/* * Session management functions. * * Copyright 2000-2015 Willy Tarreau * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct pool_head *pool2_session; static int conn_complete_session(struct connection *conn); static int conn_update_session(struct connection *conn); static struct task *session_expire_embryonic(struct task *t); /* data layer callbacks for an embryonic stream */ struct data_cb sess_conn_cb = { .recv = NULL, .send = NULL, .wake = conn_update_session, .init = conn_complete_session, }; /* Create a a new session and assign it to frontend , listener
  • , * origin , set the current date and clear the stick counters pointers. * Returns the session upon success or NULL. The session may be released using * session_free(). */ struct session *session_new(struct proxy *fe, struct listener *li, enum obj_type *origin) { struct session *sess; sess = pool_alloc2(pool2_session); if (sess) { sess->listener = li; sess->fe = fe; sess->origin = origin; sess->accept_date = date; /* user-visible date for logging */ sess->tv_accept = now; /* corrected date for internal use */ memset(sess->stkctr, 0, sizeof(sess->stkctr)); vars_init(&sess->vars, SCOPE_SESS); } return sess; } void session_free(struct session *sess) { session_store_counters(sess); vars_prune_per_sess(&sess->vars); pool_free2(pool2_session, sess); } /* perform minimal intializations, report 0 in case of error, 1 if OK. */ int init_session() { pool2_session = create_pool("session", sizeof(struct session), MEM_F_SHARED); return pool2_session != NULL; } /* count a new session to keep frontend, listener and track stats up to date */ static void session_count_new(struct session *sess) { struct stkctr *stkctr; void *ptr; int i; proxy_inc_fe_sess_ctr(sess->listener, sess->fe); for (i = 0; i < MAX_SESS_STKCTR; i++) { stkctr = &sess->stkctr[i]; if (!stkctr_entry(stkctr)) continue; ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_SESS_CNT); if (ptr) stktable_data_cast(ptr, sess_cnt)++; ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_SESS_RATE); if (ptr) update_freq_ctr_period(&stktable_data_cast(ptr, sess_rate), stkctr->table->data_arg[STKTABLE_DT_SESS_RATE].u, 1); } } /* This function is called from the protocol layer accept() in order to * instanciate a new session on behalf of a given listener and frontend. It * returns a positive value upon success, 0 if the connection can be ignored, * or a negative value upon critical failure. The accepted file descriptor is * closed if we return <= 0. If no handshake is needed, it immediately tries * to instanciate a new stream. */ int session_accept_fd(struct listener *l, int cfd, struct sockaddr_storage *addr) { struct connection *cli_conn; struct proxy *p = l->frontend; struct session *sess; struct stream *strm; struct task *t; int ret; ret = -1; /* assume unrecoverable error by default */ if (unlikely((cli_conn = conn_new()) == NULL)) goto out_close; conn_prepare(cli_conn, l->proto, l->xprt); cli_conn->t.sock.fd = cfd; cli_conn->addr.from = *addr; cli_conn->flags |= CO_FL_ADDR_FROM_SET; cli_conn->target = &l->obj_type; cli_conn->proxy_netns = l->netns; conn_ctrl_init(cli_conn); /* wait for a PROXY protocol header */ if (l->options & LI_O_ACC_PROXY) { cli_conn->flags |= CO_FL_ACCEPT_PROXY; conn_sock_want_recv(cli_conn); } conn_data_want_recv(cli_conn); if (conn_xprt_init(cli_conn) < 0) goto out_free_conn; sess = session_new(p, l, &cli_conn->obj_type); if (!sess) goto out_free_conn; p->feconn++; /* This session was accepted, count it now */ if (p->feconn > p->fe_counters.conn_max) p->fe_counters.conn_max = p->feconn; proxy_inc_fe_conn_ctr(l, p); /* now evaluate the tcp-request layer4 rules. We only need a session * and no stream for these rules. */ if ((l->options & LI_O_TCP_RULES) && !tcp_exec_req_rules(sess)) { /* let's do a no-linger now to close with a single RST. */ setsockopt(cfd, SOL_SOCKET, SO_LINGER, (struct linger *) &nolinger, sizeof(struct linger)); ret = 0; /* successful termination */ goto out_free_sess; } /* monitor-net and health mode are processed immediately after TCP * connection rules. This way it's possible to block them, but they * never use the lower data layers, they send directly over the socket, * as they were designed for. We first flush the socket receive buffer * in order to avoid emission of an RST by the system. We ignore any * error. */ if (unlikely((p->mode == PR_MODE_HEALTH) || ((l->options & LI_O_CHK_MONNET) && addr->ss_family == AF_INET && (((struct sockaddr_in *)addr)->sin_addr.s_addr & p->mon_mask.s_addr) == p->mon_net.s_addr))) { /* we have 4 possibilities here : * - HTTP mode, from monitoring address => send "HTTP/1.0 200 OK" * - HEALTH mode with HTTP check => send "HTTP/1.0 200 OK" * - HEALTH mode without HTTP check => just send "OK" * - TCP mode from monitoring address => just close */ if (l->proto->drain) l->proto->drain(cfd); if (p->mode == PR_MODE_HTTP || (p->mode == PR_MODE_HEALTH && (p->options2 & PR_O2_CHK_ANY) == PR_O2_HTTP_CHK)) send(cfd, "HTTP/1.0 200 OK\r\n\r\n", 19, MSG_DONTWAIT|MSG_NOSIGNAL|MSG_MORE); else if (p->mode == PR_MODE_HEALTH) send(cfd, "OK\n", 3, MSG_DONTWAIT|MSG_NOSIGNAL|MSG_MORE); ret = 0; goto out_free_sess; } /* Adjust some socket options */ if (l->addr.ss_family == AF_INET || l->addr.ss_family == AF_INET6) { setsockopt(cfd, IPPROTO_TCP, TCP_NODELAY, (char *) &one, sizeof(one)); if (p->options & PR_O_TCP_CLI_KA) setsockopt(cfd, SOL_SOCKET, SO_KEEPALIVE, (char *) &one, sizeof(one)); if (p->options & PR_O_TCP_NOLING) fdtab[cfd].linger_risk = 1; #if defined(TCP_MAXSEG) if (l->maxseg < 0) { /* we just want to reduce the current MSS by that value */ int mss; socklen_t mss_len = sizeof(mss); if (getsockopt(cfd, IPPROTO_TCP, TCP_MAXSEG, &mss, &mss_len) == 0) { mss += l->maxseg; /* remember, it's < 0 */ setsockopt(cfd, IPPROTO_TCP, TCP_MAXSEG, &mss, sizeof(mss)); } } #endif } if (global.tune.client_sndbuf) setsockopt(cfd, SOL_SOCKET, SO_SNDBUF, &global.tune.client_sndbuf, sizeof(global.tune.client_sndbuf)); if (global.tune.client_rcvbuf) setsockopt(cfd, SOL_SOCKET, SO_RCVBUF, &global.tune.client_rcvbuf, sizeof(global.tune.client_rcvbuf)); if (unlikely((t = task_new()) == NULL)) goto out_free_sess; t->context = sess; t->nice = l->nice; /* OK, now either we have a pending handshake to execute with and * then we must return to the I/O layer, or we can proceed with the * end of the stream initialization. In case of handshake, we also * set the I/O timeout to the frontend's client timeout. * * At this point we set the relation between sess/task/conn this way : * * orig -- sess <-- context * | | * v | * conn -- owner ---> task */ if (cli_conn->flags & CO_FL_HANDSHAKE) { conn_attach(cli_conn, t, &sess_conn_cb); t->process = session_expire_embryonic; t->expire = tick_add_ifset(now_ms, p->timeout.client); task_queue(t); cli_conn->flags |= CO_FL_INIT_DATA | CO_FL_WAKE_DATA; return 1; } /* OK let's complete stream initialization since there is no handshake */ cli_conn->flags |= CO_FL_CONNECTED; /* we want the connection handler to notify the stream interface about updates. */ cli_conn->flags |= CO_FL_WAKE_DATA; /* if logs require transport layer information, note it on the connection */ if (sess->fe->to_log & LW_XPRT) cli_conn->flags |= CO_FL_XPRT_TRACKED; session_count_new(sess); strm = stream_new(sess, t, &cli_conn->obj_type); if (!strm) goto out_free_task; strm->target = sess->listener->default_target; strm->req.analysers |= sess->listener->analysers; return 1; out_free_task: task_free(t); out_free_sess: p->feconn--; session_free(sess); out_free_conn: cli_conn->flags &= ~CO_FL_XPRT_TRACKED; conn_xprt_close(cli_conn); conn_free(cli_conn); out_close: if (ret < 0 && l->xprt == &raw_sock && p->mode == PR_MODE_HTTP) { /* critical error, no more memory, try to emit a 500 response */ struct chunk *err_msg = &p->errmsg[HTTP_ERR_500]; if (!err_msg->str) err_msg = &http_err_chunks[HTTP_ERR_500]; send(cfd, err_msg->str, err_msg->len, MSG_DONTWAIT|MSG_NOSIGNAL); } if (fdtab[cfd].owner) fd_delete(cfd); else close(cfd); return ret; } /* prepare the trash with a log prefix for session . It only works with * embryonic sessions based on a real connection. This function requires that * at sess->origin points to the incoming connection. */ static void session_prepare_log_prefix(struct session *sess) { struct tm tm; char pn[INET6_ADDRSTRLEN]; int ret; char *end; struct connection *cli_conn = __objt_conn(sess->origin); ret = addr_to_str(&cli_conn->addr.from, pn, sizeof(pn)); if (ret <= 0) chunk_printf(&trash, "unknown ["); else if (ret == AF_UNIX) chunk_printf(&trash, "%s:%d [", pn, sess->listener->luid); else chunk_printf(&trash, "%s:%d [", pn, get_host_port(&cli_conn->addr.from)); get_localtime(sess->accept_date.tv_sec, &tm); end = date2str_log(trash.str + trash.len, &tm, &(sess->accept_date), trash.size - trash.len); trash.len = end - trash.str; if (sess->listener->name) chunk_appendf(&trash, "] %s/%s", sess->fe->id, sess->listener->name); else chunk_appendf(&trash, "] %s/%d", sess->fe->id, sess->listener->luid); } /* This function kills an existing embryonic session. It stops the connection's * transport layer, releases assigned resources, resumes the listener if it was * disabled and finally kills the file descriptor. This function requires that * sess->origin points to the incoming connection. */ static void session_kill_embryonic(struct session *sess) { int level = LOG_INFO; struct connection *conn = __objt_conn(sess->origin); struct task *task = conn->owner; unsigned int log = sess->fe->to_log; const char *err_msg; if (sess->fe->options2 & PR_O2_LOGERRORS) level = LOG_ERR; if (log && (sess->fe->options & PR_O_NULLNOLOG)) { /* with "option dontlognull", we don't log connections with no transfer */ if (!conn->err_code || conn->err_code == CO_ER_PRX_EMPTY || conn->err_code == CO_ER_PRX_ABORT || conn->err_code == CO_ER_SSL_EMPTY || conn->err_code == CO_ER_SSL_ABORT) log = 0; } if (log) { if (!conn->err_code && (task->state & TASK_WOKEN_TIMER)) { if (conn->flags & CO_FL_ACCEPT_PROXY) conn->err_code = CO_ER_PRX_TIMEOUT; else if (conn->flags & CO_FL_SSL_WAIT_HS) conn->err_code = CO_ER_SSL_TIMEOUT; } session_prepare_log_prefix(sess); err_msg = conn_err_code_str(conn); if (err_msg) send_log(sess->fe, level, "%s: %s\n", trash.str, err_msg); else send_log(sess->fe, level, "%s: unknown connection error (code=%d flags=%08x)\n", trash.str, conn->err_code, conn->flags); } /* kill the connection now */ conn_force_close(conn); conn_free(conn); sess->fe->feconn--; if (!(sess->listener->options & LI_O_UNLIMITED)) actconn--; jobs--; sess->listener->nbconn--; if (sess->listener->state == LI_FULL) resume_listener(sess->listener); /* Dequeues all of the listeners waiting for a resource */ if (!LIST_ISEMPTY(&global_listener_queue)) dequeue_all_listeners(&global_listener_queue); if (!LIST_ISEMPTY(&sess->fe->listener_queue) && (!sess->fe->fe_sps_lim || freq_ctr_remain(&sess->fe->fe_sess_per_sec, sess->fe->fe_sps_lim, 0) > 0)) dequeue_all_listeners(&sess->fe->listener_queue); task_delete(task); task_free(task); session_free(sess); } /* Manages the embryonic session timeout. It is only called when the timeout * strikes and performs the required cleanup. */ static struct task *session_expire_embryonic(struct task *t) { struct session *sess = t->context; if (!(t->state & TASK_WOKEN_TIMER)) return t; session_kill_embryonic(sess); return NULL; } /* Finish initializing a session from a connection, or kills it if the * connection shows and error. Returns <0 if the connection was killed. */ static int conn_complete_session(struct connection *conn) { struct task *task = conn->owner; struct session *sess = task->context; struct stream *strm; if (conn->flags & CO_FL_ERROR) goto fail; /* we want the connection handler to notify the stream interface about updates. */ conn->flags |= CO_FL_WAKE_DATA; /* if logs require transport layer information, note it on the connection */ if (sess->fe->to_log & LW_XPRT) conn->flags |= CO_FL_XPRT_TRACKED; session_count_new(sess); task->process = sess->listener->handler; strm = stream_new(sess, task, &conn->obj_type); if (!strm) goto fail; strm->target = sess->listener->default_target; strm->req.analysers |= sess->listener->analysers; conn->flags &= ~CO_FL_INIT_DATA; return 0; fail: session_kill_embryonic(sess); return -1; } /* Update a session status. The connection is killed in case of * error, and <0 will be returned. Otherwise it does nothing. */ static int conn_update_session(struct connection *conn) { struct task *task = conn->owner; struct session *sess = task->context; if (conn->flags & CO_FL_ERROR) { session_kill_embryonic(sess); return -1; } return 0; } /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */