/* * Functions managing stream_interface structures * * Copyright 2000-2012 Willy Tarreau * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* socket functions used when running a stream interface as a task */ static void stream_int_update_embedded(struct stream_interface *si); static void stream_int_shutr(struct stream_interface *si); static void stream_int_shutw(struct stream_interface *si); static void stream_int_chk_rcv(struct stream_interface *si); static void stream_int_chk_snd(struct stream_interface *si); static void stream_int_shutr_conn(struct stream_interface *si); static void stream_int_shutw_conn(struct stream_interface *si); static void stream_int_chk_rcv_conn(struct stream_interface *si); static void stream_int_chk_snd_conn(struct stream_interface *si); static void stream_int_shutr_applet(struct stream_interface *si); static void stream_int_shutw_applet(struct stream_interface *si); static void stream_int_chk_rcv_applet(struct stream_interface *si); static void stream_int_chk_snd_applet(struct stream_interface *si); static void si_conn_recv_cb(struct connection *conn); static void si_conn_send_cb(struct connection *conn); static int si_conn_wake_cb(struct connection *conn); static int si_idle_conn_wake_cb(struct connection *conn); static void si_idle_conn_null_cb(struct connection *conn); /* stream-interface operations for embedded tasks */ struct si_ops si_embedded_ops = { .update = stream_int_update_embedded, .chk_rcv = stream_int_chk_rcv, .chk_snd = stream_int_chk_snd, .shutr = stream_int_shutr, .shutw = stream_int_shutw, }; /* stream-interface operations for connections */ struct si_ops si_conn_ops = { .update = stream_int_update_conn, .chk_rcv = stream_int_chk_rcv_conn, .chk_snd = stream_int_chk_snd_conn, .shutr = stream_int_shutr_conn, .shutw = stream_int_shutw_conn, }; /* stream-interface operations for connections */ struct si_ops si_applet_ops = { .update = stream_int_update_applet, .chk_rcv = stream_int_chk_rcv_applet, .chk_snd = stream_int_chk_snd_applet, .shutr = stream_int_shutr_applet, .shutw = stream_int_shutw_applet, }; struct data_cb si_conn_cb = { .recv = si_conn_recv_cb, .send = si_conn_send_cb, .wake = si_conn_wake_cb, }; struct data_cb si_idle_conn_cb = { .recv = si_idle_conn_null_cb, .send = si_idle_conn_null_cb, .wake = si_idle_conn_wake_cb, }; /* * This function only has to be called once after a wakeup event in case of * suspected timeout. It controls the stream interface timeouts and sets * si->flags accordingly. It does NOT close anything, as this timeout may * be used for any purpose. It returns 1 if the timeout fired, otherwise * zero. */ int stream_int_check_timeouts(struct stream_interface *si) { if (tick_is_expired(si->exp, now_ms)) { si->flags |= SI_FL_EXP; return 1; } return 0; } /* to be called only when in SI_ST_DIS with SI_FL_ERR */ void stream_int_report_error(struct stream_interface *si) { if (!si->err_type) si->err_type = SI_ET_DATA_ERR; si_oc(si)->flags |= CF_WRITE_ERROR; si_ic(si)->flags |= CF_READ_ERROR; } /* * Returns a message to the client ; the connection is shut down for read, * and the request is cleared so that no server connection can be initiated. * The buffer is marked for read shutdown on the other side to protect the * message, and the buffer write is enabled. The message is contained in a * "chunk". If it is null, then an empty message is used. The reply buffer does * not need to be empty before this, and its contents will not be overwritten. * The primary goal of this function is to return error messages to a client. */ void stream_int_retnclose(struct stream_interface *si, const struct chunk *msg) { struct channel *ic = si_ic(si); struct channel *oc = si_oc(si); channel_auto_read(ic); channel_abort(ic); channel_auto_close(ic); channel_erase(ic); channel_truncate(oc); if (likely(msg && msg->len)) bo_inject(oc, msg->str, msg->len); oc->wex = tick_add_ifset(now_ms, oc->wto); channel_auto_read(oc); channel_auto_close(oc); channel_shutr_now(oc); } /* default update function for embedded tasks, to be used at the end of the i/o handler */ static void stream_int_update_embedded(struct stream_interface *si) { int old_flags = si->flags; struct channel *ic = si_ic(si); struct channel *oc = si_oc(si); DPRINTF(stderr, "%s: si=%p, si->state=%d ic->flags=%08x oc->flags=%08x\n", __FUNCTION__, si, si->state, ic->flags, oc->flags); if (si->state != SI_ST_EST) return; if ((oc->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW && channel_is_empty(oc)) si_shutw(si); if ((oc->flags & (CF_SHUTW|CF_SHUTW_NOW)) == 0 && channel_may_recv(oc)) si->flags |= SI_FL_WAIT_DATA; /* we're almost sure that we need some space if the buffer is not * empty, even if it's not full, because the applets can't fill it. */ if ((ic->flags & (CF_SHUTR|CF_DONT_READ)) == 0 && !channel_is_empty(ic)) si->flags |= SI_FL_WAIT_ROOM; if (oc->flags & CF_WRITE_ACTIVITY) { if (tick_isset(oc->wex)) oc->wex = tick_add_ifset(now_ms, oc->wto); } if (ic->flags & CF_READ_ACTIVITY || (oc->flags & CF_WRITE_ACTIVITY && !(si->flags & SI_FL_INDEP_STR))) { if (tick_isset(ic->rex)) ic->rex = tick_add_ifset(now_ms, ic->rto); } /* save flags to detect changes */ old_flags = si->flags; if (likely((oc->flags & (CF_SHUTW|CF_WRITE_PARTIAL|CF_DONT_READ)) == CF_WRITE_PARTIAL && channel_may_recv(oc) && (si_opposite(si)->flags & SI_FL_WAIT_ROOM))) si_chk_rcv(si_opposite(si)); if (((ic->flags & CF_READ_PARTIAL) && !channel_is_empty(ic)) && (ic->pipe /* always try to send spliced data */ || (ic->buf->i == 0 && (si_opposite(si)->flags & SI_FL_WAIT_DATA)))) { si_chk_snd(si_opposite(si)); /* check if the consumer has freed some space */ if (channel_may_recv(ic) && !ic->pipe) si->flags &= ~SI_FL_WAIT_ROOM; } /* Note that we're trying to wake up in two conditions here : * - special event, which needs the holder task attention * - status indicating that the applet can go on working. This * is rather hard because we might be blocking on output and * don't want to wake up on input and vice-versa. The idea is * to only rely on the changes the chk_* might have performed. */ if (/* check stream interface changes */ ((old_flags & ~si->flags) & (SI_FL_WAIT_ROOM|SI_FL_WAIT_DATA)) || /* changes on the production side */ (ic->flags & (CF_READ_NULL|CF_READ_ERROR)) || si->state != SI_ST_EST || (si->flags & SI_FL_ERR) || ((ic->flags & CF_READ_PARTIAL) && (!ic->to_forward || si_opposite(si)->state != SI_ST_EST)) || /* changes on the consumption side */ (oc->flags & (CF_WRITE_NULL|CF_WRITE_ERROR)) || ((oc->flags & CF_WRITE_ACTIVITY) && ((oc->flags & CF_SHUTW) || ((oc->flags & CF_WAKE_WRITE) && (si_opposite(si)->state != SI_ST_EST || (channel_is_empty(oc) && !oc->to_forward)))))) { if (!(si->flags & SI_FL_DONT_WAKE)) task_wakeup(si_task(si), TASK_WOKEN_IO); } if (ic->flags & CF_READ_ACTIVITY) ic->flags &= ~CF_READ_DONTWAIT; } /* * This function performs a shutdown-read on a detached stream interface in a * connected or init state (it does nothing for other states). It either shuts * the read side or marks itself as closed. The buffer flags are updated to * reflect the new state. If the stream interface has SI_FL_NOHALF, we also * forward the close to the write side. The owner task is woken up if it exists. */ static void stream_int_shutr(struct stream_interface *si) { struct channel *ic = si_ic(si); ic->flags &= ~CF_SHUTR_NOW; if (ic->flags & CF_SHUTR) return; ic->flags |= CF_SHUTR; ic->rex = TICK_ETERNITY; si->flags &= ~SI_FL_WAIT_ROOM; if (si->state != SI_ST_EST && si->state != SI_ST_CON) return; if (si_oc(si)->flags & CF_SHUTW) { si->state = SI_ST_DIS; si->exp = TICK_ETERNITY; } else if (si->flags & SI_FL_NOHALF) { /* we want to immediately forward this close to the write side */ return stream_int_shutw(si); } /* note that if the task exists, it must unregister itself once it runs */ if (!(si->flags & SI_FL_DONT_WAKE)) task_wakeup(si_task(si), TASK_WOKEN_IO); } /* * This function performs a shutdown-write on a detached stream interface in a * connected or init state (it does nothing for other states). It either shuts * the write side or marks itself as closed. The buffer flags are updated to * reflect the new state. It does also close everything if the SI was marked as * being in error state. The owner task is woken up if it exists. */ static void stream_int_shutw(struct stream_interface *si) { struct channel *ic = si_ic(si); struct channel *oc = si_oc(si); oc->flags &= ~CF_SHUTW_NOW; if (oc->flags & CF_SHUTW) return; oc->flags |= CF_SHUTW; oc->wex = TICK_ETERNITY; si->flags &= ~SI_FL_WAIT_DATA; switch (si->state) { case SI_ST_EST: /* we have to shut before closing, otherwise some short messages * may never leave the system, especially when there are remaining * unread data in the socket input buffer, or when nolinger is set. * However, if SI_FL_NOLINGER is explicitly set, we know there is * no risk so we close both sides immediately. */ if (!(si->flags & (SI_FL_ERR | SI_FL_NOLINGER)) && !(ic->flags & (CF_SHUTR|CF_DONT_READ))) return; /* fall through */ case SI_ST_CON: case SI_ST_CER: case SI_ST_QUE: case SI_ST_TAR: /* Note that none of these states may happen with applets */ si->state = SI_ST_DIS; default: si->flags &= ~(SI_FL_WAIT_ROOM | SI_FL_NOLINGER); ic->flags &= ~CF_SHUTR_NOW; ic->flags |= CF_SHUTR; ic->rex = TICK_ETERNITY; si->exp = TICK_ETERNITY; } /* note that if the task exists, it must unregister itself once it runs */ if (!(si->flags & SI_FL_DONT_WAKE)) task_wakeup(si_task(si), TASK_WOKEN_IO); } /* default chk_rcv function for scheduled tasks */ static void stream_int_chk_rcv(struct stream_interface *si) { struct channel *ic = si_ic(si); DPRINTF(stderr, "%s: si=%p, si->state=%d ic->flags=%08x oc->flags=%08x\n", __FUNCTION__, si, si->state, ic->flags, si_oc(si)->flags); if (unlikely(si->state != SI_ST_EST || (ic->flags & (CF_SHUTR|CF_DONT_READ)))) return; if (!channel_may_recv(ic) || ic->pipe) { /* stop reading */ si->flags |= SI_FL_WAIT_ROOM; } else { /* (re)start reading */ si->flags &= ~SI_FL_WAIT_ROOM; if (!(si->flags & SI_FL_DONT_WAKE)) task_wakeup(si_task(si), TASK_WOKEN_IO); } } /* default chk_snd function for scheduled tasks */ static void stream_int_chk_snd(struct stream_interface *si) { struct channel *oc = si_oc(si); DPRINTF(stderr, "%s: si=%p, si->state=%d ic->flags=%08x oc->flags=%08x\n", __FUNCTION__, si, si->state, si_ic(si)->flags, oc->flags); if (unlikely(si->state != SI_ST_EST || (oc->flags & CF_SHUTW))) return; if (!(si->flags & SI_FL_WAIT_DATA) || /* not waiting for data */ channel_is_empty(oc)) /* called with nothing to send ! */ return; /* Otherwise there are remaining data to be sent in the buffer, * so we tell the handler. */ si->flags &= ~SI_FL_WAIT_DATA; if (!tick_isset(oc->wex)) oc->wex = tick_add_ifset(now_ms, oc->wto); if (!(si->flags & SI_FL_DONT_WAKE)) task_wakeup(si_task(si), TASK_WOKEN_IO); } /* Register an applet to handle a stream_interface as a new appctx. The SI will * wake it up everytime it is solicited. The appctx must be deleted by the task * handler using si_release_endpoint(), possibly from within the function itself. * It also pre-initializes the applet's context and returns it (or NULL in case * it could not be allocated). */ struct appctx *stream_int_register_handler(struct stream_interface *si, struct applet *app) { struct appctx *appctx; DPRINTF(stderr, "registering handler %p for si %p (was %p)\n", app, si, si_task(si)); appctx = si_alloc_appctx(si, app); if (!appctx) return NULL; si_applet_cant_get(si); appctx_wakeup(appctx); return si_appctx(si); } /* This callback is used to send a valid PROXY protocol line to a socket being * established. It returns 0 if it fails in a fatal way or needs to poll to go * further, otherwise it returns non-zero and removes itself from the connection's * flags (the bit is provided in by the caller). It is designed to be * called by the connection handler and relies on it to commit polling changes. * Note that it can emit a PROXY line by relying on the other end's address * when the connection is attached to a stream interface, or by resolving the * local address otherwise (also called a LOCAL line). */ int conn_si_send_proxy(struct connection *conn, unsigned int flag) { /* we might have been called just after an asynchronous shutw */ if (conn->flags & CO_FL_SOCK_WR_SH) goto out_error; if (!conn_ctrl_ready(conn)) goto out_error; /* If we have a PROXY line to send, we'll use this to validate the * connection, in which case the connection is validated only once * we've sent the whole proxy line. Otherwise we use connect(). */ while (conn->send_proxy_ofs) { int ret; /* The target server expects a PROXY line to be sent first. * If the send_proxy_ofs is negative, it corresponds to the * offset to start sending from then end of the proxy string * (which is recomputed every time since it's constant). If * it is positive, it means we have to send from the start. * We can only send a "normal" PROXY line when the connection * is attached to a stream interface. Otherwise we can only * send a LOCAL line (eg: for use with health checks). */ if (conn->data == &si_conn_cb) { struct stream_interface *si = conn->owner; struct connection *remote = objt_conn(si_opposite(si)->end); ret = make_proxy_line(trash.str, trash.size, objt_server(conn->target), remote); } else { /* The target server expects a LOCAL line to be sent first. Retrieving * local or remote addresses may fail until the connection is established. */ conn_get_from_addr(conn); if (!(conn->flags & CO_FL_ADDR_FROM_SET)) goto out_wait; conn_get_to_addr(conn); if (!(conn->flags & CO_FL_ADDR_TO_SET)) goto out_wait; ret = make_proxy_line(trash.str, trash.size, objt_server(conn->target), conn); } if (!ret) goto out_error; if (conn->send_proxy_ofs > 0) conn->send_proxy_ofs = -ret; /* first call */ /* we have to send trash from (ret+sp for -sp bytes). If the * data layer has a pending write, we'll also set MSG_MORE. */ ret = conn_sock_send(conn, trash.str + ret + conn->send_proxy_ofs, -conn->send_proxy_ofs, (conn->flags & CO_FL_DATA_WR_ENA) ? MSG_MORE : 0); if (ret < 0) goto out_error; conn->send_proxy_ofs += ret; /* becomes zero once complete */ if (conn->send_proxy_ofs != 0) goto out_wait; /* OK we've sent the whole line, we're connected */ break; } /* The connection is ready now, simply return and let the connection * handler notify upper layers if needed. */ if (conn->flags & CO_FL_WAIT_L4_CONN) conn->flags &= ~CO_FL_WAIT_L4_CONN; conn->flags &= ~flag; return 1; out_error: /* Write error on the file descriptor */ conn->flags |= CO_FL_ERROR; return 0; out_wait: __conn_sock_stop_recv(conn); return 0; } /* Tiny I/O callback called on recv/send I/O events on idle connections. * It simply sets the CO_FL_SOCK_RD_SH flag so that si_idle_conn_wake_cb() * is notified and can kill the connection. */ static void si_idle_conn_null_cb(struct connection *conn) { conn_sock_drain(conn); } /* Callback to be used by connection I/O handlers when some activity is detected * on an idle server connection. Its main purpose is to kill the connection once * a close was detected on it. It returns 0 if it did nothing serious, or -1 if * it killed the connection. */ static int si_idle_conn_wake_cb(struct connection *conn) { struct stream_interface *si = conn->owner; if (!conn_ctrl_ready(conn)) return 0; if (conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH)) { /* warning, we can't do anything on after this call ! */ si_release_endpoint(si); return -1; } return 0; } /* Callback to be used by connection I/O handlers upon completion. It differs from * the update function in that it is designed to be called by lower layers after I/O * events have been completed. It will also try to wake the associated task up if * an important event requires special handling. It relies on the connection handler * to commit any polling updates. The function always returns 0. */ static int si_conn_wake_cb(struct connection *conn) { struct stream_interface *si = conn->owner; struct channel *ic = si_ic(si); struct channel *oc = si_oc(si); DPRINTF(stderr, "%s: si=%p, si->state=%d ic->flags=%08x oc->flags=%08x\n", __FUNCTION__, si, si->state, ic->flags, oc->flags); if (conn->flags & CO_FL_ERROR) si->flags |= SI_FL_ERR; /* check for recent connection establishment */ if (unlikely(!(conn->flags & (CO_FL_WAIT_L4_CONN | CO_FL_WAIT_L6_CONN | CO_FL_CONNECTED)))) { si->exp = TICK_ETERNITY; oc->flags |= CF_WRITE_NULL; } /* process consumer side */ if (channel_is_empty(oc)) { if (((oc->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW) && (si->state == SI_ST_EST)) stream_int_shutw_conn(si); __conn_data_stop_send(conn); oc->wex = TICK_ETERNITY; } if ((oc->flags & (CF_SHUTW|CF_SHUTW_NOW)) == 0 && channel_may_recv(oc)) si->flags |= SI_FL_WAIT_DATA; if (oc->flags & CF_WRITE_ACTIVITY) { /* update timeouts if we have written something */ if ((oc->flags & (CF_SHUTW|CF_WRITE_PARTIAL)) == CF_WRITE_PARTIAL && !channel_is_empty(oc)) if (tick_isset(oc->wex)) oc->wex = tick_add_ifset(now_ms, oc->wto); if (!(si->flags & SI_FL_INDEP_STR)) if (tick_isset(ic->rex)) ic->rex = tick_add_ifset(now_ms, ic->rto); if (likely((oc->flags & (CF_SHUTW|CF_WRITE_PARTIAL|CF_DONT_READ)) == CF_WRITE_PARTIAL && channel_may_recv(oc) && (si_opposite(si)->flags & SI_FL_WAIT_ROOM))) si_chk_rcv(si_opposite(si)); } /* process producer side. * We might have some data the consumer is waiting for. * We can do fast-forwarding, but we avoid doing this for partial * buffers, because it is very likely that it will be done again * immediately afterwards once the following data is parsed (eg: * HTTP chunking). */ if (((ic->flags & CF_READ_PARTIAL) && !channel_is_empty(ic)) && (ic->pipe /* always try to send spliced data */ || (si_ib(si)->i == 0 && (si_opposite(si)->flags & SI_FL_WAIT_DATA)))) { int last_len = ic->pipe ? ic->pipe->data : 0; si_chk_snd(si_opposite(si)); /* check if the consumer has freed some space either in the * buffer or in the pipe. */ if (channel_may_recv(ic) && (!last_len || !ic->pipe || ic->pipe->data < last_len)) si->flags &= ~SI_FL_WAIT_ROOM; } if (si->flags & SI_FL_WAIT_ROOM) { __conn_data_stop_recv(conn); ic->rex = TICK_ETERNITY; } else if ((ic->flags & (CF_SHUTR|CF_READ_PARTIAL|CF_DONT_READ)) == CF_READ_PARTIAL && channel_may_recv(ic)) { /* we must re-enable reading if si_chk_snd() has freed some space */ __conn_data_want_recv(conn); if (!(ic->flags & CF_READ_NOEXP) && tick_isset(ic->rex)) ic->rex = tick_add_ifset(now_ms, ic->rto); } /* wake the task up only when needed */ if (/* changes on the production side */ (ic->flags & (CF_READ_NULL|CF_READ_ERROR)) || si->state != SI_ST_EST || (si->flags & SI_FL_ERR) || ((ic->flags & CF_READ_PARTIAL) && (!ic->to_forward || si_opposite(si)->state != SI_ST_EST)) || /* changes on the consumption side */ (oc->flags & (CF_WRITE_NULL|CF_WRITE_ERROR)) || ((oc->flags & CF_WRITE_ACTIVITY) && ((oc->flags & CF_SHUTW) || ((oc->flags & CF_WAKE_WRITE) && (si_opposite(si)->state != SI_ST_EST || (channel_is_empty(oc) && !oc->to_forward)))))) { task_wakeup(si_task(si), TASK_WOKEN_IO); } if (ic->flags & CF_READ_ACTIVITY) ic->flags &= ~CF_READ_DONTWAIT; stream_release_buffers(si_strm(si)); return 0; } /* * This function is called to send buffer data to a stream socket. * It calls the transport layer's snd_buf function. It relies on the * caller to commit polling changes. The caller should check conn->flags * for errors. */ static void si_conn_send(struct connection *conn) { struct stream_interface *si = conn->owner; struct channel *oc = si_oc(si); int ret; if (oc->pipe && conn->xprt->snd_pipe) { ret = conn->xprt->snd_pipe(conn, oc->pipe); if (ret > 0) oc->flags |= CF_WRITE_PARTIAL | CF_WROTE_DATA; if (!oc->pipe->data) { put_pipe(oc->pipe); oc->pipe = NULL; } if (conn->flags & CO_FL_ERROR) return; } /* At this point, the pipe is empty, but we may still have data pending * in the normal buffer. */ if (!oc->buf->o) return; /* when we're here, we already know that there is no spliced * data left, and that there are sendable buffered data. */ if (!(conn->flags & (CO_FL_ERROR | CO_FL_SOCK_WR_SH | CO_FL_DATA_WR_SH | CO_FL_WAIT_DATA | CO_FL_HANDSHAKE))) { /* check if we want to inform the kernel that we're interested in * sending more data after this call. We want this if : * - we're about to close after this last send and want to merge * the ongoing FIN with the last segment. * - we know we can't send everything at once and must get back * here because of unaligned data * - there is still a finite amount of data to forward * The test is arranged so that the most common case does only 2 * tests. */ unsigned int send_flag = 0; if ((!(oc->flags & (CF_NEVER_WAIT|CF_SEND_DONTWAIT)) && ((oc->to_forward && oc->to_forward != CHN_INFINITE_FORWARD) || (oc->flags & CF_EXPECT_MORE))) || ((oc->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW)) send_flag |= CO_SFL_MSG_MORE; if (oc->flags & CF_STREAMER) send_flag |= CO_SFL_STREAMER; ret = conn->xprt->snd_buf(conn, oc->buf, send_flag); if (ret > 0) { oc->flags |= CF_WRITE_PARTIAL | CF_WROTE_DATA; if (!oc->buf->o) { /* Always clear both flags once everything has been sent, they're one-shot */ oc->flags &= ~(CF_EXPECT_MORE | CF_SEND_DONTWAIT); } /* if some data remain in the buffer, it's only because the * system buffers are full, we will try next time. */ } } } /* This function is designed to be called from within the stream handler to * update the channels' expiration timers and the stream interface's flags * based on the channels' flags. It needs to be called only once after the * channels' flags have settled down, and before they are cleared, though it * doesn't harm to call it as often as desired (it just slightly hurts * performance). It must not be called from outside of the stream handler, * as what it does will be used to compute the stream task's expiration. */ void stream_int_update(struct stream_interface *si) { struct channel *ic = si_ic(si); struct channel *oc = si_oc(si); if (!(ic->flags & CF_SHUTR)) { /* Read not closed, update FD status and timeout for reads */ if ((ic->flags & CF_DONT_READ) || !channel_may_recv(ic)) { /* stop reading */ if (!(si->flags & SI_FL_WAIT_ROOM)) { if (!(ic->flags & CF_DONT_READ)) /* full */ si->flags |= SI_FL_WAIT_ROOM; ic->rex = TICK_ETERNITY; } } else { /* (re)start reading and update timeout. Note: we don't recompute the timeout * everytime we get here, otherwise it would risk never to expire. We only * update it if is was not yet set. The stream socket handler will already * have updated it if there has been a completed I/O. */ si->flags &= ~SI_FL_WAIT_ROOM; if (!(ic->flags & (CF_READ_NOEXP|CF_DONT_READ)) && !tick_isset(ic->rex)) ic->rex = tick_add_ifset(now_ms, ic->rto); } } if (!(oc->flags & CF_SHUTW)) { /* Write not closed, update FD status and timeout for writes */ if (channel_is_empty(oc)) { /* stop writing */ if (!(si->flags & SI_FL_WAIT_DATA)) { if ((oc->flags & CF_SHUTW_NOW) == 0) si->flags |= SI_FL_WAIT_DATA; oc->wex = TICK_ETERNITY; } } else { /* (re)start writing and update timeout. Note: we don't recompute the timeout * everytime we get here, otherwise it would risk never to expire. We only * update it if is was not yet set. The stream socket handler will already * have updated it if there has been a completed I/O. */ si->flags &= ~SI_FL_WAIT_DATA; if (!tick_isset(oc->wex)) { oc->wex = tick_add_ifset(now_ms, oc->wto); if (tick_isset(ic->rex) && !(si->flags & SI_FL_INDEP_STR)) { /* Note: depending on the protocol, we don't know if we're waiting * for incoming data or not. So in order to prevent the socket from * expiring read timeouts during writes, we refresh the read timeout, * except if it was already infinite or if we have explicitly setup * independent streams. */ ic->rex = tick_add_ifset(now_ms, ic->rto); } } } } } /* Updates the polling status of a connection outside of the connection handler * based on the channel's flags and the stream interface's flags. It needs to be * called once after the channels' flags have settled down and the stream has * been updated. It is not designed to be called from within the connection * handler itself. */ void stream_int_update_conn(struct stream_interface *si) { struct channel *ic = si_ic(si); struct channel *oc = si_oc(si); struct connection *conn = __objt_conn(si->end); if (!(ic->flags & CF_SHUTR)) { /* Read not closed */ if ((ic->flags & CF_DONT_READ) || !channel_may_recv(ic)) __conn_data_stop_recv(conn); else __conn_data_want_recv(conn); } if (!(oc->flags & CF_SHUTW)) { /* Write not closed */ if (channel_is_empty(oc)) __conn_data_stop_send(conn); else __conn_data_want_send(conn); } conn_cond_update_data_polling(conn); } /* * This function performs a shutdown-read on a stream interface attached to * a connection in a connected or init state (it does nothing for other * states). It either shuts the read side or marks itself as closed. The buffer * flags are updated to reflect the new state. If the stream interface has * SI_FL_NOHALF, we also forward the close to the write side. If a control * layer is defined, then it is supposed to be a socket layer and file * descriptors are then shutdown or closed accordingly. The function * automatically disables polling if needed. */ static void stream_int_shutr_conn(struct stream_interface *si) { struct connection *conn = __objt_conn(si->end); struct channel *ic = si_ic(si); ic->flags &= ~CF_SHUTR_NOW; if (ic->flags & CF_SHUTR) return; ic->flags |= CF_SHUTR; ic->rex = TICK_ETERNITY; si->flags &= ~SI_FL_WAIT_ROOM; if (si->state != SI_ST_EST && si->state != SI_ST_CON) return; if (si_oc(si)->flags & CF_SHUTW) { conn_full_close(conn); si->state = SI_ST_DIS; si->exp = TICK_ETERNITY; } else if (si->flags & SI_FL_NOHALF) { /* we want to immediately forward this close to the write side */ return stream_int_shutw_conn(si); } else if (conn->ctrl) { /* we want the caller to disable polling on this FD */ conn_data_stop_recv(conn); } } /* * This function performs a shutdown-write on a stream interface attached to * a connection in a connected or init state (it does nothing for other * states). It either shuts the write side or marks itself as closed. The * buffer flags are updated to reflect the new state. It does also close * everything if the SI was marked as being in error state. If there is a * data-layer shutdown, it is called. */ static void stream_int_shutw_conn(struct stream_interface *si) { struct connection *conn = __objt_conn(si->end); struct channel *ic = si_ic(si); struct channel *oc = si_oc(si); oc->flags &= ~CF_SHUTW_NOW; if (oc->flags & CF_SHUTW) return; oc->flags |= CF_SHUTW; oc->wex = TICK_ETERNITY; si->flags &= ~SI_FL_WAIT_DATA; switch (si->state) { case SI_ST_EST: /* we have to shut before closing, otherwise some short messages * may never leave the system, especially when there are remaining * unread data in the socket input buffer, or when nolinger is set. * However, if SI_FL_NOLINGER is explicitly set, we know there is * no risk so we close both sides immediately. */ if (si->flags & SI_FL_ERR) { /* quick close, the socket is alredy shut anyway */ } else if (si->flags & SI_FL_NOLINGER) { /* unclean data-layer shutdown */ conn_data_shutw_hard(conn); } else { /* clean data-layer shutdown */ conn_data_shutw(conn); /* If the stream interface is configured to disable half-open * connections, we'll skip the shutdown(), but only if the * read size is already closed. Otherwise we can't support * closed write with pending read (eg: abortonclose while * waiting for the server). */ if (!(si->flags & SI_FL_NOHALF) || !(ic->flags & (CF_SHUTR|CF_DONT_READ))) { /* We shutdown transport layer */ conn_sock_shutw(conn); if (!(ic->flags & (CF_SHUTR|CF_DONT_READ))) { /* OK just a shutw, but we want the caller * to disable polling on this FD if exists. */ conn_cond_update_polling(conn); return; } } } /* fall through */ case SI_ST_CON: /* we may have to close a pending connection, and mark the * response buffer as shutr */ conn_full_close(conn); /* fall through */ case SI_ST_CER: case SI_ST_QUE: case SI_ST_TAR: si->state = SI_ST_DIS; /* fall through */ default: si->flags &= ~(SI_FL_WAIT_ROOM | SI_FL_NOLINGER); ic->flags &= ~CF_SHUTR_NOW; ic->flags |= CF_SHUTR; ic->rex = TICK_ETERNITY; si->exp = TICK_ETERNITY; } } /* This function is used for inter-stream-interface calls. It is called by the * consumer to inform the producer side that it may be interested in checking * for free space in the buffer. Note that it intentionally does not update * timeouts, so that we can still check them later at wake-up. This function is * dedicated to connection-based stream interfaces. */ static void stream_int_chk_rcv_conn(struct stream_interface *si) { struct channel *ic = si_ic(si); struct connection *conn = __objt_conn(si->end); if (unlikely(si->state > SI_ST_EST || (ic->flags & CF_SHUTR))) return; conn_refresh_polling_flags(conn); if ((ic->flags & CF_DONT_READ) || !channel_may_recv(ic)) { /* stop reading */ if (!(ic->flags & CF_DONT_READ)) /* full */ si->flags |= SI_FL_WAIT_ROOM; __conn_data_stop_recv(conn); } else { /* (re)start reading */ si->flags &= ~SI_FL_WAIT_ROOM; __conn_data_want_recv(conn); } conn_cond_update_data_polling(conn); } /* This function is used for inter-stream-interface calls. It is called by the * producer to inform the consumer side that it may be interested in checking * for data in the buffer. Note that it intentionally does not update timeouts, * so that we can still check them later at wake-up. */ static void stream_int_chk_snd_conn(struct stream_interface *si) { struct channel *oc = si_oc(si); struct connection *conn = __objt_conn(si->end); if (unlikely(si->state > SI_ST_EST || (oc->flags & CF_SHUTW))) return; if (unlikely(channel_is_empty(oc))) /* called with nothing to send ! */ return; if (!oc->pipe && /* spliced data wants to be forwarded ASAP */ !(si->flags & SI_FL_WAIT_DATA)) /* not waiting for data */ return; if (conn->flags & (CO_FL_DATA_WR_ENA|CO_FL_CURR_WR_ENA)) { /* already subscribed to write notifications, will be called * anyway, so let's avoid calling it especially if the reader * is not ready. */ return; } /* Before calling the data-level operations, we have to prepare * the polling flags to ensure we properly detect changes. */ conn_refresh_polling_flags(conn); __conn_data_want_send(conn); if (!(conn->flags & (CO_FL_HANDSHAKE|CO_FL_WAIT_L4_CONN|CO_FL_WAIT_L6_CONN))) { si_conn_send(conn); if (conn->flags & CO_FL_ERROR) { /* Write error on the file descriptor */ __conn_data_stop_both(conn); si->flags |= SI_FL_ERR; goto out_wakeup; } } /* OK, so now we know that some data might have been sent, and that we may * have to poll first. We have to do that too if the buffer is not empty. */ if (channel_is_empty(oc)) { /* the connection is established but we can't write. Either the * buffer is empty, or we just refrain from sending because the * ->o limit was reached. Maybe we just wrote the last * chunk and need to close. */ __conn_data_stop_send(conn); if (((oc->flags & (CF_SHUTW|CF_AUTO_CLOSE|CF_SHUTW_NOW)) == (CF_AUTO_CLOSE|CF_SHUTW_NOW)) && (si->state == SI_ST_EST)) { si_shutw(si); goto out_wakeup; } if ((oc->flags & (CF_SHUTW|CF_SHUTW_NOW)) == 0) si->flags |= SI_FL_WAIT_DATA; oc->wex = TICK_ETERNITY; } else { /* Otherwise there are remaining data to be sent in the buffer, * which means we have to poll before doing so. */ __conn_data_want_send(conn); si->flags &= ~SI_FL_WAIT_DATA; if (!tick_isset(oc->wex)) oc->wex = tick_add_ifset(now_ms, oc->wto); } if (likely(oc->flags & CF_WRITE_ACTIVITY)) { struct channel *ic = si_ic(si); /* update timeout if we have written something */ if ((oc->flags & (CF_SHUTW|CF_WRITE_PARTIAL)) == CF_WRITE_PARTIAL && !channel_is_empty(oc)) oc->wex = tick_add_ifset(now_ms, oc->wto); if (tick_isset(ic->rex) && !(si->flags & SI_FL_INDEP_STR)) { /* Note: to prevent the client from expiring read timeouts * during writes, we refresh it. We only do this if the * interface is not configured for "independent streams", * because for some applications it's better not to do this, * for instance when continuously exchanging small amounts * of data which can full the socket buffers long before a * write timeout is detected. */ ic->rex = tick_add_ifset(now_ms, ic->rto); } } /* in case of special condition (error, shutdown, end of write...), we * have to notify the task. */ if (likely((oc->flags & (CF_WRITE_NULL|CF_WRITE_ERROR|CF_SHUTW)) || ((oc->flags & CF_WAKE_WRITE) && ((channel_is_empty(oc) && !oc->to_forward) || si->state != SI_ST_EST)))) { out_wakeup: if (!(si->flags & SI_FL_DONT_WAKE)) task_wakeup(si_task(si), TASK_WOKEN_IO); } /* commit possible polling changes */ conn_cond_update_polling(conn); } /* * This is the callback which is called by the connection layer to receive data * into the buffer from the connection. It iterates over the transport layer's * rcv_buf function. */ static void si_conn_recv_cb(struct connection *conn) { struct stream_interface *si = conn->owner; struct channel *ic = si_ic(si); int ret, max, cur_read; int read_poll = MAX_READ_POLL_LOOPS; /* stop immediately on errors. Note that we DON'T want to stop on * POLL_ERR, as the poller might report a write error while there * are still data available in the recv buffer. This typically * happens when we send too large a request to a backend server * which rejects it before reading it all. */ if (conn->flags & CO_FL_ERROR) return; /* stop here if we reached the end of data */ if (conn_data_read0_pending(conn)) goto out_shutdown_r; /* maybe we were called immediately after an asynchronous shutr */ if (ic->flags & CF_SHUTR) return; cur_read = 0; if ((ic->flags & (CF_STREAMER | CF_STREAMER_FAST)) && !ic->buf->o && global.tune.idle_timer && (unsigned short)(now_ms - ic->last_read) >= global.tune.idle_timer) { /* The buffer was empty and nothing was transferred for more * than one second. This was caused by a pause and not by * congestion. Reset any streaming mode to reduce latency. */ ic->xfer_small = 0; ic->xfer_large = 0; ic->flags &= ~(CF_STREAMER | CF_STREAMER_FAST); } /* First, let's see if we may splice data across the channel without * using a buffer. */ if (conn->xprt->rcv_pipe && (ic->pipe || ic->to_forward >= MIN_SPLICE_FORWARD) && ic->flags & CF_KERN_SPLICING) { if (buffer_not_empty(ic->buf)) { /* We're embarrassed, there are already data pending in * the buffer and we don't want to have them at two * locations at a time. Let's indicate we need some * place and ask the consumer to hurry. */ goto abort_splice; } if (unlikely(ic->pipe == NULL)) { if (pipes_used >= global.maxpipes || !(ic->pipe = get_pipe())) { ic->flags &= ~CF_KERN_SPLICING; goto abort_splice; } } ret = conn->xprt->rcv_pipe(conn, ic->pipe, ic->to_forward); if (ret < 0) { /* splice not supported on this end, let's disable it */ ic->flags &= ~CF_KERN_SPLICING; goto abort_splice; } if (ret > 0) { if (ic->to_forward != CHN_INFINITE_FORWARD) ic->to_forward -= ret; ic->total += ret; cur_read += ret; ic->flags |= CF_READ_PARTIAL; } if (conn_data_read0_pending(conn)) goto out_shutdown_r; if (conn->flags & CO_FL_ERROR) return; if (conn->flags & CO_FL_WAIT_ROOM) { /* the pipe is full or we have read enough data that it * could soon be full. Let's stop before needing to poll. */ si->flags |= SI_FL_WAIT_ROOM; __conn_data_stop_recv(conn); } /* splice not possible (anymore), let's go on on standard copy */ } abort_splice: if (ic->pipe && unlikely(!ic->pipe->data)) { put_pipe(ic->pipe); ic->pipe = NULL; } /* now we'll need a buffer */ if (!stream_alloc_recv_buffer(ic)) { si->flags |= SI_FL_WAIT_ROOM; goto end_recv; } /* Important note : if we're called with POLL_IN|POLL_HUP, it means the read polling * was enabled, which implies that the recv buffer was not full. So we have a guarantee * that if such an event is not handled above in splice, it will be handled here by * recv(). */ while (!(conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_DATA_RD_SH | CO_FL_WAIT_ROOM | CO_FL_HANDSHAKE))) { max = channel_recv_max(ic); if (!max) { si->flags |= SI_FL_WAIT_ROOM; break; } ret = conn->xprt->rcv_buf(conn, ic->buf, max); if (ret <= 0) break; cur_read += ret; /* if we're allowed to directly forward data, we must update ->o */ if (ic->to_forward && !(ic->flags & (CF_SHUTW|CF_SHUTW_NOW))) { unsigned long fwd = ret; if (ic->to_forward != CHN_INFINITE_FORWARD) { if (fwd > ic->to_forward) fwd = ic->to_forward; ic->to_forward -= fwd; } b_adv(ic->buf, fwd); } ic->flags |= CF_READ_PARTIAL; ic->total += ret; if (!channel_may_recv(ic)) { si->flags |= SI_FL_WAIT_ROOM; break; } if ((ic->flags & CF_READ_DONTWAIT) || --read_poll <= 0) { si->flags |= SI_FL_WAIT_ROOM; __conn_data_stop_recv(conn); break; } /* if too many bytes were missing from last read, it means that * it's pointless trying to read again because the system does * not have them in buffers. */ if (ret < max) { /* if a streamer has read few data, it may be because we * have exhausted system buffers. It's not worth trying * again. */ if (ic->flags & CF_STREAMER) break; /* if we read a large block smaller than what we requested, * it's almost certain we'll never get anything more. */ if (ret >= global.tune.recv_enough) break; } } /* while !flags */ if (cur_read) { if ((ic->flags & (CF_STREAMER | CF_STREAMER_FAST)) && (cur_read <= ic->buf->size / 2)) { ic->xfer_large = 0; ic->xfer_small++; if (ic->xfer_small >= 3) { /* we have read less than half of the buffer in * one pass, and this happened at least 3 times. * This is definitely not a streamer. */ ic->flags &= ~(CF_STREAMER | CF_STREAMER_FAST); } else if (ic->xfer_small >= 2) { /* if the buffer has been at least half full twice, * we receive faster than we send, so at least it * is not a "fast streamer". */ ic->flags &= ~CF_STREAMER_FAST; } } else if (!(ic->flags & CF_STREAMER_FAST) && (cur_read >= ic->buf->size - global.tune.maxrewrite)) { /* we read a full buffer at once */ ic->xfer_small = 0; ic->xfer_large++; if (ic->xfer_large >= 3) { /* we call this buffer a fast streamer if it manages * to be filled in one call 3 consecutive times. */ ic->flags |= (CF_STREAMER | CF_STREAMER_FAST); } } else { ic->xfer_small = 0; ic->xfer_large = 0; } ic->last_read = now_ms; } end_recv: if (conn->flags & CO_FL_ERROR) return; if (conn_data_read0_pending(conn)) /* connection closed */ goto out_shutdown_r; return; out_shutdown_r: /* we received a shutdown */ ic->flags |= CF_READ_NULL; if (ic->flags & CF_AUTO_CLOSE) channel_shutw_now(ic); stream_sock_read0(si); conn_data_read0(conn); return; } /* * This is the callback which is called by the connection layer to send data * from the buffer to the connection. It iterates over the transport layer's * snd_buf function. */ static void si_conn_send_cb(struct connection *conn) { struct stream_interface *si = conn->owner; if (conn->flags & CO_FL_ERROR) return; if (conn->flags & CO_FL_HANDSHAKE) /* a handshake was requested */ return; /* we might have been called just after an asynchronous shutw */ if (si_oc(si)->flags & CF_SHUTW) return; /* OK there are data waiting to be sent */ si_conn_send(conn); /* OK all done */ return; } /* * This function propagates a null read received on a socket-based connection. * It updates the stream interface. If the stream interface has SI_FL_NOHALF, * the close is also forwarded to the write side as an abort. */ void stream_sock_read0(struct stream_interface *si) { struct connection *conn = __objt_conn(si->end); struct channel *ic = si_ic(si); struct channel *oc = si_oc(si); ic->flags &= ~CF_SHUTR_NOW; if (ic->flags & CF_SHUTR) return; ic->flags |= CF_SHUTR; ic->rex = TICK_ETERNITY; si->flags &= ~SI_FL_WAIT_ROOM; if (si->state != SI_ST_EST && si->state != SI_ST_CON) return; if (oc->flags & CF_SHUTW) goto do_close; if (si->flags & SI_FL_NOHALF) { /* we want to immediately forward this close to the write side */ /* force flag on ssl to keep stream in cache */ conn_data_shutw_hard(conn); goto do_close; } /* otherwise that's just a normal read shutdown */ __conn_data_stop_recv(conn); return; do_close: /* OK we completely close the socket here just as if we went through si_shut[rw]() */ conn_full_close(conn); ic->flags &= ~CF_SHUTR_NOW; ic->flags |= CF_SHUTR; ic->rex = TICK_ETERNITY; oc->flags &= ~CF_SHUTW_NOW; oc->flags |= CF_SHUTW; oc->wex = TICK_ETERNITY; si->flags &= ~(SI_FL_WAIT_DATA | SI_FL_WAIT_ROOM); si->state = SI_ST_DIS; si->exp = TICK_ETERNITY; return; } /* notifies the stream interface that the applet has completed its work */ void si_applet_done(struct stream_interface *si) { struct channel *ic = si_ic(si); struct channel *oc = si_oc(si); /* process consumer side */ if (channel_is_empty(oc)) { if (((oc->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW) && (si->state == SI_ST_EST)) stream_int_shutw_applet(si); oc->wex = TICK_ETERNITY; } /* indicate that we may be waiting for data from the output channel */ if ((oc->flags & (CF_SHUTW|CF_SHUTW_NOW)) == 0 && channel_may_recv(oc)) si->flags |= SI_FL_WAIT_DATA; /* update OC timeouts and wake the other side up if it's waiting for room */ if (oc->flags & CF_WRITE_ACTIVITY) { if ((oc->flags & (CF_SHUTW|CF_WRITE_PARTIAL)) == CF_WRITE_PARTIAL && !channel_is_empty(oc)) if (tick_isset(oc->wex)) oc->wex = tick_add_ifset(now_ms, oc->wto); if (!(si->flags & SI_FL_INDEP_STR)) if (tick_isset(ic->rex)) ic->rex = tick_add_ifset(now_ms, ic->rto); if (likely((oc->flags & (CF_SHUTW|CF_WRITE_PARTIAL|CF_DONT_READ)) == CF_WRITE_PARTIAL && channel_may_recv(oc) && (si_opposite(si)->flags & SI_FL_WAIT_ROOM))) si_chk_rcv(si_opposite(si)); } /* Notify the other side when we've injected data into the IC that * needs to be forwarded. We can do fast-forwarding as soon as there * are output data, but we avoid doing this for partial buffers, * because it is very likely that it will be done again immediately * afterwards once the following data are parsed (eg: HTTP chunking). * We only remove SI_FL_WAIT_ROOM once we've emptied the whole output * buffer, because applets are often forced to stop before the buffer * is full. We must not stop based on input data alone because an HTTP * parser might need more data to complete the parsing. */ if (!channel_is_empty(ic) && (si_opposite(si)->flags & SI_FL_WAIT_DATA) && (si_ib(si)->i == 0 || ic->pipe)) { si_chk_snd(si_opposite(si)); if (channel_is_empty(ic)) si->flags &= ~SI_FL_WAIT_ROOM; } if (si->flags & SI_FL_WAIT_ROOM) { ic->rex = TICK_ETERNITY; } else if ((ic->flags & (CF_SHUTR|CF_READ_PARTIAL|CF_DONT_READ)) == CF_READ_PARTIAL && channel_may_recv(ic)) { /* we must re-enable reading if si_chk_snd() has freed some space */ if (!(ic->flags & CF_READ_NOEXP) && tick_isset(ic->rex)) ic->rex = tick_add_ifset(now_ms, ic->rto); } /* get away from the active list if we can't work anymore. */ if (((si->flags & (SI_FL_WANT_PUT|SI_FL_WAIT_ROOM)) != SI_FL_WANT_PUT) && ((si->flags & (SI_FL_WANT_GET|SI_FL_WAIT_DATA)) != SI_FL_WANT_GET)) appctx_pause(si_appctx(si)); /* wake the task up only when needed */ if (/* changes on the production side */ (ic->flags & (CF_READ_NULL|CF_READ_ERROR)) || si->state != SI_ST_EST || (si->flags & SI_FL_ERR) || ((ic->flags & CF_READ_PARTIAL) && (!ic->to_forward || si_opposite(si)->state != SI_ST_EST)) || /* changes on the consumption side */ (oc->flags & (CF_WRITE_NULL|CF_WRITE_ERROR)) || ((oc->flags & CF_WRITE_ACTIVITY) && ((oc->flags & CF_SHUTW) || ((oc->flags & CF_WAKE_WRITE) && (si_opposite(si)->state != SI_ST_EST || (channel_is_empty(oc) && !oc->to_forward)))))) { task_wakeup(si_task(si), TASK_WOKEN_IO); appctx_pause(si_appctx(si)); } if (ic->flags & CF_READ_ACTIVITY) ic->flags &= ~CF_READ_DONTWAIT; stream_release_buffers(si_strm(si)); } /* Updates the activity status of an applet outside of the applet handler based * on the channel's flags and the stream interface's flags. It needs to be * called once after the channels' flags have settled down and the stream has * been updated. It is not designed to be called from within the applet handler * itself. */ void stream_int_update_applet(struct stream_interface *si) { if (((si->flags & (SI_FL_WANT_PUT|SI_FL_WAIT_ROOM)) == SI_FL_WANT_PUT) || ((si->flags & (SI_FL_WANT_GET|SI_FL_WAIT_DATA)) == SI_FL_WANT_GET)) appctx_wakeup(si_appctx(si)); else appctx_pause(si_appctx(si)); } /* * This function performs a shutdown-read on a stream interface attached to an * applet in a connected or init state (it does nothing for other states). It * either shuts the read side or marks itself as closed. The buffer flags are * updated to reflect the new state. If the stream interface has SI_FL_NOHALF, * we also forward the close to the write side. The owner task is woken up if * it exists. */ static void stream_int_shutr_applet(struct stream_interface *si) { struct channel *ic = si_ic(si); ic->flags &= ~CF_SHUTR_NOW; if (ic->flags & CF_SHUTR) return; ic->flags |= CF_SHUTR; ic->rex = TICK_ETERNITY; si->flags &= ~SI_FL_WAIT_ROOM; /* Note: on shutr, we don't call the applet */ if (si->state != SI_ST_EST && si->state != SI_ST_CON) return; if (si_oc(si)->flags & CF_SHUTW) { si->state = SI_ST_DIS; si->exp = TICK_ETERNITY; si_applet_release(si); } else if (si->flags & SI_FL_NOHALF) { /* we want to immediately forward this close to the write side */ return stream_int_shutw_applet(si); } } /* * This function performs a shutdown-write on a stream interface attached to an * applet in a connected or init state (it does nothing for other states). It * either shuts the write side or marks itself as closed. The buffer flags are * updated to reflect the new state. It does also close everything if the SI * was marked as being in error state. The owner task is woken up if it exists. */ static void stream_int_shutw_applet(struct stream_interface *si) { struct channel *ic = si_ic(si); struct channel *oc = si_oc(si); oc->flags &= ~CF_SHUTW_NOW; if (oc->flags & CF_SHUTW) return; oc->flags |= CF_SHUTW; oc->wex = TICK_ETERNITY; si->flags &= ~SI_FL_WAIT_DATA; /* on shutw we always wake the applet up */ appctx_wakeup(si_appctx(si)); switch (si->state) { case SI_ST_EST: /* we have to shut before closing, otherwise some short messages * may never leave the system, especially when there are remaining * unread data in the socket input buffer, or when nolinger is set. * However, if SI_FL_NOLINGER is explicitly set, we know there is * no risk so we close both sides immediately. */ if (!(si->flags & (SI_FL_ERR | SI_FL_NOLINGER)) && !(ic->flags & (CF_SHUTR|CF_DONT_READ))) return; /* fall through */ case SI_ST_CON: case SI_ST_CER: case SI_ST_QUE: case SI_ST_TAR: /* Note that none of these states may happen with applets */ si->state = SI_ST_DIS; si_applet_release(si); default: si->flags &= ~(SI_FL_WAIT_ROOM | SI_FL_NOLINGER); ic->flags &= ~CF_SHUTR_NOW; ic->flags |= CF_SHUTR; ic->rex = TICK_ETERNITY; si->exp = TICK_ETERNITY; } } /* chk_rcv function for applets */ static void stream_int_chk_rcv_applet(struct stream_interface *si) { struct channel *ic = si_ic(si); DPRINTF(stderr, "%s: si=%p, si->state=%d ic->flags=%08x oc->flags=%08x\n", __FUNCTION__, si, si->state, ic->flags, si_oc(si)->flags); if (unlikely(si->state != SI_ST_EST || (ic->flags & (CF_SHUTR|CF_DONT_READ)))) return; /* here we only wake the applet up if it was waiting for some room */ if (!(si->flags & SI_FL_WAIT_ROOM)) return; if (channel_may_recv(ic) && !ic->pipe) { /* (re)start reading */ appctx_wakeup(si_appctx(si)); } } /* chk_snd function for applets */ static void stream_int_chk_snd_applet(struct stream_interface *si) { struct channel *oc = si_oc(si); DPRINTF(stderr, "%s: si=%p, si->state=%d ic->flags=%08x oc->flags=%08x\n", __FUNCTION__, si, si->state, si_ic(si)->flags, oc->flags); if (unlikely(si->state != SI_ST_EST || (oc->flags & CF_SHUTW))) return; /* we only wake the applet up if it was waiting for some data */ if (!(si->flags & SI_FL_WAIT_DATA)) return; if (!tick_isset(oc->wex)) oc->wex = tick_add_ifset(now_ms, oc->wto); if (!channel_is_empty(oc)) { /* (re)start sending */ appctx_wakeup(si_appctx(si)); } } /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */