void *opaque, void *ptr); /* zlib allocation */ static struct pool_head *zlib_pool_deflate_state = NULL; static struct pool_head *zlib_pool_window = NULL; static struct pool_head *zlib_pool_prev = NULL; static struct pool_head *zlib_pool_head = NULL; static struct pool_head *zlib_pool_pending_buf = NULL; long zlib_used_memory = 0; #endif unsigned int compress_min_idle = 0; static struct pool_head *pool_comp_ctx = NULL; static int identity_init(struct comp_ctx **comp_ctx, int level); static int identity_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out); static int identity_flush(struct comp_ctx *comp_ctx, struct buffer *out); static int identity_finish(struct comp_ctx *comp_ctx, struct buffer *out); static int identity_end(struct comp_ctx **comp_ctx); #if defined(USE_SLZ) static int rfc1950_init(struct comp_ctx **comp_ctx, int level); static int rfc1951_init(struct comp_ctx **comp_ctx, int level); static int rfc1952_init(struct comp_ctx **comp_ctx, int level); static int rfc195x_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out); static int rfc195x_flush(struct comp_ctx *comp_ctx, struct buffer *out); static int rfc195x_finish(struct comp_ctx *comp_ctx, struct buffer *out); static int rfc195x_end(struct comp_ctx **comp_ctx); #elif defined(USE_ZLIB) static int gzip_init(struct comp_ctx **comp_ctx, int level); static int raw_def_init(struct comp_ctx **comp_ctx, int level); static int deflate_init(struct comp_ctx **comp_ctx, int level); static int deflate_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out); static int deflate_flush(struct comp_ctx *comp_ctx, struct buffer *out); static int deflate_finish(struct comp_ctx *comp_ctx, struct buffer *out); static int deflate_end(struct comp_ctx **comp_ctx); #endif /* USE_ZLIB */ const struct comp_algo comp_algos[] = { { "identity", 8, "identity", 8, identity_init, identity_add_data, identity_flush, identity_finish, identity_end }, #if defined(USE_SLZ) { "deflate", 7, "deflate", 7, rfc1950_init, rfc195x_add_data, rfc195x_flush, rfc195x_finish, rfc195x_end }, { "raw-deflate", 11, "deflate", 7, rfc1951_init, rfc195x_add_data, rfc195x_flush, rfc195x_finish, rfc195x_end }, { "gzip", 4, "gzip", 4, rfc1952_init, rfc195x_add_data, rfc195x_flush, rfc195x_finish, rfc195x_end }, #elif defined(USE_ZLIB) { "deflate", 7, "deflate", 7, deflate_init, deflate_add_data, deflate_flush, deflate_finish, deflate_end }, { "raw-deflate", 11, "deflate", 7, raw_def_init, deflate_add_data, deflate_flush, deflate_finish, deflate_end }, { "gzip", 4, "gzip", 4, gzip_init, deflate_add_data, deflate_flush, deflate_finish, deflate_end }, #endif /* USE_ZLIB */ { NULL, 0, NULL, 0, NULL , NULL, NULL, NULL, NULL } }; /* * Add a content-type in the configuration */ int comp_append_type(struct comp *comp, const char *type) { struct comp_type *comp_type; comp_type = calloc(1, sizeof(struct comp_type)); comp_type->name_len = strlen(type); comp_type->name = strdup(type); comp_type->next = comp->types; comp->types = comp_type; return 0; } /* * Add an algorithm in the configuration */ int comp_append_algo(struct comp *comp, const char *algo) { struct comp_algo *comp_algo; int i; for (i = 0; comp_algos[i].cfg_name; i++) { if (!strcmp(algo, comp_algos[i].cfg_name)) { comp_algo = calloc(1, sizeof(struct comp_algo)); memmove(comp_algo, &comp_algos[i], sizeof(struct comp_algo)); comp_algo->next = comp->algos; comp->algos = comp_algo; return 0; } } return -1; } /* emit the chunksize followed by a CRLF on the output and return the number of * bytes written. It goes backwards and starts with the byte before . It * returns the number of bytes written which will not exceed 10 (8 digits, CR, * and LF). The caller is responsible for ensuring there is enough room left in * the output buffer for the string. */ int http_emit_chunk_size(char *end, unsigned int chksz) { char *beg = end; *--beg = '\n'; *--beg = '\r'; do { *--beg = hextab[chksz & 0xF]; } while (chksz >>= 4); return end - beg; } /* * Init HTTP compression */ int http_compression_buffer_init(struct stream *s, struct buffer *in, struct buffer *out) { /* output stream requires at least 10 bytes for the gzip header, plus * at least 8 bytes for the gzip trailer (crc+len), plus a possible * plus at most 5 bytes per 32kB block and 2 bytes to close the stream. */ if (in->size - buffer_len(in) < 20 + 5 * ((in->i + 32767) >> 15)) return -1; /* prepare an empty output buffer in which we reserve enough room for * copying the output bytes from , plus 10 extra bytes to write * the chunk size. We don't copy the bytes yet so that if we have to * cancel the operation later, it's cheap. */ b_reset(out); out->o = in->o; out->p += out->o; out->i = 10; return 0; } /* * Add data to compress */ int http_compression_buffer_add_data(struct stream *s, struct buffer *in, struct buffer *out) { struct http_msg *msg = &s->txn->rsp; int consumed_data = 0; int data_process_len; int block1, block2; /* * Temporarily skip already parsed data and chunks to jump to the * actual data block. It is fixed before leaving. */ b_adv(in, msg->next); /* * select the smallest size between the announced chunk size, the input * data, and the available output buffer size. The compressors are * assumed to be able to process all the bytes we pass to them at once. */ data_process_len = MIN(in->i, msg->chunk_len); data_process_len = MIN(out->size - buffer_len(out), data_process_len); block1 = data_process_len; if (block1 > bi_contig_data(in)) block1 = bi_contig_data(in); block2 = data_process_len - block1; /* compressors return < 0 upon error or the amount of bytes read */ consumed_data = s->comp_algo->add_data(s->comp_ctx, bi_ptr(in), block1, out); if (consumed_data >= 0 && block2 > 0) { consumed_data = s->comp_algo->add_data(s->comp_ctx, in->data, block2, out); if (consumed_data >= 0) consumed_data += block1; } /* restore original buffer pointer */ b_rew(in, msg->next); if (consumed_data > 0) { msg->next += consumed_data; msg->chunk_len -= consumed_data; } return consumed_data; } /* * Flush data in process, and write the header and footer of the chunk. Upon * success, in and out buffers are swapped to avoid a copy. */ int http_compression_buffer_end(struct stream *s, struct buffer **in, struct buffer **out, int end) { int to_forward; int left; struct http_msg *msg = &s->txn->rsp; struct buffer *ib = *in, *ob = *out; char *tail; #if defined(USE_SLZ) || defined(USE_ZLIB) int ret; /* flush data here */ if (end) ret = s->comp_algo->finish(s->comp_ctx, ob); /* end of data */ else ret = s->comp_algo->flush(s->comp_ctx, ob); /* end of buffer */ if (ret < 0) return -1; /* flush failed */ #endif /* USE_ZLIB */ if (ob->i == 10) { /* No data were appended, let's drop the output buffer and * keep the input buffer unchanged. */ return 0; } /* OK so at this stage, we have an output buffer looking like this : * * <-- o --> <------ i -----> * +---------+---+------------+-----------+ * | out | c | comp_in | empty | * +---------+---+------------+-----------+ * data p size * * is the room reserved to copy ib->o. It starts at ob->data and * has not yet been filled. is the room reserved to write the chunk * size (10 bytes). is the compressed equivalent of the data * part of ib->i. is the amount of empty bytes at the end of * the buffer, into which we may have to copy the remaining bytes from * ib->i after the data (chunk size, trailers, ...). */ /* Write real size at the begining of the chunk, no need of wrapping. * We write the chunk using a dynamic length and adjust ob->p and ob->i * accordingly afterwards. That will move away from . */ left = 10 - http_emit_chunk_size(ob->p + 10, ob->i - 10); ob->p += left; ob->i -= left; /* Copy previous data from ib->o into ob->o */ if (ib->o > 0) { left = bo_contig_data(ib); memcpy(ob->p - ob->o, bo_ptr(ib), left); if (ib->o - left) /* second part of the buffer */ memcpy(ob->p - ob->o + left, ib->data, ib->o - left); } /* chunked encoding requires CRLF after data */ tail = ob->p + ob->i; *tail++ = '\r'; *tail++ = '\n'; /* At the end of data, we must write the empty chunk 0, * and terminate the trailers section with a last . If * we're forwarding a chunked-encoded response, we'll have a * trailers section after the empty chunk which needs to be * forwarded and which will provide the last CRLF. Otherwise * we write it ourselves. */ if (msg->msg_state >= HTTP_MSG_TRAILERS) { memcpy(tail, "0\r\n", 3); tail += 3; if (msg->msg_state >= HTTP_MSG_DONE) { memcpy(tail, "\r\n", 2); tail += 2; } } ob->i = tail - ob->p; to_forward = ob->i; /* update input rate */ if (s->comp_ctx && s->comp_ctx->cur_lvl > 0) { update_freq_ctr(&global.comp_bps_in, msg->next); strm_fe(s)->fe_counters.comp_in += msg->next; s->be->be_counters.comp_in += msg->next; } else { strm_fe(s)->fe_counters.comp_byp += msg->next; s->be->be_counters.comp_byp += msg->next; } /* copy the remaining data in the tmp buffer. */ b_adv(ib, msg->next); msg->next = 0; if (ib->i > 0) { left = bi_contig_data(ib); memcpy(ob->p + ob->i, bi_ptr(ib), left); ob->i += left; if (ib->i - left) { memcpy(ob->p + ob->i, ib->data, ib->i - left); ob->i += ib->i - left; } } /* swap the buffers */ *in = ob; *out = ib; if (s->comp_ctx && s->comp_ctx->cur_lvl > 0) { update_freq_ctr(&global.comp_bps_out, to_forward); strm_fe(s)->fe_counters.comp_out += to_forward; s->be->be_counters.comp_out += to_forward; } /* forward the new chunk without remaining data */ b_adv(ob, to_forward); return to_forward; } /* * Alloc the comp_ctx */ static inline int init_comp_ctx(struct comp_ctx **comp_ctx) { #ifdef USE_ZLIB z_stream *strm; if (global.maxzlibmem > 0 && (global.maxzlibmem - zlib_used_memory) < sizeof(struct comp_ctx)) return -1; #endif if (unlikely(pool_comp_ctx == NULL)) pool_comp_ctx = create_pool("comp_ctx", sizeof(struct comp_ctx), MEM_F_SHARED); *comp_ctx = pool_alloc2(pool_comp_ctx); if (*comp_ctx == NULL) return -1; #if defined(USE_SLZ) (*comp_ctx)->direct_ptr = NULL; (*comp_ctx)->direct_len = 0; (*comp_ctx)->queued = NULL; #elif defined(USE_ZLIB) zlib_used_memory += sizeof(struct comp_ctx); strm = &(*comp_ctx)->strm; strm->zalloc = alloc_zlib; strm->zfree = free_zlib; strm->opaque = *comp_ctx; #endif return 0; } /* * Dealloc the comp_ctx */ static inline int deinit_comp_ctx(struct comp_ctx **comp_ctx) { if (!*comp_ctx) return 0; pool_free2(pool_comp_ctx, *comp_ctx); *comp_ctx = NULL; #ifdef USE_ZLIB zlib_used_memory -= sizeof(struct comp_ctx); #endif return 0; } /**************************** **** Identity algorithm **** ****************************/ /* * Init the identity algorithm */ static int identity_init(struct comp_ctx **comp_ctx, int level) { return 0; } /* * Process data * Return size of consumed data or -1 on error */ static int identity_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out) { char *out_data = bi_end(out); int out_len = out->size - buffer_len(out); if (out_len < in_len) return -1; memcpy(out_data, in_data, in_len); out->i += in_len; return in_len; } static int identity_flush(struct comp_ctx *comp_ctx, struct buffer *out) { return 0; } static int identity_finish(struct comp_ctx *comp_ctx, struct buffer *out) { return 0; } /* * Deinit the algorithm */ static int identity_end(struct comp_ctx **comp_ctx) { return 0; } #ifdef USE_SLZ /* SLZ's gzip format (RFC1952). Returns < 0 on error. */ static int rfc1952_init(struct comp_ctx **comp_ctx, int level) { if (init_comp_ctx(comp_ctx) < 0) return -1; (*comp_ctx)->cur_lvl = !!level; return slz_rfc1952_init(&(*comp_ctx)->strm, !!level); } /* SLZ's raw deflate format (RFC1951). Returns < 0 on error. */ static int rfc1951_init(struct comp_ctx **comp_ctx, int level) { if (init_comp_ctx(comp_ctx) < 0) return -1; (*comp_ctx)->cur_lvl = !!level; return slz_rfc1951_init(&(*comp_ctx)->strm, !!level); } /* SLZ's zlib format (RFC1950). Returns < 0 on error. */ static int rfc1950_init(struct comp_ctx **comp_ctx, int level) { if (init_comp_ctx(comp_ctx) < 0) return -1; (*comp_ctx)->cur_lvl = !!level; return slz_rfc1950_init(&(*comp_ctx)->strm, !!level); } /* Return the size of consumed data or -1. The output buffer is unused at this * point, we only keep a reference to the input data or a copy of them if the * reference is already used. */ static int rfc195x_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out) { static struct buffer *tmpbuf = &buf_empty; if (in_len <= 0) return 0; if (comp_ctx->direct_ptr && !comp_ctx->queued) { /* data already being pointed to, we're in front of fragmented * data and need a buffer now. We reuse the same buffer, as it's * not used out of the scope of a series of add_data()*, end(). */ if (unlikely(!tmpbuf->size)) { /* this is the first time we need the compression buffer */ if (b_alloc(&tmpbuf) == NULL) return -1; /* no memory */ } b_reset(tmpbuf); memcpy(bi_end(tmpbuf), comp_ctx->direct_ptr, comp_ctx->direct_len); tmpbuf->i += comp_ctx->direct_len; comp_ctx->direct_ptr = NULL; comp_ctx->direct_len = 0; comp_ctx->queued = tmpbuf; /* fall through buffer copy */ } if (comp_ctx->queued) { /* data already pending */ memcpy(bi_end(comp_ctx->queued), in_data, in_len); comp_ctx->queued->i += in_len; return in_len; } comp_ctx->direct_ptr = in_data; comp_ctx->direct_len = in_len; return in_len; } /* Compresses the data accumulated using add_data(), and optionally sends the * format-specific trailer if is non-null. is expected to have a * large enough free non-wrapping space as verified by http_comp_buffer_init(). * The number of bytes emitted is reported. */ static int rfc195x_flush_or_finish(struct comp_ctx *comp_ctx, struct buffer *out, int finish) { struct slz_stream *strm = &comp_ctx->strm; const char *in_ptr; int in_len; int out_len; in_ptr = comp_ctx->direct_ptr; in_len = comp_ctx->direct_len; if (comp_ctx->queued) { in_ptr = comp_ctx->queued->p; in_len = comp_ctx->queued->i; } out_len = out->i; if (in_ptr) out->i += slz_encode(strm, bi_end(out), in_ptr, in_len, !finish); if (finish) out->i += slz_finish(strm, bi_end(out)); out_len = out->i - out_len; /* very important, we must wipe the data we've just flushed */ comp_ctx->direct_len = 0; comp_ctx->direct_ptr = NULL; comp_ctx->queued = NULL; /* Verify compression rate limiting and CPU usage */ if ((global.comp_rate_lim > 0 && (read_freq_ctr(&global.comp_bps_out) > global.comp_rate_lim)) || /* rate */ (idle_pct < compress_min_idle)) { /* idle */ if (comp_ctx->cur_lvl > 0) strm->level = --comp_ctx->cur_lvl; } else if (comp_ctx->cur_lvl < global.tune.comp_maxlevel && comp_ctx->cur_lvl < 1) { strm->level = ++comp_ctx->cur_lvl; } /* and that's all */ return out_len; } static int rfc195x_flush(struct comp_ctx *comp_ctx, struct buffer *out) { return rfc195x_flush_or_finish(comp_ctx, out, 0); } static int rfc195x_finish(struct comp_ctx *comp_ctx, struct buffer *out) { return rfc195x_flush_or_finish(comp_ctx, out, 1); } /* we just need to free the comp_ctx here, nothing was allocated */ static int rfc195x_end(struct comp_ctx **comp_ctx) { deinit_comp_ctx(comp_ctx); return 0; } #elif defined(USE_ZLIB) /* ! USE_SLZ */ /* * This is a tricky allocation function using the zlib. * This is based on the allocation order in deflateInit2. */ static void *alloc_zlib(void *opaque, unsigned int items, unsigned int size) { struct comp_ctx *ctx = opaque; static char round = 0; /* order in deflateInit2 */ void *buf = NULL; struct pool_head *pool = NULL; if (global.maxzlibmem > 0 && (global.maxzlibmem - zlib_used_memory) < (long)(items * size)) goto end; switch (round) { case 0: if (zlib_pool_deflate_state == NULL) zlib_pool_deflate_state = create_pool("zlib_state", size * items, MEM_F_SHARED); pool = zlib_pool_deflate_state; ctx->zlib_deflate_state = buf = pool_alloc2(pool); break; case 1: if (zlib_pool_window == NULL) zlib_pool_window = create_pool("zlib_window", size * items, MEM_F_SHARED); pool = zlib_pool_window; ctx->zlib_window = buf = pool_alloc2(pool); break; case 2: if (zlib_pool_prev == NULL) zlib_pool_prev = create_pool("zlib_prev", size * items, MEM_F_SHARED); pool = zlib_pool_prev; ctx->zlib_prev = buf = pool_alloc2(pool); break; case 3: if (zlib_pool_head == NULL) zlib_pool_head = create_pool("zlib_head", size * items, MEM_F_SHARED); pool = zlib_pool_head; ctx->zlib_head = buf = pool_alloc2(pool); break; case 4: if (zlib_pool_pending_buf == NULL) zlib_pool_pending_buf = create_pool("zlib_pending_buf", size * items, MEM_F_SHARED); pool = zlib_pool_pending_buf; ctx->zlib_pending_buf = buf = pool_alloc2(pool); break; } if (buf != NULL) zlib_used_memory += pool->size; end: /* deflateInit2() first allocates and checks the deflate_state, then if * it succeeds, it allocates all other 4 areas at ones and checks them * at the end. So we want to correctly count the rounds depending on when * zlib is supposed to abort. */ if (buf || round) round = (round + 1) % 5; return buf; } static void free_zlib(void *opaque, void *ptr) { struct comp_ctx *ctx = opaque; struct pool_head *pool = NULL; if (ptr == ctx->zlib_window) pool = zlib_pool_window; else if (ptr == ctx->zlib_deflate_state) pool = zlib_pool_deflate_state; else if (ptr == ctx->zlib_prev) pool = zlib_pool_prev; else if (ptr == ctx->zlib_head) pool = zlib_pool_head; else if (ptr == ctx->zlib_pending_buf) pool = zlib_pool_pending_buf; pool_free2(pool, ptr); zlib_used_memory -= pool->size; } /************************** **** gzip algorithm **** ***************************/ static int gzip_init(struct comp_ctx **comp_ctx, int level) { z_stream *strm; if (init_comp_ctx(comp_ctx) < 0) return -1; strm = &(*comp_ctx)->strm; if (deflateInit2(strm, level, Z_DEFLATED, global.tune.zlibwindowsize + 16, global.tune.zlibmemlevel, Z_DEFAULT_STRATEGY) != Z_OK) { deinit_comp_ctx(comp_ctx); return -1; } (*comp_ctx)->cur_lvl = level; return 0; } /* Raw deflate algorithm */ static int raw_def_init(struct comp_ctx **comp_ctx, int level) { z_stream *strm; if (init_comp_ctx(comp_ctx) < 0) return -1; strm = &(*comp_ctx)->strm; if (deflateInit2(strm, level, Z_DEFLATED, -global.tune.zlibwindowsize, global.tune.zlibmemlevel, Z_DEFAULT_STRATEGY) != Z_OK) { deinit_comp_ctx(comp_ctx); return -1; } (*comp_ctx)->cur_lvl = level; return 0; } /************************** **** Deflate algorithm **** ***************************/ static int deflate_init(struct comp_ctx **comp_ctx, int level) { z_stream *strm; if (init_comp_ctx(comp_ctx) < 0) return -1; strm = &(*comp_ctx)->strm; if (deflateInit2(strm, level, Z_DEFLATED, global.tune.zlibwindowsize, global.tune.zlibmemlevel, Z_DEFAULT_STRATEGY) != Z_OK) { deinit_comp_ctx(comp_ctx); return -1; } (*comp_ctx)->cur_lvl = level; return 0; } /* Return the size of consumed data or -1 */ static int deflate_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out) { int ret; z_stream *strm = &comp_ctx->strm; char *out_data = bi_end(out); int out_len = out->size - buffer_len(out); if (in_len <= 0) return 0; if (out_len <= 0) return -1; strm->next_in = (unsigned char *)in_data; strm->avail_in = in_len; strm->next_out = (unsigned char *)out_data; strm->avail_out = out_len; ret = deflate(strm, Z_NO_FLUSH); if (ret != Z_OK) return -1; /* deflate update the available data out */ out->i += out_len - strm->avail_out; return in_len - strm->avail_in; } static int deflate_flush_or_finish(struct comp_ctx *comp_ctx, struct buffer *out, int flag) { int ret; int out_len = 0; z_stream *strm = &comp_ctx->strm; strm->next_out = (unsigned char *)bi_end(out); strm->avail_out = out->size - buffer_len(out); ret = deflate(strm, flag); if (ret != Z_OK && ret != Z_STREAM_END) return -1; out_len = (out->size - buffer_len(out)) - strm->avail_out; out->i += out_len; /* compression limit */ if ((global.comp_rate_lim > 0 && (read_freq_ctr(&global.comp_bps_out) > global.comp_rate_lim)) || /* rate */ (idle_pct < compress_min_idle)) { /* idle */ /* decrease level */ if (comp_ctx->cur_lvl > 0) { comp_ctx->cur_lvl--; deflateParams(&comp_ctx->strm, comp_ctx->cur_lvl, Z_DEFAULT_STRATEGY); } } else if (comp_ctx->cur_lvl < global.tune.comp_maxlevel) { /* increase level */ comp_ctx->cur_lvl++ ; deflateParams(&comp_ctx->strm, comp_ctx->cur_lvl, Z_DEFAULT_STRATEGY); } return out_len; } static int deflate_flush(struct comp_ctx *comp_ctx, struct buffer *out) { return deflate_flush_or_finish(comp_ctx, out, Z_SYNC_FLUSH); } static int deflate_finish(struct comp_ctx *comp_ctx, struct buffer *out) { return deflate_flush_or_finish(comp_ctx, out, Z_FINISH); } static int deflate_end(struct comp_ctx **comp_ctx) { z_stream *strm = &(*comp_ctx)->strm; int ret; ret = deflateEnd(strm); deinit_comp_ctx(comp_ctx); return ret; } #endif /* USE_ZLIB */ /* boolean, returns true if compression is used (either gzip or deflate) in the response */ static int smp_fetch_res_comp(struct proxy *px, struct session *sess, struct stream *strm, unsigned int opt, const struct arg *args, struct sample *smp, const char *kw, void *private) { smp->type = SMP_T_BOOL; smp->data.uint = (strm->comp_algo != NULL); return 1; } /* string, returns algo */ static int smp_fetch_res_comp_algo(struct proxy *px, struct session *sess, struct stream *strm, unsigned int opt, const struct arg *args, struct sample *smp, const char *kw, void *private) { if (!strm->comp_algo) return 0; smp->type = SMP_T_STR; smp->flags = SMP_F_CONST; smp->data.str.str = strm->comp_algo->cfg_name; smp->data.str.len = strm->comp_algo->cfg_name_len; return 1; } /* Note: must not be declared as its list will be overwritten */ static struct acl_kw_list acl_kws = {ILH, { { /* END */ }, }}; /* Note: must not be declared as its list will be overwritten */ static struct sample_fetch_kw_list sample_fetch_keywords = {ILH, { { "res.comp", smp_fetch_res_comp, 0, NULL, SMP_T_BOOL, SMP_USE_HRSHP }, { "res.comp_algo", smp_fetch_res_comp_algo, 0, NULL, SMP_T_STR, SMP_USE_HRSHP }, { /* END */ }, }}; __attribute__((constructor)) static void __comp_fetch_init(void) { #ifdef USE_SLZ slz_make_crc_table(); slz_prepare_dist_table(); #endif acl_register_keywords(&acl_kws); sample_register_fetches(&sample_fetch_keywords); }