/* * Sample management functions. * * Copyright 2009-2010 EXCELIANCE, Emeric Brun * Copyright (C) 2012 Willy Tarreau * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* sample type names */ const char *smp_to_type[SMP_TYPES] = { [SMP_T_ANY] = "any", [SMP_T_BOOL] = "bool", [SMP_T_SINT] = "sint", [SMP_T_ADDR] = "addr", [SMP_T_IPV4] = "ipv4", [SMP_T_IPV6] = "ipv6", [SMP_T_STR] = "str", [SMP_T_BIN] = "bin", [SMP_T_METH] = "meth", }; /* static sample used in sample_process() when

is NULL */ static THREAD_LOCAL struct sample temp_smp; /* list head of all known sample fetch keywords */ static struct sample_fetch_kw_list sample_fetches = { .list = LIST_HEAD_INIT(sample_fetches.list) }; /* list head of all known sample format conversion keywords */ static struct sample_conv_kw_list sample_convs = { .list = LIST_HEAD_INIT(sample_convs.list) }; const unsigned int fetch_cap[SMP_SRC_ENTRIES] = { [SMP_SRC_INTRN] = (SMP_VAL_FE_CON_ACC | SMP_VAL_FE_SES_ACC | SMP_VAL_FE_REQ_CNT | SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK | SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY | SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT | SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL | SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY | SMP_VAL_FE_LOG_END), [SMP_SRC_LISTN] = (SMP_VAL_FE_CON_ACC | SMP_VAL_FE_SES_ACC | SMP_VAL_FE_REQ_CNT | SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK | SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY | SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT | SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL | SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY | SMP_VAL_FE_LOG_END), [SMP_SRC_FTEND] = (SMP_VAL_FE_CON_ACC | SMP_VAL_FE_SES_ACC | SMP_VAL_FE_REQ_CNT | SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK | SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY | SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT | SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL | SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY | SMP_VAL_FE_LOG_END), [SMP_SRC_L4CLI] = (SMP_VAL_FE_CON_ACC | SMP_VAL_FE_SES_ACC | SMP_VAL_FE_REQ_CNT | SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK | SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY | SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT | SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL | SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY | SMP_VAL_FE_LOG_END), [SMP_SRC_L5CLI] = (SMP_VAL___________ | SMP_VAL_FE_SES_ACC | SMP_VAL_FE_REQ_CNT | SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK | SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY | SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT | SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL | SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY | SMP_VAL_FE_LOG_END), [SMP_SRC_TRACK] = (SMP_VAL_FE_CON_ACC | SMP_VAL_FE_SES_ACC | SMP_VAL_FE_REQ_CNT | SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK | SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY | SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT | SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL | SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY | SMP_VAL_FE_LOG_END), [SMP_SRC_L6REQ] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_FE_REQ_CNT | SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK | SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY | SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________), [SMP_SRC_HRQHV] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_FE_REQ_CNT | SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK | SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY | SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________), [SMP_SRC_HRQHP] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_FE_REQ_CNT | SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK | SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY | SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT | SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL | SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY | SMP_VAL_FE_LOG_END), [SMP_SRC_HRQBO] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK | SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY | SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________), [SMP_SRC_BKEND] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY | SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT | SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL | SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY | SMP_VAL_FE_LOG_END), [SMP_SRC_SERVR] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT | SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL | SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY | SMP_VAL_FE_LOG_END), [SMP_SRC_L4SRV] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_BE_RES_CNT | SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL | SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY | SMP_VAL_FE_LOG_END), [SMP_SRC_L5SRV] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_BE_RES_CNT | SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL | SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY | SMP_VAL_FE_LOG_END), [SMP_SRC_L6RES] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_BE_RES_CNT | SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL | SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY | SMP_VAL___________), [SMP_SRC_HRSHV] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_BE_RES_CNT | SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL | SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY | SMP_VAL___________), [SMP_SRC_HRSHP] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_BE_RES_CNT | SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL | SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY | SMP_VAL_FE_LOG_END), [SMP_SRC_HRSBO] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL | SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY | SMP_VAL___________), [SMP_SRC_RQFIN] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_FE_LOG_END), [SMP_SRC_RSFIN] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_FE_LOG_END), [SMP_SRC_TXFIN] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_FE_LOG_END), [SMP_SRC_SSFIN] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_FE_LOG_END), }; static const char *fetch_src_names[SMP_SRC_ENTRIES] = { [SMP_SRC_INTRN] = "internal state", [SMP_SRC_LISTN] = "listener", [SMP_SRC_FTEND] = "frontend", [SMP_SRC_L4CLI] = "client address", [SMP_SRC_L5CLI] = "client-side connection", [SMP_SRC_TRACK] = "track counters", [SMP_SRC_L6REQ] = "request buffer", [SMP_SRC_HRQHV] = "HTTP request headers", [SMP_SRC_HRQHP] = "HTTP request", [SMP_SRC_HRQBO] = "HTTP request body", [SMP_SRC_BKEND] = "backend", [SMP_SRC_SERVR] = "server", [SMP_SRC_L4SRV] = "server address", [SMP_SRC_L5SRV] = "server-side connection", [SMP_SRC_L6RES] = "response buffer", [SMP_SRC_HRSHV] = "HTTP response headers", [SMP_SRC_HRSHP] = "HTTP response", [SMP_SRC_HRSBO] = "HTTP response body", [SMP_SRC_RQFIN] = "request buffer statistics", [SMP_SRC_RSFIN] = "response buffer statistics", [SMP_SRC_TXFIN] = "transaction statistics", [SMP_SRC_SSFIN] = "session statistics", }; static const char *fetch_ckp_names[SMP_CKP_ENTRIES] = { [SMP_CKP_FE_CON_ACC] = "frontend tcp-request connection rule", [SMP_CKP_FE_SES_ACC] = "frontend tcp-request session rule", [SMP_CKP_FE_REQ_CNT] = "frontend tcp-request content rule", [SMP_CKP_FE_HRQ_HDR] = "frontend http-request header rule", [SMP_CKP_FE_HRQ_BDY] = "frontend http-request body rule", [SMP_CKP_FE_SET_BCK] = "frontend use-backend rule", [SMP_CKP_BE_REQ_CNT] = "backend tcp-request content rule", [SMP_CKP_BE_HRQ_HDR] = "backend http-request header rule", [SMP_CKP_BE_HRQ_BDY] = "backend http-request body rule", [SMP_CKP_BE_SET_SRV] = "backend use-server, balance or stick-match rule", [SMP_CKP_BE_SRV_CON] = "server source selection", [SMP_CKP_BE_RES_CNT] = "backend tcp-response content rule", [SMP_CKP_BE_HRS_HDR] = "backend http-response header rule", [SMP_CKP_BE_HRS_BDY] = "backend http-response body rule", [SMP_CKP_BE_STO_RUL] = "backend stick-store rule", [SMP_CKP_FE_RES_CNT] = "frontend tcp-response content rule", [SMP_CKP_FE_HRS_HDR] = "frontend http-response header rule", [SMP_CKP_FE_HRS_BDY] = "frontend http-response body rule", [SMP_CKP_FE_LOG_END] = "logs", }; /* This function returns the type of the data returned by the sample_expr. * It assumes that the and all of its converters are properly * initialized. */ inline int smp_expr_output_type(struct sample_expr *expr) { struct sample_conv_expr *smp_expr; if (!LIST_ISEMPTY(&expr->conv_exprs)) { smp_expr = LIST_PREV(&expr->conv_exprs, struct sample_conv_expr *, list); return smp_expr->conv->out_type; } return expr->fetch->out_type; } /* fill the trash with a comma-delimited list of source names for the bit * field which must be composed of a non-null set of SMP_USE_* flags. The return * value is the pointer to the string in the trash buffer. */ const char *sample_src_names(unsigned int use) { int bit; trash.len = 0; trash.str[0] = '\0'; for (bit = 0; bit < SMP_SRC_ENTRIES; bit++) { if (!(use & ~((1 << bit) - 1))) break; /* no more bits */ if (!(use & (1 << bit))) continue; /* bit not set */ trash.len += snprintf(trash.str + trash.len, trash.size - trash.len, "%s%s", (use & ((1 << bit) - 1)) ? "," : "", fetch_src_names[bit]); } return trash.str; } /* return a pointer to the correct sample checkpoint name, or "unknown" when * the flags are invalid. Only the lowest bit is used, higher bits are ignored * if set. */ const char *sample_ckp_names(unsigned int use) { int bit; for (bit = 0; bit < SMP_CKP_ENTRIES; bit++) if (use & (1 << bit)) return fetch_ckp_names[bit]; return "unknown sample check place, please report this bug"; } /* * Registers the sample fetch keyword list as a list of valid keywords * for next parsing sessions. The fetch keywords capabilities are also computed * from their ->use field. */ void sample_register_fetches(struct sample_fetch_kw_list *kwl) { struct sample_fetch *sf; int bit; for (sf = kwl->kw; sf->kw != NULL; sf++) { for (bit = 0; bit < SMP_SRC_ENTRIES; bit++) if (sf->use & (1 << bit)) sf->val |= fetch_cap[bit]; } LIST_ADDQ(&sample_fetches.list, &kwl->list); } /* * Registers the sample format coverstion keyword list as a list of valid keywords for next * parsing sessions. */ void sample_register_convs(struct sample_conv_kw_list *pckl) { LIST_ADDQ(&sample_convs.list, &pckl->list); } /* * Returns the pointer on sample fetch keyword structure identified by * string of in buffer . * */ struct sample_fetch *find_sample_fetch(const char *kw, int len) { int index; struct sample_fetch_kw_list *kwl; list_for_each_entry(kwl, &sample_fetches.list, list) { for (index = 0; kwl->kw[index].kw != NULL; index++) { if (strncmp(kwl->kw[index].kw, kw, len) == 0 && kwl->kw[index].kw[len] == '\0') return &kwl->kw[index]; } } return NULL; } /* This function browses the list of available sample fetches. is * the last used sample fetch. If it is the first call, it must set to NULL. * is the index of the next sample fetch entry. It is used as private * value. It is useless to initiate it. * * It returns always the new fetch_sample entry, and NULL when the end of * the list is reached. */ struct sample_fetch *sample_fetch_getnext(struct sample_fetch *current, int *idx) { struct sample_fetch_kw_list *kwl; struct sample_fetch *base; if (!current) { /* Get first kwl entry. */ kwl = LIST_NEXT(&sample_fetches.list, struct sample_fetch_kw_list *, list); (*idx) = 0; } else { /* Get kwl corresponding to the curret entry. */ base = current + 1 - (*idx); kwl = container_of(base, struct sample_fetch_kw_list, kw); } while (1) { /* Check if kwl is the last entry. */ if (&kwl->list == &sample_fetches.list) return NULL; /* idx contain the next keyword. If it is available, return it. */ if (kwl->kw[*idx].kw) { (*idx)++; return &kwl->kw[(*idx)-1]; } /* get next entry in the main list, and return NULL if the end is reached. */ kwl = LIST_NEXT(&kwl->list, struct sample_fetch_kw_list *, list); /* Set index to 0, ans do one other loop. */ (*idx) = 0; } } /* This function browses the list of available converters. is * the last used converter. If it is the first call, it must set to NULL. * is the index of the next converter entry. It is used as private * value. It is useless to initiate it. * * It returns always the next sample_conv entry, and NULL when the end of * the list is reached. */ struct sample_conv *sample_conv_getnext(struct sample_conv *current, int *idx) { struct sample_conv_kw_list *kwl; struct sample_conv *base; if (!current) { /* Get first kwl entry. */ kwl = LIST_NEXT(&sample_convs.list, struct sample_conv_kw_list *, list); (*idx) = 0; } else { /* Get kwl corresponding to the curret entry. */ base = current + 1 - (*idx); kwl = container_of(base, struct sample_conv_kw_list, kw); } while (1) { /* Check if kwl is the last entry. */ if (&kwl->list == &sample_convs.list) return NULL; /* idx contain the next keyword. If it is available, return it. */ if (kwl->kw[*idx].kw) { (*idx)++; return &kwl->kw[(*idx)-1]; } /* get next entry in the main list, and return NULL if the end is reached. */ kwl = LIST_NEXT(&kwl->list, struct sample_conv_kw_list *, list); /* Set index to 0, ans do one other loop. */ (*idx) = 0; } } /* * Returns the pointer on sample format conversion keyword structure identified by * string of in buffer . * */ struct sample_conv *find_sample_conv(const char *kw, int len) { int index; struct sample_conv_kw_list *kwl; list_for_each_entry(kwl, &sample_convs.list, list) { for (index = 0; kwl->kw[index].kw != NULL; index++) { if (strncmp(kwl->kw[index].kw, kw, len) == 0 && kwl->kw[index].kw[len] == '\0') return &kwl->kw[index]; } } return NULL; } /******************************************************************/ /* Sample casts functions */ /******************************************************************/ static int c_ip2int(struct sample *smp) { smp->data.u.sint = ntohl(smp->data.u.ipv4.s_addr); smp->data.type = SMP_T_SINT; return 1; } static int c_ip2str(struct sample *smp) { struct chunk *trash = get_trash_chunk(); if (!inet_ntop(AF_INET, (void *)&smp->data.u.ipv4, trash->str, trash->size)) return 0; trash->len = strlen(trash->str); smp->data.u.str = *trash; smp->data.type = SMP_T_STR; smp->flags &= ~SMP_F_CONST; return 1; } static int c_ip2ipv6(struct sample *smp) { v4tov6(&smp->data.u.ipv6, &smp->data.u.ipv4); smp->data.type = SMP_T_IPV6; return 1; } static int c_ipv62ip(struct sample *smp) { if (!v6tov4(&smp->data.u.ipv4, &smp->data.u.ipv6)) return 0; smp->data.type = SMP_T_IPV4; return 1; } static int c_ipv62str(struct sample *smp) { struct chunk *trash = get_trash_chunk(); if (!inet_ntop(AF_INET6, (void *)&smp->data.u.ipv6, trash->str, trash->size)) return 0; trash->len = strlen(trash->str); smp->data.u.str = *trash; smp->data.type = SMP_T_STR; smp->flags &= ~SMP_F_CONST; return 1; } /* static int c_ipv62ip(struct sample *smp) { return v6tov4(&smp->data.u.ipv4, &smp->data.u.ipv6); } */ static int c_int2ip(struct sample *smp) { smp->data.u.ipv4.s_addr = htonl((unsigned int)smp->data.u.sint); smp->data.type = SMP_T_IPV4; return 1; } static int c_int2ipv6(struct sample *smp) { smp->data.u.ipv4.s_addr = htonl((unsigned int)smp->data.u.sint); v4tov6(&smp->data.u.ipv6, &smp->data.u.ipv4); smp->data.type = SMP_T_IPV6; return 1; } static int c_str2addr(struct sample *smp) { if (!buf2ip(smp->data.u.str.str, smp->data.u.str.len, &smp->data.u.ipv4)) { if (!buf2ip6(smp->data.u.str.str, smp->data.u.str.len, &smp->data.u.ipv6)) return 0; smp->data.type = SMP_T_IPV6; smp->flags &= ~SMP_F_CONST; return 1; } smp->data.type = SMP_T_IPV4; smp->flags &= ~SMP_F_CONST; return 1; } static int c_str2ip(struct sample *smp) { if (!buf2ip(smp->data.u.str.str, smp->data.u.str.len, &smp->data.u.ipv4)) return 0; smp->data.type = SMP_T_IPV4; smp->flags &= ~SMP_F_CONST; return 1; } static int c_str2ipv6(struct sample *smp) { if (!buf2ip6(smp->data.u.str.str, smp->data.u.str.len, &smp->data.u.ipv6)) return 0; smp->data.type = SMP_T_IPV6; smp->flags &= ~SMP_F_CONST; return 1; } /* * The NULL char always enforces the end of string if it is met. * Data is never changed, so we can ignore the CONST case */ static int c_bin2str(struct sample *smp) { int i; for (i = 0; i < smp->data.u.str.len; i++) { if (!smp->data.u.str.str[i]) { smp->data.u.str.len = i; break; } } return 1; } static int c_int2str(struct sample *smp) { struct chunk *trash = get_trash_chunk(); char *pos; pos = lltoa_r(smp->data.u.sint, trash->str, trash->size); if (!pos) return 0; trash->size = trash->size - (pos - trash->str); trash->str = pos; trash->len = strlen(pos); smp->data.u.str = *trash; smp->data.type = SMP_T_STR; smp->flags &= ~SMP_F_CONST; return 1; } /* This function inconditionally duplicates data and removes the "const" flag. * For strings and binary blocks, it also provides a known allocated size with * a length that is capped to the size, and ensures a trailing zero is always * appended for strings. This is necessary for some operations which may * require to extend the length. It returns 0 if it fails, 1 on success. */ int smp_dup(struct sample *smp) { struct chunk *trash; switch (smp->data.type) { case SMP_T_BOOL: case SMP_T_SINT: case SMP_T_ADDR: case SMP_T_IPV4: case SMP_T_IPV6: /* These type are not const. */ break; case SMP_T_METH: if (smp->data.u.meth.meth != HTTP_METH_OTHER) break; /* Fall through */ case SMP_T_STR: trash = get_trash_chunk(); trash->len = smp->data.u.str.len; if (trash->len > trash->size - 1) trash->len = trash->size - 1; memcpy(trash->str, smp->data.u.str.str, trash->len); trash->str[trash->len] = 0; smp->data.u.str = *trash; break; case SMP_T_BIN: trash = get_trash_chunk(); trash->len = smp->data.u.str.len; if (trash->len > trash->size) trash->len = trash->size; memcpy(trash->str, smp->data.u.str.str, trash->len); smp->data.u.str = *trash; break; default: /* Other cases are unexpected. */ return 0; } /* remove const flag */ smp->flags &= ~SMP_F_CONST; return 1; } int c_none(struct sample *smp) { return 1; } static int c_str2int(struct sample *smp) { const char *str; const char *end; if (smp->data.u.str.len == 0) return 0; str = smp->data.u.str.str; end = smp->data.u.str.str + smp->data.u.str.len; smp->data.u.sint = read_int64(&str, end); smp->data.type = SMP_T_SINT; smp->flags &= ~SMP_F_CONST; return 1; } static int c_str2meth(struct sample *smp) { enum http_meth_t meth; int len; meth = find_http_meth(smp->data.u.str.str, smp->data.u.str.len); if (meth == HTTP_METH_OTHER) { len = smp->data.u.str.len; smp->data.u.meth.str.str = smp->data.u.str.str; smp->data.u.meth.str.len = len; } else smp->flags &= ~SMP_F_CONST; smp->data.u.meth.meth = meth; smp->data.type = SMP_T_METH; return 1; } static int c_meth2str(struct sample *smp) { int len; enum http_meth_t meth; if (smp->data.u.meth.meth == HTTP_METH_OTHER) { /* The method is unknown. Copy the original pointer. */ len = smp->data.u.meth.str.len; smp->data.u.str.str = smp->data.u.meth.str.str; smp->data.u.str.len = len; smp->data.type = SMP_T_STR; } else if (smp->data.u.meth.meth < HTTP_METH_OTHER) { /* The method is known, copy the pointer containing the string. */ meth = smp->data.u.meth.meth; smp->data.u.str.str = http_known_methods[meth].name; smp->data.u.str.len = http_known_methods[meth].len; smp->flags |= SMP_F_CONST; smp->data.type = SMP_T_STR; } else { /* Unknown method */ return 0; } return 1; } static int c_addr2bin(struct sample *smp) { struct chunk *chk = get_trash_chunk(); if (smp->data.type == SMP_T_IPV4) { chk->len = 4; memcpy(chk->str, &smp->data.u.ipv4, chk->len); } else if (smp->data.type == SMP_T_IPV6) { chk->len = 16; memcpy(chk->str, &smp->data.u.ipv6, chk->len); } else return 0; smp->data.u.str = *chk; smp->data.type = SMP_T_BIN; return 1; } static int c_int2bin(struct sample *smp) { struct chunk *chk = get_trash_chunk(); *(unsigned long long int *)chk->str = my_htonll(smp->data.u.sint); chk->len = 8; smp->data.u.str = *chk; smp->data.type = SMP_T_BIN; return 1; } /*****************************************************************/ /* Sample casts matrix: */ /* sample_casts[from type][to type] */ /* NULL pointer used for impossible sample casts */ /*****************************************************************/ sample_cast_fct sample_casts[SMP_TYPES][SMP_TYPES] = { /* to: ANY BOOL SINT ADDR IPV4 IPV6 STR BIN METH */ /* from: ANY */ { c_none, c_none, c_none, c_none, c_none, c_none, c_none, c_none, c_none, }, /* BOOL */ { c_none, c_none, c_none, NULL, NULL, NULL, c_int2str, NULL, NULL, }, /* SINT */ { c_none, c_none, c_none, c_int2ip, c_int2ip, c_int2ipv6, c_int2str, c_int2bin, NULL, }, /* ADDR */ { c_none, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, }, /* IPV4 */ { c_none, NULL, c_ip2int, c_none, c_none, c_ip2ipv6, c_ip2str, c_addr2bin, NULL, }, /* IPV6 */ { c_none, NULL, NULL, c_none, c_ipv62ip,c_none, c_ipv62str, c_addr2bin, NULL, }, /* STR */ { c_none, c_str2int, c_str2int, c_str2addr, c_str2ip, c_str2ipv6, c_none, c_none, c_str2meth, }, /* BIN */ { c_none, NULL, NULL, NULL, NULL, NULL, c_bin2str, c_none, c_str2meth, }, /* METH */ { c_none, NULL, NULL, NULL, NULL, NULL, c_meth2str, c_meth2str, c_none, } }; /* * Parse a sample expression configuration: * fetch keyword followed by format conversion keywords. * Returns a pointer on allocated sample expression structure. * The caller must have set al->ctx. */ struct sample_expr *sample_parse_expr(char **str, int *idx, const char *file, int line, char **err_msg, struct arg_list *al) { const char *begw; /* beginning of word */ const char *endw; /* end of word */ const char *endt; /* end of term */ struct sample_expr *expr; struct sample_fetch *fetch; struct sample_conv *conv; unsigned long prev_type; char *fkw = NULL; char *ckw = NULL; int err_arg; begw = str[*idx]; for (endw = begw; *endw && *endw != '(' && *endw != ','; endw++); if (endw == begw) { memprintf(err_msg, "missing fetch method"); goto out_error; } /* keep a copy of the current fetch keyword for error reporting */ fkw = my_strndup(begw, endw - begw); fetch = find_sample_fetch(begw, endw - begw); if (!fetch) { memprintf(err_msg, "unknown fetch method '%s'", fkw); goto out_error; } endt = endw; if (*endt == '(') { /* look for the end of this term and skip the opening parenthesis */ endt = ++endw; while (*endt && *endt != ')') endt++; if (*endt != ')') { memprintf(err_msg, "missing closing ')' after arguments to fetch keyword '%s'", fkw); goto out_error; } } /* At this point, we have : * - begw : beginning of the keyword * - endw : end of the keyword, first character not part of keyword * nor the opening parenthesis (so first character of args * if present). * - endt : end of the term (=endw or last parenthesis if args are present) */ if (fetch->out_type >= SMP_TYPES) { memprintf(err_msg, "returns type of fetch method '%s' is unknown", fkw); goto out_error; } prev_type = fetch->out_type; expr = calloc(1, sizeof(*expr)); if (!expr) goto out_error; LIST_INIT(&(expr->conv_exprs)); expr->fetch = fetch; expr->arg_p = empty_arg_list; /* Note that we call the argument parser even with an empty string, * this allows it to automatically create entries for mandatory * implicit arguments (eg: local proxy name). */ al->kw = expr->fetch->kw; al->conv = NULL; if (make_arg_list(endw, endt - endw, fetch->arg_mask, &expr->arg_p, err_msg, NULL, &err_arg, al) < 0) { memprintf(err_msg, "fetch method '%s' : %s", fkw, *err_msg); goto out_error; } if (!expr->arg_p) { expr->arg_p = empty_arg_list; } else if (fetch->val_args && !fetch->val_args(expr->arg_p, err_msg)) { memprintf(err_msg, "invalid args in fetch method '%s' : %s", fkw, *err_msg); goto out_error; } /* Now process the converters if any. We have two supported syntaxes * for the converters, which can be combined : * - comma-delimited list of converters just after the keyword and args ; * - one converter per keyword * The combination allows to have each keyword being a comma-delimited * series of converters. * * We want to process the former first, then the latter. For this we start * from the beginning of the supposed place in the exiting conv chain, which * starts at the last comma (endt). */ while (1) { struct sample_conv_expr *conv_expr; if (*endt == ')') /* skip last closing parenthesis */ endt++; if (*endt && *endt != ',') { if (ckw) memprintf(err_msg, "missing comma after converter '%s'", ckw); else memprintf(err_msg, "missing comma after fetch keyword '%s'", fkw); goto out_error; } while (*endt == ',') /* then trailing commas */ endt++; begw = endt; /* start of converter */ if (!*begw) { /* none ? skip to next string */ (*idx)++; begw = str[*idx]; if (!begw || !*begw) break; } for (endw = begw; *endw && *endw != '(' && *endw != ','; endw++); free(ckw); ckw = my_strndup(begw, endw - begw); conv = find_sample_conv(begw, endw - begw); if (!conv) { /* we found an isolated keyword that we don't know, it's not ours */ if (begw == str[*idx]) break; memprintf(err_msg, "unknown converter '%s'", ckw); goto out_error; } endt = endw; if (*endt == '(') { /* look for the end of this term */ while (*endt && *endt != ')') endt++; if (*endt != ')') { memprintf(err_msg, "syntax error: missing ')' after converter '%s'", ckw); goto out_error; } } if (conv->in_type >= SMP_TYPES || conv->out_type >= SMP_TYPES) { memprintf(err_msg, "returns type of converter '%s' is unknown", ckw); goto out_error; } /* If impossible type conversion */ if (!sample_casts[prev_type][conv->in_type]) { memprintf(err_msg, "converter '%s' cannot be applied", ckw); goto out_error; } prev_type = conv->out_type; conv_expr = calloc(1, sizeof(*conv_expr)); if (!conv_expr) goto out_error; LIST_ADDQ(&(expr->conv_exprs), &(conv_expr->list)); conv_expr->conv = conv; if (endt != endw) { int err_arg; if (!conv->arg_mask) { memprintf(err_msg, "converter '%s' does not support any args", ckw); goto out_error; } al->kw = expr->fetch->kw; al->conv = conv_expr->conv->kw; if (make_arg_list(endw + 1, endt - endw - 1, conv->arg_mask, &conv_expr->arg_p, err_msg, NULL, &err_arg, al) < 0) { memprintf(err_msg, "invalid arg %d in converter '%s' : %s", err_arg+1, ckw, *err_msg); goto out_error; } if (!conv_expr->arg_p) conv_expr->arg_p = empty_arg_list; if (conv->val_args && !conv->val_args(conv_expr->arg_p, conv, file, line, err_msg)) { memprintf(err_msg, "invalid args in converter '%s' : %s", ckw, *err_msg); goto out_error; } } else if (ARGM(conv->arg_mask)) { memprintf(err_msg, "missing args for converter '%s'", ckw); goto out_error; } } out: free(fkw); free(ckw); return expr; out_error: /* TODO: prune_sample_expr(expr); */ expr = NULL; goto out; } /* * Process a fetch + format conversion of defined by the sample expression * on request or response considering the parameter. * Returns a pointer on a typed sample structure containing the result or NULL if * sample is not found or when format conversion failed. * If

is not null, function returns results in structure pointed by

. * If

is null, functions returns a pointer on a static sample structure. * * Note: the fetch functions are required to properly set the return type. The * conversion functions must do so too. However the cast functions do not need * to since they're made to cast mutiple types according to what is required. * * The caller may indicate in if it considers the result final or not. * The caller needs to check the SMP_F_MAY_CHANGE flag in p->flags to verify * if the result is stable or not, according to the following table : * * return MAY_CHANGE FINAL Meaning for the sample * NULL 0 * Not present and will never be (eg: header) * NULL 1 0 Not present yet, could change (eg: POST param) * NULL 1 1 Not present yet, will not change anymore * smp 0 * Present and will not change (eg: header) * smp 1 0 Present, may change (eg: request length) * smp 1 1 Present, last known value (eg: request length) */ struct sample *sample_process(struct proxy *px, struct session *sess, struct stream *strm, unsigned int opt, struct sample_expr *expr, struct sample *p) { struct sample_conv_expr *conv_expr; if (p == NULL) { p = &temp_smp; memset(p, 0, sizeof(*p)); } smp_set_owner(p, px, sess, strm, opt); if (!expr->fetch->process(expr->arg_p, p, expr->fetch->kw, expr->fetch->private)) return NULL; list_for_each_entry(conv_expr, &expr->conv_exprs, list) { /* we want to ensure that p->type can be casted into * conv_expr->conv->in_type. We have 3 possibilities : * - NULL => not castable. * - c_none => nothing to do (let's optimize it) * - other => apply cast and prepare to fail */ if (!sample_casts[p->data.type][conv_expr->conv->in_type]) return NULL; if (sample_casts[p->data.type][conv_expr->conv->in_type] != c_none && !sample_casts[p->data.type][conv_expr->conv->in_type](p)) return NULL; /* OK cast succeeded */ if (!conv_expr->conv->process(conv_expr->arg_p, p, conv_expr->conv->private)) return NULL; } return p; } /* * Resolve all remaining arguments in proxy

. Returns the number of * errors or 0 if everything is fine. */ int smp_resolve_args(struct proxy *p) { struct arg_list *cur, *bak; const char *ctx, *where; const char *conv_ctx, *conv_pre, *conv_pos; struct userlist *ul; struct my_regex *reg; struct arg *arg; int cfgerr = 0; int rflags; list_for_each_entry_safe(cur, bak, &p->conf.args.list, list) { struct proxy *px; struct server *srv; char *pname, *sname; char *err; arg = cur->arg; /* prepare output messages */ conv_pre = conv_pos = conv_ctx = ""; if (cur->conv) { conv_ctx = cur->conv; conv_pre = "conversion keyword '"; conv_pos = "' for "; } where = "in"; ctx = "sample fetch keyword"; switch (cur->ctx) { case ARGC_STK: where = "in stick rule in"; break; case ARGC_TRK: where = "in tracking rule in"; break; case ARGC_LOG: where = "in log-format string in"; break; case ARGC_LOGSD: where = "in log-format-sd string in"; break; case ARGC_HRQ: where = "in http-request header format string in"; break; case ARGC_HRS: where = "in http-response header format string in"; break; case ARGC_UIF: where = "in unique-id-format string in"; break; case ARGC_RDR: where = "in redirect format string in"; break; case ARGC_CAP: where = "in capture rule in"; break; case ARGC_ACL: ctx = "ACL keyword"; break; case ARGC_SRV: where = "in server directive in"; break; case ARGC_SPOE: where = "in spoe-message directive in"; break; } /* set a few default settings */ px = p; pname = p->id; switch (arg->type) { case ARGT_SRV: if (!arg->data.str.len) { ha_alert("parsing [%s:%d] : missing server name in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n", cur->file, cur->line, cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id); cfgerr++; continue; } /* we support two formats : "bck/srv" and "srv" */ sname = strrchr(arg->data.str.str, '/'); if (sname) { *sname++ = '\0'; pname = arg->data.str.str; px = proxy_be_by_name(pname); if (!px) { ha_alert("parsing [%s:%d] : unable to find proxy '%s' referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n", cur->file, cur->line, pname, cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id); cfgerr++; break; } } else sname = arg->data.str.str; srv = findserver(px, sname); if (!srv) { ha_alert("parsing [%s:%d] : unable to find server '%s' in proxy '%s', referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n", cur->file, cur->line, sname, pname, cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id); cfgerr++; break; } free(arg->data.str.str); arg->data.str.str = NULL; arg->unresolved = 0; arg->data.srv = srv; break; case ARGT_FE: if (arg->data.str.len) { pname = arg->data.str.str; px = proxy_fe_by_name(pname); } if (!px) { ha_alert("parsing [%s:%d] : unable to find frontend '%s' referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n", cur->file, cur->line, pname, cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id); cfgerr++; break; } if (!(px->cap & PR_CAP_FE)) { ha_alert("parsing [%s:%d] : proxy '%s', referenced in arg %d of %s%s%s%s '%s' %s proxy '%s', has not frontend capability.\n", cur->file, cur->line, pname, cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id); cfgerr++; break; } free(arg->data.str.str); arg->data.str.str = NULL; arg->unresolved = 0; arg->data.prx = px; break; case ARGT_BE: if (arg->data.str.len) { pname = arg->data.str.str; px = proxy_be_by_name(pname); } if (!px) { ha_alert("parsing [%s:%d] : unable to find backend '%s' referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n", cur->file, cur->line, pname, cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id); cfgerr++; break; } if (!(px->cap & PR_CAP_BE)) { ha_alert("parsing [%s:%d] : proxy '%s', referenced in arg %d of %s%s%s%s '%s' %s proxy '%s', has not backend capability.\n", cur->file, cur->line, pname, cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id); cfgerr++; break; } free(arg->data.str.str); arg->data.str.str = NULL; arg->unresolved = 0; arg->data.prx = px; break; case ARGT_TAB: if (arg->data.str.len) { pname = arg->data.str.str; px = proxy_tbl_by_name(pname); } if (!px) { ha_alert("parsing [%s:%d] : unable to find table '%s' referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n", cur->file, cur->line, pname, cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id); cfgerr++; break; } if (!px->table.size) { ha_alert("parsing [%s:%d] : no table in proxy '%s' referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n", cur->file, cur->line, pname, cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id); cfgerr++; break; } free(arg->data.str.str); arg->data.str.str = NULL; arg->unresolved = 0; arg->data.prx = px; break; case ARGT_USR: if (!arg->data.str.len) { ha_alert("parsing [%s:%d] : missing userlist name in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n", cur->file, cur->line, cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id); cfgerr++; break; } if (p->uri_auth && p->uri_auth->userlist && !strcmp(p->uri_auth->userlist->name, arg->data.str.str)) ul = p->uri_auth->userlist; else ul = auth_find_userlist(arg->data.str.str); if (!ul) { ha_alert("parsing [%s:%d] : unable to find userlist '%s' referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n", cur->file, cur->line, arg->data.str.str, cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id); cfgerr++; break; } free(arg->data.str.str); arg->data.str.str = NULL; arg->unresolved = 0; arg->data.usr = ul; break; case ARGT_REG: if (!arg->data.str.len) { ha_alert("parsing [%s:%d] : missing regex in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n", cur->file, cur->line, cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id); cfgerr++; continue; } reg = calloc(1, sizeof(*reg)); if (!reg) { ha_alert("parsing [%s:%d] : not enough memory to build regex in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n", cur->file, cur->line, cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id); cfgerr++; continue; } rflags = 0; rflags |= (arg->type_flags & ARGF_REG_ICASE) ? REG_ICASE : 0; err = NULL; if (!regex_comp(arg->data.str.str, reg, !(rflags & REG_ICASE), 1 /* capture substr */, &err)) { ha_alert("parsing [%s:%d] : error in regex '%s' in arg %d of %s%s%s%s '%s' %s proxy '%s' : %s.\n", cur->file, cur->line, arg->data.str.str, cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id, err); cfgerr++; continue; } free(arg->data.str.str); arg->data.str.str = NULL; arg->unresolved = 0; arg->data.reg = reg; break; } LIST_DEL(&cur->list); free(cur); } /* end of args processing */ return cfgerr; } /* * Process a fetch + format conversion as defined by the sample expression * on request or response considering the parameter. The output is * not explicitly set to , but shall be compatible with it as * specified by 'sample_casts' table. If a stable sample can be fetched, or an * unstable one when contains SMP_OPT_FINAL, the sample is converted and * returned without the SMP_F_MAY_CHANGE flag. If an unstable sample is found * and does not contain SMP_OPT_FINAL, then the sample is returned as-is * with its SMP_F_MAY_CHANGE flag so that the caller can check it and decide to * take actions (eg: wait longer). If a sample could not be found or could not * be converted, NULL is returned. The caller MUST NOT use the sample if the * SMP_F_MAY_CHANGE flag is present, as it is used only as a hint that there is * still hope to get it after waiting longer, and is not converted to string. * The possible output combinations are the following : * * return MAY_CHANGE FINAL Meaning for the sample * NULL * * Not present and will never be (eg: header) * smp 0 * Final value converted (eg: header) * smp 1 0 Not present yet, may appear later (eg: header) * smp 1 1 never happens (either flag is cleared on output) */ struct sample *sample_fetch_as_type(struct proxy *px, struct session *sess, struct stream *strm, unsigned int opt, struct sample_expr *expr, int smp_type) { struct sample *smp = &temp_smp; memset(smp, 0, sizeof(*smp)); if (!sample_process(px, sess, strm, opt, expr, smp)) { if ((smp->flags & SMP_F_MAY_CHANGE) && !(opt & SMP_OPT_FINAL)) return smp; return NULL; } if (!sample_casts[smp->data.type][smp_type]) return NULL; if (!sample_casts[smp->data.type][smp_type](smp)) return NULL; smp->flags &= ~SMP_F_MAY_CHANGE; return smp; } static void release_sample_arg(struct arg *p) { struct arg *p_back = p; if (!p) return; while (p->type != ARGT_STOP) { if (p->type == ARGT_STR || p->unresolved) { free(p->data.str.str); p->data.str.str = NULL; p->unresolved = 0; } else if (p->type == ARGT_REG) { if (p->data.reg) { regex_free(p->data.reg); free(p->data.reg); p->data.reg = NULL; } } p++; } if (p_back != empty_arg_list) free(p_back); } void release_sample_expr(struct sample_expr *expr) { struct sample_conv_expr *conv_expr, *conv_exprb; if (!expr) return; list_for_each_entry_safe(conv_expr, conv_exprb, &expr->conv_exprs, list) release_sample_arg(conv_expr->arg_p); release_sample_arg(expr->arg_p); free(expr); } /*****************************************************************/ /* Sample format convert functions */ /* These functions set the data type on return. */ /*****************************************************************/ #ifdef DEBUG_EXPR static int sample_conv_debug(const struct arg *arg_p, struct sample *smp, void *private) { int i; struct sample tmp; if (!(global.mode & MODE_QUIET) || (global.mode & (MODE_VERBOSE | MODE_STARTING))) { fprintf(stderr, "[debug converter] type: %s ", smp_to_type[smp->data.type]); if (!sample_casts[smp->data.type][SMP_T_STR]) { fprintf(stderr, "(undisplayable)"); } else { /* Copy sample fetch. This put the sample as const, the * cast will copy data if a transformation is required. */ memcpy(&tmp, smp, sizeof(struct sample)); tmp.flags = SMP_F_CONST; if (!sample_casts[smp->data.type][SMP_T_STR](&tmp)) fprintf(stderr, "(undisplayable)"); else { /* Display the displayable chars*. */ fprintf(stderr, "<"); for (i = 0; i < tmp.data.u.str.len; i++) { if (isprint(tmp.data.u.str.str[i])) fputc(tmp.data.u.str.str[i], stderr); else fputc('.', stderr); } } fprintf(stderr, ">\n"); } } return 1; } #endif static int sample_conv_base642bin(const struct arg *arg_p, struct sample *smp, void *private) { struct chunk *trash = get_trash_chunk(); int bin_len; trash->len = 0; bin_len = base64dec(smp->data.u.str.str, smp->data.u.str.len, trash->str, trash->size); if (bin_len < 0) return 0; trash->len = bin_len; smp->data.u.str = *trash; smp->data.type = SMP_T_BIN; smp->flags &= ~SMP_F_CONST; return 1; } static int sample_conv_bin2base64(const struct arg *arg_p, struct sample *smp, void *private) { struct chunk *trash = get_trash_chunk(); int b64_len; trash->len = 0; b64_len = a2base64(smp->data.u.str.str, smp->data.u.str.len, trash->str, trash->size); if (b64_len < 0) return 0; trash->len = b64_len; smp->data.u.str = *trash; smp->data.type = SMP_T_STR; smp->flags &= ~SMP_F_CONST; return 1; } static int sample_conv_sha1(const struct arg *arg_p, struct sample *smp, void *private) { blk_SHA_CTX ctx; struct chunk *trash = get_trash_chunk(); memset(&ctx, 0, sizeof(ctx)); blk_SHA1_Init(&ctx); blk_SHA1_Update(&ctx, smp->data.u.str.str, smp->data.u.str.len); blk_SHA1_Final((unsigned char *)trash->str, &ctx); trash->len = 20; smp->data.u.str = *trash; smp->data.type = SMP_T_BIN; smp->flags &= ~SMP_F_CONST; return 1; } static int sample_conv_bin2hex(const struct arg *arg_p, struct sample *smp, void *private) { struct chunk *trash = get_trash_chunk(); unsigned char c; int ptr = 0; trash->len = 0; while (ptr < smp->data.u.str.len && trash->len <= trash->size - 2) { c = smp->data.u.str.str[ptr++]; trash->str[trash->len++] = hextab[(c >> 4) & 0xF]; trash->str[trash->len++] = hextab[c & 0xF]; } smp->data.u.str = *trash; smp->data.type = SMP_T_STR; smp->flags &= ~SMP_F_CONST; return 1; } static int sample_conv_hex2int(const struct arg *arg_p, struct sample *smp, void *private) { long long int n = 0; int i, c; for (i = 0; i < smp->data.u.str.len; i++) { if ((c = hex2i(smp->data.u.str.str[i])) < 0) return 0; n = (n << 4) + c; } smp->data.u.sint = n; smp->data.type = SMP_T_SINT; smp->flags &= ~SMP_F_CONST; return 1; } /* hashes the binary input into a 32-bit unsigned int */ static int sample_conv_djb2(const struct arg *arg_p, struct sample *smp, void *private) { smp->data.u.sint = hash_djb2(smp->data.u.str.str, smp->data.u.str.len); if (arg_p && arg_p->data.sint) smp->data.u.sint = full_hash(smp->data.u.sint); smp->data.type = SMP_T_SINT; return 1; } static int sample_conv_length(const struct arg *arg_p, struct sample *smp, void *private) { int i = smp->data.u.str.len; smp->data.u.sint = i; smp->data.type = SMP_T_SINT; return 1; } static int sample_conv_str2lower(const struct arg *arg_p, struct sample *smp, void *private) { int i; if (!smp_make_rw(smp)) return 0; for (i = 0; i < smp->data.u.str.len; i++) { if ((smp->data.u.str.str[i] >= 'A') && (smp->data.u.str.str[i] <= 'Z')) smp->data.u.str.str[i] += 'a' - 'A'; } return 1; } static int sample_conv_str2upper(const struct arg *arg_p, struct sample *smp, void *private) { int i; if (!smp_make_rw(smp)) return 0; for (i = 0; i < smp->data.u.str.len; i++) { if ((smp->data.u.str.str[i] >= 'a') && (smp->data.u.str.str[i] <= 'z')) smp->data.u.str.str[i] += 'A' - 'a'; } return 1; } /* takes the IPv4 mask in args[0] and an optional IPv6 mask in args[1] */ static int sample_conv_ipmask(const struct arg *args, struct sample *smp, void *private) { /* Attempt to convert to IPv4 to apply the correct mask. */ c_ipv62ip(smp); if (smp->data.type == SMP_T_IPV4) { smp->data.u.ipv4.s_addr &= args[0].data.ipv4.s_addr; smp->data.type = SMP_T_IPV4; } else if (smp->data.type == SMP_T_IPV6) { /* IPv6 cannot be converted without an IPv6 mask. */ if (args[1].type != ARGT_IPV6) return 0; *(uint32_t*)&smp->data.u.ipv6.s6_addr[0] &= *(uint32_t*)&args[1].data.ipv6.s6_addr[0]; *(uint32_t*)&smp->data.u.ipv6.s6_addr[4] &= *(uint32_t*)&args[1].data.ipv6.s6_addr[4]; *(uint32_t*)&smp->data.u.ipv6.s6_addr[8] &= *(uint32_t*)&args[1].data.ipv6.s6_addr[8]; *(uint32_t*)&smp->data.u.ipv6.s6_addr[12] &= *(uint32_t*)&args[1].data.ipv6.s6_addr[12]; smp->data.type = SMP_T_IPV6; } return 1; } /* takes an UINT value on input supposed to represent the time since EPOCH, * adds an optional offset found in args[1] and emits a string representing * the local time in the format specified in args[1] using strftime(). */ static int sample_conv_ltime(const struct arg *args, struct sample *smp, void *private) { struct chunk *temp; /* With high numbers, the date returned can be negative, the 55 bits mask prevent this. */ time_t curr_date = smp->data.u.sint & 0x007fffffffffffffLL; struct tm *tm; /* add offset */ if (args[1].type == ARGT_SINT) curr_date += args[1].data.sint; tm = localtime(&curr_date); if (!tm) return 0; temp = get_trash_chunk(); temp->len = strftime(temp->str, temp->size, args[0].data.str.str, tm); smp->data.u.str = *temp; smp->data.type = SMP_T_STR; return 1; } /* hashes the binary input into a 32-bit unsigned int */ static int sample_conv_sdbm(const struct arg *arg_p, struct sample *smp, void *private) { smp->data.u.sint = hash_sdbm(smp->data.u.str.str, smp->data.u.str.len); if (arg_p && arg_p->data.sint) smp->data.u.sint = full_hash(smp->data.u.sint); smp->data.type = SMP_T_SINT; return 1; } /* takes an UINT value on input supposed to represent the time since EPOCH, * adds an optional offset found in args[1] and emits a string representing * the UTC date in the format specified in args[1] using strftime(). */ static int sample_conv_utime(const struct arg *args, struct sample *smp, void *private) { struct chunk *temp; /* With high numbers, the date returned can be negative, the 55 bits mask prevent this. */ time_t curr_date = smp->data.u.sint & 0x007fffffffffffffLL; struct tm *tm; /* add offset */ if (args[1].type == ARGT_SINT) curr_date += args[1].data.sint; tm = gmtime(&curr_date); if (!tm) return 0; temp = get_trash_chunk(); temp->len = strftime(temp->str, temp->size, args[0].data.str.str, tm); smp->data.u.str = *temp; smp->data.type = SMP_T_STR; return 1; } /* hashes the binary input into a 32-bit unsigned int */ static int sample_conv_wt6(const struct arg *arg_p, struct sample *smp, void *private) { smp->data.u.sint = hash_wt6(smp->data.u.str.str, smp->data.u.str.len); if (arg_p && arg_p->data.sint) smp->data.u.sint = full_hash(smp->data.u.sint); smp->data.type = SMP_T_SINT; return 1; } /* hashes the binary input into a 32-bit unsigned int using xxh. * The seed of the hash defaults to 0 but can be changd in argument 1. */ static int sample_conv_xxh32(const struct arg *arg_p, struct sample *smp, void *private) { unsigned int seed; if (arg_p && arg_p->data.sint) seed = arg_p->data.sint; else seed = 0; smp->data.u.sint = XXH32(smp->data.u.str.str, smp->data.u.str.len, seed); smp->data.type = SMP_T_SINT; return 1; } /* hashes the binary input into a 64-bit unsigned int using xxh. * In fact, the function returns a 64 bit unsigned, but the sample * storage of haproxy only proposes 64-bits signed, so the value is * cast as signed. This cast doesn't impact the hash repartition. * The seed of the hash defaults to 0 but can be changd in argument 1. */ static int sample_conv_xxh64(const struct arg *arg_p, struct sample *smp, void *private) { unsigned long long int seed; if (arg_p && arg_p->data.sint) seed = (unsigned long long int)arg_p->data.sint; else seed = 0; smp->data.u.sint = (long long int)XXH64(smp->data.u.str.str, smp->data.u.str.len, seed); smp->data.type = SMP_T_SINT; return 1; } /* hashes the binary input into a 32-bit unsigned int */ static int sample_conv_crc32(const struct arg *arg_p, struct sample *smp, void *private) { smp->data.u.sint = hash_crc32(smp->data.u.str.str, smp->data.u.str.len); if (arg_p && arg_p->data.sint) smp->data.u.sint = full_hash(smp->data.u.sint); smp->data.type = SMP_T_SINT; return 1; } /* hashes the binary input into crc32c (RFC4960, Appendix B [8].) */ static int sample_conv_crc32c(const struct arg *arg_p, struct sample *smp, void *private) { smp->data.u.sint = hash_crc32c(smp->data.u.str.str, smp->data.u.str.len); if (arg_p && arg_p->data.sint) smp->data.u.sint = full_hash(smp->data.u.sint); smp->data.type = SMP_T_SINT; return 1; } /* This function escape special json characters. The returned string can be * safely set between two '"' and used as json string. The json string is * defined like this: * * any Unicode character except '"' or '\' or control character * \", \\, \/, \b, \f, \n, \r, \t, \u + four-hex-digits * * The enum input_type contain all the allowed mode for decoding the input * string. */ enum input_type { IT_ASCII = 0, IT_UTF8, IT_UTF8S, IT_UTF8P, IT_UTF8PS, }; static int sample_conv_json_check(struct arg *arg, struct sample_conv *conv, const char *file, int line, char **err) { if (!arg) { memprintf(err, "Unexpected empty arg list"); return 0; } if (arg->type != ARGT_STR) { memprintf(err, "Unexpected arg type"); return 0; } if (strcmp(arg->data.str.str, "") == 0) { arg->type = ARGT_SINT; arg->data.sint = IT_ASCII; return 1; } else if (strcmp(arg->data.str.str, "ascii") == 0) { arg->type = ARGT_SINT; arg->data.sint = IT_ASCII; return 1; } else if (strcmp(arg->data.str.str, "utf8") == 0) { arg->type = ARGT_SINT; arg->data.sint = IT_UTF8; return 1; } else if (strcmp(arg->data.str.str, "utf8s") == 0) { arg->type = ARGT_SINT; arg->data.sint = IT_UTF8S; return 1; } else if (strcmp(arg->data.str.str, "utf8p") == 0) { arg->type = ARGT_SINT; arg->data.sint = IT_UTF8P; return 1; } else if (strcmp(arg->data.str.str, "utf8ps") == 0) { arg->type = ARGT_SINT; arg->data.sint = IT_UTF8PS; return 1; } memprintf(err, "Unexpected input code type. " "Allowed value are 'ascii', 'utf8', 'utf8s', 'utf8p' and 'utf8ps'"); return 0; } static int sample_conv_json(const struct arg *arg_p, struct sample *smp, void *private) { struct chunk *temp; char _str[7]; /* \u + 4 hex digit + null char for sprintf. */ const char *str; int len; enum input_type input_type = IT_ASCII; unsigned int c; unsigned int ret; char *p; if (arg_p) input_type = arg_p->data.sint; temp = get_trash_chunk(); temp->len = 0; p = smp->data.u.str.str; while (p < smp->data.u.str.str + smp->data.u.str.len) { if (input_type == IT_ASCII) { /* Read input as ASCII. */ c = *(unsigned char *)p; p++; } else { /* Read input as UTF8. */ ret = utf8_next(p, smp->data.u.str.len - ( p - smp->data.u.str.str ), &c); p += utf8_return_length(ret); if (input_type == IT_UTF8 && utf8_return_code(ret) != UTF8_CODE_OK) return 0; if (input_type == IT_UTF8S && utf8_return_code(ret) != UTF8_CODE_OK) continue; if (input_type == IT_UTF8P && utf8_return_code(ret) & (UTF8_CODE_INVRANGE|UTF8_CODE_BADSEQ)) return 0; if (input_type == IT_UTF8PS && utf8_return_code(ret) & (UTF8_CODE_INVRANGE|UTF8_CODE_BADSEQ)) continue; /* Check too big values. */ if ((unsigned int)c > 0xffff) { if (input_type == IT_UTF8 || input_type == IT_UTF8P) return 0; continue; } } /* Convert character. */ if (c == '"') { len = 2; str = "\\\""; } else if (c == '\\') { len = 2; str = "\\\\"; } else if (c == '/') { len = 2; str = "\\/"; } else if (c == '\b') { len = 2; str = "\\b"; } else if (c == '\f') { len = 2; str = "\\f"; } else if (c == '\r') { len = 2; str = "\\r"; } else if (c == '\n') { len = 2; str = "\\n"; } else if (c == '\t') { len = 2; str = "\\t"; } else if (c > 0xff || !isprint(c)) { /* isprint generate a segfault if c is too big. The man says that * c must have the value of an unsigned char or EOF. */ len = 6; _str[0] = '\\'; _str[1] = 'u'; snprintf(&_str[2], 5, "%04x", (unsigned short)c); str = _str; } else { len = 1; str = (char *)&c; } /* Check length */ if (temp->len + len > temp->size) return 0; /* Copy string. */ memcpy(temp->str + temp->len, str, len); temp->len += len; } smp->flags &= ~SMP_F_CONST; smp->data.u.str = *temp; smp->data.type = SMP_T_STR; return 1; } /* This sample function is designed to extract some bytes from an input buffer. * First arg is the offset. * Optional second arg is the length to truncate */ static int sample_conv_bytes(const struct arg *arg_p, struct sample *smp, void *private) { if (smp->data.u.str.len <= arg_p[0].data.sint) { smp->data.u.str.len = 0; return 1; } if (smp->data.u.str.size) smp->data.u.str.size -= arg_p[0].data.sint; smp->data.u.str.len -= arg_p[0].data.sint; smp->data.u.str.str += arg_p[0].data.sint; if ((arg_p[1].type == ARGT_SINT) && (arg_p[1].data.sint < smp->data.u.str.len)) smp->data.u.str.len = arg_p[1].data.sint; return 1; } static int sample_conv_field_check(struct arg *args, struct sample_conv *conv, const char *file, int line, char **err) { struct arg *arg = args; if (!arg) { memprintf(err, "Unexpected empty arg list"); return 0; } if (arg->type != ARGT_SINT) { memprintf(err, "Unexpected arg type"); return 0; } if (!arg->data.sint) { memprintf(err, "Unexpected value 0 for index"); return 0; } arg++; if (arg->type != ARGT_STR) { memprintf(err, "Unexpected arg type"); return 0; } if (!arg->data.str.len) { memprintf(err, "Empty separators list"); return 0; } return 1; } /* This sample function is designed to a return selected part of a string (field). * First arg is the index of the field (start at 1) * Second arg is a char list of separators (type string) */ static int sample_conv_field(const struct arg *arg_p, struct sample *smp, void *private) { unsigned int field; char *start, *end; int i; if (!arg_p[0].data.sint) return 0; field = 1; end = start = smp->data.u.str.str; while (end - smp->data.u.str.str < smp->data.u.str.len) { for (i = 0 ; i < arg_p[1].data.str.len ; i++) { if (*end == arg_p[1].data.str.str[i]) { if (field == arg_p[0].data.sint) goto found; start = end+1; field++; break; } } end++; } /* Field not found */ if (field != arg_p[0].data.sint) { smp->data.u.str.len = 0; return 1; } found: smp->data.u.str.len = end - start; /* If ret string is len 0, no need to change pointers or to update size */ if (!smp->data.u.str.len) return 1; smp->data.u.str.str = start; /* Compute remaining size if needed Note: smp->data.u.str.size cannot be set to 0 */ if (smp->data.u.str.size) smp->data.u.str.size -= start - smp->data.u.str.str; return 1; } /* This sample function is designed to return a word from a string. * First arg is the index of the word (start at 1) * Second arg is a char list of words separators (type string) */ static int sample_conv_word(const struct arg *arg_p, struct sample *smp, void *private) { unsigned int word; char *start, *end; int i, issep, inword; if (!arg_p[0].data.sint) return 0; word = 0; inword = 0; end = start = smp->data.u.str.str; while (end - smp->data.u.str.str < smp->data.u.str.len) { issep = 0; for (i = 0 ; i < arg_p[1].data.str.len ; i++) { if (*end == arg_p[1].data.str.str[i]) { issep = 1; break; } } if (!inword) { if (!issep) { word++; start = end; inword = 1; } } else if (issep) { if (word == arg_p[0].data.sint) goto found; inword = 0; } end++; } /* Field not found */ if (word != arg_p[0].data.sint) { smp->data.u.str.len = 0; return 1; } found: smp->data.u.str.len = end - start; /* If ret string is len 0, no need to change pointers or to update size */ if (!smp->data.u.str.len) return 1; smp->data.u.str.str = start; /* Compute remaining size if needed Note: smp->data.u.str.size cannot be set to 0 */ if (smp->data.u.str.size) smp->data.u.str.size -= start - smp->data.u.str.str; return 1; } static int sample_conv_regsub_check(struct arg *args, struct sample_conv *conv, const char *file, int line, char **err) { struct arg *arg = args; char *p; int len; /* arg0 is a regex, it uses type_flag for ICASE and global match */ arg[0].type_flags = 0; if (arg[2].type != ARGT_STR) return 1; p = arg[2].data.str.str; len = arg[2].data.str.len; while (len) { if (*p == 'i') { arg[0].type_flags |= ARGF_REG_ICASE; } else if (*p == 'g') { arg[0].type_flags |= ARGF_REG_GLOB; } else { memprintf(err, "invalid regex flag '%c', only 'i' and 'g' are supported", *p); return 0; } p++; len--; } return 1; } /* This sample function is designed to do the equivalent of s/match/replace/ on * the input string. It applies a regex and restarts from the last matched * location until nothing matches anymore. First arg is the regex to apply to * the input string, second arg is the replacement expression. */ static int sample_conv_regsub(const struct arg *arg_p, struct sample *smp, void *private) { char *start, *end; struct my_regex *reg = arg_p[0].data.reg; regmatch_t pmatch[MAX_MATCH]; struct chunk *trash = get_trash_chunk(); int flag, max; int found; start = smp->data.u.str.str; end = start + smp->data.u.str.len; flag = 0; while (1) { /* check for last round which is used to copy remaining parts * when not running in global replacement mode. */ found = 0; if ((arg_p[0].type_flags & ARGF_REG_GLOB) || !(flag & REG_NOTBOL)) { /* Note: we can have start == end on empty strings or at the end */ found = regex_exec_match2(reg, start, end - start, MAX_MATCH, pmatch, flag); } if (!found) pmatch[0].rm_so = end - start; /* copy the heading non-matching part (which may also be the tail if nothing matches) */ max = trash->size - trash->len; if (max && pmatch[0].rm_so > 0) { if (max > pmatch[0].rm_so) max = pmatch[0].rm_so; memcpy(trash->str + trash->len, start, max); trash->len += max; } if (!found) break; /* replace the matching part */ max = trash->size - trash->len; if (max) { if (max > arg_p[1].data.str.len) max = arg_p[1].data.str.len; memcpy(trash->str + trash->len, arg_p[1].data.str.str, max); trash->len += max; } /* stop here if we're done with this string */ if (start >= end) break; /* We have a special case for matches of length 0 (eg: "x*y*"). * These ones are considered to match in front of a character, * so we have to copy that character and skip to the next one. */ if (!pmatch[0].rm_eo) { if (trash->len < trash->size) trash->str[trash->len++] = start[pmatch[0].rm_eo]; pmatch[0].rm_eo++; } start += pmatch[0].rm_eo; flag |= REG_NOTBOL; } smp->data.u.str = *trash; return 1; } /* This function check an operator entry. It expects a string. * The string can be an integer or a variable name. */ static int check_operator(struct arg *args, struct sample_conv *conv, const char *file, int line, char **err) { const char *str; const char *end; /* Try to decode a variable. */ if (vars_check_arg(&args[0], NULL)) return 1; /* Try to convert an integer */ str = args[0].data.str.str; end = str + strlen(str); args[0].data.sint = read_int64(&str, end); if (*str != '\0') { memprintf(err, "expects an integer or a variable name"); return 0; } args[0].type = ARGT_SINT; return 1; } /* This function returns a sample struct filled with an arg content. * If the arg contain an integer, the integer is returned in the * sample. If the arg contains a variable descriptor, it returns the * variable value. * * This function returns 0 if an error occurs, otherwise it returns 1. */ static inline int sample_conv_var2smp(const struct arg *arg, struct sample *smp) { switch (arg->type) { case ARGT_SINT: smp->data.type = SMP_T_SINT; smp->data.u.sint = arg->data.sint; return 1; case ARGT_VAR: if (!vars_get_by_desc(&arg->data.var, smp)) return 0; if (!sample_casts[smp->data.type][SMP_T_SINT]) return 0; if (!sample_casts[smp->data.type][SMP_T_SINT](smp)) return 0; return 1; default: return 0; } } /* Takes a SINT on input, applies a binary twos complement and returns the SINT * result. */ static int sample_conv_binary_cpl(const struct arg *arg_p, struct sample *smp, void *private) { smp->data.u.sint = ~smp->data.u.sint; return 1; } /* Takes a SINT on input, applies a binary "and" with the SINT directly in * arg_p or in the varaible described in arg_p, and returns the SINT result. */ static int sample_conv_binary_and(const struct arg *arg_p, struct sample *smp, void *private) { struct sample tmp; smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt); if (!sample_conv_var2smp(arg_p, &tmp)) return 0; smp->data.u.sint &= tmp.data.u.sint; return 1; } /* Takes a SINT on input, applies a binary "or" with the SINT directly in * arg_p or in the varaible described in arg_p, and returns the SINT result. */ static int sample_conv_binary_or(const struct arg *arg_p, struct sample *smp, void *private) { struct sample tmp; smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt); if (!sample_conv_var2smp(arg_p, &tmp)) return 0; smp->data.u.sint |= tmp.data.u.sint; return 1; } /* Takes a SINT on input, applies a binary "xor" with the SINT directly in * arg_p or in the varaible described in arg_p, and returns the SINT result. */ static int sample_conv_binary_xor(const struct arg *arg_p, struct sample *smp, void *private) { struct sample tmp; smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt); if (!sample_conv_var2smp(arg_p, &tmp)) return 0; smp->data.u.sint ^= tmp.data.u.sint; return 1; } static inline long long int arith_add(long long int a, long long int b) { /* Prevent overflow and makes capped calculus. * We must ensure that the check calculus doesn't * exceed the signed 64 bits limits. * * +----------+----------+ * | a<0 | a>=0 | * +------+----------+----------+ * | b<0 | MIN-a>b | no check | * +------+----------+----------+ * | b>=0 | no check | MAX-a= 0) { /* signs are differents. */ if (a < 0) { if (LLONG_MIN - a > b) return LLONG_MIN; } if (LLONG_MAX - a < b) return LLONG_MAX; } return a + b; } /* Takes a SINT on input, applies an arithmetic "add" with the SINT directly in * arg_p or in the varaible described in arg_p, and returns the SINT result. */ static int sample_conv_arith_add(const struct arg *arg_p, struct sample *smp, void *private) { struct sample tmp; smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt); if (!sample_conv_var2smp(arg_p, &tmp)) return 0; smp->data.u.sint = arith_add(smp->data.u.sint, tmp.data.u.sint); return 1; } /* Takes a SINT on input, applies an arithmetic "sub" with the SINT directly in * arg_p or in the varaible described in arg_p, and returns the SINT result. */ static int sample_conv_arith_sub(const struct arg *arg_p, struct sample *smp, void *private) { struct sample tmp; smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt); if (!sample_conv_var2smp(arg_p, &tmp)) return 0; /* We cannot represent -LLONG_MIN because abs(LLONG_MIN) is greater * than abs(LLONG_MAX). So, the following code use LLONG_MAX in place * of -LLONG_MIN and correct the result. */ if (tmp.data.u.sint == LLONG_MIN) { smp->data.u.sint = arith_add(smp->data.u.sint, LLONG_MAX); if (smp->data.u.sint < LLONG_MAX) smp->data.u.sint++; return 1; } /* standard substraction: we use the "add" function and negate * the second operand. */ smp->data.u.sint = arith_add(smp->data.u.sint, -tmp.data.u.sint); return 1; } /* Takes a SINT on input, applies an arithmetic "mul" with the SINT directly in * arg_p or in the varaible described in arg_p, and returns the SINT result. * If the result makes an overflow, then the largest possible quantity is * returned. */ static int sample_conv_arith_mul(const struct arg *arg_p, struct sample *smp, void *private) { struct sample tmp; long long int c; smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt); if (!sample_conv_var2smp(arg_p, &tmp)) return 0; /* prevent divide by 0 during the check */ if (!smp->data.u.sint || !tmp.data.u.sint) { smp->data.u.sint = 0; return 1; } /* The multiply between LLONG_MIN and -1 returns a * "floting point exception". */ if (smp->data.u.sint == LLONG_MIN && tmp.data.u.sint == -1) { smp->data.u.sint = LLONG_MAX; return 1; } /* execute standard multiplication. */ c = smp->data.u.sint * tmp.data.u.sint; /* check for overflow and makes capped multiply. */ if (smp->data.u.sint != c / tmp.data.u.sint) { if ((smp->data.u.sint < 0) == (tmp.data.u.sint < 0)) { smp->data.u.sint = LLONG_MAX; return 1; } smp->data.u.sint = LLONG_MIN; return 1; } smp->data.u.sint = c; return 1; } /* Takes a SINT on input, applies an arithmetic "div" with the SINT directly in * arg_p or in the varaible described in arg_p, and returns the SINT result. * If arg_p makes the result overflow, then the largest possible quantity is * returned. */ static int sample_conv_arith_div(const struct arg *arg_p, struct sample *smp, void *private) { struct sample tmp; smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt); if (!sample_conv_var2smp(arg_p, &tmp)) return 0; if (tmp.data.u.sint) { /* The divide between LLONG_MIN and -1 returns a * "floting point exception". */ if (smp->data.u.sint == LLONG_MIN && tmp.data.u.sint == -1) { smp->data.u.sint = LLONG_MAX; return 1; } smp->data.u.sint /= tmp.data.u.sint; return 1; } smp->data.u.sint = LLONG_MAX; return 1; } /* Takes a SINT on input, applies an arithmetic "mod" with the SINT directly in * arg_p or in the varaible described in arg_p, and returns the SINT result. * If arg_p makes the result overflow, then 0 is returned. */ static int sample_conv_arith_mod(const struct arg *arg_p, struct sample *smp, void *private) { struct sample tmp; smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt); if (!sample_conv_var2smp(arg_p, &tmp)) return 0; if (tmp.data.u.sint) { /* The divide between LLONG_MIN and -1 returns a * "floting point exception". */ if (smp->data.u.sint == LLONG_MIN && tmp.data.u.sint == -1) { smp->data.u.sint = 0; return 1; } smp->data.u.sint %= tmp.data.u.sint; return 1; } smp->data.u.sint = 0; return 1; } /* Takes an SINT on input, applies an arithmetic "neg" and returns the SINT * result. */ static int sample_conv_arith_neg(const struct arg *arg_p, struct sample *smp, void *private) { if (smp->data.u.sint == LLONG_MIN) smp->data.u.sint = LLONG_MAX; else smp->data.u.sint = -smp->data.u.sint; return 1; } /* Takes a SINT on input, returns true is the value is non-null, otherwise * false. The output is a BOOL. */ static int sample_conv_arith_bool(const struct arg *arg_p, struct sample *smp, void *private) { smp->data.u.sint = !!smp->data.u.sint; smp->data.type = SMP_T_BOOL; return 1; } /* Takes a SINT on input, returns false is the value is non-null, otherwise * truee. The output is a BOOL. */ static int sample_conv_arith_not(const struct arg *arg_p, struct sample *smp, void *private) { smp->data.u.sint = !smp->data.u.sint; smp->data.type = SMP_T_BOOL; return 1; } /* Takes a SINT on input, returns true is the value is odd, otherwise false. * The output is a BOOL. */ static int sample_conv_arith_odd(const struct arg *arg_p, struct sample *smp, void *private) { smp->data.u.sint = smp->data.u.sint & 1; smp->data.type = SMP_T_BOOL; return 1; } /* Takes a SINT on input, returns true is the value is even, otherwise false. * The output is a BOOL. */ static int sample_conv_arith_even(const struct arg *arg_p, struct sample *smp, void *private) { smp->data.u.sint = !(smp->data.u.sint & 1); smp->data.type = SMP_T_BOOL; return 1; } /* appends an optional const string, an optional variable contents and another * optional const string to an existing string. */ static int sample_conv_concat(const struct arg *arg_p, struct sample *smp, void *private) { struct chunk *trash; struct sample tmp; int max; trash = get_trash_chunk(); trash->len = smp->data.u.str.len; if (trash->len > trash->size - 1) trash->len = trash->size - 1; memcpy(trash->str, smp->data.u.str.str, trash->len); trash->str[trash->len] = 0; /* append first string */ max = arg_p[0].data.str.len; if (max > trash->size - 1 - trash->len) max = trash->size - 1 - trash->len; if (max) { memcpy(trash->str + trash->len, arg_p[0].data.str.str, max); trash->len += max; trash->str[trash->len] = 0; } /* append second string (variable) if it's found and we can turn it * into a string. */ smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt); if (arg_p[1].type == ARGT_VAR && vars_get_by_desc(&arg_p[1].data.var, &tmp) && (sample_casts[tmp.data.type][SMP_T_STR] == c_none || sample_casts[tmp.data.type][SMP_T_STR](&tmp))) { max = tmp.data.u.str.len; if (max > trash->size - 1 - trash->len) max = trash->size - 1 - trash->len; if (max) { memcpy(trash->str + trash->len, tmp.data.u.str.str, max); trash->len += max; trash->str[trash->len] = 0; } } /* append third string */ max = arg_p[2].data.str.len; if (max > trash->size - 1 - trash->len) max = trash->size - 1 - trash->len; if (max) { memcpy(trash->str + trash->len, arg_p[2].data.str.str, max); trash->len += max; trash->str[trash->len] = 0; } smp->data.u.str = *trash; smp->data.type = SMP_T_STR; return 1; } /* This function checks the "concat" converter's arguments and extracts the * variable name and its scope. */ static int smp_check_concat(struct arg *args, struct sample_conv *conv, const char *file, int line, char **err) { /* Try to decode a variable. */ if (args[1].data.str.len > 0 && !vars_check_arg(&args[1], NULL)) { memprintf(err, "failed to register variable name '%s'", args[1].data.str.str); return 0; } return 1; } /************************************************************************/ /* All supported sample fetch functions must be declared here */ /************************************************************************/ /* force TRUE to be returned at the fetch level */ static int smp_fetch_true(const struct arg *args, struct sample *smp, const char *kw, void *private) { if (!smp_make_rw(smp)) return 0; smp->data.type = SMP_T_BOOL; smp->data.u.sint = 1; return 1; } /* force FALSE to be returned at the fetch level */ static int smp_fetch_false(const struct arg *args, struct sample *smp, const char *kw, void *private) { smp->data.type = SMP_T_BOOL; smp->data.u.sint = 0; return 1; } /* retrieve environment variable $1 as a string */ static int smp_fetch_env(const struct arg *args, struct sample *smp, const char *kw, void *private) { char *env; if (!args || args[0].type != ARGT_STR) return 0; env = getenv(args[0].data.str.str); if (!env) return 0; smp->data.type = SMP_T_STR; smp->flags = SMP_F_CONST; smp->data.u.str.str = env; smp->data.u.str.len = strlen(env); return 1; } /* retrieve the current local date in epoch time, and applies an optional offset * of args[0] seconds. */ static int smp_fetch_date(const struct arg *args, struct sample *smp, const char *kw, void *private) { smp->data.u.sint = date.tv_sec; /* add offset */ if (args && args[0].type == ARGT_SINT) smp->data.u.sint += args[0].data.sint; smp->data.type = SMP_T_SINT; smp->flags |= SMP_F_VOL_TEST | SMP_F_MAY_CHANGE; return 1; } /* retrieve the current microsecond part of the date */ static int smp_fetch_date_us(const struct arg *args, struct sample *smp, const char *kw, void *private) { smp->data.u.sint = date.tv_usec; smp->data.type = SMP_T_SINT; smp->flags |= SMP_F_VOL_TEST | SMP_F_MAY_CHANGE; return 1; } /* returns the hostname */ static int smp_fetch_hostname(const struct arg *args, struct sample *smp, const char *kw, void *private) { smp->data.type = SMP_T_STR; smp->flags = SMP_F_CONST; smp->data.u.str.str = hostname; smp->data.u.str.len = strlen(hostname); return 1; } /* returns the number of processes */ static int smp_fetch_nbproc(const struct arg *args, struct sample *smp, const char *kw, void *private) { smp->data.type = SMP_T_SINT; smp->data.u.sint = global.nbproc; return 1; } /* returns the number of the current process (between 1 and nbproc */ static int smp_fetch_proc(const struct arg *args, struct sample *smp, const char *kw, void *private) { smp->data.type = SMP_T_SINT; smp->data.u.sint = relative_pid; return 1; } /* returns the number of the current thread (between 1 and nbthread */ static int smp_fetch_thread(const struct arg *args, struct sample *smp, const char *kw, void *private) { smp->data.type = SMP_T_SINT; smp->data.u.sint = tid; return 1; } /* generate a random 32-bit integer for whatever purpose, with an optional * range specified in argument. */ static int smp_fetch_rand(const struct arg *args, struct sample *smp, const char *kw, void *private) { smp->data.u.sint = random(); /* reduce if needed. Don't do a modulo, use all bits! */ if (args && args[0].type == ARGT_SINT) smp->data.u.sint = (smp->data.u.sint * args[0].data.sint) / ((u64)RAND_MAX+1); smp->data.type = SMP_T_SINT; smp->flags |= SMP_F_VOL_TEST | SMP_F_MAY_CHANGE; return 1; } /* returns true if the current process is stopping */ static int smp_fetch_stopping(const struct arg *args, struct sample *smp, const char *kw, void *private) { smp->data.type = SMP_T_BOOL; smp->data.u.sint = stopping; return 1; } static int smp_fetch_const_str(const struct arg *args, struct sample *smp, const char *kw, void *private) { smp->flags |= SMP_F_CONST; smp->data.type = SMP_T_STR; smp->data.u.str.str = args[0].data.str.str; smp->data.u.str.len = args[0].data.str.len; return 1; } static int smp_check_const_bool(struct arg *args, char **err) { if (strcasecmp(args[0].data.str.str, "true") == 0 || strcasecmp(args[0].data.str.str, "1") == 0) { args[0].type = ARGT_SINT; args[0].data.sint = 1; return 1; } if (strcasecmp(args[0].data.str.str, "false") == 0 || strcasecmp(args[0].data.str.str, "0") == 0) { args[0].type = ARGT_SINT; args[0].data.sint = 0; return 1; } memprintf(err, "Expects 'true', 'false', '0' or '1'"); return 0; } static int smp_fetch_const_bool(const struct arg *args, struct sample *smp, const char *kw, void *private) { smp->data.type = SMP_T_BOOL; smp->data.u.sint = args[0].data.sint; return 1; } static int smp_fetch_const_int(const struct arg *args, struct sample *smp, const char *kw, void *private) { smp->data.type = SMP_T_SINT; smp->data.u.sint = args[0].data.sint; return 1; } static int smp_fetch_const_ipv4(const struct arg *args, struct sample *smp, const char *kw, void *private) { smp->data.type = SMP_T_IPV4; smp->data.u.ipv4 = args[0].data.ipv4; return 1; } static int smp_fetch_const_ipv6(const struct arg *args, struct sample *smp, const char *kw, void *private) { smp->data.type = SMP_T_IPV6; smp->data.u.ipv6 = args[0].data.ipv6; return 1; } static int smp_check_const_bin(struct arg *args, char **err) { char *binstr = NULL; int binstrlen; if (!parse_binary(args[0].data.str.str, &binstr, &binstrlen, err)) return 0; args[0].type = ARGT_STR; args[0].data.str.str = binstr; args[0].data.str.len = binstrlen; return 1; } static int smp_fetch_const_bin(const struct arg *args, struct sample *smp, const char *kw, void *private) { smp->flags |= SMP_F_CONST; smp->data.type = SMP_T_BIN; smp->data.u.str.str = args[0].data.str.str; smp->data.u.str.len = args[0].data.str.len; return 1; } static int smp_check_const_meth(struct arg *args, char **err) { enum http_meth_t meth; int i; meth = find_http_meth(args[0].data.str.str, args[0].data.str.len); if (meth != HTTP_METH_OTHER) { args[0].type = ARGT_SINT; args[0].data.sint = meth; } else { /* Check method avalaibility. A methos is a token defined as : * tchar = "!" / "#" / "$" / "%" / "&" / "'" / "*" / "+" / "-" / "." / * "^" / "_" / "`" / "|" / "~" / DIGIT / ALPHA * token = 1*tchar */ for (i = 0; i < args[0].data.str.len; i++) { if (!HTTP_IS_TOKEN(args[0].data.str.str[i])) { memprintf(err, "expects valid method."); return 0; } } } return 1; } static int smp_fetch_const_meth(const struct arg *args, struct sample *smp, const char *kw, void *private) { smp->data.type = SMP_T_METH; if (args[0].type == ARGT_SINT) { smp->flags &= ~SMP_F_CONST; smp->data.u.meth.meth = args[0].data.sint; smp->data.u.meth.str.str = ""; smp->data.u.meth.str.len = 0; } else { smp->flags |= SMP_F_CONST; smp->data.u.meth.meth = HTTP_METH_OTHER; smp->data.u.meth.str.str = args[0].data.str.str; smp->data.u.meth.str.len = args[0].data.str.len; } return 1; } /* Note: must not be declared as its list will be overwritten. * Note: fetches that may return multiple types must be declared as the lowest * common denominator, the type that can be casted into all other ones. For * instance IPv4/IPv6 must be declared IPv4. */ static struct sample_fetch_kw_list smp_kws = {ILH, { { "always_false", smp_fetch_false, 0, NULL, SMP_T_BOOL, SMP_USE_INTRN }, { "always_true", smp_fetch_true, 0, NULL, SMP_T_BOOL, SMP_USE_INTRN }, { "env", smp_fetch_env, ARG1(1,STR), NULL, SMP_T_STR, SMP_USE_INTRN }, { "date", smp_fetch_date, ARG1(0,SINT), NULL, SMP_T_SINT, SMP_USE_INTRN }, { "date_us", smp_fetch_date_us, 0, NULL, SMP_T_SINT, SMP_USE_INTRN }, { "hostname", smp_fetch_hostname, 0, NULL, SMP_T_STR, SMP_USE_INTRN }, { "nbproc", smp_fetch_nbproc,0, NULL, SMP_T_SINT, SMP_USE_INTRN }, { "proc", smp_fetch_proc, 0, NULL, SMP_T_SINT, SMP_USE_INTRN }, { "thread", smp_fetch_thread, 0, NULL, SMP_T_SINT, SMP_USE_INTRN }, { "rand", smp_fetch_rand, ARG1(0,SINT), NULL, SMP_T_SINT, SMP_USE_INTRN }, { "stopping", smp_fetch_stopping, 0, NULL, SMP_T_BOOL, SMP_USE_INTRN }, { "str", smp_fetch_const_str, ARG1(1,STR), NULL , SMP_T_STR, SMP_USE_INTRN }, { "bool", smp_fetch_const_bool, ARG1(1,STR), smp_check_const_bool, SMP_T_BOOL, SMP_USE_INTRN }, { "int", smp_fetch_const_int, ARG1(1,SINT), NULL , SMP_T_SINT, SMP_USE_INTRN }, { "ipv4", smp_fetch_const_ipv4, ARG1(1,IPV4), NULL , SMP_T_IPV4, SMP_USE_INTRN }, { "ipv6", smp_fetch_const_ipv6, ARG1(1,IPV6), NULL , SMP_T_IPV6, SMP_USE_INTRN }, { "bin", smp_fetch_const_bin, ARG1(1,STR), smp_check_const_bin , SMP_T_BIN, SMP_USE_INTRN }, { "meth", smp_fetch_const_meth, ARG1(1,STR), smp_check_const_meth, SMP_T_METH, SMP_USE_INTRN }, { /* END */ }, }}; /* Note: must not be declared as its list will be overwritten */ static struct sample_conv_kw_list sample_conv_kws = {ILH, { #ifdef DEBUG_EXPR { "debug", sample_conv_debug, 0, NULL, SMP_T_ANY, SMP_T_ANY }, #endif { "b64dec", sample_conv_base642bin,0, NULL, SMP_T_STR, SMP_T_BIN }, { "base64", sample_conv_bin2base64,0, NULL, SMP_T_BIN, SMP_T_STR }, { "upper", sample_conv_str2upper, 0, NULL, SMP_T_STR, SMP_T_STR }, { "lower", sample_conv_str2lower, 0, NULL, SMP_T_STR, SMP_T_STR }, { "length", sample_conv_length, 0, NULL, SMP_T_STR, SMP_T_SINT }, { "hex", sample_conv_bin2hex, 0, NULL, SMP_T_BIN, SMP_T_STR }, { "hex2i", sample_conv_hex2int, 0, NULL, SMP_T_STR, SMP_T_SINT }, { "ipmask", sample_conv_ipmask, ARG2(1,MSK4,MSK6), NULL, SMP_T_ADDR, SMP_T_IPV4 }, { "ltime", sample_conv_ltime, ARG2(1,STR,SINT), NULL, SMP_T_SINT, SMP_T_STR }, { "utime", sample_conv_utime, ARG2(1,STR,SINT), NULL, SMP_T_SINT, SMP_T_STR }, { "crc32", sample_conv_crc32, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT }, { "crc32c", sample_conv_crc32c, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT }, { "djb2", sample_conv_djb2, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT }, { "sdbm", sample_conv_sdbm, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT }, { "wt6", sample_conv_wt6, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT }, { "xxh32", sample_conv_xxh32, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT }, { "xxh64", sample_conv_xxh64, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT }, { "json", sample_conv_json, ARG1(1,STR), sample_conv_json_check, SMP_T_STR, SMP_T_STR }, { "bytes", sample_conv_bytes, ARG2(1,SINT,SINT), NULL, SMP_T_BIN, SMP_T_BIN }, { "field", sample_conv_field, ARG2(2,SINT,STR), sample_conv_field_check, SMP_T_STR, SMP_T_STR }, { "word", sample_conv_word, ARG2(2,SINT,STR), sample_conv_field_check, SMP_T_STR, SMP_T_STR }, { "regsub", sample_conv_regsub, ARG3(2,REG,STR,STR), sample_conv_regsub_check, SMP_T_STR, SMP_T_STR }, { "sha1", sample_conv_sha1, 0, NULL, SMP_T_BIN, SMP_T_BIN }, { "concat", sample_conv_concat, ARG3(1,STR,STR,STR), smp_check_concat, SMP_T_STR, SMP_T_STR }, { "and", sample_conv_binary_and, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT }, { "or", sample_conv_binary_or, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT }, { "xor", sample_conv_binary_xor, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT }, { "cpl", sample_conv_binary_cpl, 0, NULL, SMP_T_SINT, SMP_T_SINT }, { "bool", sample_conv_arith_bool, 0, NULL, SMP_T_SINT, SMP_T_BOOL }, { "not", sample_conv_arith_not, 0, NULL, SMP_T_SINT, SMP_T_BOOL }, { "odd", sample_conv_arith_odd, 0, NULL, SMP_T_SINT, SMP_T_BOOL }, { "even", sample_conv_arith_even, 0, NULL, SMP_T_SINT, SMP_T_BOOL }, { "add", sample_conv_arith_add, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT }, { "sub", sample_conv_arith_sub, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT }, { "mul", sample_conv_arith_mul, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT }, { "div", sample_conv_arith_div, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT }, { "mod", sample_conv_arith_mod, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT }, { "neg", sample_conv_arith_neg, 0, NULL, SMP_T_SINT, SMP_T_SINT }, { NULL, NULL, 0, 0, 0 }, }}; __attribute__((constructor)) static void __sample_init(void) { /* register sample fetch and format conversion keywords */ sample_register_fetches(&smp_kws); sample_register_convs(&sample_conv_kws); }