/* * HTTP protocol analyzer * * Copyright 2000-2008 Willy Tarreau * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_HAP_TCPSPLICE #include #endif #define DEBUG_PARSE_NO_SPEEDUP #undef DEBUG_PARSE_NO_SPEEDUP /* This is used to perform a quick jump as an alternative to a break/continue * instruction. The first argument is the label for normal operation, and the * second one is the break/continue instruction in the no_speedup mode. */ #ifdef DEBUG_PARSE_NO_SPEEDUP #define QUICK_JUMP(x,y) y #else #define QUICK_JUMP(x,y) goto x #endif /* This is used by remote monitoring */ const char HTTP_200[] = "HTTP/1.0 200 OK\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

200 OK

\nHAProxy: service ready.\n\n"; const struct chunk http_200_chunk = { .str = (char *)&HTTP_200, .len = sizeof(HTTP_200)-1 }; const char *HTTP_301 = "HTTP/1.0 301 Moved Permantenly\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Location: "; /* not terminated since it will be concatenated with the URL */ const char *HTTP_302 = "HTTP/1.0 302 Found\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Location: "; /* not terminated since it will be concatenated with the URL */ /* same as 302 except that the browser MUST retry with the GET method */ const char *HTTP_303 = "HTTP/1.0 303 See Other\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Location: "; /* not terminated since it will be concatenated with the URL */ /* Warning: this one is an sprintf() fmt string, with as its only argument */ const char *HTTP_401_fmt = "HTTP/1.0 401 Unauthorized\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "WWW-Authenticate: Basic realm=\"%s\"\r\n" "\r\n" "

401 Unauthorized

\nYou need a valid user and password to access this content.\n\n"; const int http_err_codes[HTTP_ERR_SIZE] = { [HTTP_ERR_400] = 400, [HTTP_ERR_403] = 403, [HTTP_ERR_408] = 408, [HTTP_ERR_500] = 500, [HTTP_ERR_502] = 502, [HTTP_ERR_503] = 503, [HTTP_ERR_504] = 504, }; static const char *http_err_msgs[HTTP_ERR_SIZE] = { [HTTP_ERR_400] = "HTTP/1.0 400 Bad request\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

400 Bad request

\nYour browser sent an invalid request.\n\n", [HTTP_ERR_403] = "HTTP/1.0 403 Forbidden\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

403 Forbidden

\nRequest forbidden by administrative rules.\n\n", [HTTP_ERR_408] = "HTTP/1.0 408 Request Time-out\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

408 Request Time-out

\nYour browser didn't send a complete request in time.\n\n", [HTTP_ERR_500] = "HTTP/1.0 500 Server Error\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

500 Server Error

\nAn internal server error occured.\n\n", [HTTP_ERR_502] = "HTTP/1.0 502 Bad Gateway\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

502 Bad Gateway

\nThe server returned an invalid or incomplete response.\n\n", [HTTP_ERR_503] = "HTTP/1.0 503 Service Unavailable\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

503 Service Unavailable

\nNo server is available to handle this request.\n\n", [HTTP_ERR_504] = "HTTP/1.0 504 Gateway Time-out\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

504 Gateway Time-out

\nThe server didn't respond in time.\n\n", }; /* We must put the messages here since GCC cannot initialize consts depending * on strlen(). */ struct chunk http_err_chunks[HTTP_ERR_SIZE]; #define FD_SETS_ARE_BITFIELDS #ifdef FD_SETS_ARE_BITFIELDS /* * This map is used with all the FD_* macros to check whether a particular bit * is set or not. Each bit represents an ACSII code. FD_SET() sets those bytes * which should be encoded. When FD_ISSET() returns non-zero, it means that the * byte should be encoded. Be careful to always pass bytes from 0 to 255 * exclusively to the macros. */ fd_set hdr_encode_map[(sizeof(fd_set) > (256/8)) ? 1 : ((256/8) / sizeof(fd_set))]; fd_set url_encode_map[(sizeof(fd_set) > (256/8)) ? 1 : ((256/8) / sizeof(fd_set))]; #else #error "Check if your OS uses bitfields for fd_sets" #endif void init_proto_http() { int i; char *tmp; int msg; for (msg = 0; msg < HTTP_ERR_SIZE; msg++) { if (!http_err_msgs[msg]) { Alert("Internal error: no message defined for HTTP return code %d. Aborting.\n", msg); abort(); } http_err_chunks[msg].str = (char *)http_err_msgs[msg]; http_err_chunks[msg].len = strlen(http_err_msgs[msg]); } /* initialize the log header encoding map : '{|}"#' should be encoded with * '#' as prefix, as well as non-printable characters ( <32 or >= 127 ). * URL encoding only requires '"', '#' to be encoded as well as non- * printable characters above. */ memset(hdr_encode_map, 0, sizeof(hdr_encode_map)); memset(url_encode_map, 0, sizeof(url_encode_map)); for (i = 0; i < 32; i++) { FD_SET(i, hdr_encode_map); FD_SET(i, url_encode_map); } for (i = 127; i < 256; i++) { FD_SET(i, hdr_encode_map); FD_SET(i, url_encode_map); } tmp = "\"#{|}"; while (*tmp) { FD_SET(*tmp, hdr_encode_map); tmp++; } tmp = "\"#"; while (*tmp) { FD_SET(*tmp, url_encode_map); tmp++; } /* memory allocations */ pool2_requri = create_pool("requri", REQURI_LEN, MEM_F_SHARED); pool2_capture = create_pool("capture", CAPTURE_LEN, MEM_F_SHARED); } /* * We have 26 list of methods (1 per first letter), each of which can have * up to 3 entries (2 valid, 1 null). */ struct http_method_desc { http_meth_t meth; int len; const char text[8]; }; const struct http_method_desc http_methods[26][3] = { ['C' - 'A'] = { [0] = { .meth = HTTP_METH_CONNECT , .len=7, .text="CONNECT" }, }, ['D' - 'A'] = { [0] = { .meth = HTTP_METH_DELETE , .len=6, .text="DELETE" }, }, ['G' - 'A'] = { [0] = { .meth = HTTP_METH_GET , .len=3, .text="GET" }, }, ['H' - 'A'] = { [0] = { .meth = HTTP_METH_HEAD , .len=4, .text="HEAD" }, }, ['P' - 'A'] = { [0] = { .meth = HTTP_METH_POST , .len=4, .text="POST" }, [1] = { .meth = HTTP_METH_PUT , .len=3, .text="PUT" }, }, ['T' - 'A'] = { [0] = { .meth = HTTP_METH_TRACE , .len=5, .text="TRACE" }, }, /* rest is empty like this : * [1] = { .meth = HTTP_METH_NONE , .len=0, .text="" }, */ }; /* It is about twice as fast on recent architectures to lookup a byte in a * table than to perform a boolean AND or OR between two tests. Refer to * RFC2616 for those chars. */ const char http_is_spht[256] = { [' '] = 1, ['\t'] = 1, }; const char http_is_crlf[256] = { ['\r'] = 1, ['\n'] = 1, }; const char http_is_lws[256] = { [' '] = 1, ['\t'] = 1, ['\r'] = 1, ['\n'] = 1, }; const char http_is_sep[256] = { ['('] = 1, [')'] = 1, ['<'] = 1, ['>'] = 1, ['@'] = 1, [','] = 1, [';'] = 1, [':'] = 1, ['"'] = 1, ['/'] = 1, ['['] = 1, [']'] = 1, ['{'] = 1, ['}'] = 1, ['?'] = 1, ['='] = 1, [' '] = 1, ['\t'] = 1, ['\\'] = 1, }; const char http_is_ctl[256] = { [0 ... 31] = 1, [127] = 1, }; /* * A token is any ASCII char that is neither a separator nor a CTL char. * Do not overwrite values in assignment since gcc-2.95 will not handle * them correctly. Instead, define every non-CTL char's status. */ const char http_is_token[256] = { [' '] = 0, ['!'] = 1, ['"'] = 0, ['#'] = 1, ['$'] = 1, ['%'] = 1, ['&'] = 1, ['\''] = 1, ['('] = 0, [')'] = 0, ['*'] = 1, ['+'] = 1, [','] = 0, ['-'] = 1, ['.'] = 1, ['/'] = 0, ['0'] = 1, ['1'] = 1, ['2'] = 1, ['3'] = 1, ['4'] = 1, ['5'] = 1, ['6'] = 1, ['7'] = 1, ['8'] = 1, ['9'] = 1, [':'] = 0, [';'] = 0, ['<'] = 0, ['='] = 0, ['>'] = 0, ['?'] = 0, ['@'] = 0, ['A'] = 1, ['B'] = 1, ['C'] = 1, ['D'] = 1, ['E'] = 1, ['F'] = 1, ['G'] = 1, ['H'] = 1, ['I'] = 1, ['J'] = 1, ['K'] = 1, ['L'] = 1, ['M'] = 1, ['N'] = 1, ['O'] = 1, ['P'] = 1, ['Q'] = 1, ['R'] = 1, ['S'] = 1, ['T'] = 1, ['U'] = 1, ['V'] = 1, ['W'] = 1, ['X'] = 1, ['Y'] = 1, ['Z'] = 1, ['['] = 0, ['\\'] = 0, [']'] = 0, ['^'] = 1, ['_'] = 1, ['`'] = 1, ['a'] = 1, ['b'] = 1, ['c'] = 1, ['d'] = 1, ['e'] = 1, ['f'] = 1, ['g'] = 1, ['h'] = 1, ['i'] = 1, ['j'] = 1, ['k'] = 1, ['l'] = 1, ['m'] = 1, ['n'] = 1, ['o'] = 1, ['p'] = 1, ['q'] = 1, ['r'] = 1, ['s'] = 1, ['t'] = 1, ['u'] = 1, ['v'] = 1, ['w'] = 1, ['x'] = 1, ['y'] = 1, ['z'] = 1, ['{'] = 0, ['|'] = 1, ['}'] = 0, ['~'] = 1, }; /* * An http ver_token is any ASCII which can be found in an HTTP version, * which includes 'H', 'T', 'P', '/', '.' and any digit. */ const char http_is_ver_token[256] = { ['.'] = 1, ['/'] = 1, ['0'] = 1, ['1'] = 1, ['2'] = 1, ['3'] = 1, ['4'] = 1, ['5'] = 1, ['6'] = 1, ['7'] = 1, ['8'] = 1, ['9'] = 1, ['H'] = 1, ['P'] = 1, ['T'] = 1, }; #ifdef DEBUG_FULL static char *cli_stnames[6] = {"INS", "HDR", "DAT", "SHR", "SHW", "CLS" }; static char *srv_stnames[8] = {"IDL", "ANA", "CON", "HDR", "DAT", "SHR", "SHW", "CLS" }; #endif static void http_sess_log(struct session *s); /* * Adds a header and its CRLF at the tail of buffer , just before the last * CRLF. Text length is measured first, so it cannot be NULL. * The header is also automatically added to the index , and the end * of headers is automatically adjusted. The number of bytes added is returned * on success, otherwise <0 is returned indicating an error. */ int http_header_add_tail(struct buffer *b, struct http_msg *msg, struct hdr_idx *hdr_idx, const char *text) { int bytes, len; len = strlen(text); bytes = buffer_insert_line2(b, b->data + msg->eoh, text, len); if (!bytes) return -1; msg->eoh += bytes; return hdr_idx_add(len, 1, hdr_idx, hdr_idx->tail); } /* * Adds a header and its CRLF at the tail of buffer , just before the last * CRLF. bytes are copied, not counting the CRLF. If is NULL, then * the buffer is only opened and the space reserved, but nothing is copied. * The header is also automatically added to the index , and the end * of headers is automatically adjusted. The number of bytes added is returned * on success, otherwise <0 is returned indicating an error. */ int http_header_add_tail2(struct buffer *b, struct http_msg *msg, struct hdr_idx *hdr_idx, const char *text, int len) { int bytes; bytes = buffer_insert_line2(b, b->data + msg->eoh, text, len); if (!bytes) return -1; msg->eoh += bytes; return hdr_idx_add(len, 1, hdr_idx, hdr_idx->tail); } /* * Checks if is exactly for chars, and ends with a colon. * If so, returns the position of the first non-space character relative to * , or - if not found before. If no value is found, it tries * to return a pointer to the place after the first space. Returns 0 if the * header name does not match. Checks are case-insensitive. */ int http_header_match2(const char *hdr, const char *end, const char *name, int len) { const char *val; if (hdr + len >= end) return 0; if (hdr[len] != ':') return 0; if (strncasecmp(hdr, name, len) != 0) return 0; val = hdr + len + 1; while (val < end && HTTP_IS_SPHT(*val)) val++; if ((val >= end) && (len + 2 <= end - hdr)) return len + 2; /* we may replace starting from second space */ return val - hdr; } /* Find the end of the header value contained between and . * See RFC2616, par 2.2 for more information. Note that it requires * a valid header to return a valid result. */ const char *find_hdr_value_end(const char *s, const char *e) { int quoted, qdpair; quoted = qdpair = 0; for (; s < e; s++) { if (qdpair) qdpair = 0; else if (quoted && *s == '\\') qdpair = 1; else if (quoted && *s == '"') quoted = 0; else if (*s == '"') quoted = 1; else if (*s == ',') return s; } return s; } /* Find the first or next occurrence of header in message buffer * using headers index , and return it in the structure. This * structure holds everything necessary to use the header and find next * occurrence. If its member is 0, the header is searched from the * beginning. Otherwise, the next occurrence is returned. The function returns * 1 when it finds a value, and 0 when there is no more. */ int http_find_header2(const char *name, int len, const char *sol, struct hdr_idx *idx, struct hdr_ctx *ctx) { __label__ return_hdr, next_hdr; const char *eol, *sov; int cur_idx; if (ctx->idx) { /* We have previously returned a value, let's search * another one on the same line. */ cur_idx = ctx->idx; sol = ctx->line; sov = sol + ctx->val + ctx->vlen; eol = sol + idx->v[cur_idx].len; if (sov >= eol) /* no more values in this header */ goto next_hdr; /* values remaining for this header, skip the comma */ sov++; while (sov < eol && http_is_lws[(unsigned char)*sov]) sov++; goto return_hdr; } /* first request for this header */ sol += hdr_idx_first_pos(idx); cur_idx = hdr_idx_first_idx(idx); while (cur_idx) { eol = sol + idx->v[cur_idx].len; if (len == 0) { /* No argument was passed, we want any header. * To achieve this, we simply build a fake request. */ while (sol + len < eol && sol[len] != ':') len++; name = sol; } if ((len < eol - sol) && (sol[len] == ':') && (strncasecmp(sol, name, len) == 0)) { sov = sol + len + 1; while (sov < eol && http_is_lws[(unsigned char)*sov]) sov++; return_hdr: ctx->line = sol; ctx->idx = cur_idx; ctx->val = sov - sol; eol = find_hdr_value_end(sov, eol); ctx->vlen = eol - sov; return 1; } next_hdr: sol = eol + idx->v[cur_idx].cr + 1; cur_idx = idx->v[cur_idx].next; } return 0; } int http_find_header(const char *name, const char *sol, struct hdr_idx *idx, struct hdr_ctx *ctx) { return http_find_header2(name, strlen(name), sol, idx, ctx); } /* This function turns the server state into the SV_STCLOSE, and sets * indicators accordingly. Note that if is 0, or if the message * pointer is NULL, then no message is returned. */ void srv_close_with_err(struct session *t, int err, int finst, int status, const struct chunk *msg) { t->srv_state = SV_STCLOSE; buffer_shutw_done(t->req); buffer_shutr_done(t->rep); if (status > 0 && msg) { t->txn.status = status; if (t->fe->mode == PR_MODE_HTTP) client_return(t, msg); } if (!(t->flags & SN_ERR_MASK)) t->flags |= err; if (!(t->flags & SN_FINST_MASK)) t->flags |= finst; } /* This function returns the appropriate error location for the given session * and message. */ struct chunk *error_message(struct session *s, int msgnum) { if (s->be->errmsg[msgnum].str) return &s->be->errmsg[msgnum]; else if (s->fe->errmsg[msgnum].str) return &s->fe->errmsg[msgnum]; else return &http_err_chunks[msgnum]; } /* * returns HTTP_METH_NONE if there is nothing valid to read (empty or non-text * string), HTTP_METH_OTHER for unknown methods, or the identified method. */ static http_meth_t find_http_meth(const char *str, const int len) { unsigned char m; const struct http_method_desc *h; m = ((unsigned)*str - 'A'); if (m < 26) { for (h = http_methods[m]; h->len > 0; h++) { if (unlikely(h->len != len)) continue; if (likely(memcmp(str, h->text, h->len) == 0)) return h->meth; }; return HTTP_METH_OTHER; } return HTTP_METH_NONE; } /* Parse the URI from the given transaction (which is assumed to be in request * phase) and look for the "/" beginning the PATH. If not found, return NULL. * It is returned otherwise. */ static char * http_get_path(struct http_txn *txn) { char *ptr, *end; ptr = txn->req.sol + txn->req.sl.rq.u; end = ptr + txn->req.sl.rq.u_l; if (ptr >= end) return NULL; /* RFC2616, par. 5.1.2 : * Request-URI = "*" | absuri | abspath | authority */ if (*ptr == '*') return NULL; if (isalpha((unsigned char)*ptr)) { /* this is a scheme as described by RFC3986, par. 3.1 */ ptr++; while (ptr < end && (isalnum((unsigned char)*ptr) || *ptr == '+' || *ptr == '-' || *ptr == '.')) ptr++; /* skip '://' */ if (ptr == end || *ptr++ != ':') return NULL; if (ptr == end || *ptr++ != '/') return NULL; if (ptr == end || *ptr++ != '/') return NULL; } /* skip [user[:passwd]@]host[:[port]] */ while (ptr < end && *ptr != '/') ptr++; if (ptr == end) return NULL; /* OK, we got the '/' ! */ return ptr; } /* Processes the client and server jobs of a session task, then * puts it back to the wait queue in a clean state, or * cleans up its resources if it must be deleted. Returns * the time the task accepts to wait, or TIME_ETERNITY for * infinity. */ void process_session(struct task *t, int *next) { struct session *s = t->context; int fsm_resync = 0; do { fsm_resync = 0; //fprintf(stderr,"before_cli:cli=%d, srv=%d\n", s->cli_state, s->srv_state); fsm_resync |= process_cli(s); //fprintf(stderr,"cli/srv:cli=%d, srv=%d\n", s->cli_state, s->srv_state); fsm_resync |= process_srv(s); //fprintf(stderr,"after_srv:cli=%d, srv=%d\n", s->cli_state, s->srv_state); } while (fsm_resync); if (likely(s->cli_state != CL_STCLOSE || s->srv_state != SV_STCLOSE)) { if ((s->fe->options & PR_O_CONTSTATS) && (s->flags & SN_BE_ASSIGNED)) session_process_counters(s); s->req->flags &= BF_CLEAR_READ & BF_CLEAR_WRITE; s->rep->flags &= BF_CLEAR_READ & BF_CLEAR_WRITE; t->expire = tick_first(tick_first(s->req->rex, s->req->wex), tick_first(s->rep->rex, s->rep->wex)); t->expire = tick_first(t->expire, s->req->cex); if (s->cli_state == CL_STHEADERS) t->expire = tick_first(t->expire, s->txn.exp); else if (s->cli_state == CL_STINSPECT) t->expire = tick_first(t->expire, s->inspect_exp); /* restore t to its place in the task list */ task_queue(t); *next = t->expire; return; /* nothing more to do */ } s->fe->feconn--; if (s->flags & SN_BE_ASSIGNED) s->be->beconn--; actconn--; if (unlikely((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)))) { int len; len = sprintf(trash, "%08x:%s.closed[%04x:%04x]\n", s->uniq_id, s->be->id, (unsigned short)s->cli_fd, (unsigned short)s->srv_fd); write(1, trash, len); } s->logs.t_close = tv_ms_elapsed(&s->logs.tv_accept, &now); session_process_counters(s); /* let's do a final log if we need it */ if (s->logs.logwait && !(s->flags & SN_MONITOR) && (!(s->fe->options & PR_O_NULLNOLOG) || s->req->total)) { if (s->fe->to_log & LW_REQ) http_sess_log(s); else tcp_sess_log(s); } /* the task MUST not be in the run queue anymore */ task_delete(t); session_free(s); task_free(t); *next = TICK_ETERNITY; } extern const char sess_term_cond[8]; extern const char sess_fin_state[8]; extern const char *monthname[12]; const char sess_cookie[4] = "NIDV"; /* No cookie, Invalid cookie, cookie for a Down server, Valid cookie */ const char sess_set_cookie[8] = "N1I3PD5R"; /* No set-cookie, unknown, Set-Cookie Inserted, unknown, Set-cookie seen and left unchanged (passive), Set-cookie Deleted, unknown, Set-cookie Rewritten */ struct pool_head *pool2_requri; struct pool_head *pool2_capture; /* * send a log for the session when we have enough info about it. * Will not log if the frontend has no log defined. */ static void http_sess_log(struct session *s) { char pn[INET6_ADDRSTRLEN + strlen(":65535")]; struct proxy *fe = s->fe; struct proxy *be = s->be; struct proxy *prx_log; struct http_txn *txn = &s->txn; int tolog; char *uri, *h; char *svid; struct tm tm; static char tmpline[MAX_SYSLOG_LEN]; int t_request; int hdr; if (fe->logfac1 < 0 && fe->logfac2 < 0) return; prx_log = fe; if (s->cli_addr.ss_family == AF_INET) inet_ntop(AF_INET, (const void *)&((struct sockaddr_in *)&s->cli_addr)->sin_addr, pn, sizeof(pn)); else inet_ntop(AF_INET6, (const void *)&((struct sockaddr_in6 *)(&s->cli_addr))->sin6_addr, pn, sizeof(pn)); get_localtime(s->logs.accept_date.tv_sec, &tm); /* FIXME: let's limit ourselves to frontend logging for now. */ tolog = fe->to_log; h = tmpline; if (fe->to_log & LW_REQHDR && txn->req.cap && (h < tmpline + sizeof(tmpline) - 10)) { *(h++) = ' '; *(h++) = '{'; for (hdr = 0; hdr < fe->nb_req_cap; hdr++) { if (hdr) *(h++) = '|'; if (txn->req.cap[hdr] != NULL) h = encode_string(h, tmpline + sizeof(tmpline) - 7, '#', hdr_encode_map, txn->req.cap[hdr]); } *(h++) = '}'; } if (fe->to_log & LW_RSPHDR && txn->rsp.cap && (h < tmpline + sizeof(tmpline) - 7)) { *(h++) = ' '; *(h++) = '{'; for (hdr = 0; hdr < fe->nb_rsp_cap; hdr++) { if (hdr) *(h++) = '|'; if (txn->rsp.cap[hdr] != NULL) h = encode_string(h, tmpline + sizeof(tmpline) - 4, '#', hdr_encode_map, txn->rsp.cap[hdr]); } *(h++) = '}'; } if (h < tmpline + sizeof(tmpline) - 4) { *(h++) = ' '; *(h++) = '"'; uri = txn->uri ? txn->uri : ""; h = encode_string(h, tmpline + sizeof(tmpline) - 1, '#', url_encode_map, uri); *(h++) = '"'; } *h = '\0'; svid = (tolog & LW_SVID) ? (s->data_source != DATA_SRC_STATS) ? (s->srv != NULL) ? s->srv->id : "" : "" : "-"; t_request = -1; if (tv_isge(&s->logs.tv_request, &s->logs.tv_accept)) t_request = tv_ms_elapsed(&s->logs.tv_accept, &s->logs.tv_request); send_log(prx_log, LOG_INFO, "%s:%d [%02d/%s/%04d:%02d:%02d:%02d.%03d]" " %s %s/%s %d/%d/%d/%d/%s%d %d %s%lld" " %s %s %c%c%c%c %d/%d/%d/%d/%s%u %d/%d%s\n", pn, (s->cli_addr.ss_family == AF_INET) ? ntohs(((struct sockaddr_in *)&s->cli_addr)->sin_port) : ntohs(((struct sockaddr_in6 *)&s->cli_addr)->sin6_port), tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900, tm.tm_hour, tm.tm_min, tm.tm_sec, s->logs.accept_date.tv_usec/1000, fe->id, be->id, svid, t_request, (s->logs.t_queue >= 0) ? s->logs.t_queue - t_request : -1, (s->logs.t_connect >= 0) ? s->logs.t_connect - s->logs.t_queue : -1, (s->logs.t_data >= 0) ? s->logs.t_data - s->logs.t_connect : -1, (tolog & LW_BYTES) ? "" : "+", s->logs.t_close, txn->status, (tolog & LW_BYTES) ? "" : "+", s->logs.bytes_out, txn->cli_cookie ? txn->cli_cookie : "-", txn->srv_cookie ? txn->srv_cookie : "-", sess_term_cond[(s->flags & SN_ERR_MASK) >> SN_ERR_SHIFT], sess_fin_state[(s->flags & SN_FINST_MASK) >> SN_FINST_SHIFT], (be->options & PR_O_COOK_ANY) ? sess_cookie[(txn->flags & TX_CK_MASK) >> TX_CK_SHIFT] : '-', (be->options & PR_O_COOK_ANY) ? sess_set_cookie[(txn->flags & TX_SCK_MASK) >> TX_SCK_SHIFT] : '-', actconn, fe->feconn, be->beconn, s->srv ? s->srv->cur_sess : 0, (s->flags & SN_REDISP)?"+":"", (s->conn_retries>0)?(be->conn_retries - s->conn_retries):be->conn_retries, s->logs.srv_queue_size, s->logs.prx_queue_size, tmpline); s->logs.logwait = 0; } /* * Capture headers from message starting at according to header list * , and fill the structure appropriately. */ void capture_headers(char *som, struct hdr_idx *idx, char **cap, struct cap_hdr *cap_hdr) { char *eol, *sol, *col, *sov; int cur_idx; struct cap_hdr *h; int len; sol = som + hdr_idx_first_pos(idx); cur_idx = hdr_idx_first_idx(idx); while (cur_idx) { eol = sol + idx->v[cur_idx].len; col = sol; while (col < eol && *col != ':') col++; sov = col + 1; while (sov < eol && http_is_lws[(unsigned char)*sov]) sov++; for (h = cap_hdr; h; h = h->next) { if ((h->namelen == col - sol) && (strncasecmp(sol, h->name, h->namelen) == 0)) { if (cap[h->index] == NULL) cap[h->index] = pool_alloc2(h->pool); if (cap[h->index] == NULL) { Alert("HTTP capture : out of memory.\n"); continue; } len = eol - sov; if (len > h->len) len = h->len; memcpy(cap[h->index], sov, len); cap[h->index][len]=0; } } sol = eol + idx->v[cur_idx].cr + 1; cur_idx = idx->v[cur_idx].next; } } /* either we find an LF at or we jump to . */ #define EXPECT_LF_HERE(ptr, bad) do { if (unlikely(*(ptr) != '\n')) goto bad; } while (0) /* plays with variables , and . Jumps to if OK, * otherwise to with set to . */ #define EAT_AND_JUMP_OR_RETURN(good, st) do { \ ptr++; \ if (likely(ptr < end)) \ goto good; \ else { \ state = (st); \ goto http_msg_ood; \ } \ } while (0) /* * This function parses a status line between and , starting with * parser state . Only states HTTP_MSG_RPVER, HTTP_MSG_RPVER_SP, * HTTP_MSG_RPCODE, HTTP_MSG_RPCODE_SP and HTTP_MSG_RPREASON are handled. Others * will give undefined results. * Note that it is upon the caller's responsibility to ensure that ptr < end, * and that msg->sol points to the beginning of the response. * If a complete line is found (which implies that at least one CR or LF is * found before , the updated is returned, otherwise NULL is * returned indicating an incomplete line (which does not mean that parts have * not been updated). In the incomplete case, if or are * non-NULL, they are fed with the new and values to be passed * upon next call. * * This function was intentionally designed to be called from * http_msg_analyzer() with the lowest overhead. It should integrate perfectly * within its state machine and use the same macros, hence the need for same * labels and variable names. Note that msg->sol is left unchanged. */ const char *http_parse_stsline(struct http_msg *msg, const char *msg_buf, unsigned int state, const char *ptr, const char *end, char **ret_ptr, unsigned int *ret_state) { __label__ http_msg_rpver, http_msg_rpver_sp, http_msg_rpcode, http_msg_rpcode_sp, http_msg_rpreason, http_msg_rpline_eol, http_msg_ood, /* out of data */ http_msg_invalid; switch (state) { http_msg_rpver: case HTTP_MSG_RPVER: if (likely(HTTP_IS_VER_TOKEN(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rpver, HTTP_MSG_RPVER); if (likely(HTTP_IS_SPHT(*ptr))) { msg->sl.st.v_l = (ptr - msg_buf) - msg->som; EAT_AND_JUMP_OR_RETURN(http_msg_rpver_sp, HTTP_MSG_RPVER_SP); } goto http_msg_invalid; http_msg_rpver_sp: case HTTP_MSG_RPVER_SP: if (likely(!HTTP_IS_LWS(*ptr))) { msg->sl.st.c = ptr - msg_buf; goto http_msg_rpcode; } if (likely(HTTP_IS_SPHT(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rpver_sp, HTTP_MSG_RPVER_SP); /* so it's a CR/LF, this is invalid */ goto http_msg_invalid; http_msg_rpcode: case HTTP_MSG_RPCODE: if (likely(!HTTP_IS_LWS(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rpcode, HTTP_MSG_RPCODE); if (likely(HTTP_IS_SPHT(*ptr))) { msg->sl.st.c_l = (ptr - msg_buf) - msg->sl.st.c; EAT_AND_JUMP_OR_RETURN(http_msg_rpcode_sp, HTTP_MSG_RPCODE_SP); } /* so it's a CR/LF, so there is no reason phrase */ msg->sl.st.c_l = (ptr - msg_buf) - msg->sl.st.c; http_msg_rsp_reason: /* FIXME: should we support HTTP responses without any reason phrase ? */ msg->sl.st.r = ptr - msg_buf; msg->sl.st.r_l = 0; goto http_msg_rpline_eol; http_msg_rpcode_sp: case HTTP_MSG_RPCODE_SP: if (likely(!HTTP_IS_LWS(*ptr))) { msg->sl.st.r = ptr - msg_buf; goto http_msg_rpreason; } if (likely(HTTP_IS_SPHT(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rpcode_sp, HTTP_MSG_RPCODE_SP); /* so it's a CR/LF, so there is no reason phrase */ goto http_msg_rsp_reason; http_msg_rpreason: case HTTP_MSG_RPREASON: if (likely(!HTTP_IS_CRLF(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rpreason, HTTP_MSG_RPREASON); msg->sl.st.r_l = (ptr - msg_buf) - msg->sl.st.r; http_msg_rpline_eol: /* We have seen the end of line. Note that we do not * necessarily have the \n yet, but at least we know that we * have EITHER \r OR \n, otherwise the response would not be * complete. We can then record the response length and return * to the caller which will be able to register it. */ msg->sl.st.l = ptr - msg->sol; return ptr; #ifdef DEBUG_FULL default: fprintf(stderr, "FIXME !!!! impossible state at %s:%d = %d\n", __FILE__, __LINE__, state); exit(1); #endif } http_msg_ood: /* out of data */ if (ret_state) *ret_state = state; if (ret_ptr) *ret_ptr = (char *)ptr; return NULL; http_msg_invalid: /* invalid message */ if (ret_state) *ret_state = HTTP_MSG_ERROR; return NULL; } /* * This function parses a request line between and , starting with * parser state . Only states HTTP_MSG_RQMETH, HTTP_MSG_RQMETH_SP, * HTTP_MSG_RQURI, HTTP_MSG_RQURI_SP and HTTP_MSG_RQVER are handled. Others * will give undefined results. * Note that it is upon the caller's responsibility to ensure that ptr < end, * and that msg->sol points to the beginning of the request. * If a complete line is found (which implies that at least one CR or LF is * found before , the updated is returned, otherwise NULL is * returned indicating an incomplete line (which does not mean that parts have * not been updated). In the incomplete case, if or are * non-NULL, they are fed with the new and values to be passed * upon next call. * * This function was intentionally designed to be called from * http_msg_analyzer() with the lowest overhead. It should integrate perfectly * within its state machine and use the same macros, hence the need for same * labels and variable names. Note that msg->sol is left unchanged. */ const char *http_parse_reqline(struct http_msg *msg, const char *msg_buf, unsigned int state, const char *ptr, const char *end, char **ret_ptr, unsigned int *ret_state) { __label__ http_msg_rqmeth, http_msg_rqmeth_sp, http_msg_rquri, http_msg_rquri_sp, http_msg_rqver, http_msg_rqline_eol, http_msg_ood, /* out of data */ http_msg_invalid; switch (state) { http_msg_rqmeth: case HTTP_MSG_RQMETH: if (likely(HTTP_IS_TOKEN(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rqmeth, HTTP_MSG_RQMETH); if (likely(HTTP_IS_SPHT(*ptr))) { msg->sl.rq.m_l = (ptr - msg_buf) - msg->som; EAT_AND_JUMP_OR_RETURN(http_msg_rqmeth_sp, HTTP_MSG_RQMETH_SP); } if (likely(HTTP_IS_CRLF(*ptr))) { /* HTTP 0.9 request */ msg->sl.rq.m_l = (ptr - msg_buf) - msg->som; http_msg_req09_uri: msg->sl.rq.u = ptr - msg_buf; http_msg_req09_uri_e: msg->sl.rq.u_l = (ptr - msg_buf) - msg->sl.rq.u; http_msg_req09_ver: msg->sl.rq.v = ptr - msg_buf; msg->sl.rq.v_l = 0; goto http_msg_rqline_eol; } goto http_msg_invalid; http_msg_rqmeth_sp: case HTTP_MSG_RQMETH_SP: if (likely(!HTTP_IS_LWS(*ptr))) { msg->sl.rq.u = ptr - msg_buf; goto http_msg_rquri; } if (likely(HTTP_IS_SPHT(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rqmeth_sp, HTTP_MSG_RQMETH_SP); /* so it's a CR/LF, meaning an HTTP 0.9 request */ goto http_msg_req09_uri; http_msg_rquri: case HTTP_MSG_RQURI: if (likely(!HTTP_IS_LWS(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rquri, HTTP_MSG_RQURI); if (likely(HTTP_IS_SPHT(*ptr))) { msg->sl.rq.u_l = (ptr - msg_buf) - msg->sl.rq.u; EAT_AND_JUMP_OR_RETURN(http_msg_rquri_sp, HTTP_MSG_RQURI_SP); } /* so it's a CR/LF, meaning an HTTP 0.9 request */ goto http_msg_req09_uri_e; http_msg_rquri_sp: case HTTP_MSG_RQURI_SP: if (likely(!HTTP_IS_LWS(*ptr))) { msg->sl.rq.v = ptr - msg_buf; goto http_msg_rqver; } if (likely(HTTP_IS_SPHT(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rquri_sp, HTTP_MSG_RQURI_SP); /* so it's a CR/LF, meaning an HTTP 0.9 request */ goto http_msg_req09_ver; http_msg_rqver: case HTTP_MSG_RQVER: if (likely(HTTP_IS_VER_TOKEN(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rqver, HTTP_MSG_RQVER); if (likely(HTTP_IS_CRLF(*ptr))) { msg->sl.rq.v_l = (ptr - msg_buf) - msg->sl.rq.v; http_msg_rqline_eol: /* We have seen the end of line. Note that we do not * necessarily have the \n yet, but at least we know that we * have EITHER \r OR \n, otherwise the request would not be * complete. We can then record the request length and return * to the caller which will be able to register it. */ msg->sl.rq.l = ptr - msg->sol; return ptr; } /* neither an HTTP_VER token nor a CRLF */ goto http_msg_invalid; #ifdef DEBUG_FULL default: fprintf(stderr, "FIXME !!!! impossible state at %s:%d = %d\n", __FILE__, __LINE__, state); exit(1); #endif } http_msg_ood: /* out of data */ if (ret_state) *ret_state = state; if (ret_ptr) *ret_ptr = (char *)ptr; return NULL; http_msg_invalid: /* invalid message */ if (ret_state) *ret_state = HTTP_MSG_ERROR; return NULL; } /* * This function parses an HTTP message, either a request or a response, * depending on the initial msg->msg_state. It can be preempted everywhere * when data are missing and recalled at the exact same location with no * information loss. The header index is re-initialized when switching from * MSG_R[PQ]BEFORE to MSG_RPVER|MSG_RQMETH. It modifies msg->sol among other * fields. */ void http_msg_analyzer(struct buffer *buf, struct http_msg *msg, struct hdr_idx *idx) { __label__ http_msg_rqbefore, http_msg_rqbefore_cr, http_msg_rqmeth, http_msg_rqline_end, http_msg_hdr_first, http_msg_hdr_name, http_msg_hdr_l1_sp, http_msg_hdr_l1_lf, http_msg_hdr_l1_lws, http_msg_hdr_val, http_msg_hdr_l2_lf, http_msg_hdr_l2_lws, http_msg_complete_header, http_msg_last_lf, http_msg_ood, /* out of data */ http_msg_invalid; unsigned int state; /* updated only when leaving the FSM */ register char *ptr, *end; /* request pointers, to avoid dereferences */ state = msg->msg_state; ptr = buf->lr; end = buf->r; if (unlikely(ptr >= end)) goto http_msg_ood; switch (state) { /* * First, states that are specific to the response only. * We check them first so that request and headers are * closer to each other (accessed more often). */ http_msg_rpbefore: case HTTP_MSG_RPBEFORE: if (likely(HTTP_IS_TOKEN(*ptr))) { if (likely(ptr == buf->data)) { msg->sol = ptr; msg->som = 0; } else { #if PARSE_PRESERVE_EMPTY_LINES /* only skip empty leading lines, don't remove them */ msg->sol = ptr; msg->som = ptr - buf->data; #else /* Remove empty leading lines, as recommended by * RFC2616. This takes a lot of time because we * must move all the buffer backwards, but this * is rarely needed. The method above will be * cleaner when we'll be able to start sending * the request from any place in the buffer. */ buf->lr = ptr; buffer_replace2(buf, buf->data, buf->lr, NULL, 0); msg->som = 0; msg->sol = buf->data; ptr = buf->data; end = buf->r; #endif } hdr_idx_init(idx); state = HTTP_MSG_RPVER; goto http_msg_rpver; } if (unlikely(!HTTP_IS_CRLF(*ptr))) goto http_msg_invalid; if (unlikely(*ptr == '\n')) EAT_AND_JUMP_OR_RETURN(http_msg_rpbefore, HTTP_MSG_RPBEFORE); EAT_AND_JUMP_OR_RETURN(http_msg_rpbefore_cr, HTTP_MSG_RPBEFORE_CR); /* stop here */ http_msg_rpbefore_cr: case HTTP_MSG_RPBEFORE_CR: EXPECT_LF_HERE(ptr, http_msg_invalid); EAT_AND_JUMP_OR_RETURN(http_msg_rpbefore, HTTP_MSG_RPBEFORE); /* stop here */ http_msg_rpver: case HTTP_MSG_RPVER: case HTTP_MSG_RPVER_SP: case HTTP_MSG_RPCODE: case HTTP_MSG_RPCODE_SP: case HTTP_MSG_RPREASON: ptr = (char *)http_parse_stsline(msg, buf->data, state, ptr, end, &buf->lr, &msg->msg_state); if (unlikely(!ptr)) return; /* we have a full response and we know that we have either a CR * or an LF at . */ //fprintf(stderr,"som=%d rq.l=%d *ptr=0x%02x\n", msg->som, msg->sl.st.l, *ptr); hdr_idx_set_start(idx, msg->sl.st.l, *ptr == '\r'); msg->sol = ptr; if (likely(*ptr == '\r')) EAT_AND_JUMP_OR_RETURN(http_msg_rpline_end, HTTP_MSG_RPLINE_END); goto http_msg_rpline_end; http_msg_rpline_end: case HTTP_MSG_RPLINE_END: /* msg->sol must point to the first of CR or LF. */ EXPECT_LF_HERE(ptr, http_msg_invalid); EAT_AND_JUMP_OR_RETURN(http_msg_hdr_first, HTTP_MSG_HDR_FIRST); /* stop here */ /* * Second, states that are specific to the request only */ http_msg_rqbefore: case HTTP_MSG_RQBEFORE: if (likely(HTTP_IS_TOKEN(*ptr))) { if (likely(ptr == buf->data)) { msg->sol = ptr; msg->som = 0; } else { #if PARSE_PRESERVE_EMPTY_LINES /* only skip empty leading lines, don't remove them */ msg->sol = ptr; msg->som = ptr - buf->data; #else /* Remove empty leading lines, as recommended by * RFC2616. This takes a lot of time because we * must move all the buffer backwards, but this * is rarely needed. The method above will be * cleaner when we'll be able to start sending * the request from any place in the buffer. */ buf->lr = ptr; buffer_replace2(buf, buf->data, buf->lr, NULL, 0); msg->som = 0; msg->sol = buf->data; ptr = buf->data; end = buf->r; #endif } /* we will need this when keep-alive will be supported hdr_idx_init(idx); */ state = HTTP_MSG_RQMETH; goto http_msg_rqmeth; } if (unlikely(!HTTP_IS_CRLF(*ptr))) goto http_msg_invalid; if (unlikely(*ptr == '\n')) EAT_AND_JUMP_OR_RETURN(http_msg_rqbefore, HTTP_MSG_RQBEFORE); EAT_AND_JUMP_OR_RETURN(http_msg_rqbefore_cr, HTTP_MSG_RQBEFORE_CR); /* stop here */ http_msg_rqbefore_cr: case HTTP_MSG_RQBEFORE_CR: EXPECT_LF_HERE(ptr, http_msg_invalid); EAT_AND_JUMP_OR_RETURN(http_msg_rqbefore, HTTP_MSG_RQBEFORE); /* stop here */ http_msg_rqmeth: case HTTP_MSG_RQMETH: case HTTP_MSG_RQMETH_SP: case HTTP_MSG_RQURI: case HTTP_MSG_RQURI_SP: case HTTP_MSG_RQVER: ptr = (char *)http_parse_reqline(msg, buf->data, state, ptr, end, &buf->lr, &msg->msg_state); if (unlikely(!ptr)) return; /* we have a full request and we know that we have either a CR * or an LF at . */ //fprintf(stderr,"som=%d rq.l=%d *ptr=0x%02x\n", msg->som, msg->sl.rq.l, *ptr); hdr_idx_set_start(idx, msg->sl.rq.l, *ptr == '\r'); msg->sol = ptr; if (likely(*ptr == '\r')) EAT_AND_JUMP_OR_RETURN(http_msg_rqline_end, HTTP_MSG_RQLINE_END); goto http_msg_rqline_end; http_msg_rqline_end: case HTTP_MSG_RQLINE_END: /* check for HTTP/0.9 request : no version information available. * msg->sol must point to the first of CR or LF. */ if (unlikely(msg->sl.rq.v_l == 0)) goto http_msg_last_lf; EXPECT_LF_HERE(ptr, http_msg_invalid); EAT_AND_JUMP_OR_RETURN(http_msg_hdr_first, HTTP_MSG_HDR_FIRST); /* stop here */ /* * Common states below */ http_msg_hdr_first: case HTTP_MSG_HDR_FIRST: msg->sol = ptr; if (likely(!HTTP_IS_CRLF(*ptr))) { goto http_msg_hdr_name; } if (likely(*ptr == '\r')) EAT_AND_JUMP_OR_RETURN(http_msg_last_lf, HTTP_MSG_LAST_LF); goto http_msg_last_lf; http_msg_hdr_name: case HTTP_MSG_HDR_NAME: /* assumes msg->sol points to the first char */ if (likely(HTTP_IS_TOKEN(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_hdr_name, HTTP_MSG_HDR_NAME); if (likely(*ptr == ':')) { msg->col = ptr - buf->data; EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l1_sp, HTTP_MSG_HDR_L1_SP); } goto http_msg_invalid; http_msg_hdr_l1_sp: case HTTP_MSG_HDR_L1_SP: /* assumes msg->sol points to the first char and msg->col to the colon */ if (likely(HTTP_IS_SPHT(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l1_sp, HTTP_MSG_HDR_L1_SP); /* header value can be basically anything except CR/LF */ msg->sov = ptr - buf->data; if (likely(!HTTP_IS_CRLF(*ptr))) { goto http_msg_hdr_val; } if (likely(*ptr == '\r')) EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l1_lf, HTTP_MSG_HDR_L1_LF); goto http_msg_hdr_l1_lf; http_msg_hdr_l1_lf: case HTTP_MSG_HDR_L1_LF: EXPECT_LF_HERE(ptr, http_msg_invalid); EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l1_lws, HTTP_MSG_HDR_L1_LWS); http_msg_hdr_l1_lws: case HTTP_MSG_HDR_L1_LWS: if (likely(HTTP_IS_SPHT(*ptr))) { /* replace HT,CR,LF with spaces */ for (; buf->data+msg->sov < ptr; msg->sov++) buf->data[msg->sov] = ' '; goto http_msg_hdr_l1_sp; } /* we had a header consisting only in spaces ! */ msg->eol = buf->data + msg->sov; goto http_msg_complete_header; http_msg_hdr_val: case HTTP_MSG_HDR_VAL: /* assumes msg->sol points to the first char, msg->col to the * colon, and msg->sov points to the first character of the * value. */ if (likely(!HTTP_IS_CRLF(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_hdr_val, HTTP_MSG_HDR_VAL); msg->eol = ptr; /* Note: we could also copy eol into ->eoh so that we have the * real header end in case it ends with lots of LWS, but is this * really needed ? */ if (likely(*ptr == '\r')) EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l2_lf, HTTP_MSG_HDR_L2_LF); goto http_msg_hdr_l2_lf; http_msg_hdr_l2_lf: case HTTP_MSG_HDR_L2_LF: EXPECT_LF_HERE(ptr, http_msg_invalid); EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l2_lws, HTTP_MSG_HDR_L2_LWS); http_msg_hdr_l2_lws: case HTTP_MSG_HDR_L2_LWS: if (unlikely(HTTP_IS_SPHT(*ptr))) { /* LWS: replace HT,CR,LF with spaces */ for (; msg->eol < ptr; msg->eol++) *msg->eol = ' '; goto http_msg_hdr_val; } http_msg_complete_header: /* * It was a new header, so the last one is finished. * Assumes msg->sol points to the first char, msg->col to the * colon, msg->sov points to the first character of the value * and msg->eol to the first CR or LF so we know how the line * ends. We insert last header into the index. */ /* fprintf(stderr,"registering %-2d bytes : ", msg->eol - msg->sol); write(2, msg->sol, msg->eol-msg->sol); fprintf(stderr,"\n"); */ if (unlikely(hdr_idx_add(msg->eol - msg->sol, *msg->eol == '\r', idx, idx->tail) < 0)) goto http_msg_invalid; msg->sol = ptr; if (likely(!HTTP_IS_CRLF(*ptr))) { goto http_msg_hdr_name; } if (likely(*ptr == '\r')) EAT_AND_JUMP_OR_RETURN(http_msg_last_lf, HTTP_MSG_LAST_LF); goto http_msg_last_lf; http_msg_last_lf: case HTTP_MSG_LAST_LF: /* Assumes msg->sol points to the first of either CR or LF */ EXPECT_LF_HERE(ptr, http_msg_invalid); ptr++; buf->lr = ptr; msg->eoh = msg->sol - buf->data; msg->msg_state = HTTP_MSG_BODY; return; #ifdef DEBUG_FULL default: fprintf(stderr, "FIXME !!!! impossible state at %s:%d = %d\n", __FILE__, __LINE__, state); exit(1); #endif } http_msg_ood: /* out of data */ msg->msg_state = state; buf->lr = ptr; return; http_msg_invalid: /* invalid message */ msg->msg_state = HTTP_MSG_ERROR; return; } /* * manages the client FSM and its socket. BTW, it also tries to handle the * cookie. It returns 1 if a state has changed (and a resync may be needed), * 0 else. */ int process_cli(struct session *t) { int s = t->srv_state; int c = t->cli_state; struct buffer *req = t->req; struct buffer *rep = t->rep; DPRINTF(stderr,"process_cli: c=%s s=%s set(r,w)=%d,%d exp(r,w)=%u,%u\n", cli_stnames[c], srv_stnames[s], EV_FD_ISSET(t->cli_fd, DIR_RD), EV_FD_ISSET(t->cli_fd, DIR_WR), req->rex, rep->wex); if (c == CL_STINSPECT) { struct tcp_rule *rule; int partial; /* We will abort if we encounter a read error. In theory, * we should not abort if we get a close, it might be * valid, also very unlikely. FIXME: we'll abort for now, * this will be easier to change later. */ if (unlikely(req->flags & (BF_READ_ERROR | BF_READ_NULL))) { t->inspect_exp = TICK_ETERNITY; buffer_shutr_done(req); buffer_shutw_done(rep); fd_delete(t->cli_fd); t->cli_state = CL_STCLOSE; t->fe->failed_req++; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_CLICL; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_R; return 1; } /* Abort if client read timeout has expired */ else if (unlikely(tick_is_expired(req->rex, now_ms))) { t->inspect_exp = TICK_ETERNITY; buffer_shutr_done(req); buffer_shutw_done(rep); fd_delete(t->cli_fd); t->cli_state = CL_STCLOSE; t->fe->failed_req++; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_CLITO; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_R; return 1; } /* We don't know whether we have enough data, so must proceed * this way : * - iterate through all rules in their declaration order * - if one rule returns MISS, it means the inspect delay is * not over yet, then return immediately, otherwise consider * it as a non-match. * - if one rule returns OK, then return OK * - if one rule returns KO, then return KO */ if (tick_is_expired(t->inspect_exp, now_ms)) partial = 0; else partial = ACL_PARTIAL; list_for_each_entry(rule, &t->fe->tcp_req.inspect_rules, list) { int ret = ACL_PAT_PASS; if (rule->cond) { ret = acl_exec_cond(rule->cond, t->fe, t, NULL, ACL_DIR_REQ | partial); if (ret == ACL_PAT_MISS) { req->rex = tick_add_ifset(now_ms, t->fe->timeout.client); return 0; } ret = acl_pass(ret); if (rule->cond->pol == ACL_COND_UNLESS) ret = !ret; } if (ret) { /* we have a matching rule. */ if (rule->action == TCP_ACT_REJECT) { buffer_shutr_done(req); buffer_shutw_done(rep); fd_delete(t->cli_fd); t->cli_state = CL_STCLOSE; t->fe->failed_req++; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_PRXCOND; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_R; t->inspect_exp = TICK_ETERNITY; return 1; } /* otherwise accept */ break; } } /* if we get there, it means we have no rule which matches, so * we apply the default accept. */ req->rex = tick_add_ifset(now_ms, t->fe->timeout.client); if (t->fe->mode == PR_MODE_HTTP) { t->cli_state = CL_STHEADERS; t->txn.exp = tick_add_ifset(now_ms, t->fe->timeout.httpreq); } else { t->cli_state = CL_STDATA; req->flags |= BF_MAY_CONNECT; } t->inspect_exp = TICK_ETERNITY; return 1; } else if (c == CL_STHEADERS) { /* * Now parse the partial (or complete) lines. * We will check the request syntax, and also join multi-line * headers. An index of all the lines will be elaborated while * parsing. * * For the parsing, we use a 28 states FSM. * * Here is the information we currently have : * req->data + req->som = beginning of request * req->data + req->eoh = end of processed headers / start of current one * req->data + req->eol = end of current header or line (LF or CRLF) * req->lr = first non-visited byte * req->r = end of data */ int cur_idx; struct http_txn *txn = &t->txn; struct http_msg *msg = &txn->req; struct proxy *cur_proxy; if (likely(req->lr < req->r)) http_msg_analyzer(req, msg, &txn->hdr_idx); /* 1: we might have to print this header in debug mode */ if (unlikely((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)) && (msg->msg_state == HTTP_MSG_BODY || msg->msg_state == HTTP_MSG_ERROR))) { char *eol, *sol; sol = req->data + msg->som; eol = sol + msg->sl.rq.l; debug_hdr("clireq", t, sol, eol); sol += hdr_idx_first_pos(&txn->hdr_idx); cur_idx = hdr_idx_first_idx(&txn->hdr_idx); while (cur_idx) { eol = sol + txn->hdr_idx.v[cur_idx].len; debug_hdr("clihdr", t, sol, eol); sol = eol + txn->hdr_idx.v[cur_idx].cr + 1; cur_idx = txn->hdr_idx.v[cur_idx].next; } } /* * Now we quickly check if we have found a full valid request. * If not so, we check the FD and buffer states before leaving. * A full request is indicated by the fact that we have seen * the double LF/CRLF, so the state is HTTP_MSG_BODY. Invalid * requests are checked first. * */ if (unlikely(msg->msg_state != HTTP_MSG_BODY)) { /* * First, let's catch bad requests. */ if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) goto return_bad_req; /* 1: Since we are in header mode, if there's no space * left for headers, we won't be able to free more * later, so the session will never terminate. We * must terminate it now. */ if (unlikely(req->l >= req->rlim - req->data)) { /* FIXME: check if URI is set and return Status * 414 Request URI too long instead. */ goto return_bad_req; } /* 2: have we encountered a read error or a close ? */ else if (unlikely(req->flags & (BF_READ_ERROR | BF_READ_NULL))) { /* read error, or last read : give up. */ buffer_shutr_done(req); buffer_shutw_done(rep); fd_delete(t->cli_fd); t->cli_state = CL_STCLOSE; t->fe->failed_req++; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_CLICL; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_R; return 1; } /* 3: has the read timeout expired ? */ else if (unlikely(tick_is_expired(req->rex, now_ms) || tick_is_expired(txn->exp, now_ms))) { /* read timeout : give up with an error message. */ txn->status = 408; client_retnclose(t, error_message(t, HTTP_ERR_408)); t->fe->failed_req++; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_CLITO; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_R; return 1; } /* 4: do we need to re-enable the read socket ? */ else if (unlikely(EV_FD_COND_S(t->cli_fd, DIR_RD))) { /* fd in DIR_RD was disabled, perhaps because of a previous buffer * full. We cannot loop here since stream_sock_read will disable it only if * req->l == rlim-data */ req->rex = tick_add_ifset(now_ms, t->fe->timeout.client); } return t->cli_state != CL_STHEADERS; } /**************************************************************** * More interesting part now : we know that we have a complete * * request which at least looks like HTTP. We have an indicator * * of each header's length, so we can parse them quickly. * ****************************************************************/ /* ensure we keep this pointer to the beginning of the message */ msg->sol = req->data + msg->som; /* * 1: identify the method */ txn->meth = find_http_meth(&req->data[msg->som], msg->sl.rq.m_l); /* * 2: check if the URI matches the monitor_uri. * We have to do this for every request which gets in, because * the monitor-uri is defined by the frontend. */ if (unlikely((t->fe->monitor_uri_len != 0) && (t->fe->monitor_uri_len == msg->sl.rq.u_l) && !memcmp(&req->data[msg->sl.rq.u], t->fe->monitor_uri, t->fe->monitor_uri_len))) { /* * We have found the monitor URI */ struct acl_cond *cond; cur_proxy = t->fe; t->flags |= SN_MONITOR; /* Check if we want to fail this monitor request or not */ list_for_each_entry(cond, &cur_proxy->mon_fail_cond, list) { int ret = acl_exec_cond(cond, cur_proxy, t, txn, ACL_DIR_REQ); ret = acl_pass(ret); if (cond->pol == ACL_COND_UNLESS) ret = !ret; if (ret) { /* we fail this request, let's return 503 service unavail */ txn->status = 503; client_retnclose(t, error_message(t, HTTP_ERR_503)); goto return_prx_cond; } } /* nothing to fail, let's reply normaly */ txn->status = 200; client_retnclose(t, &http_200_chunk); goto return_prx_cond; } /* * 3: Maybe we have to copy the original REQURI for the logs ? * Note: we cannot log anymore if the request has been * classified as invalid. */ if (unlikely(t->logs.logwait & LW_REQ)) { /* we have a complete HTTP request that we must log */ if ((txn->uri = pool_alloc2(pool2_requri)) != NULL) { int urilen = msg->sl.rq.l; if (urilen >= REQURI_LEN) urilen = REQURI_LEN - 1; memcpy(txn->uri, &req->data[msg->som], urilen); txn->uri[urilen] = 0; if (!(t->logs.logwait &= ~LW_REQ)) http_sess_log(t); } else { Alert("HTTP logging : out of memory.\n"); } } /* 4. We may have to convert HTTP/0.9 requests to HTTP/1.0 */ if (unlikely(msg->sl.rq.v_l == 0)) { int delta; char *cur_end; msg->sol = req->data + msg->som; cur_end = msg->sol + msg->sl.rq.l; delta = 0; if (msg->sl.rq.u_l == 0) { /* if no URI was set, add "/" */ delta = buffer_replace2(req, cur_end, cur_end, " /", 2); cur_end += delta; msg->eoh += delta; } /* add HTTP version */ delta = buffer_replace2(req, cur_end, cur_end, " HTTP/1.0\r\n", 11); msg->eoh += delta; cur_end += delta; cur_end = (char *)http_parse_reqline(msg, req->data, HTTP_MSG_RQMETH, msg->sol, cur_end + 1, NULL, NULL); if (unlikely(!cur_end)) goto return_bad_req; /* we have a full HTTP/1.0 request now and we know that * we have either a CR or an LF at . */ hdr_idx_set_start(&txn->hdr_idx, msg->sl.rq.l, *cur_end == '\r'); } /* 5: we may need to capture headers */ if (unlikely((t->logs.logwait & LW_REQHDR) && t->fe->req_cap)) capture_headers(req->data + msg->som, &txn->hdr_idx, txn->req.cap, t->fe->req_cap); /* * 6: we will have to evaluate the filters. * As opposed to version 1.2, now they will be evaluated in the * filters order and not in the header order. This means that * each filter has to be validated among all headers. * * We can now check whether we want to switch to another * backend, in which case we will re-check the backend's * filters and various options. In order to support 3-level * switching, here's how we should proceed : * * a) run be. * if (switch) then switch ->be to the new backend. * b) run be if (be != fe). * There cannot be any switch from there, so ->be cannot be * changed anymore. * * => filters always apply to ->be, then ->be may change. * * The response path will be able to apply either ->be, or * ->be then ->fe filters in order to match the reverse of * the forward sequence. */ do { struct acl_cond *cond; struct redirect_rule *rule; struct proxy *rule_set = t->be; cur_proxy = t->be; /* first check whether we have some ACLs set to redirect this request */ list_for_each_entry(rule, &cur_proxy->redirect_rules, list) { int ret = acl_exec_cond(rule->cond, cur_proxy, t, txn, ACL_DIR_REQ); ret = acl_pass(ret); if (rule->cond->pol == ACL_COND_UNLESS) ret = !ret; if (ret) { struct chunk rdr = { trash, 0 }; const char *msg_fmt; /* build redirect message */ switch(rule->code) { case 303: rdr.len = strlen(HTTP_303); msg_fmt = HTTP_303; break; case 301: rdr.len = strlen(HTTP_301); msg_fmt = HTTP_301; break; case 302: default: rdr.len = strlen(HTTP_302); msg_fmt = HTTP_302; break; } if (unlikely(rdr.len > sizeof(trash))) goto return_bad_req; memcpy(rdr.str, msg_fmt, rdr.len); switch(rule->type) { case REDIRECT_TYPE_PREFIX: { const char *path; int pathlen; path = http_get_path(txn); /* build message using path */ if (path) { pathlen = txn->req.sl.rq.u_l + (txn->req.sol+txn->req.sl.rq.u) - path; } else { path = "/"; pathlen = 1; } if (rdr.len + rule->rdr_len + pathlen > sizeof(trash) - 4) goto return_bad_req; /* add prefix */ memcpy(rdr.str + rdr.len, rule->rdr_str, rule->rdr_len); rdr.len += rule->rdr_len; /* add path */ memcpy(rdr.str + rdr.len, path, pathlen); rdr.len += pathlen; break; } case REDIRECT_TYPE_LOCATION: default: if (rdr.len + rule->rdr_len > sizeof(trash) - 4) goto return_bad_req; /* add location */ memcpy(rdr.str + rdr.len, rule->rdr_str, rule->rdr_len); rdr.len += rule->rdr_len; break; } /* add end of headers */ memcpy(rdr.str + rdr.len, "\r\n\r\n", 4); rdr.len += 4; txn->status = rule->code; /* let's log the request time */ t->logs.tv_request = now; client_retnclose(t, &rdr); goto return_prx_cond; } } /* first check whether we have some ACLs set to block this request */ list_for_each_entry(cond, &cur_proxy->block_cond, list) { int ret = acl_exec_cond(cond, cur_proxy, t, txn, ACL_DIR_REQ); ret = acl_pass(ret); if (cond->pol == ACL_COND_UNLESS) ret = !ret; if (ret) { txn->status = 403; /* let's log the request time */ t->logs.tv_request = now; client_retnclose(t, error_message(t, HTTP_ERR_403)); goto return_prx_cond; } } /* try headers filters */ if (rule_set->req_exp != NULL) { if (apply_filters_to_request(t, req, rule_set->req_exp) < 0) goto return_bad_req; } if (!(t->flags & SN_BE_ASSIGNED) && (t->be != cur_proxy)) { /* to ensure correct connection accounting on * the backend, we count the connection for the * one managing the queue. */ t->be->beconn++; if (t->be->beconn > t->be->beconn_max) t->be->beconn_max = t->be->beconn; t->be->cum_beconn++; t->flags |= SN_BE_ASSIGNED; } /* has the request been denied ? */ if (txn->flags & TX_CLDENY) { /* no need to go further */ txn->status = 403; /* let's log the request time */ t->logs.tv_request = now; client_retnclose(t, error_message(t, HTTP_ERR_403)); goto return_prx_cond; } /* We might have to check for "Connection:" */ if (((t->fe->options | t->be->options) & (PR_O_HTTP_CLOSE|PR_O_FORCE_CLO)) && !(t->flags & SN_CONN_CLOSED)) { char *cur_ptr, *cur_end, *cur_next; int cur_idx, old_idx, delta, val; struct hdr_idx_elem *cur_hdr; cur_next = req->data + txn->req.som + hdr_idx_first_pos(&txn->hdr_idx); old_idx = 0; while ((cur_idx = txn->hdr_idx.v[old_idx].next)) { cur_hdr = &txn->hdr_idx.v[cur_idx]; cur_ptr = cur_next; cur_end = cur_ptr + cur_hdr->len; cur_next = cur_end + cur_hdr->cr + 1; val = http_header_match2(cur_ptr, cur_end, "Connection", 10); if (val) { /* 3 possibilities : * - we have already set Connection: close, * so we remove this line. * - we have not yet set Connection: close, * but this line indicates close. We leave * it untouched and set the flag. * - we have not yet set Connection: close, * and this line indicates non-close. We * replace it. */ if (t->flags & SN_CONN_CLOSED) { delta = buffer_replace2(req, cur_ptr, cur_next, NULL, 0); txn->req.eoh += delta; cur_next += delta; txn->hdr_idx.v[old_idx].next = cur_hdr->next; txn->hdr_idx.used--; cur_hdr->len = 0; } else { if (strncasecmp(cur_ptr + val, "close", 5) != 0) { delta = buffer_replace2(req, cur_ptr + val, cur_end, "close", 5); cur_next += delta; cur_hdr->len += delta; txn->req.eoh += delta; } t->flags |= SN_CONN_CLOSED; } } old_idx = cur_idx; } } /* add request headers from the rule sets in the same order */ for (cur_idx = 0; cur_idx < rule_set->nb_reqadd; cur_idx++) { if (unlikely(http_header_add_tail(req, &txn->req, &txn->hdr_idx, rule_set->req_add[cur_idx])) < 0) goto return_bad_req; } /* check if stats URI was requested, and if an auth is needed */ if (rule_set->uri_auth != NULL && (txn->meth == HTTP_METH_GET || txn->meth == HTTP_METH_HEAD)) { /* we have to check the URI and auth for this request */ if (stats_check_uri_auth(t, rule_set)) return 1; } /* now check whether we have some switching rules for this request */ if (!(t->flags & SN_BE_ASSIGNED)) { struct switching_rule *rule; list_for_each_entry(rule, &cur_proxy->switching_rules, list) { int ret; ret = acl_exec_cond(rule->cond, cur_proxy, t, txn, ACL_DIR_REQ); ret = acl_pass(ret); if (rule->cond->pol == ACL_COND_UNLESS) ret = !ret; if (ret) { t->be = rule->be.backend; t->be->beconn++; if (t->be->beconn > t->be->beconn_max) t->be->beconn_max = t->be->beconn; t->be->cum_beconn++; /* assign new parameters to the session from the new backend */ t->rep->rto = t->req->wto = t->be->timeout.server; t->req->cto = t->be->timeout.connect; t->conn_retries = t->be->conn_retries; t->flags |= SN_BE_ASSIGNED; break; } } } if (!(t->flags & SN_BE_ASSIGNED) && cur_proxy->defbe.be) { /* No backend was set, but there was a default * backend set in the frontend, so we use it and * loop again. */ t->be = cur_proxy->defbe.be; t->be->beconn++; if (t->be->beconn > t->be->beconn_max) t->be->beconn_max = t->be->beconn; t->be->cum_beconn++; /* assign new parameters to the session from the new backend */ t->rep->rto = t->req->wto = t->be->timeout.server; t->req->cto = t->be->timeout.connect; t->conn_retries = t->be->conn_retries; t->flags |= SN_BE_ASSIGNED; } } while (t->be != cur_proxy); /* we loop only if t->be has changed */ if (!(t->flags & SN_BE_ASSIGNED)) { /* To ensure correct connection accounting on * the backend, we count the connection for the * one managing the queue. */ t->be->beconn++; if (t->be->beconn > t->be->beconn_max) t->be->beconn_max = t->be->beconn; t->be->cum_beconn++; t->flags |= SN_BE_ASSIGNED; } /* * Right now, we know that we have processed the entire headers * and that unwanted requests have been filtered out. We can do * whatever we want with the remaining request. Also, now we * may have separate values for ->fe, ->be. */ /* * If HTTP PROXY is set we simply get remote server address * parsing incoming request. */ if ((t->be->options & PR_O_HTTP_PROXY) && !(t->flags & SN_ADDR_SET)) { url2sa(req->data + msg->sl.rq.u, msg->sl.rq.u_l, &t->srv_addr); } /* * 7: the appsession cookie was looked up very early in 1.2, * so let's do the same now. */ /* It needs to look into the URI */ if (t->be->appsession_name) { get_srv_from_appsession(t, &req->data[msg->som], msg->sl.rq.l); } /* * 8: Now we can work with the cookies. * Note that doing so might move headers in the request, but * the fields will stay coherent and the URI will not move. * This should only be performed in the backend. */ if ((t->be->cookie_name || t->be->appsession_name || t->be->capture_name) && !(txn->flags & (TX_CLDENY|TX_CLTARPIT))) manage_client_side_cookies(t, req); /* * 9: add X-Forwarded-For if either the frontend or the backend * asks for it. */ if ((t->fe->options | t->be->options) & PR_O_FWDFOR) { if (t->cli_addr.ss_family == AF_INET) { /* Add an X-Forwarded-For header unless the source IP is * in the 'except' network range. */ if ((!t->fe->except_mask.s_addr || (((struct sockaddr_in *)&t->cli_addr)->sin_addr.s_addr & t->fe->except_mask.s_addr) != t->fe->except_net.s_addr) && (!t->be->except_mask.s_addr || (((struct sockaddr_in *)&t->cli_addr)->sin_addr.s_addr & t->be->except_mask.s_addr) != t->be->except_net.s_addr)) { int len; unsigned char *pn; pn = (unsigned char *)&((struct sockaddr_in *)&t->cli_addr)->sin_addr; /* Note: we rely on the backend to get the header name to be used for * x-forwarded-for, because the header is really meant for the backends. * However, if the backend did not specify any option, we have to rely * on the frontend's header name. */ if (t->be->fwdfor_hdr_len) { len = t->be->fwdfor_hdr_len; memcpy(trash, t->be->fwdfor_hdr_name, len); } else { len = t->fe->fwdfor_hdr_len; memcpy(trash, t->fe->fwdfor_hdr_name, len); } len += sprintf(trash + len, ": %d.%d.%d.%d", pn[0], pn[1], pn[2], pn[3]); if (unlikely(http_header_add_tail2(req, &txn->req, &txn->hdr_idx, trash, len)) < 0) goto return_bad_req; } } else if (t->cli_addr.ss_family == AF_INET6) { /* FIXME: for the sake of completeness, we should also support * 'except' here, although it is mostly useless in this case. */ int len; char pn[INET6_ADDRSTRLEN]; inet_ntop(AF_INET6, (const void *)&((struct sockaddr_in6 *)(&t->cli_addr))->sin6_addr, pn, sizeof(pn)); /* Note: we rely on the backend to get the header name to be used for * x-forwarded-for, because the header is really meant for the backends. * However, if the backend did not specify any option, we have to rely * on the frontend's header name. */ if (t->be->fwdfor_hdr_len) { len = t->be->fwdfor_hdr_len; memcpy(trash, t->be->fwdfor_hdr_name, len); } else { len = t->fe->fwdfor_hdr_len; memcpy(trash, t->fe->fwdfor_hdr_name, len); } len += sprintf(trash + len, ": %s", pn); if (unlikely(http_header_add_tail2(req, &txn->req, &txn->hdr_idx, trash, len)) < 0) goto return_bad_req; } } /* * 10: add "Connection: close" if needed and not yet set. * Note that we do not need to add it in case of HTTP/1.0. */ if (!(t->flags & SN_CONN_CLOSED) && ((t->fe->options | t->be->options) & (PR_O_HTTP_CLOSE|PR_O_FORCE_CLO))) { if ((unlikely(msg->sl.rq.v_l != 8) || unlikely(req->data[msg->som + msg->sl.rq.v + 7] != '0')) && unlikely(http_header_add_tail2(req, &txn->req, &txn->hdr_idx, "Connection: close", 17)) < 0) goto return_bad_req; t->flags |= SN_CONN_CLOSED; } /* Before we switch to data, was assignment set in manage_client_side_cookie? * If not assigned, perhaps we are balancing on url_param, but this is a * POST; and the parameters are in the body, maybe scan there to find our server. * (unless headers overflowed the buffer?) */ if (!(t->flags & (SN_ASSIGNED|SN_DIRECT)) && t->txn.meth == HTTP_METH_POST && t->be->url_param_name != NULL && t->be->url_param_post_limit != 0 && req->total < BUFSIZE && memchr(msg->sol + msg->sl.rq.u, '?', msg->sl.rq.u_l) == NULL) { /* are there enough bytes here? total == l || r || rlim ? * len is unsigned, but eoh is int, * how many bytes of body have we received? * eoh is the first empty line of the header */ /* already established CRLF or LF at eoh, move to start of message, find message length in buffer */ unsigned long len = req->total - (msg->sol[msg->eoh] == '\r' ? msg->eoh + 2 : msg->eoh + 1); /* If we have HTTP/1.1 and Expect: 100-continue, then abort. * We can't assume responsibility for the server's decision, * on this URI and header set. See rfc2616: 14.20, 8.2.3, * We also can't change our mind later, about which server to choose, so round robin. */ if ((likely(msg->sl.rq.v_l == 8) && req->data[msg->som + msg->sl.rq.v + 7] == '1')) { struct hdr_ctx ctx; ctx.idx = 0; /* Expect is allowed in 1.1, look for it */ http_find_header2("Expect", 6, msg->sol, &txn->hdr_idx, &ctx); if (ctx.idx != 0 && unlikely(ctx.vlen == 12 && strncasecmp(ctx.line+ctx.val,"100-continue",12)==0)) /* We can't reliablly stall and wait for data, because of * .NET clients that don't conform to rfc2616; so, no need for * the next block to check length expectations. * We could send 100 status back to the client, but then we need to * re-write headers, and send the message. And this isn't the right * place for that action. * TODO: support Expect elsewhere and delete this block. */ goto end_check_maybe_wait_for_body; } if ( likely(len > t->be->url_param_post_limit) ) { /* nothing to do, we got enough */ } else { /* limit implies we are supposed to need this many bytes * to find the parameter. Let's see how many bytes we can wait for. */ long long hint = len; struct hdr_ctx ctx; ctx.idx = 0; http_find_header2("Transfer-Encoding", 17, msg->sol, &txn->hdr_idx, &ctx); if (unlikely(ctx.idx && strncasecmp(ctx.line+ctx.val,"chunked",7)==0)) { t->srv_state = SV_STANALYZE; } else { ctx.idx = 0; http_find_header2("Content-Length", 14, msg->sol, &txn->hdr_idx, &ctx); /* now if we have a length, we'll take the hint */ if ( ctx.idx ) { /* We have Content-Length */ if ( strl2llrc(ctx.line+ctx.val,ctx.vlen, &hint) ) hint = 0; /* parse failure, untrusted client */ else { if ( hint > 0 ) msg->hdr_content_len = hint; else hint = 0; /* bad client, sent negative length */ } } /* but limited to what we care about, maybe we don't expect any entity data (hint == 0) */ if ( t->be->url_param_post_limit < hint ) hint = t->be->url_param_post_limit; /* now do we really need to buffer more data? */ if ( len < hint ) t->srv_state = SV_STANALYZE; /* else... There are no body bytes to wait for */ } } } end_check_maybe_wait_for_body: /************************************************************* * OK, that's finished for the headers. We have done what we * * could. Let's switch to the DATA state. * ************************************************************/ t->cli_state = CL_STDATA; req->flags |= BF_MAY_CONNECT; req->rlim = req->data + BUFSIZE; /* no more rewrite needed */ t->logs.tv_request = now; if (!t->fe->timeout.client || (t->srv_state < SV_STDATA && t->be->timeout.server)) { /* If the client has no timeout, or if the server is not ready yet, * and we know for sure that it can expire, then it's cleaner to * disable the timeout on the client side so that too low values * cannot make the sessions abort too early. * * FIXME-20050705: the server needs a way to re-enable this time-out * when it switches its state, otherwise a client can stay connected * indefinitely. This now seems to be OK. */ req->rex = TICK_ETERNITY; } /* When a connection is tarpitted, we use the tarpit timeout, * which may be the same as the connect timeout if unspecified. * If unset, then set it to zero because we really want it to * eventually expire. */ if (txn->flags & TX_CLTARPIT) { t->req->l = 0; /* flush the request so that we can drop the connection early * if the client closes first. */ req->cex = tick_add_ifset(now_ms, t->be->timeout.tarpit); if (!req->cex) req->cex = now_ms; } /* OK let's go on with the BODY now */ goto process_data; return_bad_req: /* let's centralize all bad requests */ txn->req.msg_state = HTTP_MSG_ERROR; txn->status = 400; client_retnclose(t, error_message(t, HTTP_ERR_400)); t->fe->failed_req++; return_prx_cond: if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_PRXCOND; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_R; return 1; } else if (c == CL_STDATA) { process_data: /* FIXME: this error handling is partly buggy because we always report * a 'DATA' phase while we don't know if the server was in IDLE, CONN * or HEADER phase. BTW, it's not logical to expire the client while * we're waiting for the server to connect. */ /* read or write error */ if (rep->flags & BF_WRITE_ERROR || req->flags & BF_READ_ERROR) { buffer_shutr_done(req); buffer_shutw_done(rep); fd_delete(t->cli_fd); t->cli_state = CL_STCLOSE; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_CLICL; if (!(t->flags & SN_FINST_MASK)) { if (t->pend_pos) t->flags |= SN_FINST_Q; else if (s == SV_STCONN) t->flags |= SN_FINST_C; else t->flags |= SN_FINST_D; } return 1; } /* last read, or end of server write */ else if (req->flags & BF_READ_NULL || s == SV_STSHUTW || s == SV_STCLOSE) { EV_FD_CLR(t->cli_fd, DIR_RD); buffer_shutr(req); t->cli_state = CL_STSHUTR; return 1; } /* last server read and buffer empty */ else if ((s == SV_STSHUTR || s == SV_STCLOSE) && (rep->l == 0)) { EV_FD_CLR(t->cli_fd, DIR_WR); buffer_shutw_done(rep); shutdown(t->cli_fd, SHUT_WR); /* We must ensure that the read part is still alive when switching * to shutw */ EV_FD_SET(t->cli_fd, DIR_RD); req->rex = tick_add_ifset(now_ms, t->fe->timeout.client); t->cli_state = CL_STSHUTW; //fprintf(stderr,"%p:%s(%d), c=%d, s=%d\n", t, __FUNCTION__, __LINE__, t->cli_state, t->cli_state); return 1; } /* read timeout */ else if (tick_is_expired(req->rex, now_ms)) { EV_FD_CLR(t->cli_fd, DIR_RD); buffer_shutr(req); t->cli_state = CL_STSHUTR; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_CLITO; if (!(t->flags & SN_FINST_MASK)) { if (t->pend_pos) t->flags |= SN_FINST_Q; else if (s == SV_STCONN) t->flags |= SN_FINST_C; else t->flags |= SN_FINST_D; } return 1; } /* write timeout */ else if (tick_is_expired(rep->wex, now_ms)) { EV_FD_CLR(t->cli_fd, DIR_WR); buffer_shutw_done(rep); shutdown(t->cli_fd, SHUT_WR); /* We must ensure that the read part is still alive when switching * to shutw */ EV_FD_SET(t->cli_fd, DIR_RD); req->rex = tick_add_ifset(now_ms, t->fe->timeout.client); t->cli_state = CL_STSHUTW; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_CLITO; if (!(t->flags & SN_FINST_MASK)) { if (t->pend_pos) t->flags |= SN_FINST_Q; else if (s == SV_STCONN) t->flags |= SN_FINST_C; else t->flags |= SN_FINST_D; } return 1; } if (req->l >= req->rlim - req->data) { /* no room to read more data */ if (EV_FD_COND_C(t->cli_fd, DIR_RD)) { /* stop reading until we get some space */ req->rex = TICK_ETERNITY; } } else { /* there's still some space in the buffer */ if (EV_FD_COND_S(t->cli_fd, DIR_RD)) { if (!t->fe->timeout.client || (t->srv_state < SV_STDATA && t->be->timeout.server)) /* If the client has no timeout, or if the server not ready yet, and we * know for sure that it can expire, then it's cleaner to disable the * timeout on the client side so that too low values cannot make the * sessions abort too early. */ req->rex = TICK_ETERNITY; else req->rex = tick_add(now_ms, t->fe->timeout.client); } } if ((rep->l == 0) || ((s < SV_STDATA) /* FIXME: this may be optimized && (rep->w == rep->h)*/)) { if (EV_FD_COND_C(t->cli_fd, DIR_WR)) { /* stop writing */ rep->wex = TICK_ETERNITY; } } else { /* buffer not empty */ if (EV_FD_COND_S(t->cli_fd, DIR_WR)) { /* restart writing */ rep->wex = tick_add_ifset(now_ms, t->fe->timeout.client); if (rep->wex) { /* FIXME: to prevent the client from expiring read timeouts during writes, * we refresh it. */ req->rex = rep->wex; } } } return 0; /* other cases change nothing */ } else if (c == CL_STSHUTR) { if (rep->flags & BF_WRITE_ERROR) { buffer_shutw_done(rep); fd_delete(t->cli_fd); t->cli_state = CL_STCLOSE; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_CLICL; if (!(t->flags & SN_FINST_MASK)) { if (t->pend_pos) t->flags |= SN_FINST_Q; else if (s == SV_STCONN) t->flags |= SN_FINST_C; else t->flags |= SN_FINST_D; } return 1; } else if ((s == SV_STSHUTR || s == SV_STCLOSE) && (rep->l == 0) && !(t->flags & SN_SELF_GEN)) { buffer_shutw_done(rep); fd_delete(t->cli_fd); t->cli_state = CL_STCLOSE; return 1; } else if (tick_is_expired(rep->wex, now_ms)) { buffer_shutw_done(rep); fd_delete(t->cli_fd); t->cli_state = CL_STCLOSE; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_CLITO; if (!(t->flags & SN_FINST_MASK)) { if (t->pend_pos) t->flags |= SN_FINST_Q; else if (s == SV_STCONN) t->flags |= SN_FINST_C; else t->flags |= SN_FINST_D; } return 1; } if (t->flags & SN_SELF_GEN) { produce_content(t); if (rep->l == 0) { buffer_shutw_done(rep); fd_delete(t->cli_fd); t->cli_state = CL_STCLOSE; return 1; } } if ((rep->l == 0) || ((s == SV_STHEADERS) /* FIXME: this may be optimized && (rep->w == rep->h)*/)) { if (EV_FD_COND_C(t->cli_fd, DIR_WR)) { /* stop writing */ rep->wex = TICK_ETERNITY; } } else { /* buffer not empty */ if (EV_FD_COND_S(t->cli_fd, DIR_WR)) { /* restart writing */ rep->wex = tick_add_ifset(now_ms, t->fe->timeout.client); } } return 0; } else if (c == CL_STSHUTW) { if (req->flags & BF_READ_ERROR) { buffer_shutr_done(req); fd_delete(t->cli_fd); t->cli_state = CL_STCLOSE; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_CLICL; if (!(t->flags & SN_FINST_MASK)) { if (t->pend_pos) t->flags |= SN_FINST_Q; else if (s == SV_STCONN) t->flags |= SN_FINST_C; else t->flags |= SN_FINST_D; } return 1; } else if (req->flags & BF_READ_NULL || s == SV_STSHUTW || s == SV_STCLOSE) { buffer_shutr_done(req); fd_delete(t->cli_fd); t->cli_state = CL_STCLOSE; return 1; } else if (tick_is_expired(req->rex, now_ms)) { buffer_shutr_done(req); fd_delete(t->cli_fd); t->cli_state = CL_STCLOSE; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_CLITO; if (!(t->flags & SN_FINST_MASK)) { if (t->pend_pos) t->flags |= SN_FINST_Q; else if (s == SV_STCONN) t->flags |= SN_FINST_C; else t->flags |= SN_FINST_D; } return 1; } else if (req->l >= req->rlim - req->data) { /* no room to read more data */ /* FIXME-20050705: is it possible for a client to maintain a session * after the timeout by sending more data after it receives a close ? */ if (EV_FD_COND_C(t->cli_fd, DIR_RD)) { /* stop reading until we get some space */ req->rex = TICK_ETERNITY; } } else { /* there's still some space in the buffer */ if (EV_FD_COND_S(t->cli_fd, DIR_RD)) { req->rex = tick_add_ifset(now_ms, t->fe->timeout.client); } } return 0; } else { /* CL_STCLOSE: nothing to do */ if ((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))) { int len; len = sprintf(trash, "%08x:%s.clicls[%04x:%04x]\n", t->uniq_id, t->be->id, (unsigned short)t->cli_fd, (unsigned short)t->srv_fd); write(1, trash, len); } return 0; } return 0; } /* * manages the server FSM and its socket. It returns 1 if a state has changed * (and a resync may be needed), 0 else. */ int process_srv(struct session *t) { int s = t->srv_state; struct http_txn *txn = &t->txn; struct buffer *req = t->req; struct buffer *rep = t->rep; int conn_err; DPRINTF(stderr,"process_srv: c=%s s=%s set(r,w)=%d,%d exp(r,w)=%u,%u\n", cli_stnames[c], srv_stnames[s], EV_FD_ISSET(t->srv_fd, DIR_RD), EV_FD_ISSET(t->srv_fd, DIR_WR), rep->rex, req->wex); if (s == SV_STIDLE) { /* NOTE: The client processor may switch to SV_STANALYZE, which switches back SV_STIDLE. * This is logcially after CL_STHEADERS completed, CL_STDATA has started, but * we need to defer server selection until more data arrives, if possible. * This is rare, and only if balancing on parameter hash with values in the entity of a POST */ if ((rep->flags & BF_SHUTW_STATUS) || ((req->flags & BF_SHUTR_STATUS) && (req->l == 0 || t->be->options & PR_O_ABRT_CLOSE))) { /* give up */ req->cex = TICK_ETERNITY; if (t->pend_pos) t->logs.t_queue = tv_ms_elapsed(&t->logs.tv_accept, &now); /* note that this must not return any error because it would be able to * overwrite the client_retnclose() output. */ if (txn->flags & TX_CLTARPIT) srv_close_with_err(t, SN_ERR_CLICL, SN_FINST_T, 0, NULL); else srv_close_with_err(t, SN_ERR_CLICL, t->pend_pos ? SN_FINST_Q : SN_FINST_C, 0, NULL); return 1; } else if (req->flags & BF_MAY_CONNECT) { /* the client allows the server to connect */ if (txn->flags & TX_CLTARPIT) { /* This connection is being tarpitted. The CLIENT side has * already set the connect expiration date to the right * timeout. We just have to check that it has not expired. */ if (!tick_is_expired(req->cex, now_ms)) return 0; /* We will set the queue timer to the time spent, just for * logging purposes. We fake a 500 server error, so that the * attacker will not suspect his connection has been tarpitted. * It will not cause trouble to the logs because we can exclude * the tarpitted connections by filtering on the 'PT' status flags. */ req->cex = TICK_ETERNITY; t->logs.t_queue = tv_ms_elapsed(&t->logs.tv_accept, &now); srv_close_with_err(t, SN_ERR_PRXCOND, SN_FINST_T, 500, error_message(t, HTTP_ERR_500)); return 1; } /* Right now, we will need to create a connection to the server. * We might already have tried, and got a connection pending, in * which case we will not do anything till it's pending. It's up * to any other session to release it and wake us up again. */ if (t->pend_pos) { if (!tick_is_expired(req->cex, now_ms)) { return 0; } else { /* we've been waiting too long here */ req->cex = TICK_ETERNITY; t->logs.t_queue = tv_ms_elapsed(&t->logs.tv_accept, &now); srv_close_with_err(t, SN_ERR_SRVTO, SN_FINST_Q, 503, error_message(t, HTTP_ERR_503)); if (t->srv) t->srv->failed_conns++; t->be->failed_conns++; return 1; } } do { /* first, get a connection */ if (txn->meth == HTTP_METH_GET || txn->meth == HTTP_METH_HEAD) t->flags |= SN_REDIRECTABLE; if (srv_redispatch_connect(t)) return t->srv_state != SV_STIDLE; if ((t->flags & SN_REDIRECTABLE) && t->srv && t->srv->rdr_len) { /* Server supporting redirection and it is possible. * Invalid requests are reported as such. It concerns all * the largest ones. */ struct chunk rdr; char *path; int len; /* 1: create the response header */ rdr.len = strlen(HTTP_302); rdr.str = trash; memcpy(rdr.str, HTTP_302, rdr.len); /* 2: add the server's prefix */ if (rdr.len + t->srv->rdr_len > sizeof(trash)) goto cancel_redir; memcpy(rdr.str + rdr.len, t->srv->rdr_pfx, t->srv->rdr_len); rdr.len += t->srv->rdr_len; /* 3: add the request URI */ path = http_get_path(txn); if (!path) goto cancel_redir; len = txn->req.sl.rq.u_l + (txn->req.sol+txn->req.sl.rq.u) - path; if (rdr.len + len > sizeof(trash) - 4) /* 4 for CRLF-CRLF */ goto cancel_redir; memcpy(rdr.str + rdr.len, path, len); rdr.len += len; memcpy(rdr.str + rdr.len, "\r\n\r\n", 4); rdr.len += 4; srv_close_with_err(t, SN_ERR_PRXCOND, SN_FINST_C, 302, &rdr); /* FIXME: we should increase a counter of redirects per server and per backend. */ if (t->srv) t->srv->cum_sess++; return 1; cancel_redir: txn->status = 400; t->fe->failed_req++; srv_close_with_err(t, SN_ERR_PRXCOND, SN_FINST_C, 400, error_message(t, HTTP_ERR_400)); return 1; } /* try to (re-)connect to the server, and fail if we expire the * number of retries. */ if (srv_retryable_connect(t)) { t->logs.t_queue = tv_ms_elapsed(&t->logs.tv_accept, &now); return t->srv_state != SV_STIDLE; } } while (1); } } else if (s == SV_STCONN) { /* connection in progress */ if ((rep->flags & BF_SHUTW_STATUS) || ((req->flags & BF_SHUTR_STATUS) && ((req->l == 0 && !(req->flags & BF_WRITE_STATUS)) || t->be->options & PR_O_ABRT_CLOSE))) { /* give up */ req->cex = TICK_ETERNITY; if (!(t->flags & SN_CONN_TAR)) { /* if we are in turn-around, we have already closed the FD */ fd_delete(t->srv_fd); if (t->srv) { t->srv->cur_sess--; sess_change_server(t, NULL); } } /* note that this must not return any error because it would be able to * overwrite the client_retnclose() output. */ srv_close_with_err(t, SN_ERR_CLICL, SN_FINST_C, 0, NULL); return 1; } if (!(req->flags & BF_WRITE_STATUS) && !tick_is_expired(req->cex, now_ms)) { return 0; /* nothing changed */ } else if (!(req->flags & BF_WRITE_STATUS) || (req->flags & BF_WRITE_ERROR)) { /* timeout, asynchronous connect error or first write error */ //fprintf(stderr,"2: c=%d, s=%d\n", c, s); if (t->flags & SN_CONN_TAR) { /* We are doing a turn-around waiting for a new connection attempt. */ if (!tick_is_expired(req->cex, now_ms)) return 0; t->flags &= ~SN_CONN_TAR; } else { fd_delete(t->srv_fd); if (t->srv) { t->srv->cur_sess--; sess_change_server(t, NULL); } if (!(req->flags & BF_WRITE_STATUS)) conn_err = SN_ERR_SRVTO; // it was a connect timeout. else conn_err = SN_ERR_SRVCL; // it was an asynchronous connect error. /* ensure that we have enough retries left */ if (srv_count_retry_down(t, conn_err)) return 1; if (req->flags & BF_WRITE_ERROR) { /* we encountered an immediate connection error, and we * will have to retry connecting to the same server, most * likely leading to the same result. To avoid this, we * fake a connection timeout to retry after a turn-around * time of 1 second. We will wait in the previous if block. */ t->flags |= SN_CONN_TAR; req->cex = tick_add(now_ms, MS_TO_TICKS(1000)); return 0; } } if (t->srv && t->conn_retries == 0 && t->be->options & PR_O_REDISP) { /* We're on our last chance, and the REDISP option was specified. * We will ignore cookie and force to balance or use the dispatcher. */ /* let's try to offer this slot to anybody */ if (may_dequeue_tasks(t->srv, t->be)) process_srv_queue(t->srv); /* it's left to the dispatcher to choose a server */ t->flags &= ~(SN_DIRECT | SN_ASSIGNED | SN_ADDR_SET); t->prev_srv = t->srv; /* first, get a connection */ if (srv_redispatch_connect(t)) return t->srv_state != SV_STCONN; } else { if (t->srv) t->srv->retries++; t->be->retries++; } do { /* Now we will try to either reconnect to the same server or * connect to another server. If the connection gets queued * because all servers are saturated, then we will go back to * the SV_STIDLE state. */ if (srv_retryable_connect(t)) { t->logs.t_queue = tv_ms_elapsed(&t->logs.tv_accept, &now); return t->srv_state != SV_STCONN; } /* we need to redispatch the connection to another server */ if (srv_redispatch_connect(t)) return t->srv_state != SV_STCONN; } while (1); } else { /* no error or write 0 */ t->logs.t_connect = tv_ms_elapsed(&t->logs.tv_accept, &now); //fprintf(stderr,"3: c=%d, s=%d\n", c, s); if (req->l == 0) /* nothing to write */ { EV_FD_CLR(t->srv_fd, DIR_WR); req->wex = TICK_ETERNITY; } else /* need the right to write */ { EV_FD_SET(t->srv_fd, DIR_WR); req->wex = tick_add_ifset(now_ms, t->be->timeout.server); if (req->wex) { /* FIXME: to prevent the server from expiring read timeouts during writes, * we refresh it. */ rep->rex = req->wex; } } if (t->be->mode == PR_MODE_TCP) { /* let's allow immediate data connection in this case */ EV_FD_SET(t->srv_fd, DIR_RD); rep->rex = tick_add_ifset(now_ms, t->be->timeout.server); t->srv_state = SV_STDATA; rep->rlim = rep->data + BUFSIZE; /* no rewrite needed */ /* if the user wants to log as soon as possible, without counting bytes from the server, then this is the right moment. */ if (t->fe->to_log && !(t->logs.logwait & LW_BYTES)) { t->logs.t_close = t->logs.t_connect; /* to get a valid end date */ tcp_sess_log(t); } #ifdef CONFIG_HAP_TCPSPLICE if ((t->fe->options & t->be->options) & PR_O_TCPSPLICE) { /* TCP splicing supported by both FE and BE */ tcp_splice_splicefd(t->cli_fd, t->srv_fd, 0); } #endif } else { t->srv_state = SV_STHEADERS; rep->rlim = rep->data + BUFSIZE - MAXREWRITE; /* rewrite needed */ t->txn.rsp.msg_state = HTTP_MSG_RPBEFORE; /* reset hdr_idx which was already initialized by the request. * right now, the http parser does it. * hdr_idx_init(&t->txn.hdr_idx); */ } req->cex = TICK_ETERNITY; return 1; } } else if (s == SV_STHEADERS) { /* receiving server headers */ /* * Now parse the partial (or complete) lines. * We will check the response syntax, and also join multi-line * headers. An index of all the lines will be elaborated while * parsing. * * For the parsing, we use a 28 states FSM. * * Here is the information we currently have : * rep->data + req->som = beginning of response * rep->data + req->eoh = end of processed headers / start of current one * rep->data + req->eol = end of current header or line (LF or CRLF) * rep->lr = first non-visited byte * rep->r = end of data */ int cur_idx; struct http_msg *msg = &txn->rsp; struct proxy *cur_proxy; if (likely(rep->lr < rep->r)) http_msg_analyzer(rep, msg, &txn->hdr_idx); /* 1: we might have to print this header in debug mode */ if (unlikely((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)) && (msg->msg_state == HTTP_MSG_BODY || msg->msg_state == HTTP_MSG_ERROR))) { char *eol, *sol; sol = rep->data + msg->som; eol = sol + msg->sl.rq.l; debug_hdr("srvrep", t, sol, eol); sol += hdr_idx_first_pos(&txn->hdr_idx); cur_idx = hdr_idx_first_idx(&txn->hdr_idx); while (cur_idx) { eol = sol + txn->hdr_idx.v[cur_idx].len; debug_hdr("srvhdr", t, sol, eol); sol = eol + txn->hdr_idx.v[cur_idx].cr + 1; cur_idx = txn->hdr_idx.v[cur_idx].next; } } if ((rep->l < rep->rlim - rep->data) && EV_FD_COND_S(t->srv_fd, DIR_RD)) { /* fd in DIR_RD was disabled, perhaps because of a previous buffer * full. We cannot loop here since stream_sock_read will disable it only if * rep->l == rlim-data */ req->rex = tick_add_ifset(now_ms, t->be->timeout.server); } /* * Now we quickly check if we have found a full valid response. * If not so, we check the FD and buffer states before leaving. * A full response is indicated by the fact that we have seen * the double LF/CRLF, so the state is HTTP_MSG_BODY. Invalid * responses are checked first. * * Depending on whether the client is still there or not, we * may send an error response back or not. Note that normally * we should only check for HTTP status there, and check I/O * errors somewhere else. */ if (unlikely(msg->msg_state != HTTP_MSG_BODY)) { /* Invalid response, or read error or write error */ if (unlikely((msg->msg_state == HTTP_MSG_ERROR) || (req->flags & BF_WRITE_ERROR) || (rep->flags & BF_READ_ERROR))) { buffer_shutr_done(rep); buffer_shutw_done(req); fd_delete(t->srv_fd); if (t->srv) { t->srv->cur_sess--; t->srv->failed_resp++; sess_change_server(t, NULL); } t->be->failed_resp++; t->srv_state = SV_STCLOSE; txn->status = 502; client_return(t, error_message(t, HTTP_ERR_502)); if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_SRVCL; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_H; /* We used to have a free connection slot. Since we'll never use it, * we have to inform the server that it may be used by another session. */ if (t->srv && may_dequeue_tasks(t->srv, t->be)) process_srv_queue(t->srv); return 1; } /* end of client write or end of server read. * since we are in header mode, if there's no space left for headers, we * won't be able to free more later, so the session will never terminate. */ else if (unlikely(rep->flags & (BF_READ_NULL | BF_SHUTW_STATUS) || rep->l >= rep->rlim - rep->data)) { EV_FD_CLR(t->srv_fd, DIR_RD); buffer_shutr_done(rep); t->srv_state = SV_STSHUTR; //fprintf(stderr,"%p:%s(%d), c=%d, s=%d\n", t, __FUNCTION__, __LINE__, t->cli_state, t->cli_state); return 1; } /* read timeout : return a 504 to the client. */ else if (unlikely(EV_FD_ISSET(t->srv_fd, DIR_RD) && tick_is_expired(rep->rex, now_ms))) { buffer_shutr_done(rep); buffer_shutw_done(req); fd_delete(t->srv_fd); if (t->srv) { t->srv->cur_sess--; t->srv->failed_resp++; sess_change_server(t, NULL); } t->be->failed_resp++; t->srv_state = SV_STCLOSE; txn->status = 504; client_return(t, error_message(t, HTTP_ERR_504)); if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_SRVTO; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_H; /* We used to have a free connection slot. Since we'll never use it, * we have to inform the server that it may be used by another session. */ if (t->srv && may_dequeue_tasks(t->srv, t->be)) process_srv_queue(t->srv); return 1; } /* last client read and buffer empty */ /* FIXME!!! here, we don't want to switch to SHUTW if the * client shuts read too early, because we may still have * some work to do on the headers. * The side-effect is that if the client completely closes its * connection during SV_STHEADER, the connection to the server * is kept until a response comes back or the timeout is reached. */ else if (0 && /* we don't want to switch to shutw for now */ unlikely(req->flags & BF_SHUTR_STATUS && (req->l == 0))) { EV_FD_CLR(t->srv_fd, DIR_WR); buffer_shutw_done(req); /* We must ensure that the read part is still * alive when switching to shutw */ EV_FD_SET(t->srv_fd, DIR_RD); rep->rex = tick_add_ifset(now_ms, t->be->timeout.server); shutdown(t->srv_fd, SHUT_WR); t->srv_state = SV_STSHUTW; return 1; } /* write timeout */ /* FIXME!!! here, we don't want to switch to SHUTW if the * client shuts read too early, because we may still have * some work to do on the headers. */ else if (unlikely(EV_FD_ISSET(t->srv_fd, DIR_WR) && tick_is_expired(req->wex, now_ms))) { EV_FD_CLR(t->srv_fd, DIR_WR); buffer_shutw_done(req); shutdown(t->srv_fd, SHUT_WR); /* We must ensure that the read part is still alive * when switching to shutw */ EV_FD_SET(t->srv_fd, DIR_RD); rep->rex = tick_add_ifset(now_ms, t->be->timeout.server); t->srv_state = SV_STSHUTW; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_SRVTO; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_H; return 1; } /* * And now the non-error cases. */ /* Data remaining in the request buffer. * This happens during the first pass here, and during * long posts. */ else if (likely(req->l)) { if (EV_FD_COND_S(t->srv_fd, DIR_WR)) { /* restart writing */ req->wex = tick_add_ifset(now_ms, t->be->timeout.server); if (req->wex) { /* FIXME: to prevent the server from expiring read timeouts during writes, * we refresh it. */ rep->rex = req->wex; } } } /* nothing left in the request buffer */ else { if (EV_FD_COND_C(t->srv_fd, DIR_WR)) { /* stop writing */ req->wex = TICK_ETERNITY; } } return t->srv_state != SV_STHEADERS; } /***************************************************************** * More interesting part now : we know that we have a complete * * response which at least looks like HTTP. We have an indicator * * of each header's length, so we can parse them quickly. * ****************************************************************/ /* ensure we keep this pointer to the beginning of the message */ msg->sol = rep->data + msg->som; /* * 1: get the status code and check for cacheability. */ t->logs.logwait &= ~LW_RESP; txn->status = strl2ui(rep->data + msg->sl.st.c, msg->sl.st.c_l); switch (txn->status) { case 200: case 203: case 206: case 300: case 301: case 410: /* RFC2616 @13.4: * "A response received with a status code of * 200, 203, 206, 300, 301 or 410 MAY be stored * by a cache (...) unless a cache-control * directive prohibits caching." * * RFC2616 @9.5: POST method : * "Responses to this method are not cacheable, * unless the response includes appropriate * Cache-Control or Expires header fields." */ if (likely(txn->meth != HTTP_METH_POST) && (t->be->options & (PR_O_CHK_CACHE|PR_O_COOK_NOC))) txn->flags |= TX_CACHEABLE | TX_CACHE_COOK; break; default: break; } /* * 2: we may need to capture headers */ if (unlikely((t->logs.logwait & LW_RSPHDR) && t->fe->rsp_cap)) capture_headers(rep->data + msg->som, &txn->hdr_idx, txn->rsp.cap, t->fe->rsp_cap); /* * 3: we will have to evaluate the filters. * As opposed to version 1.2, now they will be evaluated in the * filters order and not in the header order. This means that * each filter has to be validated among all headers. * * Filters are tried with ->be first, then with ->fe if it is * different from ->be. */ t->flags &= ~SN_CONN_CLOSED; /* prepare for inspection */ cur_proxy = t->be; while (1) { struct proxy *rule_set = cur_proxy; /* try headers filters */ if (rule_set->rsp_exp != NULL) { if (apply_filters_to_response(t, rep, rule_set->rsp_exp) < 0) { return_bad_resp: if (t->srv) { t->srv->cur_sess--; t->srv->failed_resp++; sess_change_server(t, NULL); } cur_proxy->failed_resp++; return_srv_prx_502: buffer_shutr_done(rep); buffer_shutw_done(req); fd_delete(t->srv_fd); t->srv_state = SV_STCLOSE; txn->status = 502; client_return(t, error_message(t, HTTP_ERR_502)); if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_PRXCOND; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_H; /* We used to have a free connection slot. Since we'll never use it, * we have to inform the server that it may be used by another session. */ if (t->srv && may_dequeue_tasks(t->srv, cur_proxy)) process_srv_queue(t->srv); return 1; } } /* has the response been denied ? */ if (txn->flags & TX_SVDENY) { if (t->srv) { t->srv->cur_sess--; t->srv->failed_secu++; sess_change_server(t, NULL); } cur_proxy->denied_resp++; goto return_srv_prx_502; } /* We might have to check for "Connection:" */ if (((t->fe->options | t->be->options) & (PR_O_HTTP_CLOSE|PR_O_FORCE_CLO)) && !(t->flags & SN_CONN_CLOSED)) { char *cur_ptr, *cur_end, *cur_next; int cur_idx, old_idx, delta, val; struct hdr_idx_elem *cur_hdr; cur_next = rep->data + txn->rsp.som + hdr_idx_first_pos(&txn->hdr_idx); old_idx = 0; while ((cur_idx = txn->hdr_idx.v[old_idx].next)) { cur_hdr = &txn->hdr_idx.v[cur_idx]; cur_ptr = cur_next; cur_end = cur_ptr + cur_hdr->len; cur_next = cur_end + cur_hdr->cr + 1; val = http_header_match2(cur_ptr, cur_end, "Connection", 10); if (val) { /* 3 possibilities : * - we have already set Connection: close, * so we remove this line. * - we have not yet set Connection: close, * but this line indicates close. We leave * it untouched and set the flag. * - we have not yet set Connection: close, * and this line indicates non-close. We * replace it. */ if (t->flags & SN_CONN_CLOSED) { delta = buffer_replace2(rep, cur_ptr, cur_next, NULL, 0); txn->rsp.eoh += delta; cur_next += delta; txn->hdr_idx.v[old_idx].next = cur_hdr->next; txn->hdr_idx.used--; cur_hdr->len = 0; } else { if (strncasecmp(cur_ptr + val, "close", 5) != 0) { delta = buffer_replace2(rep, cur_ptr + val, cur_end, "close", 5); cur_next += delta; cur_hdr->len += delta; txn->rsp.eoh += delta; } t->flags |= SN_CONN_CLOSED; } } old_idx = cur_idx; } } /* add response headers from the rule sets in the same order */ for (cur_idx = 0; cur_idx < rule_set->nb_rspadd; cur_idx++) { if (unlikely(http_header_add_tail(rep, &txn->rsp, &txn->hdr_idx, rule_set->rsp_add[cur_idx])) < 0) goto return_bad_resp; } /* check whether we're already working on the frontend */ if (cur_proxy == t->fe) break; cur_proxy = t->fe; } /* * 4: check for server cookie. */ if (t->be->cookie_name || t->be->appsession_name || t->be->capture_name || (t->be->options & PR_O_CHK_CACHE)) manage_server_side_cookies(t, rep); /* * 5: check for cache-control or pragma headers if required. */ if ((t->be->options & (PR_O_COOK_NOC | PR_O_CHK_CACHE)) != 0) check_response_for_cacheability(t, rep); /* * 6: add server cookie in the response if needed */ if ((t->srv) && !(t->flags & SN_DIRECT) && (t->be->options & PR_O_COOK_INS) && (!(t->be->options & PR_O_COOK_POST) || (txn->meth == HTTP_METH_POST))) { int len; /* the server is known, it's not the one the client requested, we have to * insert a set-cookie here, except if we want to insert only on POST * requests and this one isn't. Note that servers which don't have cookies * (eg: some backup servers) will return a full cookie removal request. */ len = sprintf(trash, "Set-Cookie: %s=%s; path=/", t->be->cookie_name, t->srv->cookie ? t->srv->cookie : "; Expires=Thu, 01-Jan-1970 00:00:01 GMT"); if (t->be->cookie_domain) len += sprintf(trash+len, "; domain=%s", t->be->cookie_domain); if (unlikely(http_header_add_tail2(rep, &txn->rsp, &txn->hdr_idx, trash, len)) < 0) goto return_bad_resp; txn->flags |= TX_SCK_INSERTED; /* Here, we will tell an eventual cache on the client side that we don't * want it to cache this reply because HTTP/1.0 caches also cache cookies ! * Some caches understand the correct form: 'no-cache="set-cookie"', but * others don't (eg: apache <= 1.3.26). So we use 'private' instead. */ if ((t->be->options & PR_O_COOK_NOC) && (txn->flags & TX_CACHEABLE)) { txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; if (unlikely(http_header_add_tail2(rep, &txn->rsp, &txn->hdr_idx, "Cache-control: private", 22)) < 0) goto return_bad_resp; } } /* * 7: check if result will be cacheable with a cookie. * We'll block the response if security checks have caught * nasty things such as a cacheable cookie. */ if (((txn->flags & (TX_CACHEABLE | TX_CACHE_COOK | TX_SCK_ANY)) == (TX_CACHEABLE | TX_CACHE_COOK | TX_SCK_ANY)) && (t->be->options & PR_O_CHK_CACHE)) { /* we're in presence of a cacheable response containing * a set-cookie header. We'll block it as requested by * the 'checkcache' option, and send an alert. */ if (t->srv) { t->srv->cur_sess--; t->srv->failed_secu++; sess_change_server(t, NULL); } t->be->denied_resp++; Alert("Blocking cacheable cookie in response from instance %s, server %s.\n", t->be->id, t->srv?t->srv->id:""); send_log(t->be, LOG_ALERT, "Blocking cacheable cookie in response from instance %s, server %s.\n", t->be->id, t->srv?t->srv->id:""); goto return_srv_prx_502; } /* * 8: add "Connection: close" if needed and not yet set. * Note that we do not need to add it in case of HTTP/1.0. */ if (!(t->flags & SN_CONN_CLOSED) && ((t->fe->options | t->be->options) & (PR_O_HTTP_CLOSE|PR_O_FORCE_CLO))) { if ((unlikely(msg->sl.st.v_l != 8) || unlikely(req->data[msg->som + 7] != '0')) && unlikely(http_header_add_tail2(rep, &txn->rsp, &txn->hdr_idx, "Connection: close", 17)) < 0) goto return_bad_resp; t->flags |= SN_CONN_CLOSED; } /************************************************************* * OK, that's finished for the headers. We have done what we * * could. Let's switch to the DATA state. * ************************************************************/ t->srv_state = SV_STDATA; rep->rlim = rep->data + BUFSIZE; /* no more rewrite needed */ t->logs.t_data = tv_ms_elapsed(&t->logs.tv_accept, &now); /* client connection already closed or option 'forceclose' required : * we close the server's outgoing connection right now. */ if ((req->l == 0) && (req->flags & BF_SHUTR_STATUS || t->be->options & PR_O_FORCE_CLO)) { EV_FD_CLR(t->srv_fd, DIR_WR); buffer_shutw_done(req); /* We must ensure that the read part is still alive when switching * to shutw */ EV_FD_SET(t->srv_fd, DIR_RD); rep->rex = tick_add_ifset(now_ms, t->be->timeout.server); shutdown(t->srv_fd, SHUT_WR); t->srv_state = SV_STSHUTW; } #ifdef CONFIG_HAP_TCPSPLICE if ((t->fe->options & t->be->options) & PR_O_TCPSPLICE) { /* TCP splicing supported by both FE and BE */ tcp_splice_splicefd(t->cli_fd, t->srv_fd, 0); } #endif /* if the user wants to log as soon as possible, without counting * bytes from the server, then this is the right moment. We have * to temporarily assign bytes_out to log what we currently have. */ if (t->fe->to_log && !(t->logs.logwait & LW_BYTES)) { t->logs.t_close = t->logs.t_data; /* to get a valid end date */ t->logs.bytes_out = txn->rsp.eoh; if (t->fe->to_log & LW_REQ) http_sess_log(t); else tcp_sess_log(t); t->logs.bytes_out = 0; } /* Note: we must not try to cheat by jumping directly to DATA, * otherwise we would not let the client side wake up. */ return 1; } else if (s == SV_STDATA) { /* read or write error */ if (req->flags & BF_WRITE_ERROR || rep->flags & BF_READ_ERROR) { buffer_shutr_done(rep); buffer_shutw_done(req); fd_delete(t->srv_fd); if (t->srv) { t->srv->cur_sess--; t->srv->failed_resp++; sess_change_server(t, NULL); } t->be->failed_resp++; t->srv_state = SV_STCLOSE; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_SRVCL; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_D; /* We used to have a free connection slot. Since we'll never use it, * we have to inform the server that it may be used by another session. */ if (may_dequeue_tasks(t->srv, t->be)) process_srv_queue(t->srv); return 1; } /* last read, or end of client write */ else if (rep->flags & (BF_READ_NULL | BF_SHUTW_STATUS)) { EV_FD_CLR(t->srv_fd, DIR_RD); buffer_shutr(rep); t->srv_state = SV_STSHUTR; //fprintf(stderr,"%p:%s(%d), c=%d, s=%d\n", t, __FUNCTION__, __LINE__, t->cli_state, t->cli_state); return 1; } /* end of client read and no more data to send */ else if (req->flags & BF_SHUTR_STATUS && (req->l == 0)) { EV_FD_CLR(t->srv_fd, DIR_WR); buffer_shutw_done(req); shutdown(t->srv_fd, SHUT_WR); /* We must ensure that the read part is still alive when switching * to shutw */ EV_FD_SET(t->srv_fd, DIR_RD); rep->rex = tick_add_ifset(now_ms, t->be->timeout.server); t->srv_state = SV_STSHUTW; return 1; } /* read timeout */ else if (tick_is_expired(rep->rex, now_ms)) { EV_FD_CLR(t->srv_fd, DIR_RD); buffer_shutr(rep); t->srv_state = SV_STSHUTR; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_SRVTO; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_D; return 1; } /* write timeout */ else if (tick_is_expired(req->wex, now_ms)) { EV_FD_CLR(t->srv_fd, DIR_WR); buffer_shutw_done(req); shutdown(t->srv_fd, SHUT_WR); /* We must ensure that the read part is still alive when switching * to shutw */ EV_FD_SET(t->srv_fd, DIR_RD); rep->cex = tick_add_ifset(now_ms, t->be->timeout.server); t->srv_state = SV_STSHUTW; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_SRVTO; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_D; return 1; } /* recompute request time-outs */ if (req->l == 0) { if (EV_FD_COND_C(t->srv_fd, DIR_WR)) { /* stop writing */ req->wex = TICK_ETERNITY; } } else { /* buffer not empty, there are still data to be transferred */ if (EV_FD_COND_S(t->srv_fd, DIR_WR)) { /* restart writing */ req->wex = tick_add_ifset(now_ms, t->be->timeout.server); if (req->wex) { /* FIXME: to prevent the server from expiring read timeouts during writes, * we refresh it. */ rep->rex = req->wex; } } } /* recompute response time-outs */ if (rep->l == BUFSIZE) { /* no room to read more data */ if (EV_FD_COND_C(t->srv_fd, DIR_RD)) { rep->rex = TICK_ETERNITY; } } else { if (EV_FD_COND_S(t->srv_fd, DIR_RD)) { rep->rex = tick_add_ifset(now_ms, t->be->timeout.server); } } return 0; /* other cases change nothing */ } else if (s == SV_STSHUTR) { if (req->flags & BF_WRITE_ERROR) { //EV_FD_CLR(t->srv_fd, DIR_WR); buffer_shutw_done(req); fd_delete(t->srv_fd); if (t->srv) { t->srv->cur_sess--; t->srv->failed_resp++; sess_change_server(t, NULL); } t->be->failed_resp++; //close(t->srv_fd); t->srv_state = SV_STCLOSE; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_SRVCL; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_D; /* We used to have a free connection slot. Since we'll never use it, * we have to inform the server that it may be used by another session. */ if (may_dequeue_tasks(t->srv, t->be)) process_srv_queue(t->srv); return 1; } else if (req->flags & BF_SHUTR_STATUS && (req->l == 0)) { //EV_FD_CLR(t->srv_fd, DIR_WR); buffer_shutw_done(req); fd_delete(t->srv_fd); if (t->srv) { t->srv->cur_sess--; sess_change_server(t, NULL); } //close(t->srv_fd); t->srv_state = SV_STCLOSE; /* We used to have a free connection slot. Since we'll never use it, * we have to inform the server that it may be used by another session. */ if (may_dequeue_tasks(t->srv, t->be)) process_srv_queue(t->srv); return 1; } else if (tick_is_expired(req->wex, now_ms)) { //EV_FD_CLR(t->srv_fd, DIR_WR); buffer_shutw_done(req); fd_delete(t->srv_fd); if (t->srv) { t->srv->cur_sess--; sess_change_server(t, NULL); } //close(t->srv_fd); t->srv_state = SV_STCLOSE; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_SRVTO; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_D; /* We used to have a free connection slot. Since we'll never use it, * we have to inform the server that it may be used by another session. */ if (may_dequeue_tasks(t->srv, t->be)) process_srv_queue(t->srv); return 1; } else if (req->l == 0) { if (EV_FD_COND_C(t->srv_fd, DIR_WR)) { /* stop writing */ req->wex = TICK_ETERNITY; } } else { /* buffer not empty */ if (EV_FD_COND_S(t->srv_fd, DIR_WR)) { /* restart writing */ req->wex = tick_add_ifset(now_ms, t->be->timeout.server); } } return 0; } else if (s == SV_STSHUTW) { if (rep->flags & BF_READ_ERROR) { //EV_FD_CLR(t->srv_fd, DIR_RD); buffer_shutr_done(rep); fd_delete(t->srv_fd); if (t->srv) { t->srv->cur_sess--; t->srv->failed_resp++; sess_change_server(t, NULL); } t->be->failed_resp++; //close(t->srv_fd); t->srv_state = SV_STCLOSE; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_SRVCL; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_D; /* We used to have a free connection slot. Since we'll never use it, * we have to inform the server that it may be used by another session. */ if (may_dequeue_tasks(t->srv, t->be)) process_srv_queue(t->srv); return 1; } else if (rep->flags & (BF_READ_NULL | BF_SHUTW_STATUS)) { //EV_FD_CLR(t->srv_fd, DIR_RD); buffer_shutr_done(rep); fd_delete(t->srv_fd); if (t->srv) { t->srv->cur_sess--; sess_change_server(t, NULL); } //close(t->srv_fd); t->srv_state = SV_STCLOSE; /* We used to have a free connection slot. Since we'll never use it, * we have to inform the server that it may be used by another session. */ if (may_dequeue_tasks(t->srv, t->be)) process_srv_queue(t->srv); return 1; } else if (tick_is_expired(rep->rex, now_ms)) { //EV_FD_CLR(t->srv_fd, DIR_RD); buffer_shutr_done(rep); fd_delete(t->srv_fd); if (t->srv) { t->srv->cur_sess--; sess_change_server(t, NULL); } //close(t->srv_fd); t->srv_state = SV_STCLOSE; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_SRVTO; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_D; /* We used to have a free connection slot. Since we'll never use it, * we have to inform the server that it may be used by another session. */ if (may_dequeue_tasks(t->srv, t->be)) process_srv_queue(t->srv); return 1; } else if (rep->l == BUFSIZE) { /* no room to read more data */ if (EV_FD_COND_C(t->srv_fd, DIR_RD)) { rep->rex = TICK_ETERNITY; } } else { if (EV_FD_COND_S(t->srv_fd, DIR_RD)) { rep->rex = tick_add_ifset(now_ms, t->be->timeout.server); } } return 0; } else if (s == SV_STANALYZE){ /* this server state is set by the client to study the body for server assignment */ /* Have we been through this long enough to timeout? */ if (!tick_is_expired(req->rex, now_ms)) { /* balance url_param check_post should have been the only to get into this. * just wait for data, check to compare how much */ struct http_msg * msg = &t->txn.req; unsigned long body = msg->sol[msg->eoh] == '\r' ? msg->eoh + 2 :msg->eoh + 1; unsigned long len = req->total - body; long long limit = t->be->url_param_post_limit; struct hdr_ctx ctx; ctx.idx = 0; /* now if we have a length, we'll take the hint */ http_find_header2("Transfer-Encoding", 17, msg->sol, &txn->hdr_idx, &ctx); if ( ctx.idx && strncasecmp(ctx.line+ctx.val,"chunked",ctx.vlen)==0) { unsigned int chunk = 0; while ( body < req->total && !HTTP_IS_CRLF(msg->sol[body])) { char c = msg->sol[body]; if (ishex(c)) { unsigned int hex = toupper(c) - '0'; if ( hex > 9 ) hex -= 'A' - '9' - 1; chunk = (chunk << 4) | hex; } else break; body++; len--; } if ( body == req->total ) return 0; /* end of buffer? data missing! */ if ( memcmp(msg->sol+body, "\r\n", 2) != 0 ) return 0; /* chunked encoding len ends with CRLF, and we don't have it yet */ /* if we support more then one chunk here, we have to do it again when assigning server 1. how much entity data do we have? new var 2. should save entity_start, entity_cursor, elen & rlen in req; so we don't repeat scanning here 3. test if elen > limit, or set new limit to elen if 0 (end of entity found) */ if ( chunk < limit ) limit = chunk; /* only reading one chunk */ } else { if ( msg->hdr_content_len < limit ) limit = msg->hdr_content_len; } if ( len < limit ) return 0; } t->srv_state = SV_STIDLE; return 1; } else { /* SV_STCLOSE : nothing to do */ if ((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE))) { int len; len = sprintf(trash, "%08x:%s.srvcls[%04x:%04x]\n", t->uniq_id, t->be->id, (unsigned short)t->cli_fd, (unsigned short)t->srv_fd); write(1, trash, len); } return 0; } return 0; } /* * Produces data for the session depending on its source. Expects to be * called with s->cli_state == CL_STSHUTR. Right now, only statistics can be * produced. It stops by itself by unsetting the SN_SELF_GEN flag from the * session, which it uses to keep on being called when there is free space in * the buffer, or simply by letting an empty buffer upon return. It returns 1 * if it changes the session state from CL_STSHUTR, otherwise 0. */ int produce_content(struct session *s) { if (s->data_source == DATA_SRC_NONE) { s->flags &= ~SN_SELF_GEN; return 1; } else if (s->data_source == DATA_SRC_STATS) { /* dump server statistics */ int ret = stats_dump_http(s, s->be->uri_auth); if (ret >= 0) return ret; /* -1 indicates an error */ } /* unknown data source or internal error */ s->txn.status = 500; client_retnclose(s, error_message(s, HTTP_ERR_500)); if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_PRXCOND; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_R; s->flags &= ~SN_SELF_GEN; return 1; } /* Iterate the same filter through all request headers. * Returns 1 if this filter can be stopped upon return, otherwise 0. * Since it can manage the switch to another backend, it updates the per-proxy * DENY stats. */ int apply_filter_to_req_headers(struct session *t, struct buffer *req, struct hdr_exp *exp) { char term; char *cur_ptr, *cur_end, *cur_next; int cur_idx, old_idx, last_hdr; struct http_txn *txn = &t->txn; struct hdr_idx_elem *cur_hdr; int len, delta; last_hdr = 0; cur_next = req->data + txn->req.som + hdr_idx_first_pos(&txn->hdr_idx); old_idx = 0; while (!last_hdr) { if (unlikely(txn->flags & (TX_CLDENY | TX_CLTARPIT))) return 1; else if (unlikely(txn->flags & TX_CLALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY || exp->action == ACT_TARPIT)) return 0; cur_idx = txn->hdr_idx.v[old_idx].next; if (!cur_idx) break; cur_hdr = &txn->hdr_idx.v[cur_idx]; cur_ptr = cur_next; cur_end = cur_ptr + cur_hdr->len; cur_next = cur_end + cur_hdr->cr + 1; /* Now we have one header between cur_ptr and cur_end, * and the next header starts at cur_next. */ /* The annoying part is that pattern matching needs * that we modify the contents to null-terminate all * strings before testing them. */ term = *cur_end; *cur_end = '\0'; if (regexec(exp->preg, cur_ptr, MAX_MATCH, pmatch, 0) == 0) { switch (exp->action) { case ACT_SETBE: /* It is not possible to jump a second time. * FIXME: should we return an HTTP/500 here so that * the admin knows there's a problem ? */ if (t->be != t->fe) break; /* Swithing Proxy */ t->be = (struct proxy *) exp->replace; /* right now, the backend switch is not overly complicated * because we have associated req_cap and rsp_cap to the * frontend, and the beconn will be updated later. */ t->rep->rto = t->req->wto = t->be->timeout.server; t->req->cto = t->be->timeout.connect; t->conn_retries = t->be->conn_retries; last_hdr = 1; break; case ACT_ALLOW: txn->flags |= TX_CLALLOW; last_hdr = 1; break; case ACT_DENY: txn->flags |= TX_CLDENY; last_hdr = 1; t->be->denied_req++; break; case ACT_TARPIT: txn->flags |= TX_CLTARPIT; last_hdr = 1; t->be->denied_req++; break; case ACT_REPLACE: len = exp_replace(trash, cur_ptr, exp->replace, pmatch); delta = buffer_replace2(req, cur_ptr, cur_end, trash, len); /* FIXME: if the user adds a newline in the replacement, the * index will not be recalculated for now, and the new line * will not be counted as a new header. */ cur_end += delta; cur_next += delta; cur_hdr->len += delta; txn->req.eoh += delta; break; case ACT_REMOVE: delta = buffer_replace2(req, cur_ptr, cur_next, NULL, 0); cur_next += delta; /* FIXME: this should be a separate function */ txn->req.eoh += delta; txn->hdr_idx.v[old_idx].next = cur_hdr->next; txn->hdr_idx.used--; cur_hdr->len = 0; cur_end = NULL; /* null-term has been rewritten */ break; } } if (cur_end) *cur_end = term; /* restore the string terminator */ /* keep the link from this header to next one in case of later * removal of next header. */ old_idx = cur_idx; } return 0; } /* Apply the filter to the request line. * Returns 0 if nothing has been done, 1 if the filter has been applied, * or -1 if a replacement resulted in an invalid request line. * Since it can manage the switch to another backend, it updates the per-proxy * DENY stats. */ int apply_filter_to_req_line(struct session *t, struct buffer *req, struct hdr_exp *exp) { char term; char *cur_ptr, *cur_end; int done; struct http_txn *txn = &t->txn; int len, delta; if (unlikely(txn->flags & (TX_CLDENY | TX_CLTARPIT))) return 1; else if (unlikely(txn->flags & TX_CLALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY || exp->action == ACT_TARPIT)) return 0; else if (exp->action == ACT_REMOVE) return 0; done = 0; cur_ptr = req->data + txn->req.som; /* should be equal to txn->sol */ cur_end = cur_ptr + txn->req.sl.rq.l; /* Now we have the request line between cur_ptr and cur_end */ /* The annoying part is that pattern matching needs * that we modify the contents to null-terminate all * strings before testing them. */ term = *cur_end; *cur_end = '\0'; if (regexec(exp->preg, cur_ptr, MAX_MATCH, pmatch, 0) == 0) { switch (exp->action) { case ACT_SETBE: /* It is not possible to jump a second time. * FIXME: should we return an HTTP/500 here so that * the admin knows there's a problem ? */ if (t->be != t->fe) break; /* Swithing Proxy */ t->be = (struct proxy *) exp->replace; /* right now, the backend switch is not too much complicated * because we have associated req_cap and rsp_cap to the * frontend, and the beconn will be updated later. */ t->rep->rto = t->req->wto = t->be->timeout.server; t->req->cto = t->be->timeout.connect; t->conn_retries = t->be->conn_retries; done = 1; break; case ACT_ALLOW: txn->flags |= TX_CLALLOW; done = 1; break; case ACT_DENY: txn->flags |= TX_CLDENY; t->be->denied_req++; done = 1; break; case ACT_TARPIT: txn->flags |= TX_CLTARPIT; t->be->denied_req++; done = 1; break; case ACT_REPLACE: *cur_end = term; /* restore the string terminator */ len = exp_replace(trash, cur_ptr, exp->replace, pmatch); delta = buffer_replace2(req, cur_ptr, cur_end, trash, len); /* FIXME: if the user adds a newline in the replacement, the * index will not be recalculated for now, and the new line * will not be counted as a new header. */ txn->req.eoh += delta; cur_end += delta; txn->req.sol = req->data + txn->req.som; /* should be equal to txn->sol */ cur_end = (char *)http_parse_reqline(&txn->req, req->data, HTTP_MSG_RQMETH, cur_ptr, cur_end + 1, NULL, NULL); if (unlikely(!cur_end)) return -1; /* we have a full request and we know that we have either a CR * or an LF at . */ txn->meth = find_http_meth(cur_ptr, txn->req.sl.rq.m_l); hdr_idx_set_start(&txn->hdr_idx, txn->req.sl.rq.l, *cur_end == '\r'); /* there is no point trying this regex on headers */ return 1; } } *cur_end = term; /* restore the string terminator */ return done; } /* * Apply all the req filters to all headers in buffer of session . * Returns 0 if everything is alright, or -1 in case a replacement lead to an * unparsable request. Since it can manage the switch to another backend, it * updates the per-proxy DENY stats. */ int apply_filters_to_request(struct session *t, struct buffer *req, struct hdr_exp *exp) { struct http_txn *txn = &t->txn; /* iterate through the filters in the outer loop */ while (exp && !(txn->flags & (TX_CLDENY|TX_CLTARPIT))) { int ret; /* * The interleaving of transformations and verdicts * makes it difficult to decide to continue or stop * the evaluation. */ if ((txn->flags & TX_CLALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY || exp->action == ACT_TARPIT || exp->action == ACT_PASS)) { exp = exp->next; continue; } /* Apply the filter to the request line. */ ret = apply_filter_to_req_line(t, req, exp); if (unlikely(ret < 0)) return -1; if (likely(ret == 0)) { /* The filter did not match the request, it can be * iterated through all headers. */ apply_filter_to_req_headers(t, req, exp); } exp = exp->next; } return 0; } /* * Manage client-side cookie. It can impact performance by about 2% so it is * desirable to call it only when needed. */ void manage_client_side_cookies(struct session *t, struct buffer *req) { struct http_txn *txn = &t->txn; char *p1, *p2, *p3, *p4; char *del_colon, *del_cookie, *colon; int app_cookies; appsess *asession_temp = NULL; appsess local_asession; char *cur_ptr, *cur_end, *cur_next; int cur_idx, old_idx; /* Iterate through the headers. * we start with the start line. */ old_idx = 0; cur_next = req->data + txn->req.som + hdr_idx_first_pos(&txn->hdr_idx); while ((cur_idx = txn->hdr_idx.v[old_idx].next)) { struct hdr_idx_elem *cur_hdr; int val; cur_hdr = &txn->hdr_idx.v[cur_idx]; cur_ptr = cur_next; cur_end = cur_ptr + cur_hdr->len; cur_next = cur_end + cur_hdr->cr + 1; /* We have one full header between cur_ptr and cur_end, and the * next header starts at cur_next. We're only interested in * "Cookie:" headers. */ val = http_header_match2(cur_ptr, cur_end, "Cookie", 6); if (!val) { old_idx = cur_idx; continue; } /* Now look for cookies. Conforming to RFC2109, we have to support * attributes whose name begin with a '$', and associate them with * the right cookie, if we want to delete this cookie. * So there are 3 cases for each cookie read : * 1) it's a special attribute, beginning with a '$' : ignore it. * 2) it's a server id cookie that we *MAY* want to delete : save * some pointers on it (last semi-colon, beginning of cookie...) * 3) it's an application cookie : we *MAY* have to delete a previous * "special" cookie. * At the end of loop, if a "special" cookie remains, we may have to * remove it. If no application cookie persists in the header, we * *MUST* delete it */ colon = p1 = cur_ptr + val; /* first non-space char after 'Cookie:' */ /* del_cookie == NULL => nothing to be deleted */ del_colon = del_cookie = NULL; app_cookies = 0; while (p1 < cur_end) { /* skip spaces and colons, but keep an eye on these ones */ while (p1 < cur_end) { if (*p1 == ';' || *p1 == ',') colon = p1; else if (!isspace((unsigned char)*p1)) break; p1++; } if (p1 == cur_end) break; /* p1 is at the beginning of the cookie name */ p2 = p1; while (p2 < cur_end && *p2 != '=') p2++; if (p2 == cur_end) break; p3 = p2 + 1; /* skips the '=' sign */ if (p3 == cur_end) break; p4 = p3; while (p4 < cur_end && !isspace((unsigned char)*p4) && *p4 != ';' && *p4 != ',') p4++; /* here, we have the cookie name between p1 and p2, * and its value between p3 and p4. * we can process it : * * Cookie: NAME=VALUE; * | || || | * | || || +--> p4 * | || |+-------> p3 * | || +--------> p2 * | |+------------> p1 * | +-------------> colon * +--------------------> cur_ptr */ if (*p1 == '$') { /* skip this one */ } else { /* first, let's see if we want to capture it */ if (t->fe->capture_name != NULL && txn->cli_cookie == NULL && (p4 - p1 >= t->fe->capture_namelen) && memcmp(p1, t->fe->capture_name, t->fe->capture_namelen) == 0) { int log_len = p4 - p1; if ((txn->cli_cookie = pool_alloc2(pool2_capture)) == NULL) { Alert("HTTP logging : out of memory.\n"); } else { if (log_len > t->fe->capture_len) log_len = t->fe->capture_len; memcpy(txn->cli_cookie, p1, log_len); txn->cli_cookie[log_len] = 0; } } if ((p2 - p1 == t->be->cookie_len) && (t->be->cookie_name != NULL) && (memcmp(p1, t->be->cookie_name, p2 - p1) == 0)) { /* Cool... it's the right one */ struct server *srv = t->be->srv; char *delim; /* if we're in cookie prefix mode, we'll search the delimitor so that we * have the server ID betweek p3 and delim, and the original cookie between * delim+1 and p4. Otherwise, delim==p4 : * * Cookie: NAME=SRV~VALUE; * | || || | | * | || || | +--> p4 * | || || +--------> delim * | || |+-----------> p3 * | || +------------> p2 * | |+----------------> p1 * | +-----------------> colon * +------------------------> cur_ptr */ if (t->be->options & PR_O_COOK_PFX) { for (delim = p3; delim < p4; delim++) if (*delim == COOKIE_DELIM) break; } else delim = p4; /* Here, we'll look for the first running server which supports the cookie. * This allows to share a same cookie between several servers, for example * to dedicate backup servers to specific servers only. * However, to prevent clients from sticking to cookie-less backup server * when they have incidentely learned an empty cookie, we simply ignore * empty cookies and mark them as invalid. */ if (delim == p3) srv = NULL; while (srv) { if (srv->cookie && (srv->cklen == delim - p3) && !memcmp(p3, srv->cookie, delim - p3)) { if (srv->state & SRV_RUNNING || t->be->options & PR_O_PERSIST) { /* we found the server and it's usable */ txn->flags &= ~TX_CK_MASK; txn->flags |= TX_CK_VALID; t->flags |= SN_DIRECT | SN_ASSIGNED; t->srv = srv; break; } else { /* we found a server, but it's down */ txn->flags &= ~TX_CK_MASK; txn->flags |= TX_CK_DOWN; } } srv = srv->next; } if (!srv && !(txn->flags & TX_CK_DOWN)) { /* no server matched this cookie */ txn->flags &= ~TX_CK_MASK; txn->flags |= TX_CK_INVALID; } /* depending on the cookie mode, we may have to either : * - delete the complete cookie if we're in insert+indirect mode, so that * the server never sees it ; * - remove the server id from the cookie value, and tag the cookie as an * application cookie so that it does not get accidentely removed later, * if we're in cookie prefix mode */ if ((t->be->options & PR_O_COOK_PFX) && (delim != p4)) { int delta; /* negative */ delta = buffer_replace2(req, p3, delim + 1, NULL, 0); p4 += delta; cur_end += delta; cur_next += delta; cur_hdr->len += delta; txn->req.eoh += delta; del_cookie = del_colon = NULL; app_cookies++; /* protect the header from deletion */ } else if (del_cookie == NULL && (t->be->options & (PR_O_COOK_INS | PR_O_COOK_IND)) == (PR_O_COOK_INS | PR_O_COOK_IND)) { del_cookie = p1; del_colon = colon; } } else { /* now we know that we must keep this cookie since it's * not ours. But if we wanted to delete our cookie * earlier, we cannot remove the complete header, but we * can remove the previous block itself. */ app_cookies++; if (del_cookie != NULL) { int delta; /* negative */ delta = buffer_replace2(req, del_cookie, p1, NULL, 0); p4 += delta; cur_end += delta; cur_next += delta; cur_hdr->len += delta; txn->req.eoh += delta; del_cookie = del_colon = NULL; } } if ((t->be->appsession_name != NULL) && (memcmp(p1, t->be->appsession_name, p2 - p1) == 0)) { /* first, let's see if the cookie is our appcookie*/ /* Cool... it's the right one */ asession_temp = &local_asession; if ((asession_temp->sessid = pool_alloc2(apools.sessid)) == NULL) { Alert("Not enough memory process_cli():asession->sessid:malloc().\n"); send_log(t->be, LOG_ALERT, "Not enough memory process_cli():asession->sessid:malloc().\n"); return; } memcpy(asession_temp->sessid, p3, t->be->appsession_len); asession_temp->sessid[t->be->appsession_len] = 0; asession_temp->serverid = NULL; /* only do insert, if lookup fails */ asession_temp = appsession_hash_lookup(&(t->be->htbl_proxy), asession_temp->sessid); if (asession_temp == NULL) { if ((asession_temp = pool_alloc2(pool2_appsess)) == NULL) { /* free previously allocated memory */ pool_free2(apools.sessid, local_asession.sessid); Alert("Not enough memory process_cli():asession:calloc().\n"); send_log(t->be, LOG_ALERT, "Not enough memory process_cli():asession:calloc().\n"); return; } asession_temp->sessid = local_asession.sessid; asession_temp->serverid = local_asession.serverid; appsession_hash_insert(&(t->be->htbl_proxy), asession_temp); } else { /* free previously allocated memory */ pool_free2(apools.sessid, local_asession.sessid); } if (asession_temp->serverid == NULL) { Alert("Found Application Session without matching server.\n"); } else { struct server *srv = t->be->srv; while (srv) { if (strcmp(srv->id, asession_temp->serverid) == 0) { if (srv->state & SRV_RUNNING || t->be->options & PR_O_PERSIST) { /* we found the server and it's usable */ txn->flags &= ~TX_CK_MASK; txn->flags |= TX_CK_VALID; t->flags |= SN_DIRECT | SN_ASSIGNED; t->srv = srv; break; } else { txn->flags &= ~TX_CK_MASK; txn->flags |= TX_CK_DOWN; } } srv = srv->next; }/* end while(srv) */ }/* end else if server == NULL */ asession_temp->expire = tick_add_ifset(now_ms, t->be->timeout.appsession); }/* end if ((t->proxy->appsession_name != NULL) ... */ } /* we'll have to look for another cookie ... */ p1 = p4; } /* while (p1 < cur_end) */ /* There's no more cookie on this line. * We may have marked the last one(s) for deletion. * We must do this now in two ways : * - if there is no app cookie, we simply delete the header ; * - if there are app cookies, we must delete the end of the * string properly, including the colon/semi-colon before * the cookie name. */ if (del_cookie != NULL) { int delta; if (app_cookies) { delta = buffer_replace2(req, del_colon, cur_end, NULL, 0); cur_end = del_colon; cur_hdr->len += delta; } else { delta = buffer_replace2(req, cur_ptr, cur_next, NULL, 0); /* FIXME: this should be a separate function */ txn->hdr_idx.v[old_idx].next = cur_hdr->next; txn->hdr_idx.used--; cur_hdr->len = 0; } cur_next += delta; txn->req.eoh += delta; } /* keep the link from this header to next one */ old_idx = cur_idx; } /* end of cookie processing on this header */ } /* Iterate the same filter through all response headers contained in . * Returns 1 if this filter can be stopped upon return, otherwise 0. */ int apply_filter_to_resp_headers(struct session *t, struct buffer *rtr, struct hdr_exp *exp) { char term; char *cur_ptr, *cur_end, *cur_next; int cur_idx, old_idx, last_hdr; struct http_txn *txn = &t->txn; struct hdr_idx_elem *cur_hdr; int len, delta; last_hdr = 0; cur_next = rtr->data + txn->rsp.som + hdr_idx_first_pos(&txn->hdr_idx); old_idx = 0; while (!last_hdr) { if (unlikely(txn->flags & TX_SVDENY)) return 1; else if (unlikely(txn->flags & TX_SVALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY)) return 0; cur_idx = txn->hdr_idx.v[old_idx].next; if (!cur_idx) break; cur_hdr = &txn->hdr_idx.v[cur_idx]; cur_ptr = cur_next; cur_end = cur_ptr + cur_hdr->len; cur_next = cur_end + cur_hdr->cr + 1; /* Now we have one header between cur_ptr and cur_end, * and the next header starts at cur_next. */ /* The annoying part is that pattern matching needs * that we modify the contents to null-terminate all * strings before testing them. */ term = *cur_end; *cur_end = '\0'; if (regexec(exp->preg, cur_ptr, MAX_MATCH, pmatch, 0) == 0) { switch (exp->action) { case ACT_ALLOW: txn->flags |= TX_SVALLOW; last_hdr = 1; break; case ACT_DENY: txn->flags |= TX_SVDENY; last_hdr = 1; break; case ACT_REPLACE: len = exp_replace(trash, cur_ptr, exp->replace, pmatch); delta = buffer_replace2(rtr, cur_ptr, cur_end, trash, len); /* FIXME: if the user adds a newline in the replacement, the * index will not be recalculated for now, and the new line * will not be counted as a new header. */ cur_end += delta; cur_next += delta; cur_hdr->len += delta; txn->rsp.eoh += delta; break; case ACT_REMOVE: delta = buffer_replace2(rtr, cur_ptr, cur_next, NULL, 0); cur_next += delta; /* FIXME: this should be a separate function */ txn->rsp.eoh += delta; txn->hdr_idx.v[old_idx].next = cur_hdr->next; txn->hdr_idx.used--; cur_hdr->len = 0; cur_end = NULL; /* null-term has been rewritten */ break; } } if (cur_end) *cur_end = term; /* restore the string terminator */ /* keep the link from this header to next one in case of later * removal of next header. */ old_idx = cur_idx; } return 0; } /* Apply the filter to the status line in the response buffer . * Returns 0 if nothing has been done, 1 if the filter has been applied, * or -1 if a replacement resulted in an invalid status line. */ int apply_filter_to_sts_line(struct session *t, struct buffer *rtr, struct hdr_exp *exp) { char term; char *cur_ptr, *cur_end; int done; struct http_txn *txn = &t->txn; int len, delta; if (unlikely(txn->flags & TX_SVDENY)) return 1; else if (unlikely(txn->flags & TX_SVALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY)) return 0; else if (exp->action == ACT_REMOVE) return 0; done = 0; cur_ptr = rtr->data + txn->rsp.som; /* should be equal to txn->sol */ cur_end = cur_ptr + txn->rsp.sl.rq.l; /* Now we have the status line between cur_ptr and cur_end */ /* The annoying part is that pattern matching needs * that we modify the contents to null-terminate all * strings before testing them. */ term = *cur_end; *cur_end = '\0'; if (regexec(exp->preg, cur_ptr, MAX_MATCH, pmatch, 0) == 0) { switch (exp->action) { case ACT_ALLOW: txn->flags |= TX_SVALLOW; done = 1; break; case ACT_DENY: txn->flags |= TX_SVDENY; done = 1; break; case ACT_REPLACE: *cur_end = term; /* restore the string terminator */ len = exp_replace(trash, cur_ptr, exp->replace, pmatch); delta = buffer_replace2(rtr, cur_ptr, cur_end, trash, len); /* FIXME: if the user adds a newline in the replacement, the * index will not be recalculated for now, and the new line * will not be counted as a new header. */ txn->rsp.eoh += delta; cur_end += delta; txn->rsp.sol = rtr->data + txn->rsp.som; /* should be equal to txn->sol */ cur_end = (char *)http_parse_stsline(&txn->rsp, rtr->data, HTTP_MSG_RPVER, cur_ptr, cur_end + 1, NULL, NULL); if (unlikely(!cur_end)) return -1; /* we have a full respnse and we know that we have either a CR * or an LF at . */ txn->status = strl2ui(rtr->data + txn->rsp.sl.st.c, txn->rsp.sl.st.c_l); hdr_idx_set_start(&txn->hdr_idx, txn->rsp.sl.rq.l, *cur_end == '\r'); /* there is no point trying this regex on headers */ return 1; } } *cur_end = term; /* restore the string terminator */ return done; } /* * Apply all the resp filters to all headers in buffer of session . * Returns 0 if everything is alright, or -1 in case a replacement lead to an * unparsable response. */ int apply_filters_to_response(struct session *t, struct buffer *rtr, struct hdr_exp *exp) { struct http_txn *txn = &t->txn; /* iterate through the filters in the outer loop */ while (exp && !(txn->flags & TX_SVDENY)) { int ret; /* * The interleaving of transformations and verdicts * makes it difficult to decide to continue or stop * the evaluation. */ if ((txn->flags & TX_SVALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY || exp->action == ACT_PASS)) { exp = exp->next; continue; } /* Apply the filter to the status line. */ ret = apply_filter_to_sts_line(t, rtr, exp); if (unlikely(ret < 0)) return -1; if (likely(ret == 0)) { /* The filter did not match the response, it can be * iterated through all headers. */ apply_filter_to_resp_headers(t, rtr, exp); } exp = exp->next; } return 0; } /* * Manage server-side cookies. It can impact performance by about 2% so it is * desirable to call it only when needed. */ void manage_server_side_cookies(struct session *t, struct buffer *rtr) { struct http_txn *txn = &t->txn; char *p1, *p2, *p3, *p4; appsess *asession_temp = NULL; appsess local_asession; char *cur_ptr, *cur_end, *cur_next; int cur_idx, old_idx, delta; /* Iterate through the headers. * we start with the start line. */ old_idx = 0; cur_next = rtr->data + txn->rsp.som + hdr_idx_first_pos(&txn->hdr_idx); while ((cur_idx = txn->hdr_idx.v[old_idx].next)) { struct hdr_idx_elem *cur_hdr; int val; cur_hdr = &txn->hdr_idx.v[cur_idx]; cur_ptr = cur_next; cur_end = cur_ptr + cur_hdr->len; cur_next = cur_end + cur_hdr->cr + 1; /* We have one full header between cur_ptr and cur_end, and the * next header starts at cur_next. We're only interested in * "Cookie:" headers. */ val = http_header_match2(cur_ptr, cur_end, "Set-Cookie", 10); if (!val) { old_idx = cur_idx; continue; } /* OK, right now we know we have a set-cookie at cur_ptr */ txn->flags |= TX_SCK_ANY; /* maybe we only wanted to see if there was a set-cookie */ if (t->be->cookie_name == NULL && t->be->appsession_name == NULL && t->be->capture_name == NULL) return; p1 = cur_ptr + val; /* first non-space char after 'Set-Cookie:' */ while (p1 < cur_end) { /* in fact, we'll break after the first cookie */ if (p1 == cur_end || *p1 == ';') /* end of cookie */ break; /* p1 is at the beginning of the cookie name */ p2 = p1; while (p2 < cur_end && *p2 != '=' && *p2 != ';') p2++; if (p2 == cur_end || *p2 == ';') /* next cookie */ break; p3 = p2 + 1; /* skip the '=' sign */ if (p3 == cur_end) break; p4 = p3; while (p4 < cur_end && !isspace((unsigned char)*p4) && *p4 != ';') p4++; /* here, we have the cookie name between p1 and p2, * and its value between p3 and p4. * we can process it. */ /* first, let's see if we want to capture it */ if (t->be->capture_name != NULL && txn->srv_cookie == NULL && (p4 - p1 >= t->be->capture_namelen) && memcmp(p1, t->be->capture_name, t->be->capture_namelen) == 0) { int log_len = p4 - p1; if ((txn->srv_cookie = pool_alloc2(pool2_capture)) == NULL) { Alert("HTTP logging : out of memory.\n"); } if (log_len > t->be->capture_len) log_len = t->be->capture_len; memcpy(txn->srv_cookie, p1, log_len); txn->srv_cookie[log_len] = 0; } /* now check if we need to process it for persistence */ if ((p2 - p1 == t->be->cookie_len) && (t->be->cookie_name != NULL) && (memcmp(p1, t->be->cookie_name, p2 - p1) == 0)) { /* Cool... it's the right one */ txn->flags |= TX_SCK_SEEN; /* If the cookie is in insert mode on a known server, we'll delete * this occurrence because we'll insert another one later. * We'll delete it too if the "indirect" option is set and we're in * a direct access. */ if (((t->srv) && (t->be->options & PR_O_COOK_INS)) || ((t->flags & SN_DIRECT) && (t->be->options & PR_O_COOK_IND))) { /* this header must be deleted */ delta = buffer_replace2(rtr, cur_ptr, cur_next, NULL, 0); txn->hdr_idx.v[old_idx].next = cur_hdr->next; txn->hdr_idx.used--; cur_hdr->len = 0; cur_next += delta; txn->rsp.eoh += delta; txn->flags |= TX_SCK_DELETED; } else if ((t->srv) && (t->srv->cookie) && (t->be->options & PR_O_COOK_RW)) { /* replace bytes p3->p4 with the cookie name associated * with this server since we know it. */ delta = buffer_replace2(rtr, p3, p4, t->srv->cookie, t->srv->cklen); cur_hdr->len += delta; cur_next += delta; txn->rsp.eoh += delta; txn->flags |= TX_SCK_INSERTED | TX_SCK_DELETED; } else if ((t->srv) && (t->srv->cookie) && (t->be->options & PR_O_COOK_PFX)) { /* insert the cookie name associated with this server * before existing cookie, and insert a delimitor between them.. */ delta = buffer_replace2(rtr, p3, p3, t->srv->cookie, t->srv->cklen + 1); cur_hdr->len += delta; cur_next += delta; txn->rsp.eoh += delta; p3[t->srv->cklen] = COOKIE_DELIM; txn->flags |= TX_SCK_INSERTED | TX_SCK_DELETED; } } /* next, let's see if the cookie is our appcookie */ else if ((t->be->appsession_name != NULL) && (memcmp(p1, t->be->appsession_name, p2 - p1) == 0)) { /* Cool... it's the right one */ size_t server_id_len = strlen(t->srv->id) + 1; asession_temp = &local_asession; if ((asession_temp->sessid = pool_alloc2(apools.sessid)) == NULL) { Alert("Not enough Memory process_srv():asession->sessid:malloc().\n"); send_log(t->be, LOG_ALERT, "Not enough Memory process_srv():asession->sessid:malloc().\n"); return; } memcpy(asession_temp->sessid, p3, t->be->appsession_len); asession_temp->sessid[t->be->appsession_len] = 0; asession_temp->serverid = NULL; /* only do insert, if lookup fails */ asession_temp = appsession_hash_lookup(&(t->be->htbl_proxy), asession_temp->sessid); if (asession_temp == NULL) { if ((asession_temp = pool_alloc2(pool2_appsess)) == NULL) { Alert("Not enough Memory process_srv():asession:calloc().\n"); send_log(t->be, LOG_ALERT, "Not enough Memory process_srv():asession:calloc().\n"); return; } asession_temp->sessid = local_asession.sessid; asession_temp->serverid = local_asession.serverid; appsession_hash_insert(&(t->be->htbl_proxy), asession_temp); } else { /* free wasted memory */ pool_free2(apools.sessid, local_asession.sessid); } if (asession_temp->serverid == NULL) { if ((asession_temp->serverid = pool_alloc2(apools.serverid)) == NULL) { Alert("Not enough Memory process_srv():asession->sessid:malloc().\n"); send_log(t->be, LOG_ALERT, "Not enough Memory process_srv():asession->sessid:malloc().\n"); return; } asession_temp->serverid[0] = '\0'; } if (asession_temp->serverid[0] == '\0') memcpy(asession_temp->serverid, t->srv->id, server_id_len); asession_temp->expire = tick_add_ifset(now_ms, t->be->timeout.appsession); #if defined(DEBUG_HASH) appsession_hash_dump(&(t->be->htbl_proxy)); #endif }/* end if ((t->proxy->appsession_name != NULL) ... */ break; /* we don't want to loop again since there cannot be another cookie on the same line */ } /* we're now at the end of the cookie value */ /* keep the link from this header to next one */ old_idx = cur_idx; } /* end of cookie processing on this header */ } /* * Check if response is cacheable or not. Updates t->flags. */ void check_response_for_cacheability(struct session *t, struct buffer *rtr) { struct http_txn *txn = &t->txn; char *p1, *p2; char *cur_ptr, *cur_end, *cur_next; int cur_idx; if (!(txn->flags & TX_CACHEABLE)) return; /* Iterate through the headers. * we start with the start line. */ cur_idx = 0; cur_next = rtr->data + txn->rsp.som + hdr_idx_first_pos(&txn->hdr_idx); while ((cur_idx = txn->hdr_idx.v[cur_idx].next)) { struct hdr_idx_elem *cur_hdr; int val; cur_hdr = &txn->hdr_idx.v[cur_idx]; cur_ptr = cur_next; cur_end = cur_ptr + cur_hdr->len; cur_next = cur_end + cur_hdr->cr + 1; /* We have one full header between cur_ptr and cur_end, and the * next header starts at cur_next. We're only interested in * "Cookie:" headers. */ val = http_header_match2(cur_ptr, cur_end, "Pragma", 6); if (val) { if ((cur_end - (cur_ptr + val) >= 8) && strncasecmp(cur_ptr + val, "no-cache", 8) == 0) { txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; return; } } val = http_header_match2(cur_ptr, cur_end, "Cache-control", 13); if (!val) continue; /* OK, right now we know we have a cache-control header at cur_ptr */ p1 = cur_ptr + val; /* first non-space char after 'cache-control:' */ if (p1 >= cur_end) /* no more info */ continue; /* p1 is at the beginning of the value */ p2 = p1; while (p2 < cur_end && *p2 != '=' && *p2 != ',' && !isspace((unsigned char)*p2)) p2++; /* we have a complete value between p1 and p2 */ if (p2 < cur_end && *p2 == '=') { /* we have something of the form no-cache="set-cookie" */ if ((cur_end - p1 >= 21) && strncasecmp(p1, "no-cache=\"set-cookie", 20) == 0 && (p1[20] == '"' || p1[20] == ',')) txn->flags &= ~TX_CACHE_COOK; continue; } /* OK, so we know that either p2 points to the end of string or to a comma */ if (((p2 - p1 == 7) && strncasecmp(p1, "private", 7) == 0) || ((p2 - p1 == 8) && strncasecmp(p1, "no-store", 8) == 0) || ((p2 - p1 == 9) && strncasecmp(p1, "max-age=0", 9) == 0) || ((p2 - p1 == 10) && strncasecmp(p1, "s-maxage=0", 10) == 0)) { txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; return; } if ((p2 - p1 == 6) && strncasecmp(p1, "public", 6) == 0) { txn->flags |= TX_CACHEABLE | TX_CACHE_COOK; continue; } } } /* * Try to retrieve a known appsession in the URI, then the associated server. * If the server is found, it's assigned to the session. */ void get_srv_from_appsession(struct session *t, const char *begin, int len) { struct http_txn *txn = &t->txn; appsess *asession_temp = NULL; appsess local_asession; char *request_line; if (t->be->appsession_name == NULL || (t->txn.meth != HTTP_METH_GET && t->txn.meth != HTTP_METH_POST) || (request_line = memchr(begin, ';', len)) == NULL || ((1 + t->be->appsession_name_len + 1 + t->be->appsession_len) > (begin + len - request_line))) return; /* skip ';' */ request_line++; /* look if we have a jsessionid */ if (strncasecmp(request_line, t->be->appsession_name, t->be->appsession_name_len) != 0) return; /* skip jsessionid= */ request_line += t->be->appsession_name_len + 1; /* First try if we already have an appsession */ asession_temp = &local_asession; if ((asession_temp->sessid = pool_alloc2(apools.sessid)) == NULL) { Alert("Not enough memory process_cli():asession_temp->sessid:calloc().\n"); send_log(t->be, LOG_ALERT, "Not enough Memory process_cli():asession_temp->sessid:calloc().\n"); return; } /* Copy the sessionid */ memcpy(asession_temp->sessid, request_line, t->be->appsession_len); asession_temp->sessid[t->be->appsession_len] = 0; asession_temp->serverid = NULL; /* only do insert, if lookup fails */ asession_temp = appsession_hash_lookup(&(t->be->htbl_proxy), asession_temp->sessid); if (asession_temp == NULL) { if ((asession_temp = pool_alloc2(pool2_appsess)) == NULL) { /* free previously allocated memory */ pool_free2(apools.sessid, local_asession.sessid); Alert("Not enough memory process_cli():asession:calloc().\n"); send_log(t->be, LOG_ALERT, "Not enough memory process_cli():asession:calloc().\n"); return; } asession_temp->sessid = local_asession.sessid; asession_temp->serverid = local_asession.serverid; appsession_hash_insert(&(t->be->htbl_proxy), asession_temp); } else { /* free previously allocated memory */ pool_free2(apools.sessid, local_asession.sessid); } asession_temp->expire = tick_add_ifset(now_ms, t->be->timeout.appsession); asession_temp->request_count++; #if defined(DEBUG_HASH) appsession_hash_dump(&(t->be->htbl_proxy)); #endif if (asession_temp->serverid == NULL) { Alert("Found Application Session without matching server.\n"); } else { struct server *srv = t->be->srv; while (srv) { if (strcmp(srv->id, asession_temp->serverid) == 0) { if (srv->state & SRV_RUNNING || t->be->options & PR_O_PERSIST) { /* we found the server and it's usable */ txn->flags &= ~TX_CK_MASK; txn->flags |= TX_CK_VALID; t->flags |= SN_DIRECT | SN_ASSIGNED; t->srv = srv; break; } else { txn->flags &= ~TX_CK_MASK; txn->flags |= TX_CK_DOWN; } } srv = srv->next; } } } /* * In a GET or HEAD request, check if the requested URI matches the stats uri * for the current backend, and if an authorization has been passed and is valid. * * It is assumed that the request is either a HEAD or GET and that the * t->be->uri_auth field is valid. An HTTP/401 response may be sent, or * produce_content() can be called to start sending data. * * Returns 1 if the session's state changes, otherwise 0. */ int stats_check_uri_auth(struct session *t, struct proxy *backend) { struct http_txn *txn = &t->txn; struct uri_auth *uri_auth = backend->uri_auth; struct user_auth *user; int authenticated, cur_idx; char *h; memset(&t->data_ctx.stats, 0, sizeof(t->data_ctx.stats)); /* check URI size */ if (uri_auth->uri_len > txn->req.sl.rq.u_l) return 0; h = t->req->data + txn->req.sl.rq.u; /* the URI is in h */ if (memcmp(h, uri_auth->uri_prefix, uri_auth->uri_len) != 0) return 0; h += uri_auth->uri_len; while (h <= t->req->data + txn->req.sl.rq.u + txn->req.sl.rq.u_l - 3) { if (memcmp(h, ";up", 3) == 0) { t->data_ctx.stats.flags |= STAT_HIDE_DOWN; break; } h++; } if (uri_auth->refresh) { h = t->req->data + txn->req.sl.rq.u + uri_auth->uri_len; while (h <= t->req->data + txn->req.sl.rq.u + txn->req.sl.rq.u_l - 10) { if (memcmp(h, ";norefresh", 10) == 0) { t->data_ctx.stats.flags |= STAT_NO_REFRESH; break; } h++; } } h = t->req->data + txn->req.sl.rq.u + uri_auth->uri_len; while (h <= t->req->data + txn->req.sl.rq.u + txn->req.sl.rq.u_l - 4) { if (memcmp(h, ";csv", 4) == 0) { t->data_ctx.stats.flags |= STAT_FMT_CSV; break; } h++; } t->data_ctx.stats.flags |= STAT_SHOW_STAT | STAT_SHOW_INFO; /* we are in front of a interceptable URI. Let's check * if there's an authentication and if it's valid. */ user = uri_auth->users; if (!user) { /* no user auth required, it's OK */ authenticated = 1; } else { authenticated = 0; /* a user list is defined, we have to check. * skip 21 chars for "Authorization: Basic ". */ /* FIXME: this should move to an earlier place */ cur_idx = 0; h = t->req->data + txn->req.som + hdr_idx_first_pos(&txn->hdr_idx); while ((cur_idx = txn->hdr_idx.v[cur_idx].next)) { int len = txn->hdr_idx.v[cur_idx].len; if (len > 14 && !strncasecmp("Authorization:", h, 14)) { txn->auth_hdr.str = h; txn->auth_hdr.len = len; break; } h += len + txn->hdr_idx.v[cur_idx].cr + 1; } if (txn->auth_hdr.len < 21 || memcmp(txn->auth_hdr.str + 14, " Basic ", 7)) user = NULL; while (user) { if ((txn->auth_hdr.len == user->user_len + 14 + 7) && !memcmp(txn->auth_hdr.str + 14 + 7, user->user_pwd, user->user_len)) { authenticated = 1; break; } user = user->next; } } if (!authenticated) { struct chunk msg; /* no need to go further */ msg.str = trash; msg.len = sprintf(trash, HTTP_401_fmt, uri_auth->auth_realm); txn->status = 401; client_retnclose(t, &msg); if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_PRXCOND; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_R; return 1; } /* The request is valid, the user is authenticated. Let's start sending * data. */ EV_FD_CLR(t->cli_fd, DIR_RD); buffer_shutr(t->req); buffer_shutr(t->rep); t->cli_state = CL_STSHUTR; t->req->rlim = t->req->data + BUFSIZE; /* no more rewrite needed */ t->logs.tv_request = now; t->data_source = DATA_SRC_STATS; t->data_state = DATA_ST_INIT; t->task->nice = -32; /* small boost for HTTP statistics */ produce_content(t); return 1; } /* * Print a debug line with a header */ void debug_hdr(const char *dir, struct session *t, const char *start, const char *end) { int len, max; len = sprintf(trash, "%08x:%s.%s[%04x:%04x]: ", t->uniq_id, t->be->id, dir, (unsigned short)t->cli_fd, (unsigned short)t->srv_fd); max = end - start; UBOUND(max, sizeof(trash) - len - 1); len += strlcpy2(trash + len, start, max + 1); trash[len++] = '\n'; write(1, trash, len); } /************************************************************************/ /* The code below is dedicated to ACL parsing and matching */ /************************************************************************/ /* 1. Check on METHOD * We use the pre-parsed method if it is known, and store its number as an * integer. If it is unknown, we use the pointer and the length. */ static int acl_parse_meth(const char **text, struct acl_pattern *pattern, int *opaque) { int len, meth; len = strlen(*text); meth = find_http_meth(*text, len); pattern->val.i = meth; if (meth == HTTP_METH_OTHER) { pattern->ptr.str = strdup(*text); if (!pattern->ptr.str) return 0; pattern->len = len; } return 1; } static int acl_fetch_meth(struct proxy *px, struct session *l4, void *l7, int dir, struct acl_expr *expr, struct acl_test *test) { int meth; struct http_txn *txn = l7; if (!txn) return 0; if (txn->req.msg_state != HTTP_MSG_BODY) return 0; meth = txn->meth; test->i = meth; if (meth == HTTP_METH_OTHER) { if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE) /* ensure the indexes are not affected */ return 0; test->len = txn->req.sl.rq.m_l; test->ptr = txn->req.sol; } test->flags = ACL_TEST_F_READ_ONLY | ACL_TEST_F_VOL_1ST; return 1; } static int acl_match_meth(struct acl_test *test, struct acl_pattern *pattern) { int icase; if (test->i != pattern->val.i) return ACL_PAT_FAIL; if (test->i != HTTP_METH_OTHER) return ACL_PAT_PASS; /* Other method, we must compare the strings */ if (pattern->len != test->len) return ACL_PAT_FAIL; icase = pattern->flags & ACL_PAT_F_IGNORE_CASE; if ((icase && strncasecmp(pattern->ptr.str, test->ptr, test->len) != 0) || (!icase && strncmp(pattern->ptr.str, test->ptr, test->len) != 0)) return ACL_PAT_FAIL; return ACL_PAT_PASS; } /* 2. Check on Request/Status Version * We simply compare strings here. */ static int acl_parse_ver(const char **text, struct acl_pattern *pattern, int *opaque) { pattern->ptr.str = strdup(*text); if (!pattern->ptr.str) return 0; pattern->len = strlen(*text); return 1; } static int acl_fetch_rqver(struct proxy *px, struct session *l4, void *l7, int dir, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; char *ptr; int len; if (!txn) return 0; if (txn->req.msg_state != HTTP_MSG_BODY) return 0; len = txn->req.sl.rq.v_l; ptr = txn->req.sol + txn->req.sl.rq.v - txn->req.som; while ((len-- > 0) && (*ptr++ != '/')); if (len <= 0) return 0; test->ptr = ptr; test->len = len; test->flags = ACL_TEST_F_READ_ONLY | ACL_TEST_F_VOL_1ST; return 1; } static int acl_fetch_stver(struct proxy *px, struct session *l4, void *l7, int dir, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; char *ptr; int len; if (!txn) return 0; if (txn->rsp.msg_state != HTTP_MSG_BODY) return 0; len = txn->rsp.sl.st.v_l; ptr = txn->rsp.sol; while ((len-- > 0) && (*ptr++ != '/')); if (len <= 0) return 0; test->ptr = ptr; test->len = len; test->flags = ACL_TEST_F_READ_ONLY | ACL_TEST_F_VOL_1ST; return 1; } /* 3. Check on Status Code. We manipulate integers here. */ static int acl_fetch_stcode(struct proxy *px, struct session *l4, void *l7, int dir, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; char *ptr; int len; if (!txn) return 0; if (txn->rsp.msg_state != HTTP_MSG_BODY) return 0; len = txn->rsp.sl.st.c_l; ptr = txn->rsp.sol + txn->rsp.sl.st.c - txn->rsp.som; test->i = __strl2ui(ptr, len); test->flags = ACL_TEST_F_VOL_1ST; return 1; } /* 4. Check on URL/URI. A pointer to the URI is stored. */ static int acl_fetch_url(struct proxy *px, struct session *l4, void *l7, int dir, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; if (!txn) return 0; if (txn->req.msg_state != HTTP_MSG_BODY) return 0; if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE) /* ensure the indexes are not affected */ return 0; test->len = txn->req.sl.rq.u_l; test->ptr = txn->req.sol + txn->req.sl.rq.u; /* we do not need to set READ_ONLY because the data is in a buffer */ test->flags = ACL_TEST_F_VOL_1ST; return 1; } static int acl_fetch_url_ip(struct proxy *px, struct session *l4, void *l7, int dir, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; if (!txn) return 0; if (txn->req.msg_state != HTTP_MSG_BODY) return 0; if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE) /* ensure the indexes are not affected */ return 0; /* Parse HTTP request */ url2sa(txn->req.sol + txn->req.sl.rq.u, txn->req.sl.rq.u_l, &l4->srv_addr); test->ptr = (void *)&((struct sockaddr_in *)&l4->srv_addr)->sin_addr; test->i = AF_INET; /* * If we are parsing url in frontend space, we prepare backend stage * to not parse again the same url ! optimization lazyness... */ if (px->options & PR_O_HTTP_PROXY) l4->flags |= SN_ADDR_SET; test->flags = ACL_TEST_F_READ_ONLY; return 1; } static int acl_fetch_url_port(struct proxy *px, struct session *l4, void *l7, int dir, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; if (!txn) return 0; if (txn->req.msg_state != HTTP_MSG_BODY) return 0; if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE) /* ensure the indexes are not affected */ return 0; /* Same optimization as url_ip */ url2sa(txn->req.sol + txn->req.sl.rq.u, txn->req.sl.rq.u_l, &l4->srv_addr); test->i = ntohs(((struct sockaddr_in *)&l4->srv_addr)->sin_port); if (px->options & PR_O_HTTP_PROXY) l4->flags |= SN_ADDR_SET; test->flags = ACL_TEST_F_READ_ONLY; return 1; } /* 5. Check on HTTP header. A pointer to the beginning of the value is returned. * This generic function is used by both acl_fetch_chdr() and acl_fetch_shdr(). */ static int acl_fetch_hdr(struct proxy *px, struct session *l4, void *l7, char *sol, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; struct hdr_idx *idx = &txn->hdr_idx; struct hdr_ctx *ctx = (struct hdr_ctx *)test->ctx.a; if (!txn) return 0; if (!(test->flags & ACL_TEST_F_FETCH_MORE)) /* search for header from the beginning */ ctx->idx = 0; if (http_find_header2(expr->arg.str, expr->arg_len, sol, idx, ctx)) { test->flags |= ACL_TEST_F_FETCH_MORE; test->flags |= ACL_TEST_F_VOL_HDR; test->len = ctx->vlen; test->ptr = (char *)ctx->line + ctx->val; return 1; } test->flags &= ~ACL_TEST_F_FETCH_MORE; test->flags |= ACL_TEST_F_VOL_HDR; return 0; } static int acl_fetch_chdr(struct proxy *px, struct session *l4, void *l7, int dir, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; if (!txn) return 0; if (txn->req.msg_state != HTTP_MSG_BODY) return 0; if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE) /* ensure the indexes are not affected */ return 0; return acl_fetch_hdr(px, l4, txn, txn->req.sol, expr, test); } static int acl_fetch_shdr(struct proxy *px, struct session *l4, void *l7, int dir, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; if (!txn) return 0; if (txn->rsp.msg_state != HTTP_MSG_BODY) return 0; return acl_fetch_hdr(px, l4, txn, txn->rsp.sol, expr, test); } /* 6. Check on HTTP header count. The number of occurrences is returned. * This generic function is used by both acl_fetch_chdr* and acl_fetch_shdr*. */ static int acl_fetch_hdr_cnt(struct proxy *px, struct session *l4, void *l7, char *sol, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; struct hdr_idx *idx = &txn->hdr_idx; struct hdr_ctx ctx; int cnt; if (!txn) return 0; ctx.idx = 0; cnt = 0; while (http_find_header2(expr->arg.str, expr->arg_len, sol, idx, &ctx)) cnt++; test->i = cnt; test->flags = ACL_TEST_F_VOL_HDR; return 1; } static int acl_fetch_chdr_cnt(struct proxy *px, struct session *l4, void *l7, int dir, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; if (!txn) return 0; if (txn->req.msg_state != HTTP_MSG_BODY) return 0; if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE) /* ensure the indexes are not affected */ return 0; return acl_fetch_hdr_cnt(px, l4, txn, txn->req.sol, expr, test); } static int acl_fetch_shdr_cnt(struct proxy *px, struct session *l4, void *l7, int dir, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; if (!txn) return 0; if (txn->rsp.msg_state != HTTP_MSG_BODY) return 0; return acl_fetch_hdr_cnt(px, l4, txn, txn->rsp.sol, expr, test); } /* 7. Check on HTTP header's integer value. The integer value is returned. * FIXME: the type is 'int', it may not be appropriate for everything. * This generic function is used by both acl_fetch_chdr* and acl_fetch_shdr*. */ static int acl_fetch_hdr_val(struct proxy *px, struct session *l4, void *l7, char *sol, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; struct hdr_idx *idx = &txn->hdr_idx; struct hdr_ctx *ctx = (struct hdr_ctx *)test->ctx.a; if (!txn) return 0; if (!(test->flags & ACL_TEST_F_FETCH_MORE)) /* search for header from the beginning */ ctx->idx = 0; if (http_find_header2(expr->arg.str, expr->arg_len, sol, idx, ctx)) { test->flags |= ACL_TEST_F_FETCH_MORE; test->flags |= ACL_TEST_F_VOL_HDR; test->i = strl2ic((char *)ctx->line + ctx->val, ctx->vlen); return 1; } test->flags &= ~ACL_TEST_F_FETCH_MORE; test->flags |= ACL_TEST_F_VOL_HDR; return 0; } static int acl_fetch_chdr_val(struct proxy *px, struct session *l4, void *l7, int dir, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; if (!txn) return 0; if (txn->req.msg_state != HTTP_MSG_BODY) return 0; if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE) /* ensure the indexes are not affected */ return 0; return acl_fetch_hdr_val(px, l4, txn, txn->req.sol, expr, test); } static int acl_fetch_shdr_val(struct proxy *px, struct session *l4, void *l7, int dir, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; if (!txn) return 0; if (txn->rsp.msg_state != HTTP_MSG_BODY) return 0; return acl_fetch_hdr_val(px, l4, txn, txn->rsp.sol, expr, test); } /* 8. Check on URI PATH. A pointer to the PATH is stored. The path starts at * the first '/' after the possible hostname, and ends before the possible '?'. */ static int acl_fetch_path(struct proxy *px, struct session *l4, void *l7, int dir, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; char *ptr, *end; if (!txn) return 0; if (txn->req.msg_state != HTTP_MSG_BODY) return 0; if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE) /* ensure the indexes are not affected */ return 0; end = txn->req.sol + txn->req.sl.rq.u + txn->req.sl.rq.u_l; ptr = http_get_path(txn); if (!ptr) return 0; /* OK, we got the '/' ! */ test->ptr = ptr; while (ptr < end && *ptr != '?') ptr++; test->len = ptr - test->ptr; /* we do not need to set READ_ONLY because the data is in a buffer */ test->flags = ACL_TEST_F_VOL_1ST; return 1; } /************************************************************************/ /* All supported keywords must be declared here. */ /************************************************************************/ /* Note: must not be declared as its list will be overwritten */ static struct acl_kw_list acl_kws = {{ },{ { "method", acl_parse_meth, acl_fetch_meth, acl_match_meth, ACL_USE_L7REQ_PERMANENT }, { "req_ver", acl_parse_ver, acl_fetch_rqver, acl_match_str, ACL_USE_L7REQ_VOLATILE }, { "resp_ver", acl_parse_ver, acl_fetch_stver, acl_match_str, ACL_USE_L7RTR_VOLATILE }, { "status", acl_parse_int, acl_fetch_stcode, acl_match_int, ACL_USE_L7RTR_PERMANENT }, { "url", acl_parse_str, acl_fetch_url, acl_match_str, ACL_USE_L7REQ_VOLATILE }, { "url_beg", acl_parse_str, acl_fetch_url, acl_match_beg, ACL_USE_L7REQ_VOLATILE }, { "url_end", acl_parse_str, acl_fetch_url, acl_match_end, ACL_USE_L7REQ_VOLATILE }, { "url_sub", acl_parse_str, acl_fetch_url, acl_match_sub, ACL_USE_L7REQ_VOLATILE }, { "url_dir", acl_parse_str, acl_fetch_url, acl_match_dir, ACL_USE_L7REQ_VOLATILE }, { "url_dom", acl_parse_str, acl_fetch_url, acl_match_dom, ACL_USE_L7REQ_VOLATILE }, { "url_reg", acl_parse_reg, acl_fetch_url, acl_match_reg, ACL_USE_L7REQ_VOLATILE }, { "url_ip", acl_parse_ip, acl_fetch_url_ip, acl_match_ip, ACL_USE_L7REQ_VOLATILE }, { "url_port", acl_parse_int, acl_fetch_url_port, acl_match_int, ACL_USE_L7REQ_VOLATILE }, /* note: we should set hdr* to use ACL_USE_HDR_VOLATILE, and chdr* to use L7REQ_VOLATILE */ { "hdr", acl_parse_str, acl_fetch_chdr, acl_match_str, ACL_USE_L7REQ_VOLATILE }, { "hdr_reg", acl_parse_reg, acl_fetch_chdr, acl_match_reg, ACL_USE_L7REQ_VOLATILE }, { "hdr_beg", acl_parse_str, acl_fetch_chdr, acl_match_beg, ACL_USE_L7REQ_VOLATILE }, { "hdr_end", acl_parse_str, acl_fetch_chdr, acl_match_end, ACL_USE_L7REQ_VOLATILE }, { "hdr_sub", acl_parse_str, acl_fetch_chdr, acl_match_sub, ACL_USE_L7REQ_VOLATILE }, { "hdr_dir", acl_parse_str, acl_fetch_chdr, acl_match_dir, ACL_USE_L7REQ_VOLATILE }, { "hdr_dom", acl_parse_str, acl_fetch_chdr, acl_match_dom, ACL_USE_L7REQ_VOLATILE }, { "hdr_cnt", acl_parse_int, acl_fetch_chdr_cnt,acl_match_int, ACL_USE_L7REQ_VOLATILE }, { "hdr_val", acl_parse_int, acl_fetch_chdr_val,acl_match_int, ACL_USE_L7REQ_VOLATILE }, { "shdr", acl_parse_str, acl_fetch_shdr, acl_match_str, ACL_USE_L7RTR_VOLATILE }, { "shdr_reg", acl_parse_reg, acl_fetch_shdr, acl_match_reg, ACL_USE_L7RTR_VOLATILE }, { "shdr_beg", acl_parse_str, acl_fetch_shdr, acl_match_beg, ACL_USE_L7RTR_VOLATILE }, { "shdr_end", acl_parse_str, acl_fetch_shdr, acl_match_end, ACL_USE_L7RTR_VOLATILE }, { "shdr_sub", acl_parse_str, acl_fetch_shdr, acl_match_sub, ACL_USE_L7RTR_VOLATILE }, { "shdr_dir", acl_parse_str, acl_fetch_shdr, acl_match_dir, ACL_USE_L7RTR_VOLATILE }, { "shdr_dom", acl_parse_str, acl_fetch_shdr, acl_match_dom, ACL_USE_L7RTR_VOLATILE }, { "shdr_cnt", acl_parse_int, acl_fetch_shdr_cnt,acl_match_int, ACL_USE_L7RTR_VOLATILE }, { "shdr_val", acl_parse_int, acl_fetch_shdr_val,acl_match_int, ACL_USE_L7RTR_VOLATILE }, { "path", acl_parse_str, acl_fetch_path, acl_match_str, ACL_USE_L7REQ_VOLATILE }, { "path_reg", acl_parse_reg, acl_fetch_path, acl_match_reg, ACL_USE_L7REQ_VOLATILE }, { "path_beg", acl_parse_str, acl_fetch_path, acl_match_beg, ACL_USE_L7REQ_VOLATILE }, { "path_end", acl_parse_str, acl_fetch_path, acl_match_end, ACL_USE_L7REQ_VOLATILE }, { "path_sub", acl_parse_str, acl_fetch_path, acl_match_sub, ACL_USE_L7REQ_VOLATILE }, { "path_dir", acl_parse_str, acl_fetch_path, acl_match_dir, ACL_USE_L7REQ_VOLATILE }, { "path_dom", acl_parse_str, acl_fetch_path, acl_match_dom, ACL_USE_L7REQ_VOLATILE }, { NULL, NULL, NULL, NULL }, #if 0 { "line", acl_parse_str, acl_fetch_line, acl_match_str }, { "line_reg", acl_parse_reg, acl_fetch_line, acl_match_reg }, { "line_beg", acl_parse_str, acl_fetch_line, acl_match_beg }, { "line_end", acl_parse_str, acl_fetch_line, acl_match_end }, { "line_sub", acl_parse_str, acl_fetch_line, acl_match_sub }, { "line_dir", acl_parse_str, acl_fetch_line, acl_match_dir }, { "line_dom", acl_parse_str, acl_fetch_line, acl_match_dom }, { "cook", acl_parse_str, acl_fetch_cook, acl_match_str }, { "cook_reg", acl_parse_reg, acl_fetch_cook, acl_match_reg }, { "cook_beg", acl_parse_str, acl_fetch_cook, acl_match_beg }, { "cook_end", acl_parse_str, acl_fetch_cook, acl_match_end }, { "cook_sub", acl_parse_str, acl_fetch_cook, acl_match_sub }, { "cook_dir", acl_parse_str, acl_fetch_cook, acl_match_dir }, { "cook_dom", acl_parse_str, acl_fetch_cook, acl_match_dom }, { "cook_pst", acl_parse_none, acl_fetch_cook, acl_match_pst }, { "auth_user", acl_parse_str, acl_fetch_user, acl_match_str }, { "auth_regex", acl_parse_reg, acl_fetch_user, acl_match_reg }, { "auth_clear", acl_parse_str, acl_fetch_auth, acl_match_str }, { "auth_md5", acl_parse_str, acl_fetch_auth, acl_match_md5 }, { NULL, NULL, NULL, NULL }, #endif }}; __attribute__((constructor)) static void __http_protocol_init(void) { acl_register_keywords(&acl_kws); } /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */