/* * Peer synchro management. * * Copyright 2010 EXCELIANCE, Emeric Brun * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /*******************************/ /* Current peer learning state */ /*******************************/ /******************************/ /* Current peers section resync state */ /******************************/ #define PEERS_F_RESYNC_LOCAL 0x00000001 /* Learn from local finished or no more needed */ #define PEERS_F_RESYNC_REMOTE 0x00000002 /* Learn from remote finished or no more needed */ #define PEERS_F_RESYNC_ASSIGN 0x00000004 /* A peer was assigned to learn our lesson */ #define PEERS_F_RESYNC_PROCESS 0x00000008 /* The assigned peer was requested for resync */ #define PEERS_F_DONOTSTOP 0x00010000 /* Main table sync task block process during soft stop to push data to new process */ #define PEERS_RESYNC_STATEMASK (PEERS_F_RESYNC_LOCAL|PEERS_F_RESYNC_REMOTE) #define PEERS_RESYNC_FROMLOCAL 0x00000000 #define PEERS_RESYNC_FROMREMOTE PEERS_F_RESYNC_LOCAL #define PEERS_RESYNC_FINISHED (PEERS_F_RESYNC_LOCAL|PEERS_F_RESYNC_REMOTE) /***********************************/ /* Current shared table sync state */ /***********************************/ #define SHTABLE_F_TEACH_STAGE1 0x00000001 /* Teach state 1 complete */ #define SHTABLE_F_TEACH_STAGE2 0x00000002 /* Teach state 2 complete */ /******************************/ /* Remote peer teaching state */ /******************************/ #define PEER_F_TEACH_PROCESS 0x00000001 /* Teach a lesson to current peer */ #define PEER_F_TEACH_FINISHED 0x00000008 /* Teach conclude, (wait for confirm) */ #define PEER_F_TEACH_COMPLETE 0x00000010 /* All that we know already taught to current peer, used only for a local peer */ #define PEER_F_LEARN_ASSIGN 0x00000100 /* Current peer was assigned for a lesson */ #define PEER_F_LEARN_NOTUP2DATE 0x00000200 /* Learn from peer finished but peer is not up to date */ #define PEER_F_ALIVE 0x20000000 /* Used to flag a peer a alive. */ #define PEER_F_HEARTBEAT 0x40000000 /* Heartbeat message to send. */ #define PEER_F_DWNGRD 0x80000000 /* When this flag is enabled, we must downgrade the supported version announced during peer sessions. */ #define PEER_TEACH_RESET ~(PEER_F_TEACH_PROCESS|PEER_F_TEACH_FINISHED) /* PEER_F_TEACH_COMPLETE should never be reset */ #define PEER_LEARN_RESET ~(PEER_F_LEARN_ASSIGN|PEER_F_LEARN_NOTUP2DATE) #define PEER_RESYNC_TIMEOUT 5000 /* 5 seconds */ #define PEER_RECONNECT_TIMEOUT 5000 /* 5 seconds */ #define PEER_HEARTBEAT_TIMEOUT 3000 /* 3 seconds */ /*****************************/ /* Sync message class */ /*****************************/ enum { PEER_MSG_CLASS_CONTROL = 0, PEER_MSG_CLASS_ERROR, PEER_MSG_CLASS_STICKTABLE = 10, PEER_MSG_CLASS_RESERVED = 255, }; /*****************************/ /* control message types */ /*****************************/ enum { PEER_MSG_CTRL_RESYNCREQ = 0, PEER_MSG_CTRL_RESYNCFINISHED, PEER_MSG_CTRL_RESYNCPARTIAL, PEER_MSG_CTRL_RESYNCCONFIRM, PEER_MSG_CTRL_HEARTBEAT, }; /*****************************/ /* error message types */ /*****************************/ enum { PEER_MSG_ERR_PROTOCOL = 0, PEER_MSG_ERR_SIZELIMIT, }; /* network key types; * network types were directly and mistakenly * mapped on sample types, to keep backward * compatiblitiy we keep those values but * we now use a internal/network mapping * to avoid further mistakes adding or * modifying internals types */ enum { PEER_KT_ANY = 0, /* any type */ PEER_KT_RESV1, /* UNUSED */ PEER_KT_SINT, /* signed 64bits integer type */ PEER_KT_RESV3, /* UNUSED */ PEER_KT_IPV4, /* ipv4 type */ PEER_KT_IPV6, /* ipv6 type */ PEER_KT_STR, /* char string type */ PEER_KT_BIN, /* buffer type */ PEER_KT_TYPES /* number of types, must always be last */ }; /* Map used to retrieve network type from internal type * Note: Undeclared mapping maps entry to PEER_KT_ANY == 0 */ static int peer_net_key_type[SMP_TYPES] = { [SMP_T_SINT] = PEER_KT_SINT, [SMP_T_IPV4] = PEER_KT_IPV4, [SMP_T_IPV6] = PEER_KT_IPV6, [SMP_T_STR] = PEER_KT_STR, [SMP_T_BIN] = PEER_KT_BIN, }; /* Map used to retrieve internal type from external type * Note: Undeclared mapping maps entry to SMP_T_ANY == 0 */ static int peer_int_key_type[PEER_KT_TYPES] = { [PEER_KT_SINT] = SMP_T_SINT, [PEER_KT_IPV4] = SMP_T_IPV4, [PEER_KT_IPV6] = SMP_T_IPV6, [PEER_KT_STR] = SMP_T_STR, [PEER_KT_BIN] = SMP_T_BIN, }; /* * Parameters used by functions to build peer protocol messages. */ struct peer_prep_params { struct { struct peer *peer; } hello; struct { unsigned int st1; } error_status; struct { struct stksess *stksess; struct shared_table *shared_table; unsigned int updateid; int use_identifier; int use_timed; struct peer *peer; } updt; struct { struct shared_table *shared_table; } swtch; struct { struct shared_table *shared_table; } ack; struct { unsigned char head[2]; } control; struct { unsigned char head[2]; } error; }; /*******************************/ /* stick table sync mesg types */ /* Note: ids >= 128 contains */ /* id message contains data */ /*******************************/ #define PEER_MSG_STKT_UPDATE 0x80 #define PEER_MSG_STKT_INCUPDATE 0x81 #define PEER_MSG_STKT_DEFINE 0x82 #define PEER_MSG_STKT_SWITCH 0x83 #define PEER_MSG_STKT_ACK 0x84 #define PEER_MSG_STKT_UPDATE_TIMED 0x85 #define PEER_MSG_STKT_INCUPDATE_TIMED 0x86 /* All the stick-table message identifiers abova have the #7 bit set */ #define PEER_MSG_STKT_BIT 7 #define PEER_MSG_STKT_BIT_MASK (1 << PEER_MSG_STKT_BIT) /* The maximum length of an encoded data length. */ #define PEER_MSG_ENC_LENGTH_MAXLEN 5 /* Minimum 64-bits value encoded with 2 bytes */ #define PEER_ENC_2BYTES_MIN 0xf0 /* 0xf0 (or 240) */ /* 3 bytes */ #define PEER_ENC_3BYTES_MIN ((1ULL << 11) | PEER_ENC_2BYTES_MIN) /* 0x8f0 (or 2288) */ /* 4 bytes */ #define PEER_ENC_4BYTES_MIN ((1ULL << 18) | PEER_ENC_3BYTES_MIN) /* 0x408f0 (or 264432) */ /* 5 bytes */ #define PEER_ENC_5BYTES_MIN ((1ULL << 25) | PEER_ENC_4BYTES_MIN) /* 0x20408f0 (or 33818864) */ /* 6 bytes */ #define PEER_ENC_6BYTES_MIN ((1ULL << 32) | PEER_ENC_5BYTES_MIN) /* 0x1020408f0 (or 4328786160) */ /* 7 bytes */ #define PEER_ENC_7BYTES_MIN ((1ULL << 39) | PEER_ENC_6BYTES_MIN) /* 0x81020408f0 (or 554084600048) */ /* 8 bytes */ #define PEER_ENC_8BYTES_MIN ((1ULL << 46) | PEER_ENC_7BYTES_MIN) /* 0x4081020408f0 (or 70922828777712) */ /* 9 bytes */ #define PEER_ENC_9BYTES_MIN ((1ULL << 53) | PEER_ENC_8BYTES_MIN) /* 0x204081020408f0 (or 9078122083518704) */ /* 10 bytes */ #define PEER_ENC_10BYTES_MIN ((1ULL << 60) | PEER_ENC_9BYTES_MIN) /* 0x10204081020408f0 (or 1161999626690365680) */ /* #7 bit used to detect the last byte to be encoded */ #define PEER_ENC_STOP_BIT 7 /* The byte minimum value with #7 bit set */ #define PEER_ENC_STOP_BYTE (1 << PEER_ENC_STOP_BIT) /* The left most number of bits set for PEER_ENC_2BYTES_MIN */ #define PEER_ENC_2BYTES_MIN_BITS 4 #define PEER_MSG_HEADER_LEN 2 #define PEER_STKT_CACHE_MAX_ENTRIES 128 /**********************************/ /* Peer Session IO handler states */ /**********************************/ enum { PEER_SESS_ST_ACCEPT = 0, /* Initial state for session create by an accept, must be zero! */ PEER_SESS_ST_GETVERSION, /* Validate supported protocol version */ PEER_SESS_ST_GETHOST, /* Validate host ID correspond to local host id */ PEER_SESS_ST_GETPEER, /* Validate peer ID correspond to a known remote peer id */ /* after this point, data were possibly exchanged */ PEER_SESS_ST_SENDSUCCESS, /* Send ret code 200 (success) and wait for message */ PEER_SESS_ST_CONNECT, /* Initial state for session create on a connect, push presentation into buffer */ PEER_SESS_ST_GETSTATUS, /* Wait for the welcome message */ PEER_SESS_ST_WAITMSG, /* Wait for data messages */ PEER_SESS_ST_EXIT, /* Exit with status code */ PEER_SESS_ST_ERRPROTO, /* Send error proto message before exit */ PEER_SESS_ST_ERRSIZE, /* Send error size message before exit */ PEER_SESS_ST_END, /* Killed session */ }; /***************************************************/ /* Peer Session status code - part of the protocol */ /***************************************************/ #define PEER_SESS_SC_CONNECTCODE 100 /* connect in progress */ #define PEER_SESS_SC_CONNECTEDCODE 110 /* tcp connect success */ #define PEER_SESS_SC_SUCCESSCODE 200 /* accept or connect successful */ #define PEER_SESS_SC_TRYAGAIN 300 /* try again later */ #define PEER_SESS_SC_ERRPROTO 501 /* error protocol */ #define PEER_SESS_SC_ERRVERSION 502 /* unknown protocol version */ #define PEER_SESS_SC_ERRHOST 503 /* bad host name */ #define PEER_SESS_SC_ERRPEER 504 /* unknown peer */ #define PEER_SESSION_PROTO_NAME "HAProxyS" #define PEER_MAJOR_VER 2 #define PEER_MINOR_VER 1 #define PEER_DWNGRD_MINOR_VER 0 static size_t proto_len = sizeof(PEER_SESSION_PROTO_NAME) - 1; struct peers *cfg_peers = NULL; static void peer_session_forceshutdown(struct peer *peer); static struct ebpt_node *dcache_tx_insert(struct dcache *dc, struct dcache_tx_entry *i); static inline void flush_dcache(struct peer *peer); static const char *statuscode_str(int statuscode) { switch (statuscode) { case PEER_SESS_SC_CONNECTCODE: return "CONN"; case PEER_SESS_SC_CONNECTEDCODE: return "HSHK"; case PEER_SESS_SC_SUCCESSCODE: return "ESTA"; case PEER_SESS_SC_TRYAGAIN: return "RETR"; case PEER_SESS_SC_ERRPROTO: return "PROT"; case PEER_SESS_SC_ERRVERSION: return "VERS"; case PEER_SESS_SC_ERRHOST: return "NAME"; case PEER_SESS_SC_ERRPEER: return "UNKN"; default: return "NONE"; } } /* This function encode an uint64 to 'dynamic' length format. The encoded value is written at address *str, and the caller must assure that size after *str is large enough. At return, the *str is set at the next Byte after then encoded integer. The function returns then length of the encoded integer in Bytes */ int intencode(uint64_t i, char **str) { int idx = 0; unsigned char *msg; msg = (unsigned char *)*str; if (i < PEER_ENC_2BYTES_MIN) { msg[0] = (unsigned char)i; *str = (char *)&msg[idx+1]; return (idx+1); } msg[idx] =(unsigned char)i | PEER_ENC_2BYTES_MIN; i = (i - PEER_ENC_2BYTES_MIN) >> PEER_ENC_2BYTES_MIN_BITS; while (i >= PEER_ENC_STOP_BYTE) { msg[++idx] = (unsigned char)i | PEER_ENC_STOP_BYTE; i = (i - PEER_ENC_STOP_BYTE) >> PEER_ENC_STOP_BIT; } msg[++idx] = (unsigned char)i; *str = (char *)&msg[idx+1]; return (idx+1); } /* This function returns the decoded integer or 0 if decode failed *str point on the beginning of the integer to decode at the end of decoding *str point on the end of the encoded integer or to null if end is reached */ uint64_t intdecode(char **str, char *end) { unsigned char *msg; uint64_t i; int shift; if (!*str) return 0; msg = (unsigned char *)*str; if (msg >= (unsigned char *)end) goto fail; i = *(msg++); if (i >= PEER_ENC_2BYTES_MIN) { shift = PEER_ENC_2BYTES_MIN_BITS; do { if (msg >= (unsigned char *)end) goto fail; i += (uint64_t)*msg << shift; shift += PEER_ENC_STOP_BIT; } while (*(msg++) >= PEER_ENC_STOP_BYTE); } *str = (char *)msg; return i; fail: *str = NULL; return 0; } /* * Build a "hello" peer protocol message. * Return the number of written bytes written to build this messages if succeeded, * 0 if not. */ static int peer_prepare_hellomsg(char *msg, size_t size, struct peer_prep_params *p) { int min_ver, ret; struct peer *peer; peer = p->hello.peer; min_ver = (peer->flags & PEER_F_DWNGRD) ? PEER_DWNGRD_MINOR_VER : PEER_MINOR_VER; /* Prepare headers */ ret = snprintf(msg, size, PEER_SESSION_PROTO_NAME " %u.%u\n%s\n%s %d %d\n", PEER_MAJOR_VER, min_ver, peer->id, localpeer, (int)getpid(), relative_pid); if (ret >= size) return 0; return ret; } /* * Build a "handshake succeeded" status message. * Return the number of written bytes written to build this messages if succeeded, * 0 if not. */ static int peer_prepare_status_successmsg(char *msg, size_t size, struct peer_prep_params *p) { int ret; ret = snprintf(msg, size, "%d\n", PEER_SESS_SC_SUCCESSCODE); if (ret >= size) return 0; return ret; } /* * Build an error status message. * Return the number of written bytes written to build this messages if succeeded, * 0 if not. */ static int peer_prepare_status_errormsg(char *msg, size_t size, struct peer_prep_params *p) { int ret; unsigned int st1; st1 = p->error_status.st1; ret = snprintf(msg, size, "%d\n", st1); if (ret >= size) return 0; return ret; } /* Set the stick-table UPDATE message type byte at address, * depending on and boolean parameters. * Always successful. */ static inline void peer_set_update_msg_type(char *msg_type, int use_identifier, int use_timed) { if (use_timed) { if (use_identifier) *msg_type = PEER_MSG_STKT_UPDATE_TIMED; else *msg_type = PEER_MSG_STKT_INCUPDATE_TIMED; } else { if (use_identifier) *msg_type = PEER_MSG_STKT_UPDATE; else *msg_type = PEER_MSG_STKT_INCUPDATE; } } /* * This prepare the data update message on the stick session , is the considered * stick table. * is a buffer of to receive data message content * If function returns 0, the caller should consider we were unable to encode this message (TODO: * check size) */ static int peer_prepare_updatemsg(char *msg, size_t size, struct peer_prep_params *p) { uint32_t netinteger; unsigned short datalen; char *cursor, *datamsg; unsigned int data_type; void *data_ptr; struct stksess *ts; struct shared_table *st; unsigned int updateid; int use_identifier; int use_timed; struct peer *peer; ts = p->updt.stksess; st = p->updt.shared_table; updateid = p->updt.updateid; use_identifier = p->updt.use_identifier; use_timed = p->updt.use_timed; peer = p->updt.peer; cursor = datamsg = msg + PEER_MSG_HEADER_LEN + PEER_MSG_ENC_LENGTH_MAXLEN; /* construct message */ /* check if we need to send the update identifier */ if (!st->last_pushed || updateid < st->last_pushed || ((updateid - st->last_pushed) != 1)) { use_identifier = 1; } /* encode update identifier if needed */ if (use_identifier) { netinteger = htonl(updateid); memcpy(cursor, &netinteger, sizeof(netinteger)); cursor += sizeof(netinteger); } if (use_timed) { netinteger = htonl(tick_remain(now_ms, ts->expire)); memcpy(cursor, &netinteger, sizeof(netinteger)); cursor += sizeof(netinteger); } /* encode the key */ if (st->table->type == SMP_T_STR) { int stlen = strlen((char *)ts->key.key); intencode(stlen, &cursor); memcpy(cursor, ts->key.key, stlen); cursor += stlen; } else if (st->table->type == SMP_T_SINT) { netinteger = htonl(read_u32(ts->key.key)); memcpy(cursor, &netinteger, sizeof(netinteger)); cursor += sizeof(netinteger); } else { memcpy(cursor, ts->key.key, st->table->key_size); cursor += st->table->key_size; } HA_RWLOCK_RDLOCK(STK_SESS_LOCK, &ts->lock); /* encode values */ for (data_type = 0 ; data_type < STKTABLE_DATA_TYPES ; data_type++) { data_ptr = stktable_data_ptr(st->table, ts, data_type); if (data_ptr) { switch (stktable_data_types[data_type].std_type) { case STD_T_SINT: { int data; data = stktable_data_cast(data_ptr, std_t_sint); intencode(data, &cursor); break; } case STD_T_UINT: { unsigned int data; data = stktable_data_cast(data_ptr, std_t_uint); intencode(data, &cursor); break; } case STD_T_ULL: { unsigned long long data; data = stktable_data_cast(data_ptr, std_t_ull); intencode(data, &cursor); break; } case STD_T_FRQP: { struct freq_ctr_period *frqp; frqp = &stktable_data_cast(data_ptr, std_t_frqp); intencode((unsigned int)(now_ms - frqp->curr_tick), &cursor); intencode(frqp->curr_ctr, &cursor); intencode(frqp->prev_ctr, &cursor); break; } case STD_T_DICT: { struct dict_entry *de; struct ebpt_node *cached_de; struct dcache_tx_entry cde = { }; char *beg, *end; size_t value_len, data_len; struct dcache *dc; de = stktable_data_cast(data_ptr, std_t_dict); if (!de) { /* No entry */ intencode(0, &cursor); break; } dc = peer->dcache; cde.entry.key = de; cached_de = dcache_tx_insert(dc, &cde); if (cached_de == &cde.entry) { if (cde.id + 1 >= PEER_ENC_2BYTES_MIN) break; /* Encode the length of the remaining data -> 1 */ intencode(1, &cursor); /* Encode the cache entry ID */ intencode(cde.id + 1, &cursor); } else { /* Leave enough room to encode the remaining data length. */ end = beg = cursor + PEER_MSG_ENC_LENGTH_MAXLEN; /* Encode the dictionary entry key */ intencode(cde.id + 1, &end); /* Encode the length of the dictionary entry data */ value_len = de->len; intencode(value_len, &end); /* Copy the data */ memcpy(end, de->value.key, value_len); end += value_len; /* Encode the length of the data */ data_len = end - beg; intencode(data_len, &cursor); memmove(cursor, beg, data_len); cursor += data_len; } break; } } } } HA_RWLOCK_RDUNLOCK(STK_SESS_LOCK, &ts->lock); /* Compute datalen */ datalen = (cursor - datamsg); /* prepare message header */ msg[0] = PEER_MSG_CLASS_STICKTABLE; peer_set_update_msg_type(&msg[1], use_identifier, use_timed); cursor = &msg[2]; intencode(datalen, &cursor); /* move data after header */ memmove(cursor, datamsg, datalen); /* return header size + data_len */ return (cursor - msg) + datalen; } /* * This prepare the switch table message to targeted share table . * is a buffer of to receive data message content * If function returns 0, the caller should consider we were unable to encode this message (TODO: * check size) */ static int peer_prepare_switchmsg(char *msg, size_t size, struct peer_prep_params *params) { int len; unsigned short datalen; struct buffer *chunk; char *cursor, *datamsg, *chunkp, *chunkq; uint64_t data = 0; unsigned int data_type; struct shared_table *st; st = params->swtch.shared_table; cursor = datamsg = msg + PEER_MSG_HEADER_LEN + PEER_MSG_ENC_LENGTH_MAXLEN; /* Encode data */ /* encode local id */ intencode(st->local_id, &cursor); /* encode table name */ len = strlen(st->table->nid); intencode(len, &cursor); memcpy(cursor, st->table->nid, len); cursor += len; /* encode table type */ intencode(peer_net_key_type[st->table->type], &cursor); /* encode table key size */ intencode(st->table->key_size, &cursor); chunk = get_trash_chunk(); chunkp = chunkq = chunk->area; /* encode available known data types in table */ for (data_type = 0 ; data_type < STKTABLE_DATA_TYPES ; data_type++) { if (st->table->data_ofs[data_type]) { switch (stktable_data_types[data_type].std_type) { case STD_T_SINT: case STD_T_UINT: case STD_T_ULL: case STD_T_DICT: data |= 1 << data_type; break; case STD_T_FRQP: data |= 1 << data_type; intencode(data_type, &chunkq); intencode(st->table->data_arg[data_type].u, &chunkq); break; } } } intencode(data, &cursor); /* Encode stick-table entries duration. */ intencode(st->table->expire, &cursor); if (chunkq > chunkp) { chunk->data = chunkq - chunkp; memcpy(cursor, chunk->area, chunk->data); cursor += chunk->data; } /* Compute datalen */ datalen = (cursor - datamsg); /* prepare message header */ msg[0] = PEER_MSG_CLASS_STICKTABLE; msg[1] = PEER_MSG_STKT_DEFINE; cursor = &msg[2]; intencode(datalen, &cursor); /* move data after header */ memmove(cursor, datamsg, datalen); /* return header size + data_len */ return (cursor - msg) + datalen; } /* * This prepare the acknowledge message on the stick session , is the considered * stick table. * is a buffer of to receive data message content * If function returns 0, the caller should consider we were unable to encode this message (TODO: * check size) */ static int peer_prepare_ackmsg(char *msg, size_t size, struct peer_prep_params *p) { unsigned short datalen; char *cursor, *datamsg; uint32_t netinteger; struct shared_table *st; cursor = datamsg = msg + PEER_MSG_HEADER_LEN + PEER_MSG_ENC_LENGTH_MAXLEN; st = p->ack.shared_table; intencode(st->remote_id, &cursor); netinteger = htonl(st->last_get); memcpy(cursor, &netinteger, sizeof(netinteger)); cursor += sizeof(netinteger); /* Compute datalen */ datalen = (cursor - datamsg); /* prepare message header */ msg[0] = PEER_MSG_CLASS_STICKTABLE; msg[1] = PEER_MSG_STKT_ACK; cursor = &msg[2]; intencode(datalen, &cursor); /* move data after header */ memmove(cursor, datamsg, datalen); /* return header size + data_len */ return (cursor - msg) + datalen; } /* * Function to deinit connected peer */ void __peer_session_deinit(struct peer *peer) { struct stream_interface *si; struct stream *s; struct peers *peers; if (!peer->appctx) return; si = peer->appctx->owner; if (!si) return; s = si_strm(si); if (!s) return; peers = strm_fe(s)->parent; if (!peers) return; if (peer->appctx->st0 == PEER_SESS_ST_WAITMSG) HA_ATOMIC_SUB(&connected_peers, 1); HA_ATOMIC_SUB(&active_peers, 1); flush_dcache(peer); /* Re-init current table pointers to force announcement on re-connect */ peer->remote_table = peer->last_local_table = NULL; peer->appctx = NULL; if (peer->flags & PEER_F_LEARN_ASSIGN) { /* unassign current peer for learning */ peer->flags &= ~(PEER_F_LEARN_ASSIGN); peers->flags &= ~(PEERS_F_RESYNC_ASSIGN|PEERS_F_RESYNC_PROCESS); /* reschedule a resync */ peers->resync_timeout = tick_add(now_ms, MS_TO_TICKS(5000)); } /* reset teaching and learning flags to 0 */ peer->flags &= PEER_TEACH_RESET; peer->flags &= PEER_LEARN_RESET; /* set this peer as dead from heartbeat point of view */ peer->flags &= ~PEER_F_ALIVE; task_wakeup(peers->sync_task, TASK_WOKEN_MSG); } /* * Callback to release a session with a peer */ static void peer_session_release(struct appctx *appctx) { struct peer *peer = appctx->ctx.peers.ptr; /* appctx->ctx.peers.ptr is not a peer session */ if (appctx->st0 < PEER_SESS_ST_SENDSUCCESS) return; /* peer session identified */ if (peer) { HA_SPIN_LOCK(PEER_LOCK, &peer->lock); if (peer->appctx == appctx) __peer_session_deinit(peer); HA_SPIN_UNLOCK(PEER_LOCK, &peer->lock); } } /* Retrieve the major and minor versions of peers protocol * announced by a remote peer. is a null-terminated * string with the following format: ".". */ static int peer_get_version(const char *str, unsigned int *maj_ver, unsigned int *min_ver) { unsigned int majv, minv; const char *pos, *saved; const char *end; saved = pos = str; end = str + strlen(str); majv = read_uint(&pos, end); if (saved == pos || *pos++ != '.') return -1; saved = pos; minv = read_uint(&pos, end); if (saved == pos || pos != end) return -1; *maj_ver = majv; *min_ver = minv; return 0; } /* * Parse a line terminated by an optional '\r' character, followed by a mandatory * '\n' character. * Returns 1 if succeeded or 0 if a '\n' character could not be found, and -1 if * a line could not be read because the communication channel is closed. */ static inline int peer_getline(struct appctx *appctx) { int n; struct stream_interface *si = appctx->owner; n = co_getline(si_oc(si), trash.area, trash.size); if (!n) return 0; if (n < 0 || trash.area[n - 1] != '\n') { appctx->st0 = PEER_SESS_ST_END; return -1; } if (n > 1 && (trash.area[n - 2] == '\r')) trash.area[n - 2] = 0; else trash.area[n - 1] = 0; co_skip(si_oc(si), n); return n; } /* * Send a message after having called to build it. * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value. * Returns -1 if there was not enough room left to send the message, * any other negative returned value must be considered as an error with an appcxt st0 * returned value equal to PEER_SESS_ST_END. */ static inline int peer_send_msg(struct appctx *appctx, int (*peer_prepare_msg)(char *, size_t, struct peer_prep_params *), struct peer_prep_params *params) { int ret, msglen; struct stream_interface *si = appctx->owner; msglen = peer_prepare_msg(trash.area, trash.size, params); if (!msglen) { /* internal error: message does not fit in trash */ appctx->st0 = PEER_SESS_ST_END; return 0; } /* message to buffer */ ret = ci_putblk(si_ic(si), trash.area, msglen); if (ret <= 0) { if (ret == -1) { /* No more write possible */ si_rx_room_blk(si); return -1; } appctx->st0 = PEER_SESS_ST_END; } return ret; } /* * Send a hello message. * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value. * Returns -1 if there was not enough room left to send the message, * any other negative returned value must be considered as an error with an appcxt st0 * returned value equal to PEER_SESS_ST_END. */ static inline int peer_send_hellomsg(struct appctx *appctx, struct peer *peer) { struct peer_prep_params p = { .hello.peer = peer, }; return peer_send_msg(appctx, peer_prepare_hellomsg, &p); } /* * Send a success peer handshake status message. * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value. * Returns -1 if there was not enough room left to send the message, * any other negative returned value must be considered as an error with an appcxt st0 * returned value equal to PEER_SESS_ST_END. */ static inline int peer_send_status_successmsg(struct appctx *appctx) { return peer_send_msg(appctx, peer_prepare_status_successmsg, NULL); } /* * Send a peer handshake status error message. * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value. * Returns -1 if there was not enough room left to send the message, * any other negative returned value must be considered as an error with an appcxt st0 * returned value equal to PEER_SESS_ST_END. */ static inline int peer_send_status_errormsg(struct appctx *appctx) { struct peer_prep_params p = { .error_status.st1 = appctx->st1, }; return peer_send_msg(appctx, peer_prepare_status_errormsg, &p); } /* * Send a stick-table switch message. * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value. * Returns -1 if there was not enough room left to send the message, * any other negative returned value must be considered as an error with an appcxt st0 * returned value equal to PEER_SESS_ST_END. */ static inline int peer_send_switchmsg(struct shared_table *st, struct appctx *appctx) { struct peer_prep_params p = { .swtch.shared_table = st, }; return peer_send_msg(appctx, peer_prepare_switchmsg, &p); } /* * Send a stick-table update acknowledgement message. * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value. * Returns -1 if there was not enough room left to send the message, * any other negative returned value must be considered as an error with an appcxt st0 * returned value equal to PEER_SESS_ST_END. */ static inline int peer_send_ackmsg(struct shared_table *st, struct appctx *appctx) { struct peer_prep_params p = { .ack.shared_table = st, }; return peer_send_msg(appctx, peer_prepare_ackmsg, &p); } /* * Send a stick-table update message. * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value. * Returns -1 if there was not enough room left to send the message, * any other negative returned value must be considered as an error with an appcxt st0 * returned value equal to PEER_SESS_ST_END. */ static inline int peer_send_updatemsg(struct shared_table *st, struct appctx *appctx, struct stksess *ts, unsigned int updateid, int use_identifier, int use_timed) { struct peer_prep_params p = { .updt.stksess = ts, .updt.shared_table = st, .updt.updateid = updateid, .updt.use_identifier = use_identifier, .updt.use_timed = use_timed, .updt.peer = appctx->ctx.peers.ptr, }; return peer_send_msg(appctx, peer_prepare_updatemsg, &p); } /* * Build a peer protocol control class message. * Returns the number of written bytes used to build the message if succeeded, * 0 if not. */ static int peer_prepare_control_msg(char *msg, size_t size, struct peer_prep_params *p) { if (size < sizeof p->control.head) return 0; msg[0] = p->control.head[0]; msg[1] = p->control.head[1]; return 2; } /* * Send a stick-table synchronization request message. * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value. * Returns -1 if there was not enough room left to send the message, * any other negative returned value must be considered as an error with an appctx st0 * returned value equal to PEER_SESS_ST_END. */ static inline int peer_send_resync_reqmsg(struct appctx *appctx) { struct peer_prep_params p = { .control.head = { PEER_MSG_CLASS_CONTROL, PEER_MSG_CTRL_RESYNCREQ, }, }; return peer_send_msg(appctx, peer_prepare_control_msg, &p); } /* * Send a stick-table synchronization confirmation message. * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value. * Returns -1 if there was not enough room left to send the message, * any other negative returned value must be considered as an error with an appctx st0 * returned value equal to PEER_SESS_ST_END. */ static inline int peer_send_resync_confirmsg(struct appctx *appctx) { struct peer_prep_params p = { .control.head = { PEER_MSG_CLASS_CONTROL, PEER_MSG_CTRL_RESYNCCONFIRM, }, }; return peer_send_msg(appctx, peer_prepare_control_msg, &p); } /* * Send a stick-table synchronization finished message. * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value. * Returns -1 if there was not enough room left to send the message, * any other negative returned value must be considered as an error with an appctx st0 * returned value equal to PEER_SESS_ST_END. */ static inline int peer_send_resync_finishedmsg(struct appctx *appctx, struct peers *peers) { struct peer_prep_params p = { .control.head = { PEER_MSG_CLASS_CONTROL, }, }; p.control.head[1] = (peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FINISHED ? PEER_MSG_CTRL_RESYNCFINISHED : PEER_MSG_CTRL_RESYNCPARTIAL; return peer_send_msg(appctx, peer_prepare_control_msg, &p); } /* * Send a heartbeat message. * Return 0 if the message could not be built modifying the appctx st0 to PEER_SESS_ST_END value. * Returns -1 if there was not enough room left to send the message, * any other negative returned value must be considered as an error with an appctx st0 * returned value equal to PEER_SESS_ST_END. */ static inline int peer_send_heartbeatmsg(struct appctx *appctx) { struct peer_prep_params p = { .control.head = { PEER_MSG_CLASS_CONTROL, PEER_MSG_CTRL_HEARTBEAT, }, }; return peer_send_msg(appctx, peer_prepare_control_msg, &p); } /* * Build a peer protocol error class message. * Returns the number of written bytes used to build the message if succeeded, * 0 if not. */ static int peer_prepare_error_msg(char *msg, size_t size, struct peer_prep_params *p) { if (size < sizeof p->error.head) return 0; msg[0] = p->error.head[0]; msg[1] = p->error.head[1]; return 2; } /* * Send a "size limit reached" error message. * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value. * Returns -1 if there was not enough room left to send the message, * any other negative returned value must be considered as an error with an appctx st0 * returned value equal to PEER_SESS_ST_END. */ static inline int peer_send_error_size_limitmsg(struct appctx *appctx) { struct peer_prep_params p = { .error.head = { PEER_MSG_CLASS_ERROR, PEER_MSG_ERR_SIZELIMIT, }, }; return peer_send_msg(appctx, peer_prepare_error_msg, &p); } /* * Send a "peer protocol" error message. * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value. * Returns -1 if there was not enough room left to send the message, * any other negative returned value must be considered as an error with an appctx st0 * returned value equal to PEER_SESS_ST_END. */ static inline int peer_send_error_protomsg(struct appctx *appctx) { struct peer_prep_params p = { .error.head = { PEER_MSG_CLASS_ERROR, PEER_MSG_ERR_PROTOCOL, }, }; return peer_send_msg(appctx, peer_prepare_error_msg, &p); } /* * Function used to lookup for recent stick-table updates associated with * shared stick-table when a lesson must be taught a peer (PEER_F_LEARN_ASSIGN flag set). */ static inline struct stksess *peer_teach_process_stksess_lookup(struct shared_table *st) { struct eb32_node *eb; eb = eb32_lookup_ge(&st->table->updates, st->last_pushed+1); if (!eb) { eb = eb32_first(&st->table->updates); if (!eb || ((int)(eb->key - st->last_pushed) <= 0)) { st->table->commitupdate = st->last_pushed = st->table->localupdate; return NULL; } } if ((int)(eb->key - st->table->localupdate) > 0) { st->table->commitupdate = st->last_pushed = st->table->localupdate; return NULL; } return eb32_entry(eb, struct stksess, upd); } /* * Function used to lookup for recent stick-table updates associated with * shared stick-table during teach state 1 step. */ static inline struct stksess *peer_teach_stage1_stksess_lookup(struct shared_table *st) { struct eb32_node *eb; eb = eb32_lookup_ge(&st->table->updates, st->last_pushed+1); if (!eb) { st->flags |= SHTABLE_F_TEACH_STAGE1; eb = eb32_first(&st->table->updates); if (eb) st->last_pushed = eb->key - 1; return NULL; } return eb32_entry(eb, struct stksess, upd); } /* * Function used to lookup for recent stick-table updates associated with * shared stick-table during teach state 2 step. */ static inline struct stksess *peer_teach_stage2_stksess_lookup(struct shared_table *st) { struct eb32_node *eb; eb = eb32_lookup_ge(&st->table->updates, st->last_pushed+1); if (!eb || eb->key > st->teaching_origin) { st->flags |= SHTABLE_F_TEACH_STAGE2; return NULL; } return eb32_entry(eb, struct stksess, upd); } /* * Generic function to emit update messages for stick-table when a lesson must * be taught to the peer

. * must be set to 1 if the shared table is already locked when entering * this function, 0 if not. * * This function temporary unlock/lock when it sends stick-table updates or * when decrementing its refcount in case of any error when it sends this updates. * * Return 0 if any message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value. * Returns -1 if there was not enough room left to send the message, * any other negative returned value must be considered as an error with an appcxt st0 * returned value equal to PEER_SESS_ST_END. * If it returns 0 or -1, this function leave locked if already locked when entering this function * unlocked if not already locked when entering this function. */ static inline int peer_send_teachmsgs(struct appctx *appctx, struct peer *p, struct stksess *(*peer_stksess_lookup)(struct shared_table *), struct shared_table *st, int locked) { int ret, new_pushed, use_timed; ret = 1; use_timed = 0; if (st != p->last_local_table) { ret = peer_send_switchmsg(st, appctx); if (ret <= 0) return ret; p->last_local_table = st; } if (peer_stksess_lookup != peer_teach_process_stksess_lookup) use_timed = !(p->flags & PEER_F_DWNGRD); /* We force new pushed to 1 to force identifier in update message */ new_pushed = 1; if (!locked) HA_SPIN_LOCK(STK_TABLE_LOCK, &st->table->lock); while (1) { struct stksess *ts; unsigned updateid; /* push local updates */ ts = peer_stksess_lookup(st); if (!ts) break; updateid = ts->upd.key; ts->ref_cnt++; HA_SPIN_UNLOCK(STK_TABLE_LOCK, &st->table->lock); ret = peer_send_updatemsg(st, appctx, ts, updateid, new_pushed, use_timed); if (ret <= 0) { HA_SPIN_LOCK(STK_TABLE_LOCK, &st->table->lock); ts->ref_cnt--; if (!locked) HA_SPIN_UNLOCK(STK_TABLE_LOCK, &st->table->lock); return ret; } HA_SPIN_LOCK(STK_TABLE_LOCK, &st->table->lock); ts->ref_cnt--; st->last_pushed = updateid; if (peer_stksess_lookup == peer_teach_process_stksess_lookup && (int)(st->last_pushed - st->table->commitupdate) > 0) st->table->commitupdate = st->last_pushed; /* identifier may not needed in next update message */ new_pushed = 0; } out: if (!locked) HA_SPIN_UNLOCK(STK_TABLE_LOCK, &st->table->lock); return 1; } /* * Function to emit update messages for stick-table when a lesson must * be taught to the peer

(PEER_F_LEARN_ASSIGN flag set). * * Note that shared stick-table is locked when calling this function. * * Return 0 if any message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value. * Returns -1 if there was not enough room left to send the message, * any other negative returned value must be considered as an error with an appcxt st0 * returned value equal to PEER_SESS_ST_END. */ static inline int peer_send_teach_process_msgs(struct appctx *appctx, struct peer *p, struct shared_table *st) { return peer_send_teachmsgs(appctx, p, peer_teach_process_stksess_lookup, st, 1); } /* * Function to emit update messages for stick-table when a lesson must * be taught to the peer

during teach state 1 step. * * Return 0 if any message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value. * Returns -1 if there was not enough room left to send the message, * any other negative returned value must be considered as an error with an appcxt st0 * returned value equal to PEER_SESS_ST_END. */ static inline int peer_send_teach_stage1_msgs(struct appctx *appctx, struct peer *p, struct shared_table *st) { return peer_send_teachmsgs(appctx, p, peer_teach_stage1_stksess_lookup, st, 0); } /* * Function to emit update messages for stick-table when a lesson must * be taught to the peer

during teach state 1 step. * * Return 0 if any message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value. * Returns -1 if there was not enough room left to send the message, * any other negative returned value must be considered as an error with an appcxt st0 * returned value equal to PEER_SESS_ST_END. */ static inline int peer_send_teach_stage2_msgs(struct appctx *appctx, struct peer *p, struct shared_table *st) { return peer_send_teachmsgs(appctx, p, peer_teach_stage2_stksess_lookup, st, 0); } /* * Function used to parse a stick-table update message after it has been received * by

peer with as address of the pointer to the position in the * receipt buffer with being position of the end of the stick-table message. * Update accordingly to the peer protocol specs if no peer protocol error * was encountered. * must be set if the stick-table entry expires. * must be set for PEER_MSG_STKT_UPDATE or PEER_MSG_STKT_UPDATE_TIMED stick-table * messages, in this case the stick-table update message is received with a stick-table * update ID. * is the length of the stick-table update message computed upon receipt. */ static int peer_treat_updatemsg(struct appctx *appctx, struct peer *p, int updt, int exp, char **msg_cur, char *msg_end, int msg_len, int totl) { struct stream_interface *si = appctx->owner; struct shared_table *st = p->remote_table; struct stksess *ts, *newts; uint32_t update; int expire; unsigned int data_type; void *data_ptr; /* Here we have data message */ if (!st) goto ignore_msg; expire = MS_TO_TICKS(st->table->expire); if (updt) { if (msg_len < sizeof(update)) goto malformed_exit; memcpy(&update, *msg_cur, sizeof(update)); *msg_cur += sizeof(update); st->last_get = htonl(update); } else { st->last_get++; } if (exp) { size_t expire_sz = sizeof expire; if (*msg_cur + expire_sz > msg_end) goto malformed_exit; memcpy(&expire, *msg_cur, expire_sz); *msg_cur += expire_sz; expire = ntohl(expire); } newts = stksess_new(st->table, NULL); if (!newts) goto ignore_msg; if (st->table->type == SMP_T_STR) { unsigned int to_read, to_store; to_read = intdecode(msg_cur, msg_end); if (!*msg_cur) goto malformed_free_newts; to_store = MIN(to_read, st->table->key_size - 1); if (*msg_cur + to_store > msg_end) goto malformed_free_newts; memcpy(newts->key.key, *msg_cur, to_store); newts->key.key[to_store] = 0; *msg_cur += to_read; } else if (st->table->type == SMP_T_SINT) { unsigned int netinteger; if (*msg_cur + sizeof(netinteger) > msg_end) goto malformed_free_newts; memcpy(&netinteger, *msg_cur, sizeof(netinteger)); netinteger = ntohl(netinteger); memcpy(newts->key.key, &netinteger, sizeof(netinteger)); *msg_cur += sizeof(netinteger); } else { if (*msg_cur + st->table->key_size > msg_end) goto malformed_free_newts; memcpy(newts->key.key, *msg_cur, st->table->key_size); *msg_cur += st->table->key_size; } /* lookup for existing entry */ ts = stktable_set_entry(st->table, newts); if (ts != newts) { stksess_free(st->table, newts); newts = NULL; } HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock); for (data_type = 0 ; data_type < STKTABLE_DATA_TYPES ; data_type++) { uint64_t decoded_int; if (!((1 << data_type) & st->remote_data)) continue; decoded_int = intdecode(msg_cur, msg_end); if (!*msg_cur) goto malformed_unlock; switch (stktable_data_types[data_type].std_type) { case STD_T_SINT: data_ptr = stktable_data_ptr(st->table, ts, data_type); if (data_ptr) stktable_data_cast(data_ptr, std_t_sint) = decoded_int; break; case STD_T_UINT: data_ptr = stktable_data_ptr(st->table, ts, data_type); if (data_ptr) stktable_data_cast(data_ptr, std_t_uint) = decoded_int; break; case STD_T_ULL: data_ptr = stktable_data_ptr(st->table, ts, data_type); if (data_ptr) stktable_data_cast(data_ptr, std_t_ull) = decoded_int; break; case STD_T_FRQP: { struct freq_ctr_period data; /* First bit is reserved for the freq_ctr_period lock Note: here we're still protected by the stksess lock so we don't need to update the update the freq_ctr_period using its internal lock */ data.curr_tick = tick_add(now_ms, -decoded_int) & ~0x1; data.curr_ctr = intdecode(msg_cur, msg_end); if (!*msg_cur) goto malformed_unlock; data.prev_ctr = intdecode(msg_cur, msg_end); if (!*msg_cur) goto malformed_unlock; data_ptr = stktable_data_ptr(st->table, ts, data_type); if (data_ptr) stktable_data_cast(data_ptr, std_t_frqp) = data; break; } case STD_T_DICT: { struct buffer *chunk; size_t data_len, value_len; unsigned int id; struct dict_entry *de; struct dcache *dc; char *end; if (!decoded_int) { /* No entry. */ break; } data_len = decoded_int; if (*msg_cur + data_len > msg_end) goto malformed_unlock; /* Compute the end of the current data, being at the end of * the entire message. */ end = *msg_cur + data_len; id = intdecode(msg_cur, end); if (!*msg_cur || !id) goto malformed_unlock; dc = p->dcache; if (*msg_cur == end) { /* Dictionary entry key without value. */ if (id > dc->max_entries) break; /* IDs sent over the network are numbered from 1. */ de = dc->rx[id - 1].de; } else { chunk = get_trash_chunk(); value_len = intdecode(msg_cur, end); if (!*msg_cur || *msg_cur + value_len > end || unlikely(value_len + 1 >= chunk->size)) goto malformed_unlock; chunk_memcpy(chunk, *msg_cur, value_len); chunk->area[chunk->data] = '\0'; *msg_cur += value_len; de = dict_insert(&server_name_dict, chunk->area); dc->rx[id - 1].de = de; } if (de) { data_ptr = stktable_data_ptr(st->table, ts, data_type); if (data_ptr) stktable_data_cast(data_ptr, std_t_dict) = de; } break; } } } /* Force new expiration */ ts->expire = tick_add(now_ms, expire); HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock); stktable_touch_remote(st->table, ts, 1); return 1; ignore_msg: /* skip consumed message */ co_skip(si_oc(si), totl); return 0; malformed_unlock: /* malformed message */ HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock); stktable_touch_remote(st->table, ts, 1); appctx->st0 = PEER_SESS_ST_ERRPROTO; return 0; malformed_free_newts: /* malformed message */ stksess_free(st->table, newts); malformed_exit: appctx->st0 = PEER_SESS_ST_ERRPROTO; return 0; } /* * Function used to parse a stick-table update acknowledgement message after it * has been received by

peer with as address of the pointer to the position in the * receipt buffer with being the position of the end of the stick-table message. * Update accordingly to the peer protocol specs if no peer protocol error * was encountered. * Return 1 if succeeded, 0 if not with the appctx state st0 set to PEER_SESS_ST_ERRPROTO. */ static inline int peer_treat_ackmsg(struct appctx *appctx, struct peer *p, char **msg_cur, char *msg_end) { /* ack message */ uint32_t table_id ; uint32_t update; struct shared_table *st; table_id = intdecode(msg_cur, msg_end); if (!*msg_cur || (*msg_cur + sizeof(update) > msg_end)) { /* malformed message */ appctx->st0 = PEER_SESS_ST_ERRPROTO; return 0; } memcpy(&update, *msg_cur, sizeof(update)); update = ntohl(update); for (st = p->tables; st; st = st->next) { if (st->local_id == table_id) { st->update = update; break; } } return 1; } /* * Function used to parse a stick-table switch message after it has been received * by

peer with as address of the pointer to the position in the * receipt buffer with being the position of the end of the stick-table message. * Update accordingly to the peer protocol specs if no peer protocol error * was encountered. * Return 1 if succeeded, 0 if not with the appctx state st0 set to PEER_SESS_ST_ERRPROTO. */ static inline int peer_treat_switchmsg(struct appctx *appctx, struct peer *p, char **msg_cur, char *msg_end) { struct shared_table *st; int table_id; table_id = intdecode(msg_cur, msg_end); if (!*msg_cur) { /* malformed message */ appctx->st0 = PEER_SESS_ST_ERRPROTO; return 0; } p->remote_table = NULL; for (st = p->tables; st; st = st->next) { if (st->remote_id == table_id) { p->remote_table = st; break; } } return 1; } /* * Function used to parse a stick-table definition message after it has been received * by

peer with as address of the pointer to the position in the * receipt buffer with being the position of the end of the stick-table message. * Update accordingly to the peer protocol specs if no peer protocol error * was encountered. * is the length of the stick-table update message computed upon receipt. * Return 1 if succeeded, 0 if not with the appctx state st0 set to PEER_SESS_ST_ERRPROTO. */ static inline int peer_treat_definemsg(struct appctx *appctx, struct peer *p, char **msg_cur, char *msg_end, int totl) { struct stream_interface *si = appctx->owner; int table_id_len; struct shared_table *st; int table_type; int table_keylen; int table_id; uint64_t table_data; table_id = intdecode(msg_cur, msg_end); if (!*msg_cur) goto malformed_exit; table_id_len = intdecode(msg_cur, msg_end); if (!*msg_cur) goto malformed_exit; p->remote_table = NULL; if (!table_id_len || (*msg_cur + table_id_len) >= msg_end) goto malformed_exit; for (st = p->tables; st; st = st->next) { /* Reset IDs */ if (st->remote_id == table_id) st->remote_id = 0; if (!p->remote_table && (table_id_len == strlen(st->table->nid)) && (memcmp(st->table->nid, *msg_cur, table_id_len) == 0)) p->remote_table = st; } if (!p->remote_table) goto ignore_msg; *msg_cur += table_id_len; if (*msg_cur >= msg_end) goto malformed_exit; table_type = intdecode(msg_cur, msg_end); if (!*msg_cur) goto malformed_exit; table_keylen = intdecode(msg_cur, msg_end); if (!*msg_cur) goto malformed_exit; table_data = intdecode(msg_cur, msg_end); if (!*msg_cur) goto malformed_exit; if (p->remote_table->table->type != peer_int_key_type[table_type] || p->remote_table->table->key_size != table_keylen) { p->remote_table = NULL; goto ignore_msg; } p->remote_table->remote_data = table_data; p->remote_table->remote_id = table_id; return 1; ignore_msg: co_skip(si_oc(si), totl); return 0; malformed_exit: /* malformed message */ appctx->st0 = PEER_SESS_ST_ERRPROTO; return 0; } /* * Receive a stick-table message. * Returns 1 if there was no error, if not, returns 0 if not enough data were available, * -1 if there was an error updating the appctx state st0 accordingly. */ static inline int peer_recv_msg(struct appctx *appctx, char *msg_head, size_t msg_head_sz, uint32_t *msg_len, int *totl) { int reql; struct stream_interface *si = appctx->owner; reql = co_getblk(si_oc(si), msg_head, 2 * sizeof(char), *totl); if (reql <= 0) /* closed or EOL not found */ goto incomplete; *totl += reql; if (!(msg_head[1] & PEER_MSG_STKT_BIT_MASK)) return 1; /* Read and Decode message length */ reql = co_getblk(si_oc(si), &msg_head[2], sizeof(char), *totl); if (reql <= 0) /* closed */ goto incomplete; *totl += reql; if ((unsigned int)msg_head[2] < PEER_ENC_2BYTES_MIN) { *msg_len = msg_head[2]; } else { int i; char *cur; char *end; for (i = 3 ; i < msg_head_sz ; i++) { reql = co_getblk(si_oc(si), &msg_head[i], sizeof(char), *totl); if (reql <= 0) /* closed */ goto incomplete; *totl += reql; if (!(msg_head[i] & PEER_MSG_STKT_BIT_MASK)) break; } if (i == msg_head_sz) { /* malformed message */ appctx->st0 = PEER_SESS_ST_ERRPROTO; return -1; } end = msg_head + msg_head_sz; cur = &msg_head[2]; *msg_len = intdecode(&cur, end); if (!cur) { /* malformed message */ appctx->st0 = PEER_SESS_ST_ERRPROTO; return -1; } } /* Read message content */ if (*msg_len) { if (*msg_len > trash.size) { /* Status code is not success, abort */ appctx->st0 = PEER_SESS_ST_ERRSIZE; return -1; } reql = co_getblk(si_oc(si), trash.area, *msg_len, *totl); if (reql <= 0) /* closed */ goto incomplete; *totl += reql; } return 1; incomplete: if (reql < 0) { /* there was an error */ appctx->st0 = PEER_SESS_ST_END; return -1; } return 0; } /* * Treat the awaited message with as header.* * Return 1 if succeeded, 0 if not. */ static inline int peer_treat_awaited_msg(struct appctx *appctx, struct peer *peer, unsigned char *msg_head, char **msg_cur, char *msg_end, int msg_len, int totl) { struct stream_interface *si = appctx->owner; struct stream *s = si_strm(si); struct peers *peers = strm_fe(s)->parent; if (msg_head[0] == PEER_MSG_CLASS_CONTROL) { if (msg_head[1] == PEER_MSG_CTRL_RESYNCREQ) { struct shared_table *st; /* Reset message: remote need resync */ /* prepare tables for a global push */ for (st = peer->tables; st; st = st->next) { st->teaching_origin = st->last_pushed = st->table->update; st->flags = 0; } /* reset teaching flags to 0 */ peer->flags &= PEER_TEACH_RESET; /* flag to start to teach lesson */ peer->flags |= PEER_F_TEACH_PROCESS; } else if (msg_head[1] == PEER_MSG_CTRL_RESYNCFINISHED) { if (peer->flags & PEER_F_LEARN_ASSIGN) { peer->flags &= ~PEER_F_LEARN_ASSIGN; peers->flags &= ~(PEERS_F_RESYNC_ASSIGN|PEERS_F_RESYNC_PROCESS); peers->flags |= (PEERS_F_RESYNC_LOCAL|PEERS_F_RESYNC_REMOTE); } peer->confirm++; } else if (msg_head[1] == PEER_MSG_CTRL_RESYNCPARTIAL) { if (peer->flags & PEER_F_LEARN_ASSIGN) { peer->flags &= ~PEER_F_LEARN_ASSIGN; peers->flags &= ~(PEERS_F_RESYNC_ASSIGN|PEERS_F_RESYNC_PROCESS); peer->flags |= PEER_F_LEARN_NOTUP2DATE; peers->resync_timeout = tick_add(now_ms, MS_TO_TICKS(PEER_RESYNC_TIMEOUT)); task_wakeup(peers->sync_task, TASK_WOKEN_MSG); } peer->confirm++; } else if (msg_head[1] == PEER_MSG_CTRL_RESYNCCONFIRM) { struct shared_table *st; /* If stopping state */ if (stopping) { /* Close session, push resync no more needed */ peer->flags |= PEER_F_TEACH_COMPLETE; appctx->st0 = PEER_SESS_ST_END; return 0; } for (st = peer->tables; st; st = st->next) { st->update = st->last_pushed = st->teaching_origin; st->flags = 0; } /* reset teaching flags to 0 */ peer->flags &= PEER_TEACH_RESET; } else if (msg_head[1] == PEER_MSG_CTRL_HEARTBEAT) { peer->reconnect = tick_add(now_ms, MS_TO_TICKS(PEER_RECONNECT_TIMEOUT)); peer->rx_hbt++; } } else if (msg_head[0] == PEER_MSG_CLASS_STICKTABLE) { if (msg_head[1] == PEER_MSG_STKT_DEFINE) { if (!peer_treat_definemsg(appctx, peer, msg_cur, msg_end, totl)) return 0; } else if (msg_head[1] == PEER_MSG_STKT_SWITCH) { if (!peer_treat_switchmsg(appctx, peer, msg_cur, msg_end)) return 0; } else if (msg_head[1] == PEER_MSG_STKT_UPDATE || msg_head[1] == PEER_MSG_STKT_INCUPDATE || msg_head[1] == PEER_MSG_STKT_UPDATE_TIMED || msg_head[1] == PEER_MSG_STKT_INCUPDATE_TIMED) { int update, expire; update = msg_head[1] == PEER_MSG_STKT_UPDATE || msg_head[1] == PEER_MSG_STKT_UPDATE_TIMED; expire = msg_head[1] == PEER_MSG_STKT_UPDATE_TIMED || msg_head[1] == PEER_MSG_STKT_INCUPDATE_TIMED; if (!peer_treat_updatemsg(appctx, peer, update, expire, msg_cur, msg_end, msg_len, totl)) return 0; } else if (msg_head[1] == PEER_MSG_STKT_ACK) { if (!peer_treat_ackmsg(appctx, peer, msg_cur, msg_end)) return 0; } } else if (msg_head[0] == PEER_MSG_CLASS_RESERVED) { appctx->st0 = PEER_SESS_ST_ERRPROTO; return 0; } return 1; } /* * Send any message to peer. * Returns 1 if succeeded, or -1 or 0 if failed. * -1 means an internal error occurred, 0 is for a peer protocol error leading * to a peer state change (from the peer I/O handler point of view). */ static inline int peer_send_msgs(struct appctx *appctx, struct peer *peer) { int repl; struct stream_interface *si = appctx->owner; struct stream *s = si_strm(si); struct peers *peers = strm_fe(s)->parent; /* Need to request a resync */ if ((peer->flags & PEER_F_LEARN_ASSIGN) && (peers->flags & PEERS_F_RESYNC_ASSIGN) && !(peers->flags & PEERS_F_RESYNC_PROCESS)) { repl = peer_send_resync_reqmsg(appctx); if (repl <= 0) return repl; peers->flags |= PEERS_F_RESYNC_PROCESS; } /* Nothing to read, now we start to write */ if (peer->tables) { struct shared_table *st; struct shared_table *last_local_table; last_local_table = peer->last_local_table; if (!last_local_table) last_local_table = peer->tables; st = last_local_table->next; while (1) { if (!st) st = peer->tables; /* It remains some updates to ack */ if (st->last_get != st->last_acked) { repl = peer_send_ackmsg(st, appctx); if (repl <= 0) return repl; st->last_acked = st->last_get; } if (!(peer->flags & PEER_F_TEACH_PROCESS)) { HA_SPIN_LOCK(STK_TABLE_LOCK, &st->table->lock); if (!(peer->flags & PEER_F_LEARN_ASSIGN) && ((int)(st->last_pushed - st->table->localupdate) < 0)) { repl = peer_send_teach_process_msgs(appctx, peer, st); if (repl <= 0) { HA_SPIN_UNLOCK(STK_TABLE_LOCK, &st->table->lock); return repl; } } HA_SPIN_UNLOCK(STK_TABLE_LOCK, &st->table->lock); } else { if (!(st->flags & SHTABLE_F_TEACH_STAGE1)) { repl = peer_send_teach_stage1_msgs(appctx, peer, st); if (repl <= 0) return repl; } if (!(st->flags & SHTABLE_F_TEACH_STAGE2)) { repl = peer_send_teach_stage2_msgs(appctx, peer, st); if (repl <= 0) return repl; } } if (st == last_local_table) break; st = st->next; } } if ((peer->flags & PEER_F_TEACH_PROCESS) && !(peer->flags & PEER_F_TEACH_FINISHED)) { repl = peer_send_resync_finishedmsg(appctx, peers); if (repl <= 0) return repl; /* flag finished message sent */ peer->flags |= PEER_F_TEACH_FINISHED; } /* Confirm finished or partial messages */ while (peer->confirm) { repl = peer_send_resync_confirmsg(appctx); if (repl <= 0) return repl; peer->confirm--; } return 1; } /* * Read and parse a first line of a "hello" peer protocol message. * Returns 0 if could not read a line, -1 if there was a read error or * the line is malformed, 1 if succeeded. */ static inline int peer_getline_version(struct appctx *appctx, unsigned int *maj_ver, unsigned int *min_ver) { int reql; reql = peer_getline(appctx); if (!reql) return 0; if (reql < 0) return -1; /* test protocol */ if (strncmp(PEER_SESSION_PROTO_NAME " ", trash.area, proto_len + 1) != 0) { appctx->st0 = PEER_SESS_ST_EXIT; appctx->st1 = PEER_SESS_SC_ERRPROTO; return -1; } if (peer_get_version(trash.area + proto_len + 1, maj_ver, min_ver) == -1 || *maj_ver != PEER_MAJOR_VER || *min_ver > PEER_MINOR_VER) { appctx->st0 = PEER_SESS_ST_EXIT; appctx->st1 = PEER_SESS_SC_ERRVERSION; return -1; } return 1; } /* * Read and parse a second line of a "hello" peer protocol message. * Returns 0 if could not read a line, -1 if there was a read error or * the line is malformed, 1 if succeeded. */ static inline int peer_getline_host(struct appctx *appctx) { int reql; reql = peer_getline(appctx); if (!reql) return 0; if (reql < 0) return -1; /* test hostname match */ if (strcmp(localpeer, trash.area) != 0) { appctx->st0 = PEER_SESS_ST_EXIT; appctx->st1 = PEER_SESS_SC_ERRHOST; return -1; } return 1; } /* * Read and parse a last line of a "hello" peer protocol message. * Returns 0 if could not read a character, -1 if there was a read error or * the line is malformed, 1 if succeeded. * Set accordingly (the remote peer sending the "hello" message). */ static inline int peer_getline_last(struct appctx *appctx, struct peer **curpeer) { char *p; int reql; struct peer *peer; struct stream_interface *si = appctx->owner; struct stream *s = si_strm(si); struct peers *peers = strm_fe(s)->parent; reql = peer_getline(appctx); if (!reql) return 0; if (reql < 0) return -1; /* parse line " " */ p = strchr(trash.area, ' '); if (!p) { appctx->st0 = PEER_SESS_ST_EXIT; appctx->st1 = PEER_SESS_SC_ERRPROTO; return -1; } *p = 0; /* lookup known peer */ for (peer = peers->remote; peer; peer = peer->next) { if (strcmp(peer->id, trash.area) == 0) break; } /* if unknown peer */ if (!peer) { appctx->st0 = PEER_SESS_ST_EXIT; appctx->st1 = PEER_SESS_SC_ERRPEER; return -1; } *curpeer = peer; return 1; } /* * Init peer after having accepted it at peer protocol level. */ static inline void init_accepted_peer(struct peer *peer, struct peers *peers) { struct shared_table *st; /* Register status code */ peer->statuscode = PEER_SESS_SC_SUCCESSCODE; /* Awake main task */ task_wakeup(peers->sync_task, TASK_WOKEN_MSG); /* Init confirm counter */ peer->confirm = 0; /* Init cursors */ for (st = peer->tables; st ; st = st->next) { st->last_get = st->last_acked = 0; st->teaching_origin = st->last_pushed = st->update; } /* reset teaching and learning flags to 0 */ peer->flags &= PEER_TEACH_RESET; peer->flags &= PEER_LEARN_RESET; /* if current peer is local */ if (peer->local) { /* if current host need resyncfrom local and no process assined */ if ((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMLOCAL && !(peers->flags & PEERS_F_RESYNC_ASSIGN)) { /* assign local peer for a lesson, consider lesson already requested */ peer->flags |= PEER_F_LEARN_ASSIGN; peers->flags |= (PEERS_F_RESYNC_ASSIGN|PEERS_F_RESYNC_PROCESS); } } else if ((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMREMOTE && !(peers->flags & PEERS_F_RESYNC_ASSIGN)) { /* assign peer for a lesson */ peer->flags |= PEER_F_LEARN_ASSIGN; peers->flags |= PEERS_F_RESYNC_ASSIGN; } } /* * Init peer after having connected it at peer protocol level. */ static inline void init_connected_peer(struct peer *peer, struct peers *peers) { struct shared_table *st; /* Init cursors */ for (st = peer->tables; st ; st = st->next) { st->last_get = st->last_acked = 0; st->teaching_origin = st->last_pushed = st->update; } /* Init confirm counter */ peer->confirm = 0; /* reset teaching and learning flags to 0 */ peer->flags &= PEER_TEACH_RESET; peer->flags &= PEER_LEARN_RESET; /* If current peer is local */ if (peer->local) { /* flag to start to teach lesson */ peer->flags |= PEER_F_TEACH_PROCESS; } else if ((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMREMOTE && !(peers->flags & PEERS_F_RESYNC_ASSIGN)) { /* If peer is remote and resync from remote is needed, and no peer currently assigned */ /* assign peer for a lesson */ peer->flags |= PEER_F_LEARN_ASSIGN; peers->flags |= PEERS_F_RESYNC_ASSIGN; } } /* * IO Handler to handle message exchance with a peer */ static void peer_io_handler(struct appctx *appctx) { struct stream_interface *si = appctx->owner; struct stream *s = si_strm(si); struct peers *curpeers = strm_fe(s)->parent; struct peer *curpeer = NULL; int reql = 0; int repl = 0; unsigned int maj_ver, min_ver; int prev_state; /* Check if the input buffer is available. */ if (si_ic(si)->buf.size == 0) { si_rx_room_blk(si); goto out; } while (1) { prev_state = appctx->st0; switchstate: maj_ver = min_ver = (unsigned int)-1; switch(appctx->st0) { case PEER_SESS_ST_ACCEPT: prev_state = appctx->st0; appctx->ctx.peers.ptr = NULL; appctx->st0 = PEER_SESS_ST_GETVERSION; /* fall through */ case PEER_SESS_ST_GETVERSION: prev_state = appctx->st0; reql = peer_getline_version(appctx, &maj_ver, &min_ver); if (reql <= 0) { if (!reql) goto out; goto switchstate; } appctx->st0 = PEER_SESS_ST_GETHOST; /* fall through */ case PEER_SESS_ST_GETHOST: prev_state = appctx->st0; reql = peer_getline_host(appctx); if (reql <= 0) { if (!reql) goto out; goto switchstate; } appctx->st0 = PEER_SESS_ST_GETPEER; /* fall through */ case PEER_SESS_ST_GETPEER: { prev_state = appctx->st0; reql = peer_getline_last(appctx, &curpeer); if (reql <= 0) { if (!reql) goto out; goto switchstate; } HA_SPIN_LOCK(PEER_LOCK, &curpeer->lock); if (curpeer->appctx && curpeer->appctx != appctx) { if (curpeer->local) { /* Local connection, reply a retry */ appctx->st0 = PEER_SESS_ST_EXIT; appctx->st1 = PEER_SESS_SC_TRYAGAIN; goto switchstate; } /* we're killing a connection, we must apply a random delay before * retrying otherwise the other end will do the same and we can loop * for a while. */ curpeer->reconnect = tick_add(now_ms, MS_TO_TICKS(50 + ha_random() % 2000)); peer_session_forceshutdown(curpeer); } if (maj_ver != (unsigned int)-1 && min_ver != (unsigned int)-1) { if (min_ver == PEER_DWNGRD_MINOR_VER) { curpeer->flags |= PEER_F_DWNGRD; } else { curpeer->flags &= ~PEER_F_DWNGRD; } } curpeer->appctx = appctx; appctx->ctx.peers.ptr = curpeer; appctx->st0 = PEER_SESS_ST_SENDSUCCESS; _HA_ATOMIC_ADD(&active_peers, 1); /* fall through */ } case PEER_SESS_ST_SENDSUCCESS: { prev_state = appctx->st0; if (!curpeer) { curpeer = appctx->ctx.peers.ptr; HA_SPIN_LOCK(PEER_LOCK, &curpeer->lock); if (curpeer->appctx != appctx) { appctx->st0 = PEER_SESS_ST_END; goto switchstate; } } repl = peer_send_status_successmsg(appctx); if (repl <= 0) { if (repl == -1) goto out; goto switchstate; } init_accepted_peer(curpeer, curpeers); /* switch to waiting message state */ _HA_ATOMIC_ADD(&connected_peers, 1); appctx->st0 = PEER_SESS_ST_WAITMSG; goto switchstate; } case PEER_SESS_ST_CONNECT: { prev_state = appctx->st0; if (!curpeer) { curpeer = appctx->ctx.peers.ptr; HA_SPIN_LOCK(PEER_LOCK, &curpeer->lock); if (curpeer->appctx != appctx) { appctx->st0 = PEER_SESS_ST_END; goto switchstate; } } repl = peer_send_hellomsg(appctx, curpeer); if (repl <= 0) { if (repl == -1) goto out; goto switchstate; } /* switch to the waiting statuscode state */ appctx->st0 = PEER_SESS_ST_GETSTATUS; /* fall through */ } case PEER_SESS_ST_GETSTATUS: { prev_state = appctx->st0; if (!curpeer) { curpeer = appctx->ctx.peers.ptr; HA_SPIN_LOCK(PEER_LOCK, &curpeer->lock); if (curpeer->appctx != appctx) { appctx->st0 = PEER_SESS_ST_END; goto switchstate; } } if (si_ic(si)->flags & CF_WRITE_PARTIAL) curpeer->statuscode = PEER_SESS_SC_CONNECTEDCODE; reql = peer_getline(appctx); if (!reql) goto out; if (reql < 0) goto switchstate; /* Register status code */ curpeer->statuscode = atoi(trash.area); /* Awake main task */ task_wakeup(curpeers->sync_task, TASK_WOKEN_MSG); /* If status code is success */ if (curpeer->statuscode == PEER_SESS_SC_SUCCESSCODE) { init_connected_peer(curpeer, curpeers); } else { if (curpeer->statuscode == PEER_SESS_SC_ERRVERSION) curpeer->flags |= PEER_F_DWNGRD; /* Status code is not success, abort */ appctx->st0 = PEER_SESS_ST_END; goto switchstate; } _HA_ATOMIC_ADD(&connected_peers, 1); appctx->st0 = PEER_SESS_ST_WAITMSG; /* fall through */ } case PEER_SESS_ST_WAITMSG: { uint32_t msg_len = 0; char *msg_cur = trash.area; char *msg_end = trash.area; unsigned char msg_head[7]; int totl = 0; prev_state = appctx->st0; if (!curpeer) { curpeer = appctx->ctx.peers.ptr; HA_SPIN_LOCK(PEER_LOCK, &curpeer->lock); if (curpeer->appctx != appctx) { appctx->st0 = PEER_SESS_ST_END; goto switchstate; } } reql = peer_recv_msg(appctx, (char *)msg_head, sizeof msg_head, &msg_len, &totl); if (reql <= 0) { if (reql == -1) goto switchstate; goto send_msgs; } msg_end += msg_len; if (!peer_treat_awaited_msg(appctx, curpeer, msg_head, &msg_cur, msg_end, msg_len, totl)) goto switchstate; curpeer->flags |= PEER_F_ALIVE; /* skip consumed message */ co_skip(si_oc(si), totl); /* loop on that state to peek next message */ goto switchstate; send_msgs: if (curpeer->flags & PEER_F_HEARTBEAT) { curpeer->flags &= ~PEER_F_HEARTBEAT; repl = peer_send_heartbeatmsg(appctx); if (repl <= 0) { if (repl == -1) goto out; goto switchstate; } curpeer->tx_hbt++; } /* we get here when a peer_recv_msg() returns 0 in reql */ repl = peer_send_msgs(appctx, curpeer); if (repl <= 0) { if (repl == -1) goto out; goto switchstate; } /* noting more to do */ goto out; } case PEER_SESS_ST_EXIT: if (prev_state == PEER_SESS_ST_WAITMSG) _HA_ATOMIC_SUB(&connected_peers, 1); prev_state = appctx->st0; if (peer_send_status_errormsg(appctx) == -1) goto out; appctx->st0 = PEER_SESS_ST_END; goto switchstate; case PEER_SESS_ST_ERRSIZE: { if (prev_state == PEER_SESS_ST_WAITMSG) _HA_ATOMIC_SUB(&connected_peers, 1); prev_state = appctx->st0; if (peer_send_error_size_limitmsg(appctx) == -1) goto out; appctx->st0 = PEER_SESS_ST_END; goto switchstate; } case PEER_SESS_ST_ERRPROTO: { if (curpeer) curpeer->proto_err++; if (prev_state == PEER_SESS_ST_WAITMSG) _HA_ATOMIC_SUB(&connected_peers, 1); prev_state = appctx->st0; if (peer_send_error_protomsg(appctx) == -1) goto out; appctx->st0 = PEER_SESS_ST_END; prev_state = appctx->st0; /* fall through */ } case PEER_SESS_ST_END: { if (prev_state == PEER_SESS_ST_WAITMSG) _HA_ATOMIC_SUB(&connected_peers, 1); prev_state = appctx->st0; if (curpeer) { HA_SPIN_UNLOCK(PEER_LOCK, &curpeer->lock); curpeer = NULL; } si_shutw(si); si_shutr(si); si_ic(si)->flags |= CF_READ_NULL; goto out; } } } out: si_oc(si)->flags |= CF_READ_DONTWAIT; if (curpeer) HA_SPIN_UNLOCK(PEER_LOCK, &curpeer->lock); return; } static struct applet peer_applet = { .obj_type = OBJ_TYPE_APPLET, .name = "", /* used for logging */ .fct = peer_io_handler, .release = peer_session_release, }; /* * Use this function to force a close of a peer session */ static void peer_session_forceshutdown(struct peer *peer) { struct appctx *appctx = peer->appctx; /* Note that the peer sessions which have just been created * (->st0 == PEER_SESS_ST_CONNECT) must not * be shutdown, if not, the TCP session will never be closed * and stay in CLOSE_WAIT state after having been closed by * the remote side. */ if (!appctx || appctx->st0 == PEER_SESS_ST_CONNECT) return; if (appctx->applet != &peer_applet) return; __peer_session_deinit(peer); appctx->st0 = PEER_SESS_ST_END; appctx_wakeup(appctx); } /* Pre-configures a peers frontend to accept incoming connections */ void peers_setup_frontend(struct proxy *fe) { fe->last_change = now.tv_sec; fe->cap = PR_CAP_FE | PR_CAP_BE; fe->maxconn = 0; fe->conn_retries = CONN_RETRIES; fe->timeout.client = MS_TO_TICKS(5000); fe->accept = frontend_accept; fe->default_target = &peer_applet.obj_type; fe->options2 |= PR_O2_INDEPSTR | PR_O2_SMARTCON | PR_O2_SMARTACC; fe->bind_proc = 0; /* will be filled by users */ } /* * Create a new peer session in assigned state (connect will start automatically) */ static struct appctx *peer_session_create(struct peers *peers, struct peer *peer) { struct proxy *p = peers->peers_fe; /* attached frontend */ struct appctx *appctx; struct session *sess; struct stream *s; peer->reconnect = tick_add(now_ms, MS_TO_TICKS(PEER_RECONNECT_TIMEOUT)); peer->heartbeat = tick_add(now_ms, MS_TO_TICKS(PEER_HEARTBEAT_TIMEOUT)); peer->statuscode = PEER_SESS_SC_CONNECTCODE; s = NULL; appctx = appctx_new(&peer_applet, tid_bit); if (!appctx) goto out_close; appctx->st0 = PEER_SESS_ST_CONNECT; appctx->ctx.peers.ptr = (void *)peer; sess = session_new(p, NULL, &appctx->obj_type); if (!sess) { ha_alert("out of memory in peer_session_create().\n"); goto out_free_appctx; } if ((s = stream_new(sess, &appctx->obj_type)) == NULL) { ha_alert("Failed to initialize stream in peer_session_create().\n"); goto out_free_sess; } /* applet is waiting for data */ si_cant_get(&s->si[0]); appctx_wakeup(appctx); /* initiate an outgoing connection */ s->target = peer_session_target(peer, s); if (!sockaddr_alloc(&s->target_addr)) goto out_free_strm; *s->target_addr = peer->addr; s->flags = SF_ASSIGNED|SF_ADDR_SET; s->si[1].flags |= SI_FL_NOLINGER; s->do_log = NULL; s->uniq_id = 0; s->res.flags |= CF_READ_DONTWAIT; peer->appctx = appctx; task_wakeup(s->task, TASK_WOKEN_INIT); _HA_ATOMIC_ADD(&active_peers, 1); return appctx; /* Error unrolling */ out_free_strm: LIST_DEL(&s->list); pool_free(pool_head_stream, s); out_free_sess: session_free(sess); out_free_appctx: appctx_free(appctx); out_close: return NULL; } /* * Task processing function to manage re-connect, peer session * tasks wakeup on local update and heartbeat. */ static struct task *process_peer_sync(struct task * task, void *context, unsigned short state) { struct peers *peers = context; struct peer *ps; struct shared_table *st; task->expire = TICK_ETERNITY; if (!peers->peers_fe) { /* this one was never started, kill it */ signal_unregister_handler(peers->sighandler); task_destroy(peers->sync_task); peers->sync_task = NULL; return NULL; } /* Acquire lock for all peers of the section */ for (ps = peers->remote; ps; ps = ps->next) HA_SPIN_LOCK(PEER_LOCK, &ps->lock); if (!stopping) { /* Normal case (not soft stop)*/ if (((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMLOCAL) && (!nb_oldpids || tick_is_expired(peers->resync_timeout, now_ms)) && !(peers->flags & PEERS_F_RESYNC_ASSIGN)) { /* Resync from local peer needed no peer was assigned for the lesson and no old local peer found or resync timeout expire */ /* flag no more resync from local, to try resync from remotes */ peers->flags |= PEERS_F_RESYNC_LOCAL; /* reschedule a resync */ peers->resync_timeout = tick_add(now_ms, MS_TO_TICKS(PEER_RESYNC_TIMEOUT)); } /* For each session */ for (ps = peers->remote; ps; ps = ps->next) { /* For each remote peers */ if (!ps->local) { if (!ps->appctx) { /* no active peer connection */ if (ps->statuscode == 0 || ((ps->statuscode == PEER_SESS_SC_CONNECTCODE || ps->statuscode == PEER_SESS_SC_SUCCESSCODE || ps->statuscode == PEER_SESS_SC_CONNECTEDCODE) && tick_is_expired(ps->reconnect, now_ms))) { /* connection never tried * or previous peer connection established with success * or previous peer connection failed while connecting * and reconnection timer is expired */ /* retry a connect */ ps->appctx = peer_session_create(peers, ps); } else if (!tick_is_expired(ps->reconnect, now_ms)) { /* If previous session failed during connection * but reconnection timer is not expired */ /* reschedule task for reconnect */ task->expire = tick_first(task->expire, ps->reconnect); ps->new_conn++; } /* else do nothing */ } /* !ps->appctx */ else if (ps->statuscode == PEER_SESS_SC_SUCCESSCODE) { /* current peer connection is active and established */ if (((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMREMOTE) && !(peers->flags & PEERS_F_RESYNC_ASSIGN) && !(ps->flags & PEER_F_LEARN_NOTUP2DATE)) { /* Resync from a remote is needed * and no peer was assigned for lesson * and current peer may be up2date */ /* assign peer for the lesson */ ps->flags |= PEER_F_LEARN_ASSIGN; peers->flags |= PEERS_F_RESYNC_ASSIGN; /* wake up peer handler to handle a request of resync */ appctx_wakeup(ps->appctx); } else { int update_to_push = 0; /* Awake session if there is data to push */ for (st = ps->tables; st ; st = st->next) { if ((int)(st->last_pushed - st->table->localupdate) < 0) { /* wake up the peer handler to push local updates */ update_to_push = 1; /* There is no need to send a heartbeat message * when some updates must be pushed. The remote * peer will consider peer as alive when it will * receive these updates. */ ps->flags &= ~PEER_F_HEARTBEAT; /* Re-schedule another one later. */ ps->heartbeat = tick_add(now_ms, MS_TO_TICKS(PEER_HEARTBEAT_TIMEOUT)); /* We are going to send updates, let's ensure we will * come back to send heartbeat messages or to reconnect. */ task->expire = tick_first(ps->reconnect, ps->heartbeat); appctx_wakeup(ps->appctx); break; } } /* When there are updates to send we do not reconnect * and do not send heartbeat message either. */ if (!update_to_push) { if (tick_is_expired(ps->reconnect, now_ms)) { if (ps->flags & PEER_F_ALIVE) { /* This peer was alive during a 'reconnect' period. * Flag it as not alive again for the next period. */ ps->flags &= ~PEER_F_ALIVE; ps->reconnect = tick_add(now_ms, MS_TO_TICKS(PEER_RECONNECT_TIMEOUT)); } else { ps->reconnect = tick_add(now_ms, MS_TO_TICKS(50 + ha_random() % 2000)); peer_session_forceshutdown(ps); ps->no_hbt++; } } else if (tick_is_expired(ps->heartbeat, now_ms)) { ps->heartbeat = tick_add(now_ms, MS_TO_TICKS(PEER_HEARTBEAT_TIMEOUT)); ps->flags |= PEER_F_HEARTBEAT; appctx_wakeup(ps->appctx); } task->expire = tick_first(ps->reconnect, ps->heartbeat); } } /* else do nothing */ } /* SUCCESSCODE */ } /* !ps->peer->local */ } /* for */ /* Resync from remotes expired: consider resync is finished */ if (((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMREMOTE) && !(peers->flags & PEERS_F_RESYNC_ASSIGN) && tick_is_expired(peers->resync_timeout, now_ms)) { /* Resync from remote peer needed * no peer was assigned for the lesson * and resync timeout expire */ /* flag no more resync from remote, consider resync is finished */ peers->flags |= PEERS_F_RESYNC_REMOTE; } if ((peers->flags & PEERS_RESYNC_STATEMASK) != PEERS_RESYNC_FINISHED) { /* Resync not finished*/ /* reschedule task to resync timeout if not expired, to ended resync if needed */ if (!tick_is_expired(peers->resync_timeout, now_ms)) task->expire = tick_first(task->expire, peers->resync_timeout); } } /* !stopping */ else { /* soft stop case */ if (state & TASK_WOKEN_SIGNAL) { /* We've just received the signal */ if (!(peers->flags & PEERS_F_DONOTSTOP)) { /* add DO NOT STOP flag if not present */ _HA_ATOMIC_ADD(&jobs, 1); peers->flags |= PEERS_F_DONOTSTOP; ps = peers->local; for (st = ps->tables; st ; st = st->next) st->table->syncing++; } /* disconnect all connected peers */ for (ps = peers->remote; ps; ps = ps->next) { /* we're killing a connection, we must apply a random delay before * retrying otherwise the other end will do the same and we can loop * for a while. */ ps->reconnect = tick_add(now_ms, MS_TO_TICKS(50 + ha_random() % 2000)); if (ps->appctx) { peer_session_forceshutdown(ps); } } } ps = peers->local; if (ps->flags & PEER_F_TEACH_COMPLETE) { if (peers->flags & PEERS_F_DONOTSTOP) { /* resync of new process was complete, current process can die now */ _HA_ATOMIC_SUB(&jobs, 1); peers->flags &= ~PEERS_F_DONOTSTOP; for (st = ps->tables; st ; st = st->next) st->table->syncing--; } } else if (!ps->appctx) { /* If there's no active peer connection */ if (ps->statuscode == 0 || ps->statuscode == PEER_SESS_SC_SUCCESSCODE || ps->statuscode == PEER_SESS_SC_CONNECTEDCODE || ps->statuscode == PEER_SESS_SC_TRYAGAIN) { /* connection never tried * or previous peer connection was successfully established * or previous tcp connect succeeded but init state incomplete * or during previous connect, peer replies a try again statuscode */ /* connect to the peer */ peer_session_create(peers, ps); } else { /* Other error cases */ if (peers->flags & PEERS_F_DONOTSTOP) { /* unable to resync new process, current process can die now */ _HA_ATOMIC_SUB(&jobs, 1); peers->flags &= ~PEERS_F_DONOTSTOP; for (st = ps->tables; st ; st = st->next) st->table->syncing--; } } } else if (ps->statuscode == PEER_SESS_SC_SUCCESSCODE ) { /* current peer connection is active and established * wake up all peer handlers to push remaining local updates */ for (st = ps->tables; st ; st = st->next) { if ((int)(st->last_pushed - st->table->localupdate) < 0) { appctx_wakeup(ps->appctx); break; } } } } /* stopping */ /* Release lock for all peers of the section */ for (ps = peers->remote; ps; ps = ps->next) HA_SPIN_UNLOCK(PEER_LOCK, &ps->lock); /* Wakeup for re-connect */ return task; } /* * returns 0 in case of error. */ int peers_init_sync(struct peers *peers) { struct peer * curpeer; for (curpeer = peers->remote; curpeer; curpeer = curpeer->next) { peers->peers_fe->maxconn += 3; } peers->sync_task = task_new(MAX_THREADS_MASK); if (!peers->sync_task) return 0; peers->sync_task->process = process_peer_sync; peers->sync_task->context = (void *)peers; peers->sighandler = signal_register_task(0, peers->sync_task, 0); task_wakeup(peers->sync_task, TASK_WOKEN_INIT); return 1; } /* * Allocate a cache a dictionary entries used upon transmission. */ static struct dcache_tx *new_dcache_tx(size_t max_entries) { struct dcache_tx *d; struct ebpt_node *entries; d = malloc(sizeof *d); entries = calloc(max_entries, sizeof *entries); if (!d || !entries) goto err; d->lru_key = 0; d->prev_lookup = NULL; d->cached_entries = EB_ROOT_UNIQUE; d->entries = entries; return d; err: free(d); free(entries); return NULL; } /* * Allocate a cache of dictionary entries with as name and * as maximum of entries. * Return the dictionary cache if succeeded, NULL if not. * Must be deallocated calling free_dcache(). */ static struct dcache *new_dcache(size_t max_entries) { struct dcache_tx *dc_tx; struct dcache *dc; struct dcache_rx *dc_rx; dc = calloc(1, sizeof *dc); dc_tx = new_dcache_tx(max_entries); dc_rx = calloc(max_entries, sizeof *dc_rx); if (!dc || !dc_tx || !dc_rx) goto err; dc->tx = dc_tx; dc->rx = dc_rx; dc->max_entries = max_entries; return dc; err: free(dc); free(dc_tx); free(dc_rx); return NULL; } /* * Look for the dictionary entry with the value of in cache of dictionary * entries used upon transmission. * Return the entry if found, NULL if not. */ static struct ebpt_node *dcache_tx_lookup_value(struct dcache_tx *d, struct dcache_tx_entry *i) { return ebpt_lookup(&d->cached_entries, i->entry.key); } /* * Flush cache. * Always succeeds. */ static inline void flush_dcache(struct peer *peer) { int i; struct dcache *dc = peer->dcache; for (i = 0; i < dc->max_entries; i++) ebpt_delete(&dc->tx->entries[i]); memset(dc->rx, 0, dc->max_entries * sizeof *dc->rx); } /* * Insert a dictionary entry in cache part used upon transmission (->tx) * with information provided by dictionary cache entry (especially the value * to be inserted if not already). Return if already present in the cache * or something different of if not. */ static struct ebpt_node *dcache_tx_insert(struct dcache *dc, struct dcache_tx_entry *i) { struct dcache_tx *dc_tx; struct ebpt_node *o; dc_tx = dc->tx; if (dc_tx->prev_lookup && dc_tx->prev_lookup->key == i->entry.key) { o = dc_tx->prev_lookup; } else { o = dcache_tx_lookup_value(dc_tx, i); if (o) { /* Save it */ dc_tx->prev_lookup = o; } } if (o) { /* Copy the ID. */ i->id = o - dc->tx->entries; return &i->entry; } /* The new entry to put in cache */ dc_tx->prev_lookup = o = &dc_tx->entries[dc_tx->lru_key]; ebpt_delete(o); o->key = i->entry.key; ebpt_insert(&dc_tx->cached_entries, o); i->id = dc_tx->lru_key; /* Update the index for the next entry to put in cache */ dc_tx->lru_key = (dc_tx->lru_key + 1) & (dc->max_entries - 1); return o; } /* * Allocate a dictionary cache for each peer of section. * Return 1 if succeeded, 0 if not. */ int peers_alloc_dcache(struct peers *peers) { struct peer *p; for (p = peers->remote; p; p = p->next) { p->dcache = new_dcache(PEER_STKT_CACHE_MAX_ENTRIES); if (!p->dcache) return 0; } return 1; } /* * Function used to register a table for sync on a group of peers * */ void peers_register_table(struct peers *peers, struct stktable *table) { struct shared_table *st; struct peer * curpeer; int id = 0; for (curpeer = peers->remote; curpeer; curpeer = curpeer->next) { st = calloc(1,sizeof(*st)); st->table = table; st->next = curpeer->tables; if (curpeer->tables) id = curpeer->tables->local_id; st->local_id = id + 1; curpeer->tables = st; } table->sync_task = peers->sync_task; } /* * Parse the "show peers" command arguments. * Returns 0 if succeeded, 1 if not with the ->msg of the appctx set as * error message. */ static int cli_parse_show_peers(char **args, char *payload, struct appctx *appctx, void *private) { appctx->ctx.cfgpeers.target = NULL; if (*args[2]) { struct peers *p; for (p = cfg_peers; p; p = p->next) { if (!strcmp(p->id, args[2])) { appctx->ctx.cfgpeers.target = p; break; } } if (!p) return cli_err(appctx, "No such peers\n"); } return 0; } /* * This function dumps the peer state information of "peers" section. * Returns 0 if the output buffer is full and needs to be called again, non-zero if not. * Dedicated to be called by cli_io_handler_show_peers() cli I/O handler. */ static int peers_dump_head(struct buffer *msg, struct stream_interface *si, struct peers *peers) { struct tm tm; get_localtime(peers->last_change, &tm); chunk_appendf(msg, "%p: [%02d/%s/%04d:%02d:%02d:%02d] id=%s state=%d flags=0x%x resync_timeout=%s task_calls=%u\n", peers, tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900, tm.tm_hour, tm.tm_min, tm.tm_sec, peers->id, peers->state, peers->flags, peers->resync_timeout ? tick_is_expired(peers->resync_timeout, now_ms) ? "" : human_time(TICKS_TO_MS(peers->resync_timeout - now_ms), TICKS_TO_MS(1000)) : "", peers->sync_task ? peers->sync_task->calls : 0); if (ci_putchk(si_ic(si), msg) == -1) { si_rx_room_blk(si); return 0; } return 1; } /* * This function dumps state information. * Returns 0 if the output buffer is full and needs to be called again, non-zero * if not. Dedicated to be called by cli_io_handler_show_peers() cli I/O handler. */ static int peers_dump_peer(struct buffer *msg, struct stream_interface *si, struct peer *peer) { struct connection *conn; char pn[INET6_ADDRSTRLEN]; struct stream_interface *peer_si; struct stream *peer_s; struct appctx *appctx; struct shared_table *st; addr_to_str(&peer->addr, pn, sizeof pn); chunk_appendf(msg, " %p: id=%s(%s) addr=%s:%d status=%s reconnect=%s confirm=%u tx_hbt=%u rx_hbt=%u no_hbt=%u new_conn=%u proto_err=%u\n", peer, peer->id, peer->local ? "local" : "remote", pn, get_host_port(&peer->addr), statuscode_str(peer->statuscode), peer->reconnect ? tick_is_expired(peer->reconnect, now_ms) ? "" : human_time(TICKS_TO_MS(peer->reconnect - now_ms), TICKS_TO_MS(1000)) : "", peer->confirm, peer->tx_hbt, peer->rx_hbt, peer->no_hbt, peer->new_conn, peer->proto_err); chunk_appendf(&trash, " flags=0x%x", peer->flags); appctx = peer->appctx; if (!appctx) goto table_info; chunk_appendf(&trash, " appctx:%p st0=%d st1=%d task_calls=%u", appctx, appctx->st0, appctx->st1, appctx->t ? appctx->t->calls : 0); peer_si = peer->appctx->owner; if (!peer_si) goto table_info; peer_s = si_strm(peer_si); if (!peer_s) goto table_info; chunk_appendf(&trash, " state=%s", si_state_str(si_opposite(peer_si)->state)); conn = objt_conn(strm_orig(peer_s)); if (conn) chunk_appendf(&trash, "\n xprt=%s", conn_get_xprt_name(conn)); switch (conn && conn_get_src(conn) ? addr_to_str(conn->src, pn, sizeof(pn)) : AF_UNSPEC) { case AF_INET: case AF_INET6: chunk_appendf(&trash, " src=%s:%d", pn, get_host_port(conn->src)); break; case AF_UNIX: chunk_appendf(&trash, " src=unix:%d", strm_li(peer_s)->luid); break; } switch (conn && conn_get_dst(conn) ? addr_to_str(conn->dst, pn, sizeof(pn)) : AF_UNSPEC) { case AF_INET: case AF_INET6: chunk_appendf(&trash, " addr=%s:%d", pn, get_host_port(conn->dst)); break; case AF_UNIX: chunk_appendf(&trash, " addr=unix:%d", strm_li(peer_s)->luid); break; } table_info: if (peer->remote_table) chunk_appendf(&trash, "\n remote_table:%p id=%s local_id=%d remote_id=%d", peer->remote_table, peer->remote_table->table->id, peer->remote_table->local_id, peer->remote_table->remote_id); if (peer->last_local_table) chunk_appendf(&trash, "\n last_local_table:%p id=%s local_id=%d remote_id=%d", peer->last_local_table, peer->last_local_table->table->id, peer->last_local_table->local_id, peer->last_local_table->remote_id); if (peer->tables) { chunk_appendf(&trash, "\n shared tables:"); for (st = peer->tables; st; st = st->next) { int i, count; struct stktable *t; struct dcache *dcache; t = st->table; dcache = peer->dcache; chunk_appendf(&trash, "\n %p local_id=%d remote_id=%d " "flags=0x%x remote_data=0x%llx", st, st->local_id, st->remote_id, st->flags, (unsigned long long)st->remote_data); chunk_appendf(&trash, "\n last_acked=%u last_pushed=%u last_get=%u" " teaching_origin=%u update=%u", st->last_acked, st->last_pushed, st->last_get, st->teaching_origin, st->update); chunk_appendf(&trash, "\n table:%p id=%s update=%u localupdate=%u" " commitupdate=%u syncing=%u", t, t->id, t->update, t->localupdate, t->commitupdate, t->syncing); chunk_appendf(&trash, "\n TX dictionary cache:"); count = 0; for (i = 0; i < dcache->max_entries; i++) { struct ebpt_node *node; struct dict_entry *de; node = &dcache->tx->entries[i]; if (!node->key) break; if (!count++) chunk_appendf(&trash, "\n "); de = node->key; chunk_appendf(&trash, " %3u -> %s", i, (char *)de->value.key); count &= 0x3; } chunk_appendf(&trash, "\n RX dictionary cache:"); count = 0; for (i = 0; i < dcache->max_entries; i++) { if (!count++) chunk_appendf(&trash, "\n "); chunk_appendf(&trash, " %3u -> %s", i, dcache->rx[i].de ? (char *)dcache->rx[i].de->value.key : "-"); count &= 0x3; } } } end: chunk_appendf(&trash, "\n"); if (ci_putchk(si_ic(si), msg) == -1) { si_rx_room_blk(si); return 0; } return 1; } /* * This function dumps all the peers of "peers" section. * Returns 0 if the output buffer is full and needs to be called * again, non-zero if not. It proceeds in an isolated thread, so * there is no thread safety issue here. */ static int cli_io_handler_show_peers(struct appctx *appctx) { int show_all; int ret = 0, first_peers = 1; struct stream_interface *si = appctx->owner; thread_isolate(); show_all = !appctx->ctx.cfgpeers.target; chunk_reset(&trash); while (appctx->st2 != STAT_ST_FIN) { switch (appctx->st2) { case STAT_ST_INIT: if (show_all) appctx->ctx.cfgpeers.peers = cfg_peers; else appctx->ctx.cfgpeers.peers = appctx->ctx.cfgpeers.target; appctx->st2 = STAT_ST_LIST; /* fall through */ case STAT_ST_LIST: if (!appctx->ctx.cfgpeers.peers) { /* No more peers list. */ appctx->st2 = STAT_ST_END; } else { if (!first_peers) chunk_appendf(&trash, "\n"); else first_peers = 0; if (!peers_dump_head(&trash, si, appctx->ctx.cfgpeers.peers)) goto out; appctx->ctx.cfgpeers.peer = appctx->ctx.cfgpeers.peers->remote; appctx->ctx.cfgpeers.peers = appctx->ctx.cfgpeers.peers->next; appctx->st2 = STAT_ST_INFO; } break; case STAT_ST_INFO: if (!appctx->ctx.cfgpeers.peer) { /* End of peer list */ if (show_all) appctx->st2 = STAT_ST_LIST; else appctx->st2 = STAT_ST_END; } else { if (!peers_dump_peer(&trash, si, appctx->ctx.cfgpeers.peer)) goto out; appctx->ctx.cfgpeers.peer = appctx->ctx.cfgpeers.peer->next; } break; case STAT_ST_END: appctx->st2 = STAT_ST_FIN; break; } } ret = 1; out: thread_release(); return ret; } /* * CLI keywords. */ static struct cli_kw_list cli_kws = {{ }, { { { "show", "peers", NULL }, "show peers [peers section]: dump some information about all the peers or this peers section", cli_parse_show_peers, cli_io_handler_show_peers, }, {}, }}; /* Register cli keywords */ INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);