/* * Name server resolution * * Copyright 2014 Baptiste Assmann * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct list sec_resolvers = LIST_HEAD_INIT(sec_resolvers); struct list resolv_srvrq_list = LIST_HEAD_INIT(resolv_srvrq_list); static THREAD_LOCAL uint64_t resolv_query_id_seed = 0; /* random seed */ struct resolvers *curr_resolvers = NULL; DECLARE_STATIC_POOL(resolv_answer_item_pool, "resolv_answer_item", sizeof(struct resolv_answer_item)); DECLARE_STATIC_POOL(resolv_resolution_pool, "resolv_resolution", sizeof(struct resolv_resolution)); DECLARE_POOL(resolv_requester_pool, "resolv_requester", sizeof(struct resolv_requester)); static unsigned int resolution_uuid = 1; unsigned int resolv_failed_resolutions = 0; enum { DNS_STAT_ID, DNS_STAT_PID, DNS_STAT_SENT, DNS_STAT_SND_ERROR, DNS_STAT_VALID, DNS_STAT_UPDATE, DNS_STAT_CNAME, DNS_STAT_CNAME_ERROR, DNS_STAT_ANY_ERR, DNS_STAT_NX, DNS_STAT_TIMEOUT, DNS_STAT_REFUSED, DNS_STAT_OTHER, DNS_STAT_INVALID, DNS_STAT_TOO_BIG, DNS_STAT_TRUNCATED, DNS_STAT_OUTDATED, DNS_STAT_END, }; static struct name_desc dns_stats[] = { [DNS_STAT_ID] = { .name = "id", .desc = "ID" }, [DNS_STAT_PID] = { .name = "pid", .desc = "Parent ID" }, [DNS_STAT_SENT] = { .name = "sent", .desc = "Sent" }, [DNS_STAT_SND_ERROR] = { .name = "send_error", .desc = "Send error" }, [DNS_STAT_VALID] = { .name = "valid", .desc = "Valid" }, [DNS_STAT_UPDATE] = { .name = "update", .desc = "Update" }, [DNS_STAT_CNAME] = { .name = "cname", .desc = "CNAME" }, [DNS_STAT_CNAME_ERROR] = { .name = "cname_error", .desc = "CNAME error" }, [DNS_STAT_ANY_ERR] = { .name = "any_err", .desc = "Any errors" }, [DNS_STAT_NX] = { .name = "nx", .desc = "NX" }, [DNS_STAT_TIMEOUT] = { .name = "timeout", .desc = "Timeout" }, [DNS_STAT_REFUSED] = { .name = "refused", .desc = "Refused" }, [DNS_STAT_OTHER] = { .name = "other", .desc = "Other" }, [DNS_STAT_INVALID] = { .name = "invalid", .desc = "Invalid" }, [DNS_STAT_TOO_BIG] = { .name = "too_big", .desc = "Too big" }, [DNS_STAT_TRUNCATED] = { .name = "truncated", .desc = "Truncated" }, [DNS_STAT_OUTDATED] = { .name = "outdated", .desc = "Outdated" }, }; static struct dns_counters dns_counters; static void dns_fill_stats(void *d, struct field *stats) { struct dns_counters *counters = d; stats[DNS_STAT_ID] = mkf_str(FO_CONFIG, counters->id); stats[DNS_STAT_PID] = mkf_str(FO_CONFIG, counters->pid); stats[DNS_STAT_SENT] = mkf_u64(FN_GAUGE, counters->sent); stats[DNS_STAT_SND_ERROR] = mkf_u64(FN_GAUGE, counters->snd_error); stats[DNS_STAT_VALID] = mkf_u64(FN_GAUGE, counters->valid); stats[DNS_STAT_UPDATE] = mkf_u64(FN_GAUGE, counters->update); stats[DNS_STAT_CNAME] = mkf_u64(FN_GAUGE, counters->cname); stats[DNS_STAT_CNAME_ERROR] = mkf_u64(FN_GAUGE, counters->cname_error); stats[DNS_STAT_ANY_ERR] = mkf_u64(FN_GAUGE, counters->any_err); stats[DNS_STAT_NX] = mkf_u64(FN_GAUGE, counters->nx); stats[DNS_STAT_TIMEOUT] = mkf_u64(FN_GAUGE, counters->timeout); stats[DNS_STAT_REFUSED] = mkf_u64(FN_GAUGE, counters->refused); stats[DNS_STAT_OTHER] = mkf_u64(FN_GAUGE, counters->other); stats[DNS_STAT_INVALID] = mkf_u64(FN_GAUGE, counters->invalid); stats[DNS_STAT_TOO_BIG] = mkf_u64(FN_GAUGE, counters->too_big); stats[DNS_STAT_TRUNCATED] = mkf_u64(FN_GAUGE, counters->truncated); stats[DNS_STAT_OUTDATED] = mkf_u64(FN_GAUGE, counters->outdated); } static struct stats_module dns_stats_module = { .name = "dns", .domain_flags = STATS_DOMAIN_DNS << STATS_DOMAIN, .fill_stats = dns_fill_stats, .stats = dns_stats, .stats_count = DNS_STAT_END, .counters = &dns_counters, .counters_size = sizeof(dns_counters), .clearable = 0, }; INITCALL1(STG_REGISTER, stats_register_module, &dns_stats_module); /* Returns a pointer to the resolvers matching the id . NULL is returned if * no match is found. */ struct resolvers *find_resolvers_by_id(const char *id) { struct resolvers *res; list_for_each_entry(res, &sec_resolvers, list) { if (strcmp(res->id, id) == 0) return res; } return NULL; } /* Compare hostnames in a case-insensitive way . * Returns 0 if they are the same, non-zero otherwise */ static __inline int resolv_hostname_cmp(const char *name1, const char *name2, int len) { int i; for (i = 0; i < len; i++) if (tolower((unsigned char)name1[i]) != tolower((unsigned char)name2[i])) return -1; return 0; } /* Returns a pointer on the SRV request matching the name for the proxy * . NULL is returned if no match is found. */ struct resolv_srvrq *find_srvrq_by_name(const char *name, struct proxy *px) { struct resolv_srvrq *srvrq; list_for_each_entry(srvrq, &resolv_srvrq_list, list) { if (srvrq->proxy == px && strcmp(srvrq->name, name) == 0) return srvrq; } return NULL; } /* Allocates a new SRVRQ for the given server with the name . It returns * NULL if an error occurred. */ struct resolv_srvrq *new_resolv_srvrq(struct server *srv, char *fqdn) { struct proxy *px = srv->proxy; struct resolv_srvrq *srvrq = NULL; int fqdn_len, hostname_dn_len; fqdn_len = strlen(fqdn); hostname_dn_len = resolv_str_to_dn_label(fqdn, fqdn_len + 1, trash.area, trash.size); if (hostname_dn_len == -1) { ha_alert("config : %s '%s', server '%s': failed to parse FQDN '%s'\n", proxy_type_str(px), px->id, srv->id, fqdn); goto err; } if ((srvrq = calloc(1, sizeof(*srvrq))) == NULL) { ha_alert("config : %s '%s', server '%s': out of memory\n", proxy_type_str(px), px->id, srv->id); goto err; } srvrq->obj_type = OBJ_TYPE_SRVRQ; srvrq->proxy = px; srvrq->name = strdup(fqdn); srvrq->hostname_dn = strdup(trash.area); srvrq->hostname_dn_len = hostname_dn_len; if (!srvrq->name || !srvrq->hostname_dn) { ha_alert("config : %s '%s', server '%s': out of memory\n", proxy_type_str(px), px->id, srv->id); goto err; } LIST_ADDQ(&resolv_srvrq_list, &srvrq->list); return srvrq; err: if (srvrq) { free(srvrq->name); free(srvrq->hostname_dn); free(srvrq); } return NULL; } /* 2 bytes random generator to generate DNS query ID */ static inline uint16_t resolv_rnd16(void) { if (!resolv_query_id_seed) resolv_query_id_seed = now_ms; resolv_query_id_seed ^= resolv_query_id_seed << 13; resolv_query_id_seed ^= resolv_query_id_seed >> 7; resolv_query_id_seed ^= resolv_query_id_seed << 17; return resolv_query_id_seed; } static inline int resolv_resolution_timeout(struct resolv_resolution *res) { return res->resolvers->timeout.resolve; } /* Updates a resolvers' task timeout for next wake up and queue it */ static void resolv_update_resolvers_timeout(struct resolvers *resolvers) { struct resolv_resolution *res; int next; next = tick_add(now_ms, resolvers->timeout.resolve); if (!LIST_ISEMPTY(&resolvers->resolutions.curr)) { res = LIST_NEXT(&resolvers->resolutions.curr, struct resolv_resolution *, list); next = MIN(next, tick_add(res->last_query, resolvers->timeout.retry)); } list_for_each_entry(res, &resolvers->resolutions.wait, list) next = MIN(next, tick_add(res->last_resolution, resolv_resolution_timeout(res))); resolvers->t->expire = next; task_queue(resolvers->t); } /* Forges a DNS query. It needs the following information from the caller: * - : the DNS query id corresponding to this query * - : DNS_RTYPE_* request DNS record type (A, AAAA, ANY...) * - : hostname in domain name format * - : length of * * To store the query, the caller must pass a buffer and its size * . It returns the number of written bytes in success, -1 if is * too short. */ static int resolv_build_query(int query_id, int query_type, unsigned int accepted_payload_size, char *hostname_dn, int hostname_dn_len, char *buf, int bufsize) { struct dns_header dns_hdr; struct dns_question qinfo; struct dns_additional_record edns; char *p = buf; if (sizeof(dns_hdr) + sizeof(qinfo) + sizeof(edns) + hostname_dn_len >= bufsize) return -1; memset(buf, 0, bufsize); /* Set dns query headers */ dns_hdr.id = (unsigned short) htons(query_id); dns_hdr.flags = htons(0x0100); /* qr=0, opcode=0, aa=0, tc=0, rd=1, ra=0, z=0, rcode=0 */ dns_hdr.qdcount = htons(1); /* 1 question */ dns_hdr.ancount = 0; dns_hdr.nscount = 0; dns_hdr.arcount = htons(1); memcpy(p, &dns_hdr, sizeof(dns_hdr)); p += sizeof(dns_hdr); /* Set up query hostname */ memcpy(p, hostname_dn, hostname_dn_len); p += hostname_dn_len; *p++ = 0; /* Set up query info (type and class) */ qinfo.qtype = htons(query_type); qinfo.qclass = htons(DNS_RCLASS_IN); memcpy(p, &qinfo, sizeof(qinfo)); p += sizeof(qinfo); /* Set the DNS extension */ edns.name = 0; edns.type = htons(DNS_RTYPE_OPT); edns.udp_payload_size = htons(accepted_payload_size); edns.extension = 0; edns.data_length = 0; memcpy(p, &edns, sizeof(edns)); p += sizeof(edns); return (p - buf); } /* Sends a DNS query to resolvers associated to a resolution. It returns 0 on * success, -1 otherwise. */ static int resolv_send_query(struct resolv_resolution *resolution) { struct resolvers *resolvers = resolution->resolvers; struct dns_nameserver *ns; int len; /* Update resolution */ resolution->nb_queries = 0; resolution->nb_responses = 0; resolution->last_query = now_ms; len = resolv_build_query(resolution->query_id, resolution->query_type, resolvers->accepted_payload_size, resolution->hostname_dn, resolution->hostname_dn_len, trash.area, trash.size); list_for_each_entry(ns, &resolvers->nameservers, list) { if (len < 0) { ns->counters->snd_error++; continue; } if (dns_send_nameserver(ns, trash.area, len) < 0) ns->counters->snd_error++; else resolution->nb_queries++; } /* Push the resolution at the end of the active list */ LIST_DEL(&resolution->list); LIST_ADDQ(&resolvers->resolutions.curr, &resolution->list); return 0; } /* Prepares and sends a DNS resolution. It returns 1 if the query was sent, 0 if * skipped and -1 if an error occurred. */ static int resolv_run_resolution(struct resolv_resolution *resolution) { struct resolvers *resolvers = resolution->resolvers; int query_id, i; /* Avoid sending requests for resolutions that don't yet have an * hostname, ie resolutions linked to servers that do not yet have an * fqdn */ if (!resolution->hostname_dn) return 0; /* Check if a resolution has already been started for this server return * directly to avoid resolution pill up. */ if (resolution->step != RSLV_STEP_NONE) return 0; /* Generates a new query id. We try at most 100 times to find a free * query id */ for (i = 0; i < 100; ++i) { query_id = resolv_rnd16(); if (!eb32_lookup(&resolvers->query_ids, query_id)) break; query_id = -1; } if (query_id == -1) { send_log(NULL, LOG_NOTICE, "could not generate a query id for %s, in resolvers %s.\n", resolution->hostname_dn, resolvers->id); return -1; } /* Update resolution parameters */ resolution->query_id = query_id; resolution->qid.key = query_id; resolution->step = RSLV_STEP_RUNNING; resolution->query_type = resolution->prefered_query_type; resolution->try = resolvers->resolve_retries; eb32_insert(&resolvers->query_ids, &resolution->qid); /* Send the DNS query */ resolution->try -= 1; resolv_send_query(resolution); return 1; } /* Performs a name resolution for the requester */ void resolv_trigger_resolution(struct resolv_requester *req) { struct resolvers *resolvers; struct resolv_resolution *res; int exp; if (!req || !req->resolution) return; res = req->resolution; resolvers = res->resolvers; /* The resolution must not be triggered yet. Use the cached response, if * valid */ exp = tick_add(res->last_resolution, resolvers->hold.valid); if (resolvers->t && (res->status != RSLV_STATUS_VALID || !tick_isset(res->last_resolution) || tick_is_expired(exp, now_ms))) task_wakeup(resolvers->t, TASK_WOKEN_OTHER); } /* Resets some resolution parameters to initial values and also delete the query * ID from the resolver's tree. */ static void resolv_reset_resolution(struct resolv_resolution *resolution) { /* update resolution status */ resolution->step = RSLV_STEP_NONE; resolution->try = 0; resolution->last_resolution = now_ms; resolution->nb_queries = 0; resolution->nb_responses = 0; resolution->query_type = resolution->prefered_query_type; /* clean up query id */ eb32_delete(&resolution->qid); resolution->query_id = 0; resolution->qid.key = 0; } /* Returns the query id contained in a DNS response */ static inline unsigned short resolv_response_get_query_id(unsigned char *resp) { return resp[0] * 256 + resp[1]; } /* Analyses, re-builds and copies the name from the DNS response packet * . must point to the 'data_len' information or pointer 'c0' * for compressed data. The result is copied into , ensuring we don't * overflow using Returns the number of bytes the caller can move * forward. If 0 it means an error occurred while parsing the name. is * the number of bytes the caller could move forward. */ int resolv_read_name(unsigned char *buffer, unsigned char *bufend, unsigned char *name, char *destination, int dest_len, int *offset, unsigned int depth) { int nb_bytes = 0, n = 0; int label_len; unsigned char *reader = name; char *dest = destination; while (1) { if (reader >= bufend) goto err; /* Name compression is in use */ if ((*reader & 0xc0) == 0xc0) { if (reader + 1 >= bufend) goto err; /* Must point BEFORE current position */ if ((buffer + reader[1]) > reader) goto err; if (depth++ > 100) goto err; n = resolv_read_name(buffer, bufend, buffer + (*reader & 0x3f)*256 + reader[1], dest, dest_len - nb_bytes, offset, depth); if (n == 0) goto err; dest += n; nb_bytes += n; goto out; } label_len = *reader; if (label_len == 0) goto out; /* Check if: * - we won't read outside the buffer * - there is enough place in the destination */ if ((reader + label_len >= bufend) || (nb_bytes + label_len >= dest_len)) goto err; /* +1 to take label len + label string */ label_len++; memcpy(dest, reader, label_len); dest += label_len; nb_bytes += label_len; reader += label_len; } out: /* offset computation: * parse from until finding either NULL or a pointer "c0xx" */ reader = name; *offset = 0; while (reader < bufend) { if ((reader[0] & 0xc0) == 0xc0) { *offset += 2; break; } else if (*reader == 0) { *offset += 1; break; } *offset += 1; ++reader; } return nb_bytes; err: return 0; } /* Checks for any obsolete record, also identify any SRV request, and try to * find a corresponding server. */ static void resolv_check_response(struct resolv_resolution *res) { struct resolvers *resolvers = res->resolvers; struct resolv_requester *req, *reqback; struct resolv_answer_item *item, *itemback; struct server *srv; struct resolv_srvrq *srvrq; list_for_each_entry_safe(item, itemback, &res->response.answer_list, list) { struct resolv_answer_item *ar_item = item->ar_item; /* clean up obsolete Additional record */ if (ar_item && (ar_item->last_seen + resolvers->hold.obsolete / 1000) < now.tv_sec) { pool_free(resolv_answer_item_pool, ar_item); item->ar_item = NULL; } /* Remove obsolete items */ if ((item->last_seen + resolvers->hold.obsolete / 1000) < now.tv_sec) { if (item->type != DNS_RTYPE_SRV) goto rm_obselete_item; list_for_each_entry_safe(req, reqback, &res->requesters, list) { if ((srvrq = objt_resolv_srvrq(req->owner)) == NULL) continue; /* Remove any associated server */ for (srv = srvrq->proxy->srv; srv != NULL; srv = srv->next) { HA_SPIN_LOCK(SERVER_LOCK, &srv->lock); if (srv->srvrq == srvrq && srv->svc_port == item->port && item->data_len == srv->hostname_dn_len && !resolv_hostname_cmp(srv->hostname_dn, item->target, item->data_len)) { resolv_unlink_resolution(srv->resolv_requester); snr_update_srv_status(srv, 1); ha_free(&srv->hostname); ha_free(&srv->hostname_dn); srv->hostname_dn_len = 0; memset(&srv->addr, 0, sizeof(srv->addr)); srv->svc_port = 0; } HA_SPIN_UNLOCK(SERVER_LOCK, &srv->lock); } } rm_obselete_item: LIST_DEL(&item->list); if (item->ar_item) { pool_free(resolv_answer_item_pool, item->ar_item); item->ar_item = NULL; } pool_free(resolv_answer_item_pool, item); continue; } if (item->type != DNS_RTYPE_SRV) continue; /* Now process SRV records */ list_for_each_entry_safe(req, reqback, &res->requesters, list) { if ((srvrq = objt_resolv_srvrq(req->owner)) == NULL) continue; /* Check if a server already uses that hostname */ for (srv = srvrq->proxy->srv; srv != NULL; srv = srv->next) { HA_SPIN_LOCK(SERVER_LOCK, &srv->lock); if (srv->srvrq == srvrq && srv->svc_port == item->port && item->data_len == srv->hostname_dn_len && !resolv_hostname_cmp(srv->hostname_dn, item->target, item->data_len)) { break; } HA_SPIN_UNLOCK(SERVER_LOCK, &srv->lock); } /* If not, try to find a server with undefined hostname */ if (!srv) { for (srv = srvrq->proxy->srv; srv != NULL; srv = srv->next) { HA_SPIN_LOCK(SERVER_LOCK, &srv->lock); if (srv->srvrq == srvrq && !srv->hostname_dn) break; HA_SPIN_UNLOCK(SERVER_LOCK, &srv->lock); } } /* And update this server, if found (srv is locked here) */ if (srv) { /* Check if an Additional Record is associated to this SRV record. * Perform some sanity checks too to ensure the record can be used. * If all fine, we simply pick up the IP address found and associate * it to the server. */ if ((item->ar_item != NULL) && (item->ar_item->type == DNS_RTYPE_A || item->ar_item->type == DNS_RTYPE_AAAA)) { switch (item->ar_item->type) { case DNS_RTYPE_A: srv_update_addr(srv, &(((struct sockaddr_in*)&item->ar_item->address)->sin_addr), AF_INET, "DNS additional record"); break; case DNS_RTYPE_AAAA: srv_update_addr(srv, &(((struct sockaddr_in6*)&item->ar_item->address)->sin6_addr), AF_INET6, "DNS additional record"); break; } srv->flags |= SRV_F_NO_RESOLUTION; } if (!srv->hostname_dn) { const char *msg = NULL; char hostname[DNS_MAX_NAME_SIZE]; if (resolv_dn_label_to_str(item->target, item->data_len+1, hostname, DNS_MAX_NAME_SIZE) == -1) { HA_SPIN_UNLOCK(SERVER_LOCK, &srv->lock); continue; } msg = srv_update_fqdn(srv, hostname, "SRV record", 1); if (msg) send_log(srv->proxy, LOG_NOTICE, "%s", msg); } /* now we have an IP address associated to this server, we can update its status */ snr_update_srv_status(srv, 0); srv->svc_port = item->port; srv->flags &= ~SRV_F_MAPPORTS; if (!srv->resolv_opts.ignore_weight) { char weight[9]; int ha_weight; /* DNS weight range if from 0 to 65535 * HAProxy weight is from 0 to 256 * The rule below ensures that weight 0 is well respected * while allowing a "mapping" from DNS weight into HAProxy's one. */ ha_weight = (item->weight + 255) / 256; snprintf(weight, sizeof(weight), "%d", ha_weight); server_parse_weight_change_request(srv, weight); } HA_SPIN_UNLOCK(SERVER_LOCK, &srv->lock); } } } } /* Validates that the buffer DNS response provided in and finishing * before is valid from a DNS protocol point of view. * * The result is stored in ' response, buf_response, * response_query_records and response_answer_records members. * * This function returns one of the RSLV_RESP_* code to indicate the type of * error found. */ static int resolv_validate_dns_response(unsigned char *resp, unsigned char *bufend, struct resolv_resolution *resolution, int max_answer_records) { unsigned char *reader; char *previous_dname, tmpname[DNS_MAX_NAME_SIZE]; int len, flags, offset; int query_record_id; int nb_saved_records; struct resolv_query_item *query; struct resolv_answer_item *answer_record, *tmp_record; struct resolv_response *r_res; int i, found = 0; int cause = RSLV_RESP_ERROR; reader = resp; len = 0; previous_dname = NULL; query = NULL; answer_record = NULL; /* Initialization of response buffer and structure */ r_res = &resolution->response; /* query id */ if (reader + 2 >= bufend) goto invalid_resp; r_res->header.id = reader[0] * 256 + reader[1]; reader += 2; /* Flags and rcode are stored over 2 bytes * First byte contains: * - response flag (1 bit) * - opcode (4 bits) * - authoritative (1 bit) * - truncated (1 bit) * - recursion desired (1 bit) */ if (reader + 2 >= bufend) goto invalid_resp; flags = reader[0] * 256 + reader[1]; if ((flags & DNS_FLAG_REPLYCODE) != DNS_RCODE_NO_ERROR) { if ((flags & DNS_FLAG_REPLYCODE) == DNS_RCODE_NX_DOMAIN) { cause = RSLV_RESP_NX_DOMAIN; goto return_error; } else if ((flags & DNS_FLAG_REPLYCODE) == DNS_RCODE_REFUSED) { cause = RSLV_RESP_REFUSED; goto return_error; } else { cause = RSLV_RESP_ERROR; goto return_error; } } /* Move forward 2 bytes for flags */ reader += 2; /* 2 bytes for question count */ if (reader + 2 >= bufend) goto invalid_resp; r_res->header.qdcount = reader[0] * 256 + reader[1]; /* (for now) we send one query only, so we expect only one in the * response too */ if (r_res->header.qdcount != 1) { cause = RSLV_RESP_QUERY_COUNT_ERROR; goto return_error; } if (r_res->header.qdcount > DNS_MAX_QUERY_RECORDS) goto invalid_resp; reader += 2; /* 2 bytes for answer count */ if (reader + 2 >= bufend) goto invalid_resp; r_res->header.ancount = reader[0] * 256 + reader[1]; if (r_res->header.ancount == 0) { cause = RSLV_RESP_ANCOUNT_ZERO; goto return_error; } /* Check if too many records are announced */ if (r_res->header.ancount > max_answer_records) goto invalid_resp; reader += 2; /* 2 bytes authority count */ if (reader + 2 >= bufend) goto invalid_resp; r_res->header.nscount = reader[0] * 256 + reader[1]; reader += 2; /* 2 bytes additional count */ if (reader + 2 >= bufend) goto invalid_resp; r_res->header.arcount = reader[0] * 256 + reader[1]; reader += 2; /* Parsing dns queries */ LIST_INIT(&r_res->query_list); for (query_record_id = 0; query_record_id < r_res->header.qdcount; query_record_id++) { /* Use next pre-allocated resolv_query_item after ensuring there is * still one available. * It's then added to our packet query list. */ if (query_record_id > DNS_MAX_QUERY_RECORDS) goto invalid_resp; query = &resolution->response_query_records[query_record_id]; LIST_ADDQ(&r_res->query_list, &query->list); /* Name is a NULL terminated string in our case, since we have * one query per response and the first one can't be compressed * (using the 0x0c format) */ offset = 0; len = resolv_read_name(resp, bufend, reader, query->name, DNS_MAX_NAME_SIZE, &offset, 0); if (len == 0) goto invalid_resp; reader += offset; previous_dname = query->name; /* move forward 2 bytes for question type */ if (reader + 2 >= bufend) goto invalid_resp; query->type = reader[0] * 256 + reader[1]; reader += 2; /* move forward 2 bytes for question class */ if (reader + 2 >= bufend) goto invalid_resp; query->class = reader[0] * 256 + reader[1]; reader += 2; } /* TRUNCATED flag must be checked after we could read the query type * because a TRUNCATED SRV query type response can still be exploited */ if (query->type != DNS_RTYPE_SRV && flags & DNS_FLAG_TRUNCATED) { cause = RSLV_RESP_TRUNCATED; goto return_error; } /* now parsing response records */ nb_saved_records = 0; for (i = 0; i < r_res->header.ancount; i++) { if (reader >= bufend) goto invalid_resp; answer_record = pool_alloc(resolv_answer_item_pool); if (answer_record == NULL) goto invalid_resp; /* initialization */ answer_record->ar_item = NULL; offset = 0; len = resolv_read_name(resp, bufend, reader, tmpname, DNS_MAX_NAME_SIZE, &offset, 0); if (len == 0) goto invalid_resp; /* Check if the current record dname is valid. previous_dname * points either to queried dname or last CNAME target */ if (query->type != DNS_RTYPE_SRV && resolv_hostname_cmp(previous_dname, tmpname, len) != 0) { if (i == 0) { /* First record, means a mismatch issue between * queried dname and dname found in the first * record */ goto invalid_resp; } else { /* If not the first record, this means we have a * CNAME resolution error. */ cause = RSLV_RESP_CNAME_ERROR; goto return_error; } } memcpy(answer_record->name, tmpname, len); answer_record->name[len] = 0; reader += offset; if (reader >= bufend) goto invalid_resp; /* 2 bytes for record type (A, AAAA, CNAME, etc...) */ if (reader + 2 > bufend) goto invalid_resp; answer_record->type = reader[0] * 256 + reader[1]; reader += 2; /* 2 bytes for class (2) */ if (reader + 2 > bufend) goto invalid_resp; answer_record->class = reader[0] * 256 + reader[1]; reader += 2; /* 4 bytes for ttl (4) */ if (reader + 4 > bufend) goto invalid_resp; answer_record->ttl = reader[0] * 16777216 + reader[1] * 65536 + reader[2] * 256 + reader[3]; reader += 4; /* Now reading data len */ if (reader + 2 > bufend) goto invalid_resp; answer_record->data_len = reader[0] * 256 + reader[1]; /* Move forward 2 bytes for data len */ reader += 2; if (reader + answer_record->data_len > bufend) goto invalid_resp; /* Analyzing record content */ switch (answer_record->type) { case DNS_RTYPE_A: /* ipv4 is stored on 4 bytes */ if (answer_record->data_len != 4) goto invalid_resp; answer_record->address.sa_family = AF_INET; memcpy(&(((struct sockaddr_in *)&answer_record->address)->sin_addr), reader, answer_record->data_len); break; case DNS_RTYPE_CNAME: /* Check if this is the last record and update the caller about the status: * no IP could be found and last record was a CNAME. Could be triggered * by a wrong query type * * + 1 because answer_record_id starts at 0 * while number of answers is an integer and * starts at 1. */ if (i + 1 == r_res->header.ancount) { cause = RSLV_RESP_CNAME_ERROR; goto return_error; } offset = 0; len = resolv_read_name(resp, bufend, reader, tmpname, DNS_MAX_NAME_SIZE, &offset, 0); if (len == 0) goto invalid_resp; memcpy(answer_record->target, tmpname, len); answer_record->target[len] = 0; previous_dname = answer_record->target; break; case DNS_RTYPE_SRV: /* Answer must contain : * - 2 bytes for the priority * - 2 bytes for the weight * - 2 bytes for the port * - the target hostname */ if (answer_record->data_len <= 6) goto invalid_resp; answer_record->priority = read_n16(reader); reader += sizeof(uint16_t); answer_record->weight = read_n16(reader); reader += sizeof(uint16_t); answer_record->port = read_n16(reader); reader += sizeof(uint16_t); offset = 0; len = resolv_read_name(resp, bufend, reader, tmpname, DNS_MAX_NAME_SIZE, &offset, 0); if (len == 0) goto invalid_resp; answer_record->data_len = len; memcpy(answer_record->target, tmpname, len); answer_record->target[len] = 0; if (answer_record->ar_item != NULL) { pool_free(resolv_answer_item_pool, answer_record->ar_item); answer_record->ar_item = NULL; } break; case DNS_RTYPE_AAAA: /* ipv6 is stored on 16 bytes */ if (answer_record->data_len != 16) goto invalid_resp; answer_record->address.sa_family = AF_INET6; memcpy(&(((struct sockaddr_in6 *)&answer_record->address)->sin6_addr), reader, answer_record->data_len); break; } /* switch (record type) */ /* Increment the counter for number of records saved into our * local response */ nb_saved_records++; /* Move forward answer_record->data_len for analyzing next * record in the response */ reader += ((answer_record->type == DNS_RTYPE_SRV) ? offset : answer_record->data_len); /* Lookup to see if we already had this entry */ found = 0; list_for_each_entry(tmp_record, &r_res->answer_list, list) { if (tmp_record->type != answer_record->type) continue; switch(tmp_record->type) { case DNS_RTYPE_A: if (!memcmp(&((struct sockaddr_in *)&answer_record->address)->sin_addr, &((struct sockaddr_in *)&tmp_record->address)->sin_addr, sizeof(in_addr_t))) found = 1; break; case DNS_RTYPE_AAAA: if (!memcmp(&((struct sockaddr_in6 *)&answer_record->address)->sin6_addr, &((struct sockaddr_in6 *)&tmp_record->address)->sin6_addr, sizeof(struct in6_addr))) found = 1; break; case DNS_RTYPE_SRV: if (answer_record->data_len == tmp_record->data_len && !resolv_hostname_cmp(answer_record->target, tmp_record->target, answer_record->data_len) && answer_record->port == tmp_record->port) { tmp_record->weight = answer_record->weight; found = 1; } break; default: break; } if (found == 1) break; } if (found == 1) { tmp_record->last_seen = now.tv_sec; pool_free(resolv_answer_item_pool, answer_record); answer_record = NULL; } else { answer_record->last_seen = now.tv_sec; answer_record->ar_item = NULL; LIST_ADDQ(&r_res->answer_list, &answer_record->list); answer_record = NULL; } } /* for i 0 to ancount */ /* Save the number of records we really own */ r_res->header.ancount = nb_saved_records; /* now parsing additional records for SRV queries only */ if (query->type != DNS_RTYPE_SRV) goto skip_parsing_additional_records; /* if we find Authority records, just skip them */ for (i = 0; i < r_res->header.nscount; i++) { offset = 0; len = resolv_read_name(resp, bufend, reader, tmpname, DNS_MAX_NAME_SIZE, &offset, 0); if (len == 0) continue; if (reader + offset + 10 >= bufend) goto invalid_resp; reader += offset; /* skip 2 bytes for class */ reader += 2; /* skip 2 bytes for type */ reader += 2; /* skip 4 bytes for ttl */ reader += 4; /* read data len */ len = reader[0] * 256 + reader[1]; reader += 2; if (reader + len >= bufend) goto invalid_resp; reader += len; } nb_saved_records = 0; for (i = 0; i < r_res->header.arcount; i++) { if (reader >= bufend) goto invalid_resp; answer_record = pool_alloc(resolv_answer_item_pool); if (answer_record == NULL) goto invalid_resp; offset = 0; len = resolv_read_name(resp, bufend, reader, tmpname, DNS_MAX_NAME_SIZE, &offset, 0); if (len == 0) { pool_free(resolv_answer_item_pool, answer_record); answer_record = NULL; continue; } memcpy(answer_record->name, tmpname, len); answer_record->name[len] = 0; reader += offset; if (reader >= bufend) goto invalid_resp; /* 2 bytes for record type (A, AAAA, CNAME, etc...) */ if (reader + 2 > bufend) goto invalid_resp; answer_record->type = reader[0] * 256 + reader[1]; reader += 2; /* 2 bytes for class (2) */ if (reader + 2 > bufend) goto invalid_resp; answer_record->class = reader[0] * 256 + reader[1]; reader += 2; /* 4 bytes for ttl (4) */ if (reader + 4 > bufend) goto invalid_resp; answer_record->ttl = reader[0] * 16777216 + reader[1] * 65536 + reader[2] * 256 + reader[3]; reader += 4; /* Now reading data len */ if (reader + 2 > bufend) goto invalid_resp; answer_record->data_len = reader[0] * 256 + reader[1]; /* Move forward 2 bytes for data len */ reader += 2; if (reader + answer_record->data_len > bufend) goto invalid_resp; /* Analyzing record content */ switch (answer_record->type) { case DNS_RTYPE_A: /* ipv4 is stored on 4 bytes */ if (answer_record->data_len != 4) goto invalid_resp; answer_record->address.sa_family = AF_INET; memcpy(&(((struct sockaddr_in *)&answer_record->address)->sin_addr), reader, answer_record->data_len); break; case DNS_RTYPE_AAAA: /* ipv6 is stored on 16 bytes */ if (answer_record->data_len != 16) goto invalid_resp; answer_record->address.sa_family = AF_INET6; memcpy(&(((struct sockaddr_in6 *)&answer_record->address)->sin6_addr), reader, answer_record->data_len); break; default: pool_free(resolv_answer_item_pool, answer_record); answer_record = NULL; continue; } /* switch (record type) */ /* Increment the counter for number of records saved into our * local response */ nb_saved_records++; /* Move forward answer_record->data_len for analyzing next * record in the response */ reader += ((answer_record->type == DNS_RTYPE_SRV) ? offset : answer_record->data_len); /* Lookup to see if we already had this entry */ found = 0; list_for_each_entry(tmp_record, &r_res->answer_list, list) { if (tmp_record->type != answer_record->type) continue; switch(tmp_record->type) { case DNS_RTYPE_A: if (!memcmp(&((struct sockaddr_in *)&answer_record->address)->sin_addr, &((struct sockaddr_in *)&tmp_record->address)->sin_addr, sizeof(in_addr_t))) found = 1; break; case DNS_RTYPE_AAAA: if (!memcmp(&((struct sockaddr_in6 *)&answer_record->address)->sin6_addr, &((struct sockaddr_in6 *)&tmp_record->address)->sin6_addr, sizeof(struct in6_addr))) found = 1; break; default: break; } if (found == 1) break; } if (found == 1) { tmp_record->last_seen = now.tv_sec; pool_free(resolv_answer_item_pool, answer_record); answer_record = NULL; } else { answer_record->last_seen = now.tv_sec; answer_record->ar_item = NULL; // looking for the SRV record in the response list linked to this additional record list_for_each_entry(tmp_record, &r_res->answer_list, list) { if (tmp_record->type == DNS_RTYPE_SRV && tmp_record->ar_item == NULL && !resolv_hostname_cmp(tmp_record->target, answer_record->name, tmp_record->data_len)) { /* Always use the received additional record to refresh info */ if (tmp_record->ar_item) pool_free(resolv_answer_item_pool, tmp_record->ar_item); tmp_record->ar_item = answer_record; answer_record = NULL; break; } } if (answer_record) { pool_free(resolv_answer_item_pool, answer_record); answer_record = NULL; } } } /* for i 0 to arcount */ skip_parsing_additional_records: /* Save the number of records we really own */ r_res->header.arcount = nb_saved_records; resolv_check_response(resolution); return RSLV_RESP_VALID; invalid_resp: cause = RSLV_RESP_INVALID; return_error: pool_free(resolv_answer_item_pool, answer_record); return cause; } /* Searches dn_name resolution in resp. * If existing IP not found, return the first IP matching family_priority, * otherwise, first ip found * The following tasks are the responsibility of the caller: * - contains an error free DNS response * For both cases above, resolv_validate_dns_response is required * returns one of the RSLV_UPD_* code */ int resolv_get_ip_from_response(struct resolv_response *r_res, struct resolv_options *resolv_opts, void *currentip, short currentip_sin_family, void **newip, short *newip_sin_family, void *owner) { struct resolv_answer_item *record; int family_priority; int currentip_found; unsigned char *newip4, *newip6; int currentip_sel; int j; int score, max_score; int allowed_duplicated_ip; family_priority = resolv_opts->family_prio; allowed_duplicated_ip = resolv_opts->accept_duplicate_ip; *newip = newip4 = newip6 = NULL; currentip_found = 0; *newip_sin_family = AF_UNSPEC; max_score = -1; /* Select an IP regarding configuration preference. * Top priority is the preferred network ip version, * second priority is the preferred network. * the last priority is the currently used IP, * * For these three priorities, a score is calculated. The * weight are: * 8 - preferred ip version. * 4 - preferred network. * 2 - if the ip in the record is not affected to any other server in the same backend (duplication) * 1 - current ip. * The result with the biggest score is returned. */ list_for_each_entry(record, &r_res->answer_list, list) { void *ip; unsigned char ip_type; if (record->type == DNS_RTYPE_A) { ip = &(((struct sockaddr_in *)&record->address)->sin_addr); ip_type = AF_INET; } else if (record->type == DNS_RTYPE_AAAA) { ip_type = AF_INET6; ip = &(((struct sockaddr_in6 *)&record->address)->sin6_addr); } else continue; score = 0; /* Check for preferred ip protocol. */ if (ip_type == family_priority) score += 8; /* Check for preferred network. */ for (j = 0; j < resolv_opts->pref_net_nb; j++) { /* Compare only the same addresses class. */ if (resolv_opts->pref_net[j].family != ip_type) continue; if ((ip_type == AF_INET && in_net_ipv4(ip, &resolv_opts->pref_net[j].mask.in4, &resolv_opts->pref_net[j].addr.in4)) || (ip_type == AF_INET6 && in_net_ipv6(ip, &resolv_opts->pref_net[j].mask.in6, &resolv_opts->pref_net[j].addr.in6))) { score += 4; break; } } /* Check if the IP found in the record is already affected to a * member of a group. If not, the score should be incremented * by 2. */ if (owner && snr_check_ip_callback(owner, ip, &ip_type)) { if (!allowed_duplicated_ip) { continue; } } else { score += 2; } /* Check for current ip matching. */ if (ip_type == currentip_sin_family && ((currentip_sin_family == AF_INET && !memcmp(ip, currentip, 4)) || (currentip_sin_family == AF_INET6 && !memcmp(ip, currentip, 16)))) { score++; currentip_sel = 1; } else currentip_sel = 0; /* Keep the address if the score is better than the previous * score. The maximum score is 15, if this value is reached, we * break the parsing. Implicitly, this score is reached the ip * selected is the current ip. */ if (score > max_score) { if (ip_type == AF_INET) newip4 = ip; else newip6 = ip; currentip_found = currentip_sel; if (score == 15) return RSLV_UPD_NO; max_score = score; } } /* list for each record entries */ /* No IP found in the response */ if (!newip4 && !newip6) return RSLV_UPD_NO_IP_FOUND; /* Case when the caller looks first for an IPv4 address */ if (family_priority == AF_INET) { if (newip4) { *newip = newip4; *newip_sin_family = AF_INET; } else if (newip6) { *newip = newip6; *newip_sin_family = AF_INET6; } if (!currentip_found) goto not_found; } /* Case when the caller looks first for an IPv6 address */ else if (family_priority == AF_INET6) { if (newip6) { *newip = newip6; *newip_sin_family = AF_INET6; } else if (newip4) { *newip = newip4; *newip_sin_family = AF_INET; } if (!currentip_found) goto not_found; } /* Case when the caller have no preference (we prefer IPv6) */ else if (family_priority == AF_UNSPEC) { if (newip6) { *newip = newip6; *newip_sin_family = AF_INET6; } else if (newip4) { *newip = newip4; *newip_sin_family = AF_INET; } if (!currentip_found) goto not_found; } /* No reason why we should change the server's IP address */ return RSLV_UPD_NO; not_found: list_for_each_entry(record, &r_res->answer_list, list) { /* Move the first record to the end of the list, for internal * round robin */ LIST_DEL(&record->list); LIST_ADDQ(&r_res->answer_list, &record->list); break; } return RSLV_UPD_SRVIP_NOT_FOUND; } /* Turns a domain name label into a string. * * must be a null-terminated string. must include the terminating * null byte. must be allocated and its size must be passed in . * * In case of error, -1 is returned, otherwise, the number of bytes copied in * (including the terminating null byte). */ int resolv_dn_label_to_str(const char *dn, int dn_len, char *str, int str_len) { char *ptr; int i, sz; if (str_len < dn_len - 1) return -1; ptr = str; for (i = 0; i < dn_len-1; ++i) { sz = dn[i]; if (i) *ptr++ = '.'; memcpy(ptr, dn+i+1, sz); ptr += sz; i += sz; } *ptr++ = '\0'; return (ptr - str); } /* Turns a string into domain name label: www.haproxy.org into 3www7haproxy3org * * must be a null-terminated string. must include the * terminating null byte. buffer must be allocated and its size must be * passed in . * * In case of error, -1 is returned, otherwise, the number of bytes copied in * (excluding the terminating null byte). */ int resolv_str_to_dn_label(const char *str, int str_len, char *dn, int dn_len) { int i, offset; if (dn_len < str_len + 1) return -1; /* First byte of dn will be used to store the length of the first * label */ offset = 0; for (i = 0; i < str_len; ++i) { if (str[i] == '.') { /* 2 or more consecutive dots is invalid */ if (i == offset) return -1; /* ignore trailing dot */ if (i + 2 == str_len) { i++; break; } dn[offset] = (i - offset); offset = i+1; continue; } dn[i+1] = str[i]; } dn[offset] = (i - offset - 1); dn[i] = '\0'; return i; } /* Validates host name: * - total size * - each label size individually * returns: * 0 in case of error. If is not NULL, an error message is stored there. * 1 when no error. is left unaffected. */ int resolv_hostname_validation(const char *string, char **err) { int i; if (strlen(string) > DNS_MAX_NAME_SIZE) { if (err) *err = DNS_TOO_LONG_FQDN; return 0; } while (*string) { i = 0; while (*string && *string != '.' && i < DNS_MAX_LABEL_SIZE) { if (!(*string == '-' || *string == '_' || (*string >= 'a' && *string <= 'z') || (*string >= 'A' && *string <= 'Z') || (*string >= '0' && *string <= '9'))) { if (err) *err = DNS_INVALID_CHARACTER; return 0; } i++; string++; } if (!(*string)) break; if (*string != '.' && i >= DNS_MAX_LABEL_SIZE) { if (err) *err = DNS_LABEL_TOO_LONG; return 0; } string++; } return 1; } /* Picks up an available resolution from the different resolution list * associated to a resolvers section, in this order: * 1. check in resolutions.curr for the same hostname and query_type * 2. check in resolutions.wait for the same hostname and query_type * 3. Get a new resolution from resolution pool * * Returns an available resolution, NULL if none found. */ static struct resolv_resolution *resolv_pick_resolution(struct resolvers *resolvers, char **hostname_dn, int hostname_dn_len, int query_type) { struct resolv_resolution *res; if (!*hostname_dn) goto from_pool; /* Search for same hostname and query type in resolutions.curr */ list_for_each_entry(res, &resolvers->resolutions.curr, list) { if (!res->hostname_dn) continue; if ((query_type == res->prefered_query_type) && hostname_dn_len == res->hostname_dn_len && !resolv_hostname_cmp(*hostname_dn, res->hostname_dn, hostname_dn_len)) return res; } /* Search for same hostname and query type in resolutions.wait */ list_for_each_entry(res, &resolvers->resolutions.wait, list) { if (!res->hostname_dn) continue; if ((query_type == res->prefered_query_type) && hostname_dn_len == res->hostname_dn_len && !resolv_hostname_cmp(*hostname_dn, res->hostname_dn, hostname_dn_len)) return res; } from_pool: /* No resolution could be found, so let's allocate a new one */ res = pool_alloc(resolv_resolution_pool); if (res) { memset(res, 0, sizeof(*res)); res->resolvers = resolvers; res->uuid = resolution_uuid; res->status = RSLV_STATUS_NONE; res->step = RSLV_STEP_NONE; res->last_valid = now_ms; LIST_INIT(&res->requesters); LIST_INIT(&res->response.answer_list); res->prefered_query_type = query_type; res->query_type = query_type; res->hostname_dn = *hostname_dn; res->hostname_dn_len = hostname_dn_len; ++resolution_uuid; /* Move the resolution to the resolvers wait queue */ LIST_ADDQ(&resolvers->resolutions.wait, &res->list); } return res; } /* Releases a resolution from its requester(s) and move it back to the pool */ static void resolv_free_resolution(struct resolv_resolution *resolution) { struct resolv_requester *req, *reqback; struct resolv_answer_item *item, *itemback; /* clean up configuration */ resolv_reset_resolution(resolution); resolution->hostname_dn = NULL; resolution->hostname_dn_len = 0; list_for_each_entry_safe(req, reqback, &resolution->requesters, list) { LIST_DEL(&req->list); req->resolution = NULL; } list_for_each_entry_safe(item, itemback, &resolution->response.answer_list, list) { LIST_DEL(&item->list); if (item->ar_item) { pool_free(resolv_answer_item_pool, item->ar_item); item->ar_item = NULL; } pool_free(resolv_answer_item_pool, item); } LIST_DEL(&resolution->list); pool_free(resolv_resolution_pool, resolution); } /* Links a requester (a server or a resolv_srvrq) with a resolution. It returns 0 * on success, -1 otherwise. */ int resolv_link_resolution(void *requester, int requester_type, int requester_locked) { struct resolv_resolution *res = NULL; struct resolv_requester *req; struct resolvers *resolvers; struct server *srv = NULL; struct resolv_srvrq *srvrq = NULL; struct stream *stream = NULL; char **hostname_dn; int hostname_dn_len, query_type; switch (requester_type) { case OBJ_TYPE_SERVER: srv = (struct server *)requester; hostname_dn = &srv->hostname_dn; hostname_dn_len = srv->hostname_dn_len; resolvers = srv->resolvers; query_type = ((srv->resolv_opts.family_prio == AF_INET) ? DNS_RTYPE_A : DNS_RTYPE_AAAA); break; case OBJ_TYPE_SRVRQ: srvrq = (struct resolv_srvrq *)requester; hostname_dn = &srvrq->hostname_dn; hostname_dn_len = srvrq->hostname_dn_len; resolvers = srvrq->resolvers; query_type = DNS_RTYPE_SRV; break; case OBJ_TYPE_STREAM: stream = (struct stream *)requester; hostname_dn = &stream->resolv_ctx.hostname_dn; hostname_dn_len = stream->resolv_ctx.hostname_dn_len; resolvers = stream->resolv_ctx.parent->arg.resolv.resolvers; query_type = ((stream->resolv_ctx.parent->arg.resolv.opts->family_prio == AF_INET) ? DNS_RTYPE_A : DNS_RTYPE_AAAA); break; default: goto err; } /* Get a resolution from the resolvers' wait queue or pool */ if ((res = resolv_pick_resolution(resolvers, hostname_dn, hostname_dn_len, query_type)) == NULL) goto err; if (srv) { if (!requester_locked) HA_SPIN_LOCK(SERVER_LOCK, &srv->lock); if (srv->resolv_requester == NULL) { if ((req = pool_alloc(resolv_requester_pool)) == NULL) { if (!requester_locked) HA_SPIN_UNLOCK(SERVER_LOCK, &srv->lock); goto err; } req->owner = &srv->obj_type; srv->resolv_requester = req; } else req = srv->resolv_requester; if (!requester_locked) HA_SPIN_UNLOCK(SERVER_LOCK, &srv->lock); req->requester_cb = snr_resolution_cb; req->requester_error_cb = snr_resolution_error_cb; } else if (srvrq) { if (srvrq->requester == NULL) { if ((req = pool_alloc(resolv_requester_pool)) == NULL) goto err; req->owner = &srvrq->obj_type; srvrq->requester = req; } else req = srvrq->requester; req->requester_cb = snr_resolution_cb; req->requester_error_cb = srvrq_resolution_error_cb; } else if (stream) { if (stream->resolv_ctx.requester == NULL) { if ((req = pool_alloc(resolv_requester_pool)) == NULL) goto err; req->owner = &stream->obj_type; stream->resolv_ctx.requester = req; } else req = stream->resolv_ctx.requester; req->requester_cb = act_resolution_cb; req->requester_error_cb = act_resolution_error_cb; } else goto err; req->resolution = res; LIST_ADDQ(&res->requesters, &req->list); return 0; err: if (res && LIST_ISEMPTY(&res->requesters)) resolv_free_resolution(res); return -1; } /* Removes a requester from a DNS resolution. It takes takes care of all the * consequences. It also cleans up some parameters from the requester. */ void resolv_unlink_resolution(struct resolv_requester *requester) { struct resolv_resolution *res; struct resolv_requester *req; /* Nothing to do */ if (!requester || !requester->resolution) return; res = requester->resolution; /* Clean up the requester */ LIST_DEL(&requester->list); requester->resolution = NULL; /* We need to find another requester linked on this resolution */ if (!LIST_ISEMPTY(&res->requesters)) req = LIST_NEXT(&res->requesters, struct resolv_requester *, list); else { resolv_free_resolution(res); return; } /* Move hostname_dn related pointers to the next requester */ switch (obj_type(req->owner)) { case OBJ_TYPE_SERVER: res->hostname_dn = __objt_server(req->owner)->hostname_dn; res->hostname_dn_len = __objt_server(req->owner)->hostname_dn_len; break; case OBJ_TYPE_SRVRQ: res->hostname_dn = __objt_resolv_srvrq(req->owner)->hostname_dn; res->hostname_dn_len = __objt_resolv_srvrq(req->owner)->hostname_dn_len; break; case OBJ_TYPE_STREAM: res->hostname_dn = __objt_stream(req->owner)->resolv_ctx.hostname_dn; res->hostname_dn_len = __objt_stream(req->owner)->resolv_ctx.hostname_dn_len; break; default: res->hostname_dn = NULL; res->hostname_dn_len = 0; break; } } /* Called when a network IO is generated on a name server socket for an incoming * packet. It performs the following actions: * - check if the packet requires processing (not outdated resolution) * - ensure the DNS packet received is valid and call requester's callback * - call requester's error callback if invalid response * - check the dn_name in the packet against the one sent */ static int resolv_process_responses(struct dns_nameserver *ns) { struct dns_counters *tmpcounters; struct resolvers *resolvers; struct resolv_resolution *res; struct resolv_query_item *query; unsigned char buf[DNS_MAX_UDP_MESSAGE + 1]; unsigned char *bufend; int buflen, dns_resp; int max_answer_records; unsigned short query_id; struct eb32_node *eb; struct resolv_requester *req; resolvers = ns->parent; HA_SPIN_LOCK(DNS_LOCK, &resolvers->lock); /* process all pending input messages */ while (1) { /* read message received */ memset(buf, '\0', resolvers->accepted_payload_size + 1); if ((buflen = dns_recv_nameserver(ns, (void *)buf, sizeof(buf))) <= 0) { break; } /* message too big */ if (buflen > resolvers->accepted_payload_size) { ns->counters->too_big++; continue; } /* initializing variables */ bufend = buf + buflen; /* pointer to mark the end of the buffer */ /* read the query id from the packet (16 bits) */ if (buf + 2 > bufend) { ns->counters->invalid++; continue; } query_id = resolv_response_get_query_id(buf); /* search the query_id in the pending resolution tree */ eb = eb32_lookup(&resolvers->query_ids, query_id); if (eb == NULL) { /* unknown query id means an outdated response and can be safely ignored */ ns->counters->outdated++; continue; } /* known query id means a resolution in progress */ res = eb32_entry(eb, struct resolv_resolution, qid); /* number of responses received */ res->nb_responses++; max_answer_records = (resolvers->accepted_payload_size - DNS_HEADER_SIZE) / DNS_MIN_RECORD_SIZE; dns_resp = resolv_validate_dns_response(buf, bufend, res, max_answer_records); switch (dns_resp) { case RSLV_RESP_VALID: break; case RSLV_RESP_INVALID: case RSLV_RESP_QUERY_COUNT_ERROR: case RSLV_RESP_WRONG_NAME: res->status = RSLV_STATUS_INVALID; ns->counters->invalid++; break; case RSLV_RESP_NX_DOMAIN: res->status = RSLV_STATUS_NX; ns->counters->nx++; break; case RSLV_RESP_REFUSED: res->status = RSLV_STATUS_REFUSED; ns->counters->refused++; break; case RSLV_RESP_ANCOUNT_ZERO: res->status = RSLV_STATUS_OTHER; ns->counters->any_err++; break; case RSLV_RESP_CNAME_ERROR: res->status = RSLV_STATUS_OTHER; ns->counters->cname_error++; break; case RSLV_RESP_TRUNCATED: res->status = RSLV_STATUS_OTHER; ns->counters->truncated++; break; case RSLV_RESP_NO_EXPECTED_RECORD: case RSLV_RESP_ERROR: case RSLV_RESP_INTERNAL: res->status = RSLV_STATUS_OTHER; ns->counters->other++; break; } /* Wait all nameservers response to handle errors */ if (dns_resp != RSLV_RESP_VALID && res->nb_responses < res->nb_queries) continue; /* Process error codes */ if (dns_resp != RSLV_RESP_VALID) { if (res->prefered_query_type != res->query_type) { /* The fallback on the query type was already performed, * so check the try counter. If it falls to 0, we can * report an error. Else, wait the next attempt. */ if (!res->try) goto report_res_error; } else { /* Fallback from A to AAAA or the opposite and re-send * the resolution immediately. try counter is not * decremented. */ if (res->prefered_query_type == DNS_RTYPE_A) { res->query_type = DNS_RTYPE_AAAA; resolv_send_query(res); } else if (res->prefered_query_type == DNS_RTYPE_AAAA) { res->query_type = DNS_RTYPE_A; resolv_send_query(res); } } continue; } /* Now let's check the query's dname corresponds to the one we * sent. We can check only the first query of the list. We send * one query at a time so we get one query in the response */ query = LIST_NEXT(&res->response.query_list, struct resolv_query_item *, list); if (query && resolv_hostname_cmp(query->name, res->hostname_dn, res->hostname_dn_len) != 0) { dns_resp = RSLV_RESP_WRONG_NAME; ns->counters->other++; goto report_res_error; } /* So the resolution succeeded */ res->status = RSLV_STATUS_VALID; res->last_valid = now_ms; ns->counters->valid++; goto report_res_success; report_res_error: list_for_each_entry(req, &res->requesters, list) req->requester_error_cb(req, dns_resp); resolv_reset_resolution(res); LIST_DEL(&res->list); LIST_ADDQ(&resolvers->resolutions.wait, &res->list); continue; report_res_success: /* Only the 1rst requester s managed by the server, others are * from the cache */ tmpcounters = ns->counters; list_for_each_entry(req, &res->requesters, list) { struct server *s = objt_server(req->owner); if (s) HA_SPIN_LOCK(SERVER_LOCK, &s->lock); req->requester_cb(req, tmpcounters); if (s) HA_SPIN_UNLOCK(SERVER_LOCK, &s->lock); tmpcounters = NULL; } resolv_reset_resolution(res); LIST_DEL(&res->list); LIST_ADDQ(&resolvers->resolutions.wait, &res->list); continue; } resolv_update_resolvers_timeout(resolvers); HA_SPIN_UNLOCK(DNS_LOCK, &resolvers->lock); return buflen; } /* Processes DNS resolution. First, it checks the active list to detect expired * resolutions and retry them if possible. Else a timeout is reported. Then, it * checks the wait list to trigger new resolutions. */ static struct task *process_resolvers(struct task *t, void *context, unsigned int state) { struct resolvers *resolvers = context; struct resolv_resolution *res, *resback; int exp; HA_SPIN_LOCK(DNS_LOCK, &resolvers->lock); /* Handle all expired resolutions from the active list */ list_for_each_entry_safe(res, resback, &resolvers->resolutions.curr, list) { /* When we find the first resolution in the future, then we can * stop here */ exp = tick_add(res->last_query, resolvers->timeout.retry); if (!tick_is_expired(exp, now_ms)) break; /* If current resolution has been tried too many times and * finishes in timeout we update its status and remove it from * the list */ if (!res->try) { struct resolv_requester *req; /* Notify the result to the requesters */ if (!res->nb_responses) res->status = RSLV_STATUS_TIMEOUT; list_for_each_entry(req, &res->requesters, list) req->requester_error_cb(req, res->status); /* Clean up resolution info and remove it from the * current list */ resolv_reset_resolution(res); LIST_DEL(&res->list); LIST_ADDQ(&resolvers->resolutions.wait, &res->list); } else { /* Otherwise resend the DNS query and requeue the resolution */ if (!res->nb_responses || res->prefered_query_type != res->query_type) { /* No response received (a real timeout) or fallback already done */ res->query_type = res->prefered_query_type; res->try--; } else { /* Fallback from A to AAAA or the opposite and re-send * the resolution immediately. try counter is not * decremented. */ if (res->prefered_query_type == DNS_RTYPE_A) res->query_type = DNS_RTYPE_AAAA; else if (res->prefered_query_type == DNS_RTYPE_AAAA) res->query_type = DNS_RTYPE_A; else res->try--; } resolv_send_query(res); } } /* Handle all resolutions in the wait list */ list_for_each_entry_safe(res, resback, &resolvers->resolutions.wait, list) { exp = tick_add(res->last_resolution, resolv_resolution_timeout(res)); if (tick_isset(res->last_resolution) && !tick_is_expired(exp, now_ms)) continue; if (resolv_run_resolution(res) != 1) { res->last_resolution = now_ms; LIST_DEL(&res->list); LIST_ADDQ(&resolvers->resolutions.wait, &res->list); } } resolv_update_resolvers_timeout(resolvers); HA_SPIN_UNLOCK(DNS_LOCK, &resolvers->lock); return t; } /* Release memory allocated by DNS */ static void resolvers_deinit(void) { struct resolvers *resolvers, *resolversback; struct dns_nameserver *ns, *nsback; struct resolv_resolution *res, *resback; struct resolv_requester *req, *reqback; struct resolv_srvrq *srvrq, *srvrqback; list_for_each_entry_safe(resolvers, resolversback, &sec_resolvers, list) { list_for_each_entry_safe(ns, nsback, &resolvers->nameservers, list) { free(ns->id); free((char *)ns->conf.file); if (ns->dgram) { if (ns->dgram->conn.t.sock.fd != -1) { fd_delete(ns->dgram->conn.t.sock.fd); close(ns->dgram->conn.t.sock.fd); } if (ns->dgram->ring_req) ring_free(ns->dgram->ring_req); free(ns->dgram); } if (ns->stream) { if (ns->stream->ring_req) ring_free(ns->stream->ring_req); if (ns->stream->task_req) task_destroy(ns->stream->task_req); if (ns->stream->task_rsp) task_destroy(ns->stream->task_rsp); free(ns->stream); } LIST_DEL(&ns->list); EXTRA_COUNTERS_FREE(ns->extra_counters); free(ns); } list_for_each_entry_safe(res, resback, &resolvers->resolutions.curr, list) { list_for_each_entry_safe(req, reqback, &res->requesters, list) { LIST_DEL(&req->list); pool_free(resolv_requester_pool, req); } resolv_free_resolution(res); } list_for_each_entry_safe(res, resback, &resolvers->resolutions.wait, list) { list_for_each_entry_safe(req, reqback, &res->requesters, list) { LIST_DEL(&req->list); pool_free(resolv_requester_pool, req); } resolv_free_resolution(res); } free(resolvers->id); free((char *)resolvers->conf.file); task_destroy(resolvers->t); LIST_DEL(&resolvers->list); free(resolvers); } list_for_each_entry_safe(srvrq, srvrqback, &resolv_srvrq_list, list) { free(srvrq->name); free(srvrq->hostname_dn); LIST_DEL(&srvrq->list); free(srvrq); } } /* Finalizes the DNS configuration by allocating required resources and checking * live parameters. * Returns 0 on success, ERR_* flags otherwise. */ static int resolvers_finalize_config(void) { struct resolvers *resolvers; struct proxy *px; int err_code = 0; /* allocate pool of resolution per resolvers */ list_for_each_entry(resolvers, &sec_resolvers, list) { struct dns_nameserver *ns; struct task *t; /* Check if we can create the socket with nameservers info */ list_for_each_entry(ns, &resolvers->nameservers, list) { int fd; if (ns->dgram) { /* Check nameserver info */ if ((fd = socket(ns->dgram->conn.addr.to.ss_family, SOCK_DGRAM, IPPROTO_UDP)) == -1) { ha_alert("config : resolvers '%s': can't create socket for nameserver '%s'.\n", resolvers->id, ns->id); err_code |= (ERR_ALERT|ERR_ABORT); continue; } if (connect(fd, (struct sockaddr*)&ns->dgram->conn.addr.to, get_addr_len(&ns->dgram->conn.addr.to)) == -1) { ha_alert("config : resolvers '%s': can't connect socket for nameserver '%s'.\n", resolvers->id, ns->id); close(fd); err_code |= (ERR_ALERT|ERR_ABORT); continue; } close(fd); } } /* Create the task associated to the resolvers section */ if ((t = task_new(MAX_THREADS_MASK)) == NULL) { ha_alert("config : resolvers '%s' : out of memory.\n", resolvers->id); err_code |= (ERR_ALERT|ERR_ABORT); goto err; } /* Update task's parameters */ t->process = process_resolvers; t->context = resolvers; resolvers->t = t; task_wakeup(t, TASK_WOKEN_INIT); } for (px = proxies_list; px; px = px->next) { struct server *srv; for (srv = px->srv; srv; srv = srv->next) { struct resolvers *resolvers; if (!srv->resolvers_id) continue; if ((resolvers = find_resolvers_by_id(srv->resolvers_id)) == NULL) { ha_alert("config : %s '%s', server '%s': unable to find required resolvers '%s'\n", proxy_type_str(px), px->id, srv->id, srv->resolvers_id); err_code |= (ERR_ALERT|ERR_ABORT); continue; } srv->resolvers = resolvers; if (srv->srvrq && !srv->srvrq->resolvers) { srv->srvrq->resolvers = srv->resolvers; if (resolv_link_resolution(srv->srvrq, OBJ_TYPE_SRVRQ, 0) == -1) { ha_alert("config : %s '%s' : unable to set DNS resolution for server '%s'.\n", proxy_type_str(px), px->id, srv->id); err_code |= (ERR_ALERT|ERR_ABORT); continue; } } if (resolv_link_resolution(srv, OBJ_TYPE_SERVER, 0) == -1) { ha_alert("config : %s '%s', unable to set DNS resolution for server '%s'.\n", proxy_type_str(px), px->id, srv->id); err_code |= (ERR_ALERT|ERR_ABORT); continue; } } } if (err_code & (ERR_ALERT|ERR_ABORT)) goto err; return err_code; err: resolvers_deinit(); return err_code; } static int stats_dump_resolv_to_buffer(struct stream_interface *si, struct dns_nameserver *ns, struct field *stats, size_t stats_count, struct list *stat_modules) { struct appctx *appctx = __objt_appctx(si->end); struct channel *rep = si_ic(si); struct stats_module *mod; size_t idx = 0; memset(stats, 0, sizeof(struct field) * stats_count); list_for_each_entry(mod, stat_modules, list) { struct counters_node *counters = EXTRA_COUNTERS_GET(ns->extra_counters, mod); mod->fill_stats(counters, stats + idx); idx += mod->stats_count; } if (!stats_dump_one_line(stats, idx, appctx)) return 0; if (!stats_putchk(rep, NULL, &trash)) goto full; return 1; full: si_rx_room_rdy(si); return 0; } /* Uses as a pointer to the current resolver and * as a pointer to the current nameserver. */ int stats_dump_resolvers(struct stream_interface *si, struct field *stats, size_t stats_count, struct list *stat_modules) { struct appctx *appctx = __objt_appctx(si->end); struct channel *rep = si_ic(si); struct resolvers *resolver = appctx->ctx.stats.obj1; struct dns_nameserver *ns = appctx->ctx.stats.obj2; if (!resolver) resolver = LIST_NEXT(&sec_resolvers, struct resolvers *, list); /* dump resolvers */ list_for_each_entry_from(resolver, &sec_resolvers, list) { appctx->ctx.stats.obj1 = resolver; ns = appctx->ctx.stats.obj2 ? appctx->ctx.stats.obj2 : LIST_NEXT(&resolver->nameservers, struct dns_nameserver *, list); list_for_each_entry_from(ns, &resolver->nameservers, list) { appctx->ctx.stats.obj2 = ns; if (buffer_almost_full(&rep->buf)) goto full; if (!stats_dump_resolv_to_buffer(si, ns, stats, stats_count, stat_modules)) { return 0; } } appctx->ctx.stats.obj2 = NULL; } return 1; full: si_rx_room_blk(si); return 0; } void resolv_stats_clear_counters(int clrall, struct list *stat_modules) { struct resolvers *resolvers; struct dns_nameserver *ns; struct stats_module *mod; void *counters; list_for_each_entry(mod, stat_modules, list) { if (!mod->clearable && !clrall) continue; list_for_each_entry(resolvers, &sec_resolvers, list) { list_for_each_entry(ns, &resolvers->nameservers, list) { counters = EXTRA_COUNTERS_GET(ns->extra_counters, mod); memcpy(counters, mod->counters, mod->counters_size); } } } } int resolv_allocate_counters(struct list *stat_modules) { struct stats_module *mod; struct resolvers *resolvers; struct dns_nameserver *ns; list_for_each_entry(resolvers, &sec_resolvers, list) { list_for_each_entry(ns, &resolvers->nameservers, list) { EXTRA_COUNTERS_REGISTER(&ns->extra_counters, COUNTERS_DNS, alloc_failed); list_for_each_entry(mod, stat_modules, list) { EXTRA_COUNTERS_ADD(mod, ns->extra_counters, mod->counters, mod->counters_size); } EXTRA_COUNTERS_ALLOC(ns->extra_counters, alloc_failed); list_for_each_entry(mod, stat_modules, list) { memcpy(ns->extra_counters->data + mod->counters_off[ns->extra_counters->type], mod->counters, mod->counters_size); /* Store the ns counters pointer */ if (strcmp(mod->name, "dns") == 0) { ns->counters = (struct dns_counters *)ns->extra_counters->data + mod->counters_off[COUNTERS_DNS]; ns->counters->id = ns->id; ns->counters->pid = resolvers->id; } } } } return 1; alloc_failed: return 0; } /* if an arg is found, it sets the resolvers section pointer into cli.p0 */ static int cli_parse_stat_resolvers(char **args, char *payload, struct appctx *appctx, void *private) { struct resolvers *presolvers; if (*args[2]) { list_for_each_entry(presolvers, &sec_resolvers, list) { if (strcmp(presolvers->id, args[2]) == 0) { appctx->ctx.cli.p0 = presolvers; break; } } if (appctx->ctx.cli.p0 == NULL) return cli_err(appctx, "Can't find that resolvers section\n"); } return 0; } /* Dumps counters from all resolvers section and associated name servers. It * returns 0 if the output buffer is full and it needs to be called again, * otherwise non-zero. It may limit itself to the resolver pointed to by * if it's not null. */ static int cli_io_handler_dump_resolvers_to_buffer(struct appctx *appctx) { struct stream_interface *si = appctx->owner; struct resolvers *resolvers; struct dns_nameserver *ns; chunk_reset(&trash); switch (appctx->st2) { case STAT_ST_INIT: appctx->st2 = STAT_ST_LIST; /* let's start producing data */ /* fall through */ case STAT_ST_LIST: if (LIST_ISEMPTY(&sec_resolvers)) { chunk_appendf(&trash, "No resolvers found\n"); } else { list_for_each_entry(resolvers, &sec_resolvers, list) { if (appctx->ctx.cli.p0 != NULL && appctx->ctx.cli.p0 != resolvers) continue; chunk_appendf(&trash, "Resolvers section %s\n", resolvers->id); list_for_each_entry(ns, &resolvers->nameservers, list) { chunk_appendf(&trash, " nameserver %s:\n", ns->id); chunk_appendf(&trash, " sent: %lld\n", ns->counters->sent); chunk_appendf(&trash, " snd_error: %lld\n", ns->counters->snd_error); chunk_appendf(&trash, " valid: %lld\n", ns->counters->valid); chunk_appendf(&trash, " update: %lld\n", ns->counters->update); chunk_appendf(&trash, " cname: %lld\n", ns->counters->cname); chunk_appendf(&trash, " cname_error: %lld\n", ns->counters->cname_error); chunk_appendf(&trash, " any_err: %lld\n", ns->counters->any_err); chunk_appendf(&trash, " nx: %lld\n", ns->counters->nx); chunk_appendf(&trash, " timeout: %lld\n", ns->counters->timeout); chunk_appendf(&trash, " refused: %lld\n", ns->counters->refused); chunk_appendf(&trash, " other: %lld\n", ns->counters->other); chunk_appendf(&trash, " invalid: %lld\n", ns->counters->invalid); chunk_appendf(&trash, " too_big: %lld\n", ns->counters->too_big); chunk_appendf(&trash, " truncated: %lld\n", ns->counters->truncated); chunk_appendf(&trash, " outdated: %lld\n", ns->counters->outdated); } chunk_appendf(&trash, "\n"); } } /* display response */ if (ci_putchk(si_ic(si), &trash) == -1) { /* let's try again later from this session. We add ourselves into * this session's users so that it can remove us upon termination. */ si_rx_room_blk(si); return 0; } /* fall through */ default: appctx->st2 = STAT_ST_FIN; return 1; } } /* register cli keywords */ static struct cli_kw_list cli_kws = {{ }, { { { "show", "resolvers", NULL }, "show resolvers [id]: dumps counters from all resolvers section and\n" " associated name servers", cli_parse_stat_resolvers, cli_io_handler_dump_resolvers_to_buffer }, {{},} } }; INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws); /* * Prepare for hostname resolution. * Returns -1 in case of any allocation failure, 0 if not. * On error, a global failure counter is also incremented. */ static int action_prepare_for_resolution(struct stream *stream, const char *hostname) { char *hostname_dn; int hostname_len, hostname_dn_len; struct buffer *tmp = get_trash_chunk(); if (!hostname) return 0; hostname_len = strlen(hostname); hostname_dn = tmp->area; hostname_dn_len = resolv_str_to_dn_label(hostname, hostname_len + 1, hostname_dn, tmp->size); if (hostname_dn_len == -1) goto err; stream->resolv_ctx.hostname_dn = strdup(hostname_dn); stream->resolv_ctx.hostname_dn_len = hostname_dn_len; if (!stream->resolv_ctx.hostname_dn) goto err; return 0; err: ha_free(&stream->resolv_ctx.hostname_dn); resolv_failed_resolutions += 1; return -1; } /* * Execute the "do-resolution" action. May be called from {tcp,http}request. */ enum act_return resolv_action_do_resolve(struct act_rule *rule, struct proxy *px, struct session *sess, struct stream *s, int flags) { struct resolv_resolution *resolution; struct sample *smp; char *fqdn; struct resolv_requester *req; struct resolvers *resolvers; struct resolv_resolution *res; int exp, locked = 0; enum act_return ret = ACT_RET_CONT; resolvers = rule->arg.resolv.resolvers; /* we have a response to our DNS resolution */ use_cache: if (s->resolv_ctx.requester && s->resolv_ctx.requester->resolution != NULL) { resolution = s->resolv_ctx.requester->resolution; if (!locked) { HA_SPIN_LOCK(DNS_LOCK, &resolvers->lock); locked = 1; } if (resolution->step == RSLV_STEP_RUNNING) goto yield; if (resolution->step == RSLV_STEP_NONE) { /* We update the variable only if we have a valid response. */ if (resolution->status == RSLV_STATUS_VALID) { struct sample smp; short ip_sin_family = 0; void *ip = NULL; resolv_get_ip_from_response(&resolution->response, rule->arg.resolv.opts, NULL, 0, &ip, &ip_sin_family, NULL); switch (ip_sin_family) { case AF_INET: smp.data.type = SMP_T_IPV4; memcpy(&smp.data.u.ipv4, ip, 4); break; case AF_INET6: smp.data.type = SMP_T_IPV6; memcpy(&smp.data.u.ipv6, ip, 16); break; default: ip = NULL; } if (ip) { smp.px = px; smp.sess = sess; smp.strm = s; vars_set_by_name(rule->arg.resolv.varname, strlen(rule->arg.resolv.varname), &smp); } } } goto release_requester; } /* need to configure and start a new DNS resolution */ smp = sample_fetch_as_type(px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->arg.resolv.expr, SMP_T_STR); if (smp == NULL) goto end; fqdn = smp->data.u.str.area; if (action_prepare_for_resolution(s, fqdn) == -1) goto end; /* on error, ignore the action */ s->resolv_ctx.parent = rule; HA_SPIN_LOCK(DNS_LOCK, &resolvers->lock); locked = 1; resolv_link_resolution(s, OBJ_TYPE_STREAM, 0); /* Check if there is a fresh enough response in the cache of our associated resolution */ req = s->resolv_ctx.requester; if (!req || !req->resolution) goto release_requester; /* on error, ignore the action */ res = req->resolution; exp = tick_add(res->last_resolution, resolvers->hold.valid); if (resolvers->t && res->status == RSLV_STATUS_VALID && tick_isset(res->last_resolution) && !tick_is_expired(exp, now_ms)) { goto use_cache; } resolv_trigger_resolution(s->resolv_ctx.requester); yield: if (flags & ACT_OPT_FINAL) goto release_requester; ret = ACT_RET_YIELD; end: if (locked) HA_SPIN_UNLOCK(DNS_LOCK, &resolvers->lock); return ret; release_requester: ha_free(&s->resolv_ctx.hostname_dn); s->resolv_ctx.hostname_dn_len = 0; if (s->resolv_ctx.requester) { resolv_unlink_resolution(s->resolv_ctx.requester); pool_free(resolv_requester_pool, s->resolv_ctx.requester); s->resolv_ctx.requester = NULL; } goto end; } static void release_resolv_action(struct act_rule *rule) { release_sample_expr(rule->arg.resolv.expr); free(rule->arg.resolv.varname); free(rule->arg.resolv.resolvers_id); free(rule->arg.resolv.opts); } /* parse "do-resolve" action * This action takes the following arguments: * do-resolve(,,) * * - is the variable name where the result of the DNS resolution will be stored * (mandatory) * - is the name of the resolvers section to use to perform the resolution * (mandatory) * - can be either 'ipv4' or 'ipv6' and is the IP family we would like to resolve first * (optional), defaults to ipv6 * - is an HAProxy expression used to fetch the name to be resolved */ enum act_parse_ret resolv_parse_do_resolve(const char **args, int *orig_arg, struct proxy *px, struct act_rule *rule, char **err) { int cur_arg; struct sample_expr *expr; unsigned int where; const char *beg, *end; /* orig_arg points to the first argument, but we need to analyse the command itself first */ cur_arg = *orig_arg - 1; /* locate varName, which is mandatory */ beg = strchr(args[cur_arg], '('); if (beg == NULL) goto do_resolve_parse_error; beg = beg + 1; /* beg should points to the first character after opening parenthesis '(' */ end = strchr(beg, ','); if (end == NULL) goto do_resolve_parse_error; rule->arg.resolv.varname = my_strndup(beg, end - beg); if (rule->arg.resolv.varname == NULL) goto do_resolve_parse_error; /* locate resolversSectionName, which is mandatory. * Since next parameters are optional, the delimiter may be comma ',' * or closing parenthesis ')' */ beg = end + 1; end = strchr(beg, ','); if (end == NULL) end = strchr(beg, ')'); if (end == NULL) goto do_resolve_parse_error; rule->arg.resolv.resolvers_id = my_strndup(beg, end - beg); if (rule->arg.resolv.resolvers_id == NULL) goto do_resolve_parse_error; rule->arg.resolv.opts = calloc(1, sizeof(*rule->arg.resolv.opts)); if (rule->arg.resolv.opts == NULL) goto do_resolve_parse_error; /* Default priority is ipv6 */ rule->arg.resolv.opts->family_prio = AF_INET6; /* optional arguments accepted for now: * ipv4 or ipv6 */ while (*end != ')') { beg = end + 1; end = strchr(beg, ','); if (end == NULL) end = strchr(beg, ')'); if (end == NULL) goto do_resolve_parse_error; if (strncmp(beg, "ipv4", end - beg) == 0) { rule->arg.resolv.opts->family_prio = AF_INET; } else if (strncmp(beg, "ipv6", end - beg) == 0) { rule->arg.resolv.opts->family_prio = AF_INET6; } else { goto do_resolve_parse_error; } } cur_arg = cur_arg + 1; expr = sample_parse_expr((char **)args, &cur_arg, px->conf.args.file, px->conf.args.line, err, &px->conf.args, NULL); if (!expr) goto do_resolve_parse_error; where = 0; if (px->cap & PR_CAP_FE) where |= SMP_VAL_FE_HRQ_HDR; if (px->cap & PR_CAP_BE) where |= SMP_VAL_BE_HRQ_HDR; if (!(expr->fetch->val & where)) { memprintf(err, "fetch method '%s' extracts information from '%s', none of which is available here", args[cur_arg-1], sample_src_names(expr->fetch->use)); free(expr); return ACT_RET_PRS_ERR; } rule->arg.resolv.expr = expr; rule->action = ACT_CUSTOM; rule->action_ptr = resolv_action_do_resolve; *orig_arg = cur_arg; rule->check_ptr = check_action_do_resolve; rule->release_ptr = release_resolv_action; return ACT_RET_PRS_OK; do_resolve_parse_error: ha_free(&rule->arg.resolv.varname); ha_free(&rule->arg.resolv.resolvers_id); memprintf(err, "Can't parse '%s'. Expects 'do-resolve(,[,]) '. Available options are 'ipv4' and 'ipv6'", args[cur_arg]); return ACT_RET_PRS_ERR; } static struct action_kw_list http_req_kws = { { }, { { "do-resolve", resolv_parse_do_resolve, 1 }, { /* END */ } }}; INITCALL1(STG_REGISTER, http_req_keywords_register, &http_req_kws); static struct action_kw_list tcp_req_cont_actions = {ILH, { { "do-resolve", resolv_parse_do_resolve, 1 }, { /* END */ } }}; INITCALL1(STG_REGISTER, tcp_req_cont_keywords_register, &tcp_req_cont_actions); /* Check an "http-request do-resolve" action. * * The function returns 1 in success case, otherwise, it returns 0 and err is * filled. */ int check_action_do_resolve(struct act_rule *rule, struct proxy *px, char **err) { struct resolvers *resolvers = NULL; if (rule->arg.resolv.resolvers_id == NULL) { memprintf(err,"Proxy '%s': %s", px->id, "do-resolve action without resolvers"); return 0; } resolvers = find_resolvers_by_id(rule->arg.resolv.resolvers_id); if (resolvers == NULL) { memprintf(err,"Can't find resolvers section '%s' for do-resolve action", rule->arg.resolv.resolvers_id); return 0; } rule->arg.resolv.resolvers = resolvers; return 1; } void resolvers_setup_proxy(struct proxy *px) { px->last_change = now.tv_sec; px->cap = PR_CAP_FE | PR_CAP_BE; px->maxconn = 0; px->conn_retries = 1; px->timeout.server = TICK_ETERNITY; px->timeout.client = TICK_ETERNITY; px->timeout.connect = TICK_ETERNITY; px->accept = NULL; px->options2 |= PR_O2_INDEPSTR | PR_O2_SMARTCON; px->bind_proc = 0; /* will be filled by users */ } /* * Parse a section. * Returns the error code, 0 if OK, or any combination of : * - ERR_ABORT: must abort ASAP * - ERR_FATAL: we can continue parsing but not start the service * - ERR_WARN: a warning has been emitted * - ERR_ALERT: an alert has been emitted * Only the two first ones can stop processing, the two others are just * indicators. */ int cfg_parse_resolvers(const char *file, int linenum, char **args, int kwm) { const char *err; int err_code = 0; char *errmsg = NULL; struct proxy *p; if (strcmp(args[0], "resolvers") == 0) { /* new resolvers section */ if (!*args[1]) { ha_alert("parsing [%s:%d] : missing name for resolvers section.\n", file, linenum); err_code |= ERR_ALERT | ERR_ABORT; goto out; } err = invalid_char(args[1]); if (err) { ha_alert("parsing [%s:%d] : character '%c' is not permitted in '%s' name '%s'.\n", file, linenum, *err, args[0], args[1]); err_code |= ERR_ALERT | ERR_ABORT; goto out; } list_for_each_entry(curr_resolvers, &sec_resolvers, list) { /* Error if two resolvers owns the same name */ if (strcmp(curr_resolvers->id, args[1]) == 0) { ha_alert("Parsing [%s:%d]: resolvers '%s' has same name as another resolvers (declared at %s:%d).\n", file, linenum, args[1], curr_resolvers->conf.file, curr_resolvers->conf.line); err_code |= ERR_ALERT | ERR_ABORT; } } if ((curr_resolvers = calloc(1, sizeof(*curr_resolvers))) == NULL) { ha_alert("parsing [%s:%d] : out of memory.\n", file, linenum); err_code |= ERR_ALERT | ERR_ABORT; goto out; } /* allocate new proxy to tcp servers */ p = calloc(1, sizeof *p); if (!p) { ha_alert("parsing [%s:%d] : out of memory.\n", file, linenum); err_code |= ERR_ALERT | ERR_FATAL; goto out; } init_new_proxy(p); resolvers_setup_proxy(p); p->parent = curr_resolvers; p->id = strdup(args[1]); p->conf.args.file = p->conf.file = strdup(file); p->conf.args.line = p->conf.line = linenum; curr_resolvers->px = p; /* default values */ LIST_ADDQ(&sec_resolvers, &curr_resolvers->list); curr_resolvers->conf.file = strdup(file); curr_resolvers->conf.line = linenum; curr_resolvers->id = strdup(args[1]); curr_resolvers->query_ids = EB_ROOT; /* default maximum response size */ curr_resolvers->accepted_payload_size = 512; /* default hold period for nx, other, refuse and timeout is 30s */ curr_resolvers->hold.nx = 30000; curr_resolvers->hold.other = 30000; curr_resolvers->hold.refused = 30000; curr_resolvers->hold.timeout = 30000; curr_resolvers->hold.obsolete = 0; /* default hold period for valid is 10s */ curr_resolvers->hold.valid = 10000; curr_resolvers->timeout.resolve = 1000; curr_resolvers->timeout.retry = 1000; curr_resolvers->resolve_retries = 3; LIST_INIT(&curr_resolvers->nameservers); LIST_INIT(&curr_resolvers->resolutions.curr); LIST_INIT(&curr_resolvers->resolutions.wait); HA_SPIN_INIT(&curr_resolvers->lock); } else if (strcmp(args[0],"server") == 0) { err_code |= parse_server(file, linenum, args, curr_resolvers->px, NULL, 1, 0, 1); } else if (strcmp(args[0], "nameserver") == 0) { /* nameserver definition */ struct dns_nameserver *newnameserver = NULL; struct sockaddr_storage *sk; int port1, port2; if (!*args[2]) { ha_alert("parsing [%s:%d] : '%s' expects and [:] as arguments.\n", file, linenum, args[0]); err_code |= ERR_ALERT | ERR_FATAL; goto out; } err = invalid_char(args[1]); if (err) { ha_alert("parsing [%s:%d] : character '%c' is not permitted in server name '%s'.\n", file, linenum, *err, args[1]); err_code |= ERR_ALERT | ERR_FATAL; goto out; } list_for_each_entry(newnameserver, &curr_resolvers->nameservers, list) { /* Error if two resolvers owns the same name */ if (strcmp(newnameserver->id, args[1]) == 0) { ha_alert("Parsing [%s:%d]: nameserver '%s' has same name as another nameserver (declared at %s:%d).\n", file, linenum, args[1], newnameserver->conf.file, newnameserver->conf.line); err_code |= ERR_ALERT | ERR_FATAL; } } sk = str2sa_range(args[2], NULL, &port1, &port2, NULL, NULL, &errmsg, NULL, NULL, PA_O_RESOLVE | PA_O_PORT_OK | PA_O_PORT_MAND | PA_O_DGRAM); if (!sk) { ha_alert("parsing [%s:%d] : '%s %s' : %s\n", file, linenum, args[0], args[1], errmsg); err_code |= ERR_ALERT | ERR_FATAL; goto out; } if ((newnameserver = calloc(1, sizeof(*newnameserver))) == NULL) { ha_alert("parsing [%s:%d] : out of memory.\n", file, linenum); err_code |= ERR_ALERT | ERR_ABORT; goto out; } if (dns_dgram_init(newnameserver, sk) < 0) { ha_alert("parsing [%s:%d] : out of memory.\n", file, linenum); err_code |= ERR_ALERT | ERR_ABORT; goto out; } if ((newnameserver->conf.file = strdup(file)) == NULL) { ha_alert("parsing [%s:%d] : out of memory.\n", file, linenum); err_code |= ERR_ALERT | ERR_ABORT; goto out; } if ((newnameserver->id = strdup(args[1])) == NULL) { ha_alert("parsing [%s:%d] : out of memory.\n", file, linenum); err_code |= ERR_ALERT | ERR_ABORT; goto out; } newnameserver->parent = curr_resolvers; newnameserver->process_responses = resolv_process_responses; newnameserver->conf.line = linenum; /* the nameservers are linked backward first */ LIST_ADDQ(&curr_resolvers->nameservers, &newnameserver->list); } else if (strcmp(args[0], "parse-resolv-conf") == 0) { struct dns_nameserver *newnameserver = NULL; const char *whitespace = "\r\n\t "; char *resolv_line = NULL; int resolv_linenum = 0; FILE *f = NULL; char *address = NULL; struct sockaddr_storage *sk = NULL; struct protocol *proto; int duplicate_name = 0; if ((resolv_line = malloc(sizeof(*resolv_line) * LINESIZE)) == NULL) { ha_alert("parsing [%s:%d] : out of memory.\n", file, linenum); err_code |= ERR_ALERT | ERR_FATAL; goto resolv_out; } if ((f = fopen("/etc/resolv.conf", "r")) == NULL) { ha_alert("parsing [%s:%d] : failed to open /etc/resolv.conf.\n", file, linenum); err_code |= ERR_ALERT | ERR_FATAL; goto resolv_out; } sk = calloc(1, sizeof(*sk)); if (sk == NULL) { ha_alert("parsing [/etc/resolv.conf:%d] : out of memory.\n", resolv_linenum); err_code |= ERR_ALERT | ERR_FATAL; goto resolv_out; } while (fgets(resolv_line, LINESIZE, f) != NULL) { resolv_linenum++; if (strncmp(resolv_line, "nameserver", 10) != 0) continue; address = strtok(resolv_line + 10, whitespace); if (address == resolv_line + 10) continue; if (address == NULL) { ha_warning("parsing [/etc/resolv.conf:%d] : nameserver line is missing address.\n", resolv_linenum); err_code |= ERR_WARN; continue; } duplicate_name = 0; list_for_each_entry(newnameserver, &curr_resolvers->nameservers, list) { if (strcmp(newnameserver->id, address) == 0) { ha_warning("Parsing [/etc/resolv.conf:%d] : generated name for /etc/resolv.conf nameserver '%s' conflicts with another nameserver (declared at %s:%d), it appears to be a duplicate and will be excluded.\n", resolv_linenum, address, newnameserver->conf.file, newnameserver->conf.line); err_code |= ERR_WARN; duplicate_name = 1; } } if (duplicate_name) continue; memset(sk, 0, sizeof(*sk)); if (!str2ip2(address, sk, 1)) { ha_warning("parsing [/etc/resolv.conf:%d] : address '%s' could not be recognized, nameserver will be excluded.\n", resolv_linenum, address); err_code |= ERR_WARN; continue; } set_host_port(sk, 53); proto = protocol_by_family(sk->ss_family); if (!proto || !proto->connect) { ha_warning("parsing [/etc/resolv.conf:%d] : '%s' : connect() not supported for this address family.\n", resolv_linenum, address); err_code |= ERR_WARN; continue; } if ((newnameserver = calloc(1, sizeof(*newnameserver))) == NULL) { ha_alert("parsing [/etc/resolv.conf:%d] : out of memory.\n", resolv_linenum); err_code |= ERR_ALERT | ERR_FATAL; goto resolv_out; } if (dns_dgram_init(newnameserver, sk) < 0) { ha_alert("parsing [/etc/resolv.conf:%d] : out of memory.\n", resolv_linenum); err_code |= ERR_ALERT | ERR_FATAL; free(newnameserver); goto resolv_out; } newnameserver->conf.file = strdup("/etc/resolv.conf"); if (newnameserver->conf.file == NULL) { ha_alert("parsing [/etc/resolv.conf:%d] : out of memory.\n", resolv_linenum); err_code |= ERR_ALERT | ERR_FATAL; free(newnameserver); goto resolv_out; } newnameserver->id = strdup(address); if (newnameserver->id == NULL) { ha_alert("parsing [/etc/resolv.conf:%d] : out of memory.\n", resolv_linenum); err_code |= ERR_ALERT | ERR_FATAL; free((char *)newnameserver->conf.file); free(newnameserver); goto resolv_out; } newnameserver->parent = curr_resolvers; newnameserver->process_responses = resolv_process_responses; newnameserver->conf.line = resolv_linenum; LIST_ADDQ(&curr_resolvers->nameservers, &newnameserver->list); } resolv_out: free(sk); free(resolv_line); if (f != NULL) fclose(f); } else if (strcmp(args[0], "hold") == 0) { /* hold periods */ const char *res; unsigned int time; if (!*args[2]) { ha_alert("parsing [%s:%d] : '%s' expects an and a