/* * HTTP protocol analyzer * * Copyright 2000-2011 Willy Tarreau * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include const char HTTP_100[] = "HTTP/1.1 100 Continue\r\n\r\n"; const struct chunk http_100_chunk = { .str = (char *)&HTTP_100, .len = sizeof(HTTP_100)-1 }; /* Warning: no "connection" header is provided with the 3xx messages below */ const char *HTTP_301 = "HTTP/1.1 301 Moved Permanently\r\n" "Content-length: 0\r\n" "Location: "; /* not terminated since it will be concatenated with the URL */ const char *HTTP_302 = "HTTP/1.1 302 Found\r\n" "Cache-Control: no-cache\r\n" "Content-length: 0\r\n" "Location: "; /* not terminated since it will be concatenated with the URL */ /* same as 302 except that the browser MUST retry with the GET method */ const char *HTTP_303 = "HTTP/1.1 303 See Other\r\n" "Cache-Control: no-cache\r\n" "Content-length: 0\r\n" "Location: "; /* not terminated since it will be concatenated with the URL */ /* same as 302 except that the browser MUST retry with the same method */ const char *HTTP_307 = "HTTP/1.1 307 Temporary Redirect\r\n" "Cache-Control: no-cache\r\n" "Content-length: 0\r\n" "Location: "; /* not terminated since it will be concatenated with the URL */ /* same as 301 except that the browser MUST retry with the same method */ const char *HTTP_308 = "HTTP/1.1 308 Permanent Redirect\r\n" "Content-length: 0\r\n" "Location: "; /* not terminated since it will be concatenated with the URL */ /* Warning: this one is an sprintf() fmt string, with as its only argument */ const char *HTTP_401_fmt = "HTTP/1.0 401 Unauthorized\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "WWW-Authenticate: Basic realm=\"%s\"\r\n" "\r\n" "

401 Unauthorized

\nYou need a valid user and password to access this content.\n\n"; const char *HTTP_407_fmt = "HTTP/1.0 407 Unauthorized\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "Proxy-Authenticate: Basic realm=\"%s\"\r\n" "\r\n" "

407 Unauthorized

\nYou need a valid user and password to access this content.\n\n"; const int http_err_codes[HTTP_ERR_SIZE] = { [HTTP_ERR_200] = 200, /* used by "monitor-uri" */ [HTTP_ERR_400] = 400, [HTTP_ERR_403] = 403, [HTTP_ERR_405] = 405, [HTTP_ERR_408] = 408, [HTTP_ERR_429] = 429, [HTTP_ERR_500] = 500, [HTTP_ERR_502] = 502, [HTTP_ERR_503] = 503, [HTTP_ERR_504] = 504, }; static const char *http_err_msgs[HTTP_ERR_SIZE] = { [HTTP_ERR_200] = "HTTP/1.0 200 OK\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

200 OK

\nService ready.\n\n", [HTTP_ERR_400] = "HTTP/1.0 400 Bad request\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

400 Bad request

\nYour browser sent an invalid request.\n\n", [HTTP_ERR_403] = "HTTP/1.0 403 Forbidden\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

403 Forbidden

\nRequest forbidden by administrative rules.\n\n", [HTTP_ERR_405] = "HTTP/1.0 405 Method Not Allowed\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

405 Method Not Allowed

\nA request was made of a resource using a request method not supported by that resource\n\n", [HTTP_ERR_408] = "HTTP/1.0 408 Request Time-out\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

408 Request Time-out

\nYour browser didn't send a complete request in time.\n\n", [HTTP_ERR_429] = "HTTP/1.0 429 Too Many Requests\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

429 Too Many Requests

\nYou have sent too many requests in a given amount of time.\n\n", [HTTP_ERR_500] = "HTTP/1.0 500 Server Error\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

500 Server Error

\nAn internal server error occured.\n\n", [HTTP_ERR_502] = "HTTP/1.0 502 Bad Gateway\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

502 Bad Gateway

\nThe server returned an invalid or incomplete response.\n\n", [HTTP_ERR_503] = "HTTP/1.0 503 Service Unavailable\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

503 Service Unavailable

\nNo server is available to handle this request.\n\n", [HTTP_ERR_504] = "HTTP/1.0 504 Gateway Time-out\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

504 Gateway Time-out

\nThe server didn't respond in time.\n\n", }; /* status codes available for the stats admin page (strictly 4 chars length) */ const char *stat_status_codes[STAT_STATUS_SIZE] = { [STAT_STATUS_DENY] = "DENY", [STAT_STATUS_DONE] = "DONE", [STAT_STATUS_ERRP] = "ERRP", [STAT_STATUS_EXCD] = "EXCD", [STAT_STATUS_NONE] = "NONE", [STAT_STATUS_PART] = "PART", [STAT_STATUS_UNKN] = "UNKN", }; /* List head of all known action keywords for "http-request" */ struct action_kw_list http_req_keywords = { .list = LIST_HEAD_INIT(http_req_keywords.list) }; /* List head of all known action keywords for "http-response" */ struct action_kw_list http_res_keywords = { .list = LIST_HEAD_INIT(http_res_keywords.list) }; /* We must put the messages here since GCC cannot initialize consts depending * on strlen(). */ struct chunk http_err_chunks[HTTP_ERR_SIZE]; /* this struct is used between calls to smp_fetch_hdr() or smp_fetch_cookie() */ static struct hdr_ctx static_hdr_ctx; #define FD_SETS_ARE_BITFIELDS #ifdef FD_SETS_ARE_BITFIELDS /* * This map is used with all the FD_* macros to check whether a particular bit * is set or not. Each bit represents an ACSII code. FD_SET() sets those bytes * which should be encoded. When FD_ISSET() returns non-zero, it means that the * byte should be encoded. Be careful to always pass bytes from 0 to 255 * exclusively to the macros. */ fd_set hdr_encode_map[(sizeof(fd_set) > (256/8)) ? 1 : ((256/8) / sizeof(fd_set))]; fd_set url_encode_map[(sizeof(fd_set) > (256/8)) ? 1 : ((256/8) / sizeof(fd_set))]; fd_set http_encode_map[(sizeof(fd_set) > (256/8)) ? 1 : ((256/8) / sizeof(fd_set))]; #else #error "Check if your OS uses bitfields for fd_sets" #endif static int http_apply_redirect_rule(struct redirect_rule *rule, struct stream *s, struct http_txn *txn); /* This function returns a reason associated with the HTTP status. * This function never fails, a message is always returned. */ const char *get_reason(unsigned int status) { switch (status) { case 100: return "Continue"; case 101: return "Switching Protocols"; case 102: return "Processing"; case 200: return "OK"; case 201: return "Created"; case 202: return "Accepted"; case 203: return "Non-Authoritative Information"; case 204: return "No Content"; case 205: return "Reset Content"; case 206: return "Partial Content"; case 207: return "Multi-Status"; case 210: return "Content Different"; case 226: return "IM Used"; case 300: return "Multiple Choices"; case 301: return "Moved Permanently"; case 302: return "Moved Temporarily"; case 303: return "See Other"; case 304: return "Not Modified"; case 305: return "Use Proxy"; case 307: return "Temporary Redirect"; case 308: return "Permanent Redirect"; case 310: return "Too many Redirects"; case 400: return "Bad Request"; case 401: return "Unauthorized"; case 402: return "Payment Required"; case 403: return "Forbidden"; case 404: return "Not Found"; case 405: return "Method Not Allowed"; case 406: return "Not Acceptable"; case 407: return "Proxy Authentication Required"; case 408: return "Request Time-out"; case 409: return "Conflict"; case 410: return "Gone"; case 411: return "Length Required"; case 412: return "Precondition Failed"; case 413: return "Request Entity Too Large"; case 414: return "Request-URI Too Long"; case 415: return "Unsupported Media Type"; case 416: return "Requested range unsatisfiable"; case 417: return "Expectation failed"; case 418: return "I'm a teapot"; case 422: return "Unprocessable entity"; case 423: return "Locked"; case 424: return "Method failure"; case 425: return "Unordered Collection"; case 426: return "Upgrade Required"; case 428: return "Precondition Required"; case 429: return "Too Many Requests"; case 431: return "Request Header Fields Too Large"; case 449: return "Retry With"; case 450: return "Blocked by Windows Parental Controls"; case 451: return "Unavailable For Legal Reasons"; case 456: return "Unrecoverable Error"; case 499: return "client has closed connection"; case 500: return "Internal Server Error"; case 501: return "Not Implemented"; case 502: return "Bad Gateway ou Proxy Error"; case 503: return "Service Unavailable"; case 504: return "Gateway Time-out"; case 505: return "HTTP Version not supported"; case 506: return "Variant also negociate"; case 507: return "Insufficient storage"; case 508: return "Loop detected"; case 509: return "Bandwidth Limit Exceeded"; case 510: return "Not extended"; case 511: return "Network authentication required"; case 520: return "Web server is returning an unknown error"; default: switch (status) { case 100 ... 199: return "Informational"; case 200 ... 299: return "Success"; case 300 ... 399: return "Redirection"; case 400 ... 499: return "Client Error"; case 500 ... 599: return "Server Error"; default: return "Other"; } } } void init_proto_http() { int i; char *tmp; int msg; for (msg = 0; msg < HTTP_ERR_SIZE; msg++) { if (!http_err_msgs[msg]) { Alert("Internal error: no message defined for HTTP return code %d. Aborting.\n", msg); abort(); } http_err_chunks[msg].str = (char *)http_err_msgs[msg]; http_err_chunks[msg].len = strlen(http_err_msgs[msg]); } /* initialize the log header encoding map : '{|}"#' should be encoded with * '#' as prefix, as well as non-printable characters ( <32 or >= 127 ). * URL encoding only requires '"', '#' to be encoded as well as non- * printable characters above. */ memset(hdr_encode_map, 0, sizeof(hdr_encode_map)); memset(url_encode_map, 0, sizeof(url_encode_map)); memset(http_encode_map, 0, sizeof(url_encode_map)); for (i = 0; i < 32; i++) { FD_SET(i, hdr_encode_map); FD_SET(i, url_encode_map); } for (i = 127; i < 256; i++) { FD_SET(i, hdr_encode_map); FD_SET(i, url_encode_map); } tmp = "\"#{|}"; while (*tmp) { FD_SET(*tmp, hdr_encode_map); tmp++; } tmp = "\"#"; while (*tmp) { FD_SET(*tmp, url_encode_map); tmp++; } /* initialize the http header encoding map. The draft httpbis define the * header content as: * * HTTP-message = start-line * *( header-field CRLF ) * CRLF * [ message-body ] * header-field = field-name ":" OWS field-value OWS * field-value = *( field-content / obs-fold ) * field-content = field-vchar [ 1*( SP / HTAB ) field-vchar ] * obs-fold = CRLF 1*( SP / HTAB ) * field-vchar = VCHAR / obs-text * VCHAR = %x21-7E * obs-text = %x80-FF * * All the chars are encoded except "VCHAR", "obs-text", SP and HTAB. * The encoded chars are form 0x00 to 0x08, 0x0a to 0x1f and 0x7f. The * "obs-fold" is volontary forgotten because haproxy remove this. */ memset(http_encode_map, 0, sizeof(http_encode_map)); for (i = 0x00; i <= 0x08; i++) FD_SET(i, http_encode_map); for (i = 0x0a; i <= 0x1f; i++) FD_SET(i, http_encode_map); FD_SET(0x7f, http_encode_map); /* memory allocations */ pool2_http_txn = create_pool("http_txn", sizeof(struct http_txn), MEM_F_SHARED); pool2_requri = create_pool("requri", REQURI_LEN, MEM_F_SHARED); pool2_uniqueid = create_pool("uniqueid", UNIQUEID_LEN, MEM_F_SHARED); } /* * We have 26 list of methods (1 per first letter), each of which can have * up to 3 entries (2 valid, 1 null). */ struct http_method_desc { enum http_meth_t meth; int len; const char text[8]; }; const struct http_method_desc http_methods[26][3] = { ['C' - 'A'] = { [0] = { .meth = HTTP_METH_CONNECT , .len=7, .text="CONNECT" }, }, ['D' - 'A'] = { [0] = { .meth = HTTP_METH_DELETE , .len=6, .text="DELETE" }, }, ['G' - 'A'] = { [0] = { .meth = HTTP_METH_GET , .len=3, .text="GET" }, }, ['H' - 'A'] = { [0] = { .meth = HTTP_METH_HEAD , .len=4, .text="HEAD" }, }, ['O' - 'A'] = { [0] = { .meth = HTTP_METH_OPTIONS , .len=7, .text="OPTIONS" }, }, ['P' - 'A'] = { [0] = { .meth = HTTP_METH_POST , .len=4, .text="POST" }, [1] = { .meth = HTTP_METH_PUT , .len=3, .text="PUT" }, }, ['T' - 'A'] = { [0] = { .meth = HTTP_METH_TRACE , .len=5, .text="TRACE" }, }, /* rest is empty like this : * [0] = { .meth = HTTP_METH_OTHER , .len=0, .text="" }, */ }; const struct http_method_name http_known_methods[HTTP_METH_OTHER] = { [HTTP_METH_OPTIONS] = { "OPTIONS", 7 }, [HTTP_METH_GET] = { "GET", 3 }, [HTTP_METH_HEAD] = { "HEAD", 4 }, [HTTP_METH_POST] = { "POST", 4 }, [HTTP_METH_PUT] = { "PUT", 3 }, [HTTP_METH_DELETE] = { "DELETE", 6 }, [HTTP_METH_TRACE] = { "TRACE", 5 }, [HTTP_METH_CONNECT] = { "CONNECT", 7 }, }; /* It is about twice as fast on recent architectures to lookup a byte in a * table than to perform a boolean AND or OR between two tests. Refer to * RFC2616 for those chars. */ const char http_is_spht[256] = { [' '] = 1, ['\t'] = 1, }; const char http_is_crlf[256] = { ['\r'] = 1, ['\n'] = 1, }; const char http_is_lws[256] = { [' '] = 1, ['\t'] = 1, ['\r'] = 1, ['\n'] = 1, }; const char http_is_sep[256] = { ['('] = 1, [')'] = 1, ['<'] = 1, ['>'] = 1, ['@'] = 1, [','] = 1, [';'] = 1, [':'] = 1, ['"'] = 1, ['/'] = 1, ['['] = 1, [']'] = 1, ['{'] = 1, ['}'] = 1, ['?'] = 1, ['='] = 1, [' '] = 1, ['\t'] = 1, ['\\'] = 1, }; const char http_is_ctl[256] = { [0 ... 31] = 1, [127] = 1, }; /* * A token is any ASCII char that is neither a separator nor a CTL char. * Do not overwrite values in assignment since gcc-2.95 will not handle * them correctly. Instead, define every non-CTL char's status. */ const char http_is_token[256] = { [' '] = 0, ['!'] = 1, ['"'] = 0, ['#'] = 1, ['$'] = 1, ['%'] = 1, ['&'] = 1, ['\''] = 1, ['('] = 0, [')'] = 0, ['*'] = 1, ['+'] = 1, [','] = 0, ['-'] = 1, ['.'] = 1, ['/'] = 0, ['0'] = 1, ['1'] = 1, ['2'] = 1, ['3'] = 1, ['4'] = 1, ['5'] = 1, ['6'] = 1, ['7'] = 1, ['8'] = 1, ['9'] = 1, [':'] = 0, [';'] = 0, ['<'] = 0, ['='] = 0, ['>'] = 0, ['?'] = 0, ['@'] = 0, ['A'] = 1, ['B'] = 1, ['C'] = 1, ['D'] = 1, ['E'] = 1, ['F'] = 1, ['G'] = 1, ['H'] = 1, ['I'] = 1, ['J'] = 1, ['K'] = 1, ['L'] = 1, ['M'] = 1, ['N'] = 1, ['O'] = 1, ['P'] = 1, ['Q'] = 1, ['R'] = 1, ['S'] = 1, ['T'] = 1, ['U'] = 1, ['V'] = 1, ['W'] = 1, ['X'] = 1, ['Y'] = 1, ['Z'] = 1, ['['] = 0, ['\\'] = 0, [']'] = 0, ['^'] = 1, ['_'] = 1, ['`'] = 1, ['a'] = 1, ['b'] = 1, ['c'] = 1, ['d'] = 1, ['e'] = 1, ['f'] = 1, ['g'] = 1, ['h'] = 1, ['i'] = 1, ['j'] = 1, ['k'] = 1, ['l'] = 1, ['m'] = 1, ['n'] = 1, ['o'] = 1, ['p'] = 1, ['q'] = 1, ['r'] = 1, ['s'] = 1, ['t'] = 1, ['u'] = 1, ['v'] = 1, ['w'] = 1, ['x'] = 1, ['y'] = 1, ['z'] = 1, ['{'] = 0, ['|'] = 1, ['}'] = 0, ['~'] = 1, }; /* * An http ver_token is any ASCII which can be found in an HTTP version, * which includes 'H', 'T', 'P', '/', '.' and any digit. */ const char http_is_ver_token[256] = { ['.'] = 1, ['/'] = 1, ['0'] = 1, ['1'] = 1, ['2'] = 1, ['3'] = 1, ['4'] = 1, ['5'] = 1, ['6'] = 1, ['7'] = 1, ['8'] = 1, ['9'] = 1, ['H'] = 1, ['P'] = 1, ['R'] = 1, ['S'] = 1, ['T'] = 1, }; /* * Adds a header and its CRLF at the tail of the message's buffer, just before * the last CRLF. Text length is measured first, so it cannot be NULL. * The header is also automatically added to the index , and the end * of headers is automatically adjusted. The number of bytes added is returned * on success, otherwise <0 is returned indicating an error. */ int http_header_add_tail(struct http_msg *msg, struct hdr_idx *hdr_idx, const char *text) { int bytes, len; len = strlen(text); bytes = buffer_insert_line2(msg->chn->buf, msg->chn->buf->p + msg->eoh, text, len); if (!bytes) return -1; http_msg_move_end(msg, bytes); return hdr_idx_add(len, 1, hdr_idx, hdr_idx->tail); } /* * Adds a header and its CRLF at the tail of the message's buffer, just before * the last CRLF. bytes are copied, not counting the CRLF. If is NULL, then * the buffer is only opened and the space reserved, but nothing is copied. * The header is also automatically added to the index , and the end * of headers is automatically adjusted. The number of bytes added is returned * on success, otherwise <0 is returned indicating an error. */ int http_header_add_tail2(struct http_msg *msg, struct hdr_idx *hdr_idx, const char *text, int len) { int bytes; bytes = buffer_insert_line2(msg->chn->buf, msg->chn->buf->p + msg->eoh, text, len); if (!bytes) return -1; http_msg_move_end(msg, bytes); return hdr_idx_add(len, 1, hdr_idx, hdr_idx->tail); } /* * Checks if is exactly for chars, and ends with a colon. * If so, returns the position of the first non-space character relative to * , or - if not found before. If no value is found, it tries * to return a pointer to the place after the first space. Returns 0 if the * header name does not match. Checks are case-insensitive. */ int http_header_match2(const char *hdr, const char *end, const char *name, int len) { const char *val; if (hdr + len >= end) return 0; if (hdr[len] != ':') return 0; if (strncasecmp(hdr, name, len) != 0) return 0; val = hdr + len + 1; while (val < end && HTTP_IS_SPHT(*val)) val++; if ((val >= end) && (len + 2 <= end - hdr)) return len + 2; /* we may replace starting from second space */ return val - hdr; } /* Find the first or next occurrence of header in message buffer * using headers index , and return it in the structure. This * structure holds everything necessary to use the header and find next * occurrence. If its member is 0, the header is searched from the * beginning. Otherwise, the next occurrence is returned. The function returns * 1 when it finds a value, and 0 when there is no more. It is very similar to * http_find_header2() except that it is designed to work with full-line headers * whose comma is not a delimiter but is part of the syntax. As a special case, * if ctx->val is NULL when searching for a new values of a header, the current * header is rescanned. This allows rescanning after a header deletion. */ int http_find_full_header2(const char *name, int len, char *sol, struct hdr_idx *idx, struct hdr_ctx *ctx) { char *eol, *sov; int cur_idx, old_idx; cur_idx = ctx->idx; if (cur_idx) { /* We have previously returned a header, let's search another one */ sol = ctx->line; eol = sol + idx->v[cur_idx].len; goto next_hdr; } /* first request for this header */ sol += hdr_idx_first_pos(idx); old_idx = 0; cur_idx = hdr_idx_first_idx(idx); while (cur_idx) { eol = sol + idx->v[cur_idx].len; if (len == 0) { /* No argument was passed, we want any header. * To achieve this, we simply build a fake request. */ while (sol + len < eol && sol[len] != ':') len++; name = sol; } if ((len < eol - sol) && (sol[len] == ':') && (strncasecmp(sol, name, len) == 0)) { ctx->del = len; sov = sol + len + 1; while (sov < eol && http_is_lws[(unsigned char)*sov]) sov++; ctx->line = sol; ctx->prev = old_idx; ctx->idx = cur_idx; ctx->val = sov - sol; ctx->tws = 0; while (eol > sov && http_is_lws[(unsigned char)*(eol - 1)]) { eol--; ctx->tws++; } ctx->vlen = eol - sov; return 1; } next_hdr: sol = eol + idx->v[cur_idx].cr + 1; old_idx = cur_idx; cur_idx = idx->v[cur_idx].next; } return 0; } /* Find the first or next header field in message buffer using headers * index , and return it in the structure. This structure holds * everything necessary to use the header and find next occurrence. If its * member is 0, the first header is retrieved. Otherwise, the next * occurrence is returned. The function returns 1 when it finds a value, and * 0 when there is no more. It is equivalent to http_find_full_header2() with * no header name. */ int http_find_next_header(char *sol, struct hdr_idx *idx, struct hdr_ctx *ctx) { char *eol, *sov; int cur_idx, old_idx; int len; cur_idx = ctx->idx; if (cur_idx) { /* We have previously returned a header, let's search another one */ sol = ctx->line; eol = sol + idx->v[cur_idx].len; goto next_hdr; } /* first request for this header */ sol += hdr_idx_first_pos(idx); old_idx = 0; cur_idx = hdr_idx_first_idx(idx); while (cur_idx) { eol = sol + idx->v[cur_idx].len; len = 0; while (1) { if (len >= eol - sol) goto next_hdr; if (sol[len] == ':') break; len++; } ctx->del = len; sov = sol + len + 1; while (sov < eol && http_is_lws[(unsigned char)*sov]) sov++; ctx->line = sol; ctx->prev = old_idx; ctx->idx = cur_idx; ctx->val = sov - sol; ctx->tws = 0; while (eol > sov && http_is_lws[(unsigned char)*(eol - 1)]) { eol--; ctx->tws++; } ctx->vlen = eol - sov; return 1; next_hdr: sol = eol + idx->v[cur_idx].cr + 1; old_idx = cur_idx; cur_idx = idx->v[cur_idx].next; } return 0; } /* Find the end of the header value contained between and . See RFC2616, * par 2.2 for more information. Note that it requires a valid header to return * a valid result. This works for headers defined as comma-separated lists. */ char *find_hdr_value_end(char *s, const char *e) { int quoted, qdpair; quoted = qdpair = 0; for (; s < e; s++) { if (qdpair) qdpair = 0; else if (quoted) { if (*s == '\\') qdpair = 1; else if (*s == '"') quoted = 0; } else if (*s == '"') quoted = 1; else if (*s == ',') return s; } return s; } /* Find the first or next occurrence of header in message buffer * using headers index , and return it in the structure. This * structure holds everything necessary to use the header and find next * occurrence. If its member is 0, the header is searched from the * beginning. Otherwise, the next occurrence is returned. The function returns * 1 when it finds a value, and 0 when there is no more. It is designed to work * with headers defined as comma-separated lists. As a special case, if ctx->val * is NULL when searching for a new values of a header, the current header is * rescanned. This allows rescanning after a header deletion. */ int http_find_header2(const char *name, int len, char *sol, struct hdr_idx *idx, struct hdr_ctx *ctx) { char *eol, *sov; int cur_idx, old_idx; cur_idx = ctx->idx; if (cur_idx) { /* We have previously returned a value, let's search * another one on the same line. */ sol = ctx->line; ctx->del = ctx->val + ctx->vlen + ctx->tws; sov = sol + ctx->del; eol = sol + idx->v[cur_idx].len; if (sov >= eol) /* no more values in this header */ goto next_hdr; /* values remaining for this header, skip the comma but save it * for later use (eg: for header deletion). */ sov++; while (sov < eol && http_is_lws[(unsigned char)*sov]) sov++; goto return_hdr; } /* first request for this header */ sol += hdr_idx_first_pos(idx); old_idx = 0; cur_idx = hdr_idx_first_idx(idx); while (cur_idx) { eol = sol + idx->v[cur_idx].len; if (len == 0) { /* No argument was passed, we want any header. * To achieve this, we simply build a fake request. */ while (sol + len < eol && sol[len] != ':') len++; name = sol; } if ((len < eol - sol) && (sol[len] == ':') && (strncasecmp(sol, name, len) == 0)) { ctx->del = len; sov = sol + len + 1; while (sov < eol && http_is_lws[(unsigned char)*sov]) sov++; ctx->line = sol; ctx->prev = old_idx; return_hdr: ctx->idx = cur_idx; ctx->val = sov - sol; eol = find_hdr_value_end(sov, eol); ctx->tws = 0; while (eol > sov && http_is_lws[(unsigned char)*(eol - 1)]) { eol--; ctx->tws++; } ctx->vlen = eol - sov; return 1; } next_hdr: sol = eol + idx->v[cur_idx].cr + 1; old_idx = cur_idx; cur_idx = idx->v[cur_idx].next; } return 0; } int http_find_header(const char *name, char *sol, struct hdr_idx *idx, struct hdr_ctx *ctx) { return http_find_header2(name, strlen(name), sol, idx, ctx); } /* Remove one value of a header. This only works on a returned by one of * the http_find_header functions. The value is removed, as well as surrounding * commas if any. If the removed value was alone, the whole header is removed. * The ctx is always updated accordingly, as well as the buffer and HTTP * message . The new index is returned. If it is zero, it means there is * no more header, so any processing may stop. The ctx is always left in a form * that can be handled by http_find_header2() to find next occurrence. */ int http_remove_header2(struct http_msg *msg, struct hdr_idx *idx, struct hdr_ctx *ctx) { int cur_idx = ctx->idx; char *sol = ctx->line; struct hdr_idx_elem *hdr; int delta, skip_comma; if (!cur_idx) return 0; hdr = &idx->v[cur_idx]; if (sol[ctx->del] == ':' && ctx->val + ctx->vlen + ctx->tws == hdr->len) { /* This was the only value of the header, we must now remove it entirely. */ delta = buffer_replace2(msg->chn->buf, sol, sol + hdr->len + hdr->cr + 1, NULL, 0); http_msg_move_end(msg, delta); idx->used--; hdr->len = 0; /* unused entry */ idx->v[ctx->prev].next = idx->v[ctx->idx].next; if (idx->tail == ctx->idx) idx->tail = ctx->prev; ctx->idx = ctx->prev; /* walk back to the end of previous header */ ctx->line -= idx->v[ctx->idx].len + idx->v[ctx->idx].cr + 1; ctx->val = idx->v[ctx->idx].len; /* point to end of previous header */ ctx->tws = ctx->vlen = 0; return ctx->idx; } /* This was not the only value of this header. We have to remove between * ctx->del+1 and ctx->val+ctx->vlen+ctx->tws+1 included. If it is the * last entry of the list, we remove the last separator. */ skip_comma = (ctx->val + ctx->vlen + ctx->tws == hdr->len) ? 0 : 1; delta = buffer_replace2(msg->chn->buf, sol + ctx->del + skip_comma, sol + ctx->val + ctx->vlen + ctx->tws + skip_comma, NULL, 0); hdr->len += delta; http_msg_move_end(msg, delta); ctx->val = ctx->del; ctx->tws = ctx->vlen = 0; return ctx->idx; } /* This function handles a server error at the stream interface level. The * stream interface is assumed to be already in a closed state. An optional * message is copied into the input buffer, and an HTTP status code stored. * The error flags are set to the values in arguments. Any pending request * in this buffer will be lost. */ static void http_server_error(struct stream *s, struct stream_interface *si, int err, int finst, int status, const struct chunk *msg) { channel_auto_read(si_oc(si)); channel_abort(si_oc(si)); channel_auto_close(si_oc(si)); channel_erase(si_oc(si)); channel_auto_close(si_ic(si)); channel_auto_read(si_ic(si)); if (status > 0 && msg) { s->txn->status = status; bo_inject(si_ic(si), msg->str, msg->len); } if (!(s->flags & SF_ERR_MASK)) s->flags |= err; if (!(s->flags & SF_FINST_MASK)) s->flags |= finst; } /* This function returns the appropriate error location for the given stream * and message. */ struct chunk *http_error_message(struct stream *s, int msgnum) { if (s->be->errmsg[msgnum].str) return &s->be->errmsg[msgnum]; else if (strm_fe(s)->errmsg[msgnum].str) return &strm_fe(s)->errmsg[msgnum]; else return &http_err_chunks[msgnum]; } void http_reply_and_close(struct stream *s, short status, struct chunk *msg) { stream_int_retnclose(&s->si[0], msg); } /* * returns a known method among HTTP_METH_* or HTTP_METH_OTHER for all unknown * ones. */ enum http_meth_t find_http_meth(const char *str, const int len) { unsigned char m; const struct http_method_desc *h; m = ((unsigned)*str - 'A'); if (m < 26) { for (h = http_methods[m]; h->len > 0; h++) { if (unlikely(h->len != len)) continue; if (likely(memcmp(str, h->text, h->len) == 0)) return h->meth; }; } return HTTP_METH_OTHER; } /* Parse the URI from the given transaction (which is assumed to be in request * phase) and look for the "/" beginning the PATH. If not found, return NULL. * It is returned otherwise. */ char *http_get_path(struct http_txn *txn) { char *ptr, *end; ptr = txn->req.chn->buf->p + txn->req.sl.rq.u; end = ptr + txn->req.sl.rq.u_l; if (ptr >= end) return NULL; /* RFC2616, par. 5.1.2 : * Request-URI = "*" | absuri | abspath | authority */ if (*ptr == '*') return NULL; if (isalpha((unsigned char)*ptr)) { /* this is a scheme as described by RFC3986, par. 3.1 */ ptr++; while (ptr < end && (isalnum((unsigned char)*ptr) || *ptr == '+' || *ptr == '-' || *ptr == '.')) ptr++; /* skip '://' */ if (ptr == end || *ptr++ != ':') return NULL; if (ptr == end || *ptr++ != '/') return NULL; if (ptr == end || *ptr++ != '/') return NULL; } /* skip [user[:passwd]@]host[:[port]] */ while (ptr < end && *ptr != '/') ptr++; if (ptr == end) return NULL; /* OK, we got the '/' ! */ return ptr; } /* Parse the URI from the given string and look for the "/" beginning the PATH. * If not found, return NULL. It is returned otherwise. */ static char * http_get_path_from_string(char *str) { char *ptr = str; /* RFC2616, par. 5.1.2 : * Request-URI = "*" | absuri | abspath | authority */ if (*ptr == '*') return NULL; if (isalpha((unsigned char)*ptr)) { /* this is a scheme as described by RFC3986, par. 3.1 */ ptr++; while (isalnum((unsigned char)*ptr) || *ptr == '+' || *ptr == '-' || *ptr == '.') ptr++; /* skip '://' */ if (*ptr == '\0' || *ptr++ != ':') return NULL; if (*ptr == '\0' || *ptr++ != '/') return NULL; if (*ptr == '\0' || *ptr++ != '/') return NULL; } /* skip [user[:passwd]@]host[:[port]] */ while (*ptr != '\0' && *ptr != ' ' && *ptr != '/') ptr++; if (*ptr == '\0' || *ptr == ' ') return NULL; /* OK, we got the '/' ! */ return ptr; } /* Returns a 302 for a redirectable request that reaches a server working in * in redirect mode. This may only be called just after the stream interface * has moved to SI_ST_ASS. Unprocessable requests are left unchanged and will * follow normal proxy processing. NOTE: this function is designed to support * being called once data are scheduled for forwarding. */ void http_perform_server_redirect(struct stream *s, struct stream_interface *si) { struct http_txn *txn; struct server *srv; char *path; int len, rewind; /* 1: create the response header */ trash.len = strlen(HTTP_302); memcpy(trash.str, HTTP_302, trash.len); srv = objt_server(s->target); /* 2: add the server's prefix */ if (trash.len + srv->rdr_len > trash.size) return; /* special prefix "/" means don't change URL */ if (srv->rdr_len != 1 || *srv->rdr_pfx != '/') { memcpy(trash.str + trash.len, srv->rdr_pfx, srv->rdr_len); trash.len += srv->rdr_len; } /* 3: add the request URI. Since it was already forwarded, we need * to temporarily rewind the buffer. */ txn = s->txn; b_rew(s->req.buf, rewind = http_hdr_rewind(&txn->req)); path = http_get_path(txn); len = buffer_count(s->req.buf, path, b_ptr(s->req.buf, txn->req.sl.rq.u + txn->req.sl.rq.u_l)); b_adv(s->req.buf, rewind); if (!path) return; if (trash.len + len > trash.size - 4) /* 4 for CRLF-CRLF */ return; memcpy(trash.str + trash.len, path, len); trash.len += len; if (unlikely(txn->flags & TX_USE_PX_CONN)) { memcpy(trash.str + trash.len, "\r\nProxy-Connection: close\r\n\r\n", 29); trash.len += 29; } else { memcpy(trash.str + trash.len, "\r\nConnection: close\r\n\r\n", 23); trash.len += 23; } /* prepare to return without error. */ si_shutr(si); si_shutw(si); si->err_type = SI_ET_NONE; si->state = SI_ST_CLO; /* send the message */ http_server_error(s, si, SF_ERR_LOCAL, SF_FINST_C, 302, &trash); /* FIXME: we should increase a counter of redirects per server and per backend. */ srv_inc_sess_ctr(srv); srv_set_sess_last(srv); } /* Return the error message corresponding to si->err_type. It is assumed * that the server side is closed. Note that err_type is actually a * bitmask, where almost only aborts may be cumulated with other * values. We consider that aborted operations are more important * than timeouts or errors due to the fact that nobody else in the * logs might explain incomplete retries. All others should avoid * being cumulated. It should normally not be possible to have multiple * aborts at once, but just in case, the first one in sequence is reported. * Note that connection errors appearing on the second request of a keep-alive * connection are not reported since this allows the client to retry. */ void http_return_srv_error(struct stream *s, struct stream_interface *si) { int err_type = si->err_type; if (err_type & SI_ET_QUEUE_ABRT) http_server_error(s, si, SF_ERR_CLICL, SF_FINST_Q, 503, http_error_message(s, HTTP_ERR_503)); else if (err_type & SI_ET_CONN_ABRT) http_server_error(s, si, SF_ERR_CLICL, SF_FINST_C, 503, (s->txn->flags & TX_NOT_FIRST) ? NULL : http_error_message(s, HTTP_ERR_503)); else if (err_type & SI_ET_QUEUE_TO) http_server_error(s, si, SF_ERR_SRVTO, SF_FINST_Q, 503, http_error_message(s, HTTP_ERR_503)); else if (err_type & SI_ET_QUEUE_ERR) http_server_error(s, si, SF_ERR_SRVCL, SF_FINST_Q, 503, http_error_message(s, HTTP_ERR_503)); else if (err_type & SI_ET_CONN_TO) http_server_error(s, si, SF_ERR_SRVTO, SF_FINST_C, 503, (s->txn->flags & TX_NOT_FIRST) ? NULL : http_error_message(s, HTTP_ERR_503)); else if (err_type & SI_ET_CONN_ERR) http_server_error(s, si, SF_ERR_SRVCL, SF_FINST_C, 503, (s->flags & SF_SRV_REUSED) ? NULL : http_error_message(s, HTTP_ERR_503)); else if (err_type & SI_ET_CONN_RES) http_server_error(s, si, SF_ERR_RESOURCE, SF_FINST_C, 503, (s->txn->flags & TX_NOT_FIRST) ? NULL : http_error_message(s, HTTP_ERR_503)); else /* SI_ET_CONN_OTHER and others */ http_server_error(s, si, SF_ERR_INTERNAL, SF_FINST_C, 500, http_error_message(s, HTTP_ERR_500)); } extern const char sess_term_cond[8]; extern const char sess_fin_state[8]; extern const char *monthname[12]; struct pool_head *pool2_http_txn; struct pool_head *pool2_requri; struct pool_head *pool2_capture = NULL; struct pool_head *pool2_uniqueid; /* * Capture headers from message starting at according to header list * , and fill the pointers appropriately. */ void capture_headers(char *som, struct hdr_idx *idx, char **cap, struct cap_hdr *cap_hdr) { char *eol, *sol, *col, *sov; int cur_idx; struct cap_hdr *h; int len; sol = som + hdr_idx_first_pos(idx); cur_idx = hdr_idx_first_idx(idx); while (cur_idx) { eol = sol + idx->v[cur_idx].len; col = sol; while (col < eol && *col != ':') col++; sov = col + 1; while (sov < eol && http_is_lws[(unsigned char)*sov]) sov++; for (h = cap_hdr; h; h = h->next) { if (h->namelen && (h->namelen == col - sol) && (strncasecmp(sol, h->name, h->namelen) == 0)) { if (cap[h->index] == NULL) cap[h->index] = pool_alloc2(h->pool); if (cap[h->index] == NULL) { Alert("HTTP capture : out of memory.\n"); continue; } len = eol - sov; if (len > h->len) len = h->len; memcpy(cap[h->index], sov, len); cap[h->index][len]=0; } } sol = eol + idx->v[cur_idx].cr + 1; cur_idx = idx->v[cur_idx].next; } } /* either we find an LF at or we jump to . */ #define EXPECT_LF_HERE(ptr, bad) do { if (unlikely(*(ptr) != '\n')) goto bad; } while (0) /* plays with variables , and . Jumps to if OK, * otherwise to with set to . */ #define EAT_AND_JUMP_OR_RETURN(good, st) do { \ ptr++; \ if (likely(ptr < end)) \ goto good; \ else { \ state = (st); \ goto http_msg_ood; \ } \ } while (0) /* * This function parses a status line between and , starting with * parser state . Only states HTTP_MSG_RPVER, HTTP_MSG_RPVER_SP, * HTTP_MSG_RPCODE, HTTP_MSG_RPCODE_SP and HTTP_MSG_RPREASON are handled. Others * will give undefined results. * Note that it is upon the caller's responsibility to ensure that ptr < end, * and that msg->sol points to the beginning of the response. * If a complete line is found (which implies that at least one CR or LF is * found before , the updated is returned, otherwise NULL is * returned indicating an incomplete line (which does not mean that parts have * not been updated). In the incomplete case, if or are * non-NULL, they are fed with the new and values to be passed * upon next call. * * This function was intentionally designed to be called from * http_msg_analyzer() with the lowest overhead. It should integrate perfectly * within its state machine and use the same macros, hence the need for same * labels and variable names. Note that msg->sol is left unchanged. */ const char *http_parse_stsline(struct http_msg *msg, enum ht_state state, const char *ptr, const char *end, unsigned int *ret_ptr, enum ht_state *ret_state) { const char *msg_start = msg->chn->buf->p; switch (state) { case HTTP_MSG_RPVER: http_msg_rpver: if (likely(HTTP_IS_VER_TOKEN(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rpver, HTTP_MSG_RPVER); if (likely(HTTP_IS_SPHT(*ptr))) { msg->sl.st.v_l = ptr - msg_start; EAT_AND_JUMP_OR_RETURN(http_msg_rpver_sp, HTTP_MSG_RPVER_SP); } state = HTTP_MSG_ERROR; break; case HTTP_MSG_RPVER_SP: http_msg_rpver_sp: if (likely(!HTTP_IS_LWS(*ptr))) { msg->sl.st.c = ptr - msg_start; goto http_msg_rpcode; } if (likely(HTTP_IS_SPHT(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rpver_sp, HTTP_MSG_RPVER_SP); /* so it's a CR/LF, this is invalid */ state = HTTP_MSG_ERROR; break; case HTTP_MSG_RPCODE: http_msg_rpcode: if (likely(!HTTP_IS_LWS(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rpcode, HTTP_MSG_RPCODE); if (likely(HTTP_IS_SPHT(*ptr))) { msg->sl.st.c_l = ptr - msg_start - msg->sl.st.c; EAT_AND_JUMP_OR_RETURN(http_msg_rpcode_sp, HTTP_MSG_RPCODE_SP); } /* so it's a CR/LF, so there is no reason phrase */ msg->sl.st.c_l = ptr - msg_start - msg->sl.st.c; http_msg_rsp_reason: /* FIXME: should we support HTTP responses without any reason phrase ? */ msg->sl.st.r = ptr - msg_start; msg->sl.st.r_l = 0; goto http_msg_rpline_eol; case HTTP_MSG_RPCODE_SP: http_msg_rpcode_sp: if (likely(!HTTP_IS_LWS(*ptr))) { msg->sl.st.r = ptr - msg_start; goto http_msg_rpreason; } if (likely(HTTP_IS_SPHT(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rpcode_sp, HTTP_MSG_RPCODE_SP); /* so it's a CR/LF, so there is no reason phrase */ goto http_msg_rsp_reason; case HTTP_MSG_RPREASON: http_msg_rpreason: if (likely(!HTTP_IS_CRLF(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rpreason, HTTP_MSG_RPREASON); msg->sl.st.r_l = ptr - msg_start - msg->sl.st.r; http_msg_rpline_eol: /* We have seen the end of line. Note that we do not * necessarily have the \n yet, but at least we know that we * have EITHER \r OR \n, otherwise the response would not be * complete. We can then record the response length and return * to the caller which will be able to register it. */ msg->sl.st.l = ptr - msg_start - msg->sol; return ptr; default: #ifdef DEBUG_FULL fprintf(stderr, "FIXME !!!! impossible state at %s:%d = %d\n", __FILE__, __LINE__, state); exit(1); #endif ; } http_msg_ood: /* out of valid data */ if (ret_state) *ret_state = state; if (ret_ptr) *ret_ptr = ptr - msg_start; return NULL; } /* * This function parses a request line between and , starting with * parser state . Only states HTTP_MSG_RQMETH, HTTP_MSG_RQMETH_SP, * HTTP_MSG_RQURI, HTTP_MSG_RQURI_SP and HTTP_MSG_RQVER are handled. Others * will give undefined results. * Note that it is upon the caller's responsibility to ensure that ptr < end, * and that msg->sol points to the beginning of the request. * If a complete line is found (which implies that at least one CR or LF is * found before , the updated is returned, otherwise NULL is * returned indicating an incomplete line (which does not mean that parts have * not been updated). In the incomplete case, if or are * non-NULL, they are fed with the new and values to be passed * upon next call. * * This function was intentionally designed to be called from * http_msg_analyzer() with the lowest overhead. It should integrate perfectly * within its state machine and use the same macros, hence the need for same * labels and variable names. Note that msg->sol is left unchanged. */ const char *http_parse_reqline(struct http_msg *msg, enum ht_state state, const char *ptr, const char *end, unsigned int *ret_ptr, enum ht_state *ret_state) { const char *msg_start = msg->chn->buf->p; switch (state) { case HTTP_MSG_RQMETH: http_msg_rqmeth: if (likely(HTTP_IS_TOKEN(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rqmeth, HTTP_MSG_RQMETH); if (likely(HTTP_IS_SPHT(*ptr))) { msg->sl.rq.m_l = ptr - msg_start; EAT_AND_JUMP_OR_RETURN(http_msg_rqmeth_sp, HTTP_MSG_RQMETH_SP); } if (likely(HTTP_IS_CRLF(*ptr))) { /* HTTP 0.9 request */ msg->sl.rq.m_l = ptr - msg_start; http_msg_req09_uri: msg->sl.rq.u = ptr - msg_start; http_msg_req09_uri_e: msg->sl.rq.u_l = ptr - msg_start - msg->sl.rq.u; http_msg_req09_ver: msg->sl.rq.v = ptr - msg_start; msg->sl.rq.v_l = 0; goto http_msg_rqline_eol; } state = HTTP_MSG_ERROR; break; case HTTP_MSG_RQMETH_SP: http_msg_rqmeth_sp: if (likely(!HTTP_IS_LWS(*ptr))) { msg->sl.rq.u = ptr - msg_start; goto http_msg_rquri; } if (likely(HTTP_IS_SPHT(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rqmeth_sp, HTTP_MSG_RQMETH_SP); /* so it's a CR/LF, meaning an HTTP 0.9 request */ goto http_msg_req09_uri; case HTTP_MSG_RQURI: http_msg_rquri: if (likely((unsigned char)(*ptr - 33) <= 93)) /* 33 to 126 included */ EAT_AND_JUMP_OR_RETURN(http_msg_rquri, HTTP_MSG_RQURI); if (likely(HTTP_IS_SPHT(*ptr))) { msg->sl.rq.u_l = ptr - msg_start - msg->sl.rq.u; EAT_AND_JUMP_OR_RETURN(http_msg_rquri_sp, HTTP_MSG_RQURI_SP); } if (likely((unsigned char)*ptr >= 128)) { /* non-ASCII chars are forbidden unless option * accept-invalid-http-request is enabled in the frontend. * In any case, we capture the faulty char. */ if (msg->err_pos < -1) goto invalid_char; if (msg->err_pos == -1) msg->err_pos = ptr - msg_start; EAT_AND_JUMP_OR_RETURN(http_msg_rquri, HTTP_MSG_RQURI); } if (likely(HTTP_IS_CRLF(*ptr))) { /* so it's a CR/LF, meaning an HTTP 0.9 request */ goto http_msg_req09_uri_e; } /* OK forbidden chars, 0..31 or 127 */ invalid_char: msg->err_pos = ptr - msg_start; state = HTTP_MSG_ERROR; break; case HTTP_MSG_RQURI_SP: http_msg_rquri_sp: if (likely(!HTTP_IS_LWS(*ptr))) { msg->sl.rq.v = ptr - msg_start; goto http_msg_rqver; } if (likely(HTTP_IS_SPHT(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rquri_sp, HTTP_MSG_RQURI_SP); /* so it's a CR/LF, meaning an HTTP 0.9 request */ goto http_msg_req09_ver; case HTTP_MSG_RQVER: http_msg_rqver: if (likely(HTTP_IS_VER_TOKEN(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rqver, HTTP_MSG_RQVER); if (likely(HTTP_IS_CRLF(*ptr))) { msg->sl.rq.v_l = ptr - msg_start - msg->sl.rq.v; http_msg_rqline_eol: /* We have seen the end of line. Note that we do not * necessarily have the \n yet, but at least we know that we * have EITHER \r OR \n, otherwise the request would not be * complete. We can then record the request length and return * to the caller which will be able to register it. */ msg->sl.rq.l = ptr - msg_start - msg->sol; return ptr; } /* neither an HTTP_VER token nor a CRLF */ state = HTTP_MSG_ERROR; break; default: #ifdef DEBUG_FULL fprintf(stderr, "FIXME !!!! impossible state at %s:%d = %d\n", __FILE__, __LINE__, state); exit(1); #endif ; } http_msg_ood: /* out of valid data */ if (ret_state) *ret_state = state; if (ret_ptr) *ret_ptr = ptr - msg_start; return NULL; } /* * Returns the data from Authorization header. Function may be called more * than once so data is stored in txn->auth_data. When no header is found * or auth method is unknown auth_method is set to HTTP_AUTH_WRONG to avoid * searching again for something we are unable to find anyway. However, if * the result if valid, the cache is not reused because we would risk to * have the credentials overwritten by another stream in parallel. */ /* This bufffer is initialized in the file 'src/haproxy.c'. This length is * set according to global.tune.bufsize. */ char *get_http_auth_buff; int get_http_auth(struct stream *s) { struct http_txn *txn = s->txn; struct chunk auth_method; struct hdr_ctx ctx; char *h, *p; int len; #ifdef DEBUG_AUTH printf("Auth for stream %p: %d\n", s, txn->auth.method); #endif if (txn->auth.method == HTTP_AUTH_WRONG) return 0; txn->auth.method = HTTP_AUTH_WRONG; ctx.idx = 0; if (txn->flags & TX_USE_PX_CONN) { h = "Proxy-Authorization"; len = strlen(h); } else { h = "Authorization"; len = strlen(h); } if (!http_find_header2(h, len, s->req.buf->p, &txn->hdr_idx, &ctx)) return 0; h = ctx.line + ctx.val; p = memchr(h, ' ', ctx.vlen); if (!p || p == h) return 0; chunk_initlen(&auth_method, h, 0, p-h); chunk_initlen(&txn->auth.method_data, p+1, 0, ctx.vlen-(p-h)-1); if (!strncasecmp("Basic", auth_method.str, auth_method.len)) { len = base64dec(txn->auth.method_data.str, txn->auth.method_data.len, get_http_auth_buff, global.tune.bufsize - 1); if (len < 0) return 0; get_http_auth_buff[len] = '\0'; p = strchr(get_http_auth_buff, ':'); if (!p) return 0; txn->auth.user = get_http_auth_buff; *p = '\0'; txn->auth.pass = p+1; txn->auth.method = HTTP_AUTH_BASIC; return 1; } return 0; } /* * This function parses an HTTP message, either a request or a response, * depending on the initial msg->msg_state. The caller is responsible for * ensuring that the message does not wrap. The function can be preempted * everywhere when data are missing and recalled at the exact same location * with no information loss. The message may even be realigned between two * calls. The header index is re-initialized when switching from * MSG_R[PQ]BEFORE to MSG_RPVER|MSG_RQMETH. It modifies msg->sol among other * fields. Note that msg->sol will be initialized after completing the first * state, so that none of the msg pointers has to be initialized prior to the * first call. */ void http_msg_analyzer(struct http_msg *msg, struct hdr_idx *idx) { enum ht_state state; /* updated only when leaving the FSM */ register char *ptr, *end; /* request pointers, to avoid dereferences */ struct buffer *buf; state = msg->msg_state; buf = msg->chn->buf; ptr = buf->p + msg->next; end = buf->p + buf->i; if (unlikely(ptr >= end)) goto http_msg_ood; switch (state) { /* * First, states that are specific to the response only. * We check them first so that request and headers are * closer to each other (accessed more often). */ case HTTP_MSG_RPBEFORE: http_msg_rpbefore: if (likely(HTTP_IS_TOKEN(*ptr))) { /* we have a start of message, but we have to check * first if we need to remove some CRLF. We can only * do this when o=0. */ if (unlikely(ptr != buf->p)) { if (buf->o) goto http_msg_ood; /* Remove empty leading lines, as recommended by RFC2616. */ bi_fast_delete(buf, ptr - buf->p); } msg->sol = 0; msg->sl.st.l = 0; /* used in debug mode */ hdr_idx_init(idx); state = HTTP_MSG_RPVER; goto http_msg_rpver; } if (unlikely(!HTTP_IS_CRLF(*ptr))) goto http_msg_invalid; if (unlikely(*ptr == '\n')) EAT_AND_JUMP_OR_RETURN(http_msg_rpbefore, HTTP_MSG_RPBEFORE); EAT_AND_JUMP_OR_RETURN(http_msg_rpbefore_cr, HTTP_MSG_RPBEFORE_CR); /* stop here */ case HTTP_MSG_RPBEFORE_CR: http_msg_rpbefore_cr: EXPECT_LF_HERE(ptr, http_msg_invalid); EAT_AND_JUMP_OR_RETURN(http_msg_rpbefore, HTTP_MSG_RPBEFORE); /* stop here */ case HTTP_MSG_RPVER: http_msg_rpver: case HTTP_MSG_RPVER_SP: case HTTP_MSG_RPCODE: case HTTP_MSG_RPCODE_SP: case HTTP_MSG_RPREASON: ptr = (char *)http_parse_stsline(msg, state, ptr, end, &msg->next, &msg->msg_state); if (unlikely(!ptr)) return; /* we have a full response and we know that we have either a CR * or an LF at . */ hdr_idx_set_start(idx, msg->sl.st.l, *ptr == '\r'); msg->sol = ptr - buf->p; if (likely(*ptr == '\r')) EAT_AND_JUMP_OR_RETURN(http_msg_rpline_end, HTTP_MSG_RPLINE_END); goto http_msg_rpline_end; case HTTP_MSG_RPLINE_END: http_msg_rpline_end: /* msg->sol must point to the first of CR or LF. */ EXPECT_LF_HERE(ptr, http_msg_invalid); EAT_AND_JUMP_OR_RETURN(http_msg_hdr_first, HTTP_MSG_HDR_FIRST); /* stop here */ /* * Second, states that are specific to the request only */ case HTTP_MSG_RQBEFORE: http_msg_rqbefore: if (likely(HTTP_IS_TOKEN(*ptr))) { /* we have a start of message, but we have to check * first if we need to remove some CRLF. We can only * do this when o=0. */ if (likely(ptr != buf->p)) { if (buf->o) goto http_msg_ood; /* Remove empty leading lines, as recommended by RFC2616. */ bi_fast_delete(buf, ptr - buf->p); } msg->sol = 0; msg->sl.rq.l = 0; /* used in debug mode */ state = HTTP_MSG_RQMETH; goto http_msg_rqmeth; } if (unlikely(!HTTP_IS_CRLF(*ptr))) goto http_msg_invalid; if (unlikely(*ptr == '\n')) EAT_AND_JUMP_OR_RETURN(http_msg_rqbefore, HTTP_MSG_RQBEFORE); EAT_AND_JUMP_OR_RETURN(http_msg_rqbefore_cr, HTTP_MSG_RQBEFORE_CR); /* stop here */ case HTTP_MSG_RQBEFORE_CR: http_msg_rqbefore_cr: EXPECT_LF_HERE(ptr, http_msg_invalid); EAT_AND_JUMP_OR_RETURN(http_msg_rqbefore, HTTP_MSG_RQBEFORE); /* stop here */ case HTTP_MSG_RQMETH: http_msg_rqmeth: case HTTP_MSG_RQMETH_SP: case HTTP_MSG_RQURI: case HTTP_MSG_RQURI_SP: case HTTP_MSG_RQVER: ptr = (char *)http_parse_reqline(msg, state, ptr, end, &msg->next, &msg->msg_state); if (unlikely(!ptr)) return; /* we have a full request and we know that we have either a CR * or an LF at . */ hdr_idx_set_start(idx, msg->sl.rq.l, *ptr == '\r'); msg->sol = ptr - buf->p; if (likely(*ptr == '\r')) EAT_AND_JUMP_OR_RETURN(http_msg_rqline_end, HTTP_MSG_RQLINE_END); goto http_msg_rqline_end; case HTTP_MSG_RQLINE_END: http_msg_rqline_end: /* check for HTTP/0.9 request : no version information available. * msg->sol must point to the first of CR or LF. */ if (unlikely(msg->sl.rq.v_l == 0)) goto http_msg_last_lf; EXPECT_LF_HERE(ptr, http_msg_invalid); EAT_AND_JUMP_OR_RETURN(http_msg_hdr_first, HTTP_MSG_HDR_FIRST); /* stop here */ /* * Common states below */ case HTTP_MSG_HDR_FIRST: http_msg_hdr_first: msg->sol = ptr - buf->p; if (likely(!HTTP_IS_CRLF(*ptr))) { goto http_msg_hdr_name; } if (likely(*ptr == '\r')) EAT_AND_JUMP_OR_RETURN(http_msg_last_lf, HTTP_MSG_LAST_LF); goto http_msg_last_lf; case HTTP_MSG_HDR_NAME: http_msg_hdr_name: /* assumes msg->sol points to the first char */ if (likely(HTTP_IS_TOKEN(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_hdr_name, HTTP_MSG_HDR_NAME); if (likely(*ptr == ':')) EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l1_sp, HTTP_MSG_HDR_L1_SP); if (likely(msg->err_pos < -1) || *ptr == '\n') goto http_msg_invalid; if (msg->err_pos == -1) /* capture error pointer */ msg->err_pos = ptr - buf->p; /* >= 0 now */ /* and we still accept this non-token character */ EAT_AND_JUMP_OR_RETURN(http_msg_hdr_name, HTTP_MSG_HDR_NAME); case HTTP_MSG_HDR_L1_SP: http_msg_hdr_l1_sp: /* assumes msg->sol points to the first char */ if (likely(HTTP_IS_SPHT(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l1_sp, HTTP_MSG_HDR_L1_SP); /* header value can be basically anything except CR/LF */ msg->sov = ptr - buf->p; if (likely(!HTTP_IS_CRLF(*ptr))) { goto http_msg_hdr_val; } if (likely(*ptr == '\r')) EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l1_lf, HTTP_MSG_HDR_L1_LF); goto http_msg_hdr_l1_lf; case HTTP_MSG_HDR_L1_LF: http_msg_hdr_l1_lf: EXPECT_LF_HERE(ptr, http_msg_invalid); EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l1_lws, HTTP_MSG_HDR_L1_LWS); case HTTP_MSG_HDR_L1_LWS: http_msg_hdr_l1_lws: if (likely(HTTP_IS_SPHT(*ptr))) { /* replace HT,CR,LF with spaces */ for (; buf->p + msg->sov < ptr; msg->sov++) buf->p[msg->sov] = ' '; goto http_msg_hdr_l1_sp; } /* we had a header consisting only in spaces ! */ msg->eol = msg->sov; goto http_msg_complete_header; case HTTP_MSG_HDR_VAL: http_msg_hdr_val: /* assumes msg->sol points to the first char, and msg->sov * points to the first character of the value. */ if (likely(!HTTP_IS_CRLF(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_hdr_val, HTTP_MSG_HDR_VAL); msg->eol = ptr - buf->p; /* Note: we could also copy eol into ->eoh so that we have the * real header end in case it ends with lots of LWS, but is this * really needed ? */ if (likely(*ptr == '\r')) EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l2_lf, HTTP_MSG_HDR_L2_LF); goto http_msg_hdr_l2_lf; case HTTP_MSG_HDR_L2_LF: http_msg_hdr_l2_lf: EXPECT_LF_HERE(ptr, http_msg_invalid); EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l2_lws, HTTP_MSG_HDR_L2_LWS); case HTTP_MSG_HDR_L2_LWS: http_msg_hdr_l2_lws: if (unlikely(HTTP_IS_SPHT(*ptr))) { /* LWS: replace HT,CR,LF with spaces */ for (; buf->p + msg->eol < ptr; msg->eol++) buf->p[msg->eol] = ' '; goto http_msg_hdr_val; } http_msg_complete_header: /* * It was a new header, so the last one is finished. * Assumes msg->sol points to the first char, msg->sov points * to the first character of the value and msg->eol to the * first CR or LF so we know how the line ends. We insert last * header into the index. */ if (unlikely(hdr_idx_add(msg->eol - msg->sol, buf->p[msg->eol] == '\r', idx, idx->tail) < 0)) goto http_msg_invalid; msg->sol = ptr - buf->p; if (likely(!HTTP_IS_CRLF(*ptr))) { goto http_msg_hdr_name; } if (likely(*ptr == '\r')) EAT_AND_JUMP_OR_RETURN(http_msg_last_lf, HTTP_MSG_LAST_LF); goto http_msg_last_lf; case HTTP_MSG_LAST_LF: http_msg_last_lf: /* Assumes msg->sol points to the first of either CR or LF. * Sets ->sov and ->next to the total header length, ->eoh to * the last CRLF, and ->eol to the last CRLF length (1 or 2). */ EXPECT_LF_HERE(ptr, http_msg_invalid); ptr++; msg->sov = msg->next = ptr - buf->p; msg->eoh = msg->sol; msg->sol = 0; msg->eol = msg->sov - msg->eoh; msg->msg_state = HTTP_MSG_BODY; return; case HTTP_MSG_ERROR: /* this may only happen if we call http_msg_analyser() twice with an error */ break; default: #ifdef DEBUG_FULL fprintf(stderr, "FIXME !!!! impossible state at %s:%d = %d\n", __FILE__, __LINE__, state); exit(1); #endif ; } http_msg_ood: /* out of data */ msg->msg_state = state; msg->next = ptr - buf->p; return; http_msg_invalid: /* invalid message */ msg->msg_state = HTTP_MSG_ERROR; msg->next = ptr - buf->p; return; } /* convert an HTTP/0.9 request into an HTTP/1.0 request. Returns 1 if the * conversion succeeded, 0 in case of error. If the request was already 1.X, * nothing is done and 1 is returned. */ static int http_upgrade_v09_to_v10(struct http_txn *txn) { int delta; char *cur_end; struct http_msg *msg = &txn->req; if (msg->sl.rq.v_l != 0) return 1; /* RFC 1945 allows only GET for HTTP/0.9 requests */ if (txn->meth != HTTP_METH_GET) return 0; cur_end = msg->chn->buf->p + msg->sl.rq.l; delta = 0; if (msg->sl.rq.u_l == 0) { /* HTTP/0.9 requests *must* have a request URI, per RFC 1945 */ return 0; } /* add HTTP version */ delta = buffer_replace2(msg->chn->buf, cur_end, cur_end, " HTTP/1.0\r\n", 11); http_msg_move_end(msg, delta); cur_end += delta; cur_end = (char *)http_parse_reqline(msg, HTTP_MSG_RQMETH, msg->chn->buf->p, cur_end + 1, NULL, NULL); if (unlikely(!cur_end)) return 0; /* we have a full HTTP/1.0 request now and we know that * we have either a CR or an LF at . */ hdr_idx_set_start(&txn->hdr_idx, msg->sl.rq.l, *cur_end == '\r'); return 1; } /* Parse the Connection: header of an HTTP request, looking for both "close" * and "keep-alive" values. If we already know that some headers may safely * be removed, we remove them now. The flags are used for that : * - bit 0 means remove "close" headers (in HTTP/1.0 requests/responses) * - bit 1 means remove "keep-alive" headers (in HTTP/1.1 reqs/resp to 1.1). * Presence of the "Upgrade" token is also checked and reported. * The TX_HDR_CONN_* flags are adjusted in txn->flags depending on what was * found, and TX_CON_*_SET is adjusted depending on what is left so only * harmless combinations may be removed. Do not call that after changes have * been processed. */ void http_parse_connection_header(struct http_txn *txn, struct http_msg *msg, int to_del) { struct hdr_ctx ctx; const char *hdr_val = "Connection"; int hdr_len = 10; if (txn->flags & TX_HDR_CONN_PRS) return; if (unlikely(txn->flags & TX_USE_PX_CONN)) { hdr_val = "Proxy-Connection"; hdr_len = 16; } ctx.idx = 0; txn->flags &= ~(TX_CON_KAL_SET|TX_CON_CLO_SET); while (http_find_header2(hdr_val, hdr_len, msg->chn->buf->p, &txn->hdr_idx, &ctx)) { if (ctx.vlen >= 10 && word_match(ctx.line + ctx.val, ctx.vlen, "keep-alive", 10)) { txn->flags |= TX_HDR_CONN_KAL; if (to_del & 2) http_remove_header2(msg, &txn->hdr_idx, &ctx); else txn->flags |= TX_CON_KAL_SET; } else if (ctx.vlen >= 5 && word_match(ctx.line + ctx.val, ctx.vlen, "close", 5)) { txn->flags |= TX_HDR_CONN_CLO; if (to_del & 1) http_remove_header2(msg, &txn->hdr_idx, &ctx); else txn->flags |= TX_CON_CLO_SET; } else if (ctx.vlen >= 7 && word_match(ctx.line + ctx.val, ctx.vlen, "upgrade", 7)) { txn->flags |= TX_HDR_CONN_UPG; } } txn->flags |= TX_HDR_CONN_PRS; return; } /* Apply desired changes on the Connection: header. Values may be removed and/or * added depending on the flags, which are exclusively composed of * TX_CON_CLO_SET and TX_CON_KAL_SET, depending on what flags are desired. The * TX_CON_*_SET flags are adjusted in txn->flags depending on what is left. */ void http_change_connection_header(struct http_txn *txn, struct http_msg *msg, int wanted) { struct hdr_ctx ctx; const char *hdr_val = "Connection"; int hdr_len = 10; ctx.idx = 0; if (unlikely(txn->flags & TX_USE_PX_CONN)) { hdr_val = "Proxy-Connection"; hdr_len = 16; } txn->flags &= ~(TX_CON_CLO_SET | TX_CON_KAL_SET); while (http_find_header2(hdr_val, hdr_len, msg->chn->buf->p, &txn->hdr_idx, &ctx)) { if (ctx.vlen >= 10 && word_match(ctx.line + ctx.val, ctx.vlen, "keep-alive", 10)) { if (wanted & TX_CON_KAL_SET) txn->flags |= TX_CON_KAL_SET; else http_remove_header2(msg, &txn->hdr_idx, &ctx); } else if (ctx.vlen >= 5 && word_match(ctx.line + ctx.val, ctx.vlen, "close", 5)) { if (wanted & TX_CON_CLO_SET) txn->flags |= TX_CON_CLO_SET; else http_remove_header2(msg, &txn->hdr_idx, &ctx); } } if (wanted == (txn->flags & (TX_CON_CLO_SET|TX_CON_KAL_SET))) return; if ((wanted & TX_CON_CLO_SET) && !(txn->flags & TX_CON_CLO_SET)) { txn->flags |= TX_CON_CLO_SET; hdr_val = "Connection: close"; hdr_len = 17; if (unlikely(txn->flags & TX_USE_PX_CONN)) { hdr_val = "Proxy-Connection: close"; hdr_len = 23; } http_header_add_tail2(msg, &txn->hdr_idx, hdr_val, hdr_len); } if ((wanted & TX_CON_KAL_SET) && !(txn->flags & TX_CON_KAL_SET)) { txn->flags |= TX_CON_KAL_SET; hdr_val = "Connection: keep-alive"; hdr_len = 22; if (unlikely(txn->flags & TX_USE_PX_CONN)) { hdr_val = "Proxy-Connection: keep-alive"; hdr_len = 28; } http_header_add_tail2(msg, &txn->hdr_idx, hdr_val, hdr_len); } return; } /* Parse the chunk size at msg->next. Once done, it adjusts ->next to point to * the first byte of data after the chunk size, so that we know we can forward * exactly msg->next bytes. msg->sol contains the exact number of bytes forming * the chunk size. That way it is always possible to differentiate between the * start of the body and the start of the data. * Return >0 on success, 0 when some data is missing, <0 on error. * Note: this function is designed to parse wrapped CRLF at the end of the buffer. */ static inline int http_parse_chunk_size(struct http_msg *msg) { const struct buffer *buf = msg->chn->buf; const char *ptr = b_ptr(buf, msg->next); const char *ptr_old = ptr; const char *end = buf->data + buf->size; const char *stop = bi_end(buf); unsigned int chunk = 0; /* The chunk size is in the following form, though we are only * interested in the size and CRLF : * 1*HEXDIGIT *WSP *[ ';' extensions ] CRLF */ while (1) { int c; if (ptr == stop) return 0; c = hex2i(*ptr); if (c < 0) /* not a hex digit anymore */ break; if (unlikely(++ptr >= end)) ptr = buf->data; if (chunk & 0xF8000000) /* integer overflow will occur if result >= 2GB */ goto error; chunk = (chunk << 4) + c; } /* empty size not allowed */ if (unlikely(ptr == ptr_old)) goto error; while (http_is_spht[(unsigned char)*ptr]) { if (++ptr >= end) ptr = buf->data; if (unlikely(ptr == stop)) return 0; } /* Up to there, we know that at least one byte is present at *ptr. Check * for the end of chunk size. */ while (1) { if (likely(HTTP_IS_CRLF(*ptr))) { /* we now have a CR or an LF at ptr */ if (likely(*ptr == '\r')) { if (++ptr >= end) ptr = buf->data; if (ptr == stop) return 0; } if (*ptr != '\n') goto error; if (++ptr >= end) ptr = buf->data; /* done */ break; } else if (*ptr == ';') { /* chunk extension, ends at next CRLF */ if (++ptr >= end) ptr = buf->data; if (ptr == stop) return 0; while (!HTTP_IS_CRLF(*ptr)) { if (++ptr >= end) ptr = buf->data; if (ptr == stop) return 0; } /* we have a CRLF now, loop above */ continue; } else goto error; } /* OK we found our CRLF and now points to the next byte, * which may or may not be present. We save that into ->next, * and the number of bytes parsed into msg->sol. */ msg->sol = ptr - ptr_old; if (unlikely(ptr < ptr_old)) msg->sol += buf->size; msg->next = buffer_count(buf, buf->p, ptr); msg->chunk_len = chunk; msg->body_len += chunk; msg->msg_state = chunk ? HTTP_MSG_DATA : HTTP_MSG_TRAILERS; return 1; error: msg->err_pos = buffer_count(buf, buf->p, ptr); return -1; } /* This function skips trailers in the buffer associated with HTTP * message . The first visited position is msg->next. If the end of * the trailers is found, it is automatically scheduled to be forwarded, * msg->msg_state switches to HTTP_MSG_DONE, and the function returns >0. * If not enough data are available, the function does not change anything * except maybe msg->next if it could parse some lines, and returns zero. * If a parse error is encountered, the function returns < 0 and does not * change anything except maybe msg->next. Note that the message must * already be in HTTP_MSG_TRAILERS state before calling this function, * which implies that all non-trailers data have already been scheduled for * forwarding, and that msg->next exactly matches the length of trailers * already parsed and not forwarded. It is also important to note that this * function is designed to be able to parse wrapped headers at end of buffer. */ static int http_forward_trailers(struct http_msg *msg) { const struct buffer *buf = msg->chn->buf; /* we have msg->next which points to next line. Look for CRLF. */ while (1) { const char *p1 = NULL, *p2 = NULL; const char *ptr = b_ptr(buf, msg->next); const char *stop = bi_end(buf); int bytes; /* scan current line and stop at LF or CRLF */ while (1) { if (ptr == stop) return 0; if (*ptr == '\n') { if (!p1) p1 = ptr; p2 = ptr; break; } if (*ptr == '\r') { if (p1) { msg->err_pos = buffer_count(buf, buf->p, ptr); return -1; } p1 = ptr; } ptr++; if (ptr >= buf->data + buf->size) ptr = buf->data; } /* after LF; point to beginning of next line */ p2++; if (p2 >= buf->data + buf->size) p2 = buf->data; bytes = p2 - b_ptr(buf, msg->next); if (bytes < 0) bytes += buf->size; if (p1 == b_ptr(buf, msg->next)) { /* LF/CRLF at beginning of line => end of trailers at p2. * Everything was scheduled for forwarding, there's nothing * left from this message. */ msg->next = buffer_count(buf, buf->p, p2); msg->msg_state = HTTP_MSG_DONE; return 1; } /* OK, next line then */ msg->next = buffer_count(buf, buf->p, p2); } } /* This function may be called only in HTTP_MSG_CHUNK_CRLF. It reads the CRLF * or a possible LF alone at the end of a chunk. It automatically adjusts * msg->next in order to include this part into the next forwarding phase. * Note that the caller must ensure that ->p points to the first byte to parse. * It also sets msg_state to HTTP_MSG_CHUNK_SIZE and returns >0 on success. If * not enough data are available, the function does not change anything and * returns zero. If a parse error is encountered, the function returns < 0 and * does not change anything. Note: this function is designed to parse wrapped * CRLF at the end of the buffer. */ static inline int http_skip_chunk_crlf(struct http_msg *msg) { const struct buffer *buf = msg->chn->buf; const char *ptr; int bytes; /* NB: we'll check data availabilty at the end. It's not a * problem because whatever we match first will be checked * against the correct length. */ bytes = 1; ptr = b_ptr(buf, msg->next); if (*ptr == '\r') { bytes++; ptr++; if (ptr >= buf->data + buf->size) ptr = buf->data; } if (msg->next + bytes > buf->i) return 0; if (*ptr != '\n') { msg->err_pos = buffer_count(buf, buf->p, ptr); return -1; } ptr++; if (unlikely(ptr >= buf->data + buf->size)) ptr = buf->data; /* Advance ->next to allow the CRLF to be forwarded */ msg->next += bytes; msg->msg_state = HTTP_MSG_CHUNK_SIZE; return 1; } /* Parses a qvalue and returns it multipled by 1000, from 0 to 1000. If the * value is larger than 1000, it is bound to 1000. The parser consumes up to * 1 digit, one dot and 3 digits and stops on the first invalid character. * Unparsable qvalues return 1000 as "q=1.000". */ int parse_qvalue(const char *qvalue, const char **end) { int q = 1000; if (!isdigit((unsigned char)*qvalue)) goto out; q = (*qvalue++ - '0') * 1000; if (*qvalue++ != '.') goto out; if (!isdigit((unsigned char)*qvalue)) goto out; q += (*qvalue++ - '0') * 100; if (!isdigit((unsigned char)*qvalue)) goto out; q += (*qvalue++ - '0') * 10; if (!isdigit((unsigned char)*qvalue)) goto out; q += (*qvalue++ - '0') * 1; out: if (q > 1000) q = 1000; if (end) *end = qvalue; return q; } /* * Selects a compression algorithm depending on the client request. */ int select_compression_request_header(struct stream *s, struct buffer *req) { struct http_txn *txn = s->txn; struct http_msg *msg = &txn->req; struct hdr_ctx ctx; struct comp_algo *comp_algo = NULL; struct comp_algo *comp_algo_back = NULL; /* Disable compression for older user agents announcing themselves as "Mozilla/4" * unless they are known good (MSIE 6 with XP SP2, or MSIE 7 and later). * See http://zoompf.com/2012/02/lose-the-wait-http-compression for more details. */ ctx.idx = 0; if (http_find_header2("User-Agent", 10, req->p, &txn->hdr_idx, &ctx) && ctx.vlen >= 9 && memcmp(ctx.line + ctx.val, "Mozilla/4", 9) == 0 && (ctx.vlen < 31 || memcmp(ctx.line + ctx.val + 25, "MSIE ", 5) != 0 || ctx.line[ctx.val + 30] < '6' || (ctx.line[ctx.val + 30] == '6' && (ctx.vlen < 54 || memcmp(ctx.line + 51, "SV1", 3) != 0)))) { s->comp_algo = NULL; return 0; } /* search for the algo in the backend in priority or the frontend */ if ((s->be->comp && (comp_algo_back = s->be->comp->algos)) || (strm_fe(s)->comp && (comp_algo_back = strm_fe(s)->comp->algos))) { int best_q = 0; ctx.idx = 0; while (http_find_header2("Accept-Encoding", 15, req->p, &txn->hdr_idx, &ctx)) { const char *qval; int q; int toklen; /* try to isolate the token from the optional q-value */ toklen = 0; while (toklen < ctx.vlen && http_is_token[(unsigned char)*(ctx.line + ctx.val + toklen)]) toklen++; qval = ctx.line + ctx.val + toklen; while (1) { while (qval < ctx.line + ctx.val + ctx.vlen && http_is_lws[(unsigned char)*qval]) qval++; if (qval >= ctx.line + ctx.val + ctx.vlen || *qval != ';') { qval = NULL; break; } qval++; while (qval < ctx.line + ctx.val + ctx.vlen && http_is_lws[(unsigned char)*qval]) qval++; if (qval >= ctx.line + ctx.val + ctx.vlen) { qval = NULL; break; } if (strncmp(qval, "q=", MIN(ctx.line + ctx.val + ctx.vlen - qval, 2)) == 0) break; while (qval < ctx.line + ctx.val + ctx.vlen && *qval != ';') qval++; } /* here we have qval pointing to the first "q=" attribute or NULL if not found */ q = qval ? parse_qvalue(qval + 2, NULL) : 1000; if (q <= best_q) continue; for (comp_algo = comp_algo_back; comp_algo; comp_algo = comp_algo->next) { if (*(ctx.line + ctx.val) == '*' || word_match(ctx.line + ctx.val, toklen, comp_algo->ua_name, comp_algo->ua_name_len)) { s->comp_algo = comp_algo; best_q = q; break; } } } } /* remove all occurrences of the header when "compression offload" is set */ if (s->comp_algo) { if ((s->be->comp && s->be->comp->offload) || (strm_fe(s)->comp && strm_fe(s)->comp->offload)) { http_remove_header2(msg, &txn->hdr_idx, &ctx); ctx.idx = 0; while (http_find_header2("Accept-Encoding", 15, req->p, &txn->hdr_idx, &ctx)) { http_remove_header2(msg, &txn->hdr_idx, &ctx); } } return 1; } /* identity is implicit does not require headers */ if ((s->be->comp && (comp_algo_back = s->be->comp->algos)) || (strm_fe(s)->comp && (comp_algo_back = strm_fe(s)->comp->algos))) { for (comp_algo = comp_algo_back; comp_algo; comp_algo = comp_algo->next) { if (comp_algo->cfg_name_len == 8 && memcmp(comp_algo->cfg_name, "identity", 8) == 0) { s->comp_algo = comp_algo; return 1; } } } s->comp_algo = NULL; return 0; } /* * Selects a comression algorithm depending of the server response. */ int select_compression_response_header(struct stream *s, struct buffer *res) { struct http_txn *txn = s->txn; struct http_msg *msg = &txn->rsp; struct hdr_ctx ctx; struct comp_type *comp_type; /* no common compression algorithm was found in request header */ if (s->comp_algo == NULL) goto fail; /* HTTP < 1.1 should not be compressed */ if (!(msg->flags & HTTP_MSGF_VER_11) || !(txn->req.flags & HTTP_MSGF_VER_11)) goto fail; /* compress 200,201,202,203 responses only */ if ((txn->status != 200) && (txn->status != 201) && (txn->status != 202) && (txn->status != 203)) goto fail; /* Content-Length is null */ if (!(msg->flags & HTTP_MSGF_TE_CHNK) && msg->body_len == 0) goto fail; /* content is already compressed */ ctx.idx = 0; if (http_find_header2("Content-Encoding", 16, res->p, &txn->hdr_idx, &ctx)) goto fail; /* no compression when Cache-Control: no-transform is present in the message */ ctx.idx = 0; while (http_find_header2("Cache-Control", 13, res->p, &txn->hdr_idx, &ctx)) { if (word_match(ctx.line + ctx.val, ctx.vlen, "no-transform", 12)) goto fail; } comp_type = NULL; /* we don't want to compress multipart content-types, nor content-types that are * not listed in the "compression type" directive if any. If no content-type was * found but configuration requires one, we don't compress either. Backend has * the priority. */ ctx.idx = 0; if (http_find_header2("Content-Type", 12, res->p, &txn->hdr_idx, &ctx)) { if (ctx.vlen >= 9 && strncasecmp("multipart", ctx.line+ctx.val, 9) == 0) goto fail; if ((s->be->comp && (comp_type = s->be->comp->types)) || (strm_fe(s)->comp && (comp_type = strm_fe(s)->comp->types))) { for (; comp_type; comp_type = comp_type->next) { if (ctx.vlen >= comp_type->name_len && strncasecmp(ctx.line+ctx.val, comp_type->name, comp_type->name_len) == 0) /* this Content-Type should be compressed */ break; } /* this Content-Type should not be compressed */ if (comp_type == NULL) goto fail; } } else { /* no content-type header */ if ((s->be->comp && s->be->comp->types) || (strm_fe(s)->comp && strm_fe(s)->comp->types)) goto fail; /* a content-type was required */ } /* limit compression rate */ if (global.comp_rate_lim > 0) if (read_freq_ctr(&global.comp_bps_in) > global.comp_rate_lim) goto fail; /* limit cpu usage */ if (idle_pct < compress_min_idle) goto fail; /* initialize compression */ if (s->comp_algo->init(&s->comp_ctx, global.tune.comp_maxlevel) < 0) goto fail; s->flags |= SF_COMP_READY; /* remove Content-Length header */ ctx.idx = 0; if ((msg->flags & HTTP_MSGF_CNT_LEN) && http_find_header2("Content-Length", 14, res->p, &txn->hdr_idx, &ctx)) http_remove_header2(msg, &txn->hdr_idx, &ctx); /* add Transfer-Encoding header */ if (!(msg->flags & HTTP_MSGF_TE_CHNK)) http_header_add_tail2(&txn->rsp, &txn->hdr_idx, "Transfer-Encoding: chunked", 26); /* * Add Content-Encoding header when it's not identity encoding. * RFC 2616 : Identity encoding: This content-coding is used only in the * Accept-Encoding header, and SHOULD NOT be used in the Content-Encoding * header. */ if (s->comp_algo->cfg_name_len != 8 || memcmp(s->comp_algo->cfg_name, "identity", 8) != 0) { trash.len = 18; memcpy(trash.str, "Content-Encoding: ", trash.len); memcpy(trash.str + trash.len, s->comp_algo->ua_name, s->comp_algo->ua_name_len); trash.len += s->comp_algo->ua_name_len; trash.str[trash.len] = '\0'; http_header_add_tail2(&txn->rsp, &txn->hdr_idx, trash.str, trash.len); } return 1; fail: s->comp_algo = NULL; return 0; } void http_adjust_conn_mode(struct stream *s, struct http_txn *txn, struct http_msg *msg) { struct proxy *fe = strm_fe(s); int tmp = TX_CON_WANT_KAL; if (!((fe->options2|s->be->options2) & PR_O2_FAKE_KA)) { if ((fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_TUN || (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_TUN) tmp = TX_CON_WANT_TUN; if ((fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL || (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL) tmp = TX_CON_WANT_TUN; } if ((fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_SCL || (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_SCL) { /* option httpclose + server_close => forceclose */ if ((fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL || (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL) tmp = TX_CON_WANT_CLO; else tmp = TX_CON_WANT_SCL; } if ((fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_FCL || (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_FCL) tmp = TX_CON_WANT_CLO; if ((txn->flags & TX_CON_WANT_MSK) < tmp) txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | tmp; if (!(txn->flags & TX_HDR_CONN_PRS) && (txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN) { /* parse the Connection header and possibly clean it */ int to_del = 0; if ((msg->flags & HTTP_MSGF_VER_11) || ((txn->flags & TX_CON_WANT_MSK) >= TX_CON_WANT_SCL && !((fe->options2|s->be->options2) & PR_O2_FAKE_KA))) to_del |= 2; /* remove "keep-alive" */ if (!(msg->flags & HTTP_MSGF_VER_11)) to_del |= 1; /* remove "close" */ http_parse_connection_header(txn, msg, to_del); } /* check if client or config asks for explicit close in KAL/SCL */ if (((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL || (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) && ((txn->flags & TX_HDR_CONN_CLO) || /* "connection: close" */ (!(msg->flags & HTTP_MSGF_VER_11) && !(txn->flags & TX_HDR_CONN_KAL)) || /* no "connection: k-a" in 1.0 */ !(msg->flags & HTTP_MSGF_XFER_LEN) || /* no length known => close */ fe->state == PR_STSTOPPED)) /* frontend is stopping */ txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_CLO; } /* This stream analyser waits for a complete HTTP request. It returns 1 if the * processing can continue on next analysers, or zero if it either needs more * data or wants to immediately abort the request (eg: timeout, error, ...). It * is tied to AN_REQ_WAIT_HTTP and may may remove itself from s->req.analysers * when it has nothing left to do, and may remove any analyser when it wants to * abort. */ int http_wait_for_request(struct stream *s, struct channel *req, int an_bit) { /* * We will parse the partial (or complete) lines. * We will check the request syntax, and also join multi-line * headers. An index of all the lines will be elaborated while * parsing. * * For the parsing, we use a 28 states FSM. * * Here is the information we currently have : * req->buf->p = beginning of request * req->buf->p + msg->eoh = end of processed headers / start of current one * req->buf->p + req->buf->i = end of input data * msg->eol = end of current header or line (LF or CRLF) * msg->next = first non-visited byte * * At end of parsing, we may perform a capture of the error (if any), and * we will set a few fields (txn->meth, sn->flags/SF_REDIRECTABLE). * We also check for monitor-uri, logging, HTTP/0.9 to 1.0 conversion, and * finally headers capture. */ int cur_idx; struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &txn->req; struct hdr_ctx ctx; DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n", now_ms, __FUNCTION__, s, req, req->rex, req->wex, req->flags, req->buf->i, req->analysers); /* we're speaking HTTP here, so let's speak HTTP to the client */ s->srv_error = http_return_srv_error; /* There's a protected area at the end of the buffer for rewriting * purposes. We don't want to start to parse the request if the * protected area is affected, because we may have to move processed * data later, which is much more complicated. */ if (buffer_not_empty(req->buf) && msg->msg_state < HTTP_MSG_ERROR) { if (txn->flags & TX_NOT_FIRST) { if (unlikely(!channel_is_rewritable(req))) { if (req->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) goto failed_keep_alive; /* some data has still not left the buffer, wake us once that's done */ channel_dont_connect(req); req->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */ req->flags |= CF_WAKE_WRITE; return 0; } if (unlikely(bi_end(req->buf) < b_ptr(req->buf, msg->next) || bi_end(req->buf) > req->buf->data + req->buf->size - global.tune.maxrewrite)) buffer_slow_realign(req->buf); } /* Note that we have the same problem with the response ; we * may want to send a redirect, error or anything which requires * some spare space. So we'll ensure that we have at least * maxrewrite bytes available in the response buffer before * processing that one. This will only affect pipelined * keep-alive requests. */ if ((txn->flags & TX_NOT_FIRST) && unlikely(!channel_is_rewritable(&s->res) || bi_end(s->res.buf) < b_ptr(s->res.buf, txn->rsp.next) || bi_end(s->res.buf) > s->res.buf->data + s->res.buf->size - global.tune.maxrewrite)) { if (s->res.buf->o) { if (s->res.flags & (CF_SHUTW|CF_SHUTW_NOW|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) goto failed_keep_alive; /* don't let a connection request be initiated */ channel_dont_connect(req); s->res.flags &= ~CF_EXPECT_MORE; /* speed up sending a previous response */ s->res.flags |= CF_WAKE_WRITE; s->res.analysers |= an_bit; /* wake us up once it changes */ return 0; } } if (likely(msg->next < req->buf->i)) /* some unparsed data are available */ http_msg_analyzer(msg, &txn->hdr_idx); } /* 1: we might have to print this header in debug mode */ if (unlikely((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)) && msg->msg_state >= HTTP_MSG_BODY)) { char *eol, *sol; sol = req->buf->p; /* this is a bit complex : in case of error on the request line, * we know that rq.l is still zero, so we display only the part * up to the end of the line (truncated by debug_hdr). */ eol = sol + (msg->sl.rq.l ? msg->sl.rq.l : req->buf->i); debug_hdr("clireq", s, sol, eol); sol += hdr_idx_first_pos(&txn->hdr_idx); cur_idx = hdr_idx_first_idx(&txn->hdr_idx); while (cur_idx) { eol = sol + txn->hdr_idx.v[cur_idx].len; debug_hdr("clihdr", s, sol, eol); sol = eol + txn->hdr_idx.v[cur_idx].cr + 1; cur_idx = txn->hdr_idx.v[cur_idx].next; } } /* * Now we quickly check if we have found a full valid request. * If not so, we check the FD and buffer states before leaving. * A full request is indicated by the fact that we have seen * the double LF/CRLF, so the state is >= HTTP_MSG_BODY. Invalid * requests are checked first. When waiting for a second request * on a keep-alive stream, if we encounter and error, close, t/o, * we note the error in the stream flags but don't set any state. * Since the error will be noted there, it will not be counted by * process_stream() as a frontend error. * Last, we may increase some tracked counters' http request errors on * the cases that are deliberately the client's fault. For instance, * a timeout or connection reset is not counted as an error. However * a bad request is. */ if (unlikely(msg->msg_state < HTTP_MSG_BODY)) { /* * First, let's catch bad requests. */ if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) { stream_inc_http_req_ctr(s); stream_inc_http_err_ctr(s); proxy_inc_fe_req_ctr(sess->fe); goto return_bad_req; } /* 1: Since we are in header mode, if there's no space * left for headers, we won't be able to free more * later, so the stream will never terminate. We * must terminate it now. */ if (unlikely(buffer_full(req->buf, global.tune.maxrewrite))) { /* FIXME: check if URI is set and return Status * 414 Request URI too long instead. */ stream_inc_http_req_ctr(s); stream_inc_http_err_ctr(s); proxy_inc_fe_req_ctr(sess->fe); if (msg->err_pos < 0) msg->err_pos = req->buf->i; goto return_bad_req; } /* 2: have we encountered a read error ? */ else if (req->flags & CF_READ_ERROR) { if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_CLICL; if (txn->flags & TX_WAIT_NEXT_RQ) goto failed_keep_alive; if (sess->fe->options & PR_O_IGNORE_PRB) goto failed_keep_alive; /* we cannot return any message on error */ if (msg->err_pos >= 0) { http_capture_bad_message(&sess->fe->invalid_req, s, msg, msg->msg_state, sess->fe); stream_inc_http_err_ctr(s); } txn->status = 400; msg->msg_state = HTTP_MSG_ERROR; http_reply_and_close(s, txn->status, NULL); req->analysers = 0; stream_inc_http_req_ctr(s); proxy_inc_fe_req_ctr(sess->fe); sess->fe->fe_counters.failed_req++; if (sess->listener->counters) sess->listener->counters->failed_req++; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_R; return 0; } /* 3: has the read timeout expired ? */ else if (req->flags & CF_READ_TIMEOUT || tick_is_expired(req->analyse_exp, now_ms)) { if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_CLITO; if (txn->flags & TX_WAIT_NEXT_RQ) goto failed_keep_alive; if (sess->fe->options & PR_O_IGNORE_PRB) goto failed_keep_alive; /* read timeout : give up with an error message. */ if (msg->err_pos >= 0) { http_capture_bad_message(&sess->fe->invalid_req, s, msg, msg->msg_state, sess->fe); stream_inc_http_err_ctr(s); } txn->status = 408; msg->msg_state = HTTP_MSG_ERROR; http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_408)); req->analysers = 0; stream_inc_http_req_ctr(s); proxy_inc_fe_req_ctr(sess->fe); sess->fe->fe_counters.failed_req++; if (sess->listener->counters) sess->listener->counters->failed_req++; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_R; return 0; } /* 4: have we encountered a close ? */ else if (req->flags & CF_SHUTR) { if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_CLICL; if (txn->flags & TX_WAIT_NEXT_RQ) goto failed_keep_alive; if (sess->fe->options & PR_O_IGNORE_PRB) goto failed_keep_alive; if (msg->err_pos >= 0) http_capture_bad_message(&sess->fe->invalid_req, s, msg, msg->msg_state, sess->fe); txn->status = 400; msg->msg_state = HTTP_MSG_ERROR; http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_400)); req->analysers = 0; stream_inc_http_err_ctr(s); stream_inc_http_req_ctr(s); proxy_inc_fe_req_ctr(sess->fe); sess->fe->fe_counters.failed_req++; if (sess->listener->counters) sess->listener->counters->failed_req++; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_R; return 0; } channel_dont_connect(req); req->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */ s->res.flags &= ~CF_EXPECT_MORE; /* speed up sending a previous response */ #ifdef TCP_QUICKACK if (sess->listener->options & LI_O_NOQUICKACK && req->buf->i && objt_conn(sess->origin) && conn_ctrl_ready(__objt_conn(sess->origin))) { /* We need more data, we have to re-enable quick-ack in case we * previously disabled it, otherwise we might cause the client * to delay next data. */ setsockopt(__objt_conn(sess->origin)->t.sock.fd, IPPROTO_TCP, TCP_QUICKACK, &one, sizeof(one)); } #endif if ((msg->msg_state != HTTP_MSG_RQBEFORE) && (txn->flags & TX_WAIT_NEXT_RQ)) { /* If the client starts to talk, let's fall back to * request timeout processing. */ txn->flags &= ~TX_WAIT_NEXT_RQ; req->analyse_exp = TICK_ETERNITY; } /* just set the request timeout once at the beginning of the request */ if (!tick_isset(req->analyse_exp)) { if ((msg->msg_state == HTTP_MSG_RQBEFORE) && (txn->flags & TX_WAIT_NEXT_RQ) && tick_isset(s->be->timeout.httpka)) req->analyse_exp = tick_add(now_ms, s->be->timeout.httpka); else req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.httpreq); } /* we're not ready yet */ return 0; failed_keep_alive: /* Here we process low-level errors for keep-alive requests. In * short, if the request is not the first one and it experiences * a timeout, read error or shutdown, we just silently close so * that the client can try again. */ txn->status = 0; msg->msg_state = HTTP_MSG_RQBEFORE; req->analysers = 0; s->logs.logwait = 0; s->logs.level = 0; s->res.flags &= ~CF_EXPECT_MORE; /* speed up sending a previous response */ http_reply_and_close(s, txn->status, NULL); return 0; } /* OK now we have a complete HTTP request with indexed headers. Let's * complete the request parsing by setting a few fields we will need * later. At this point, we have the last CRLF at req->buf->data + msg->eoh. * If the request is in HTTP/0.9 form, the rule is still true, and eoh * points to the CRLF of the request line. msg->next points to the first * byte after the last LF. msg->sov points to the first byte of data. * msg->eol cannot be trusted because it may have been left uninitialized * (for instance in the absence of headers). */ stream_inc_http_req_ctr(s); proxy_inc_fe_req_ctr(sess->fe); /* one more valid request for this FE */ if (txn->flags & TX_WAIT_NEXT_RQ) { /* kill the pending keep-alive timeout */ txn->flags &= ~TX_WAIT_NEXT_RQ; req->analyse_exp = TICK_ETERNITY; } /* Maybe we found in invalid header name while we were configured not * to block on that, so we have to capture it now. */ if (unlikely(msg->err_pos >= 0)) http_capture_bad_message(&sess->fe->invalid_req, s, msg, msg->msg_state, sess->fe); /* * 1: identify the method */ txn->meth = find_http_meth(req->buf->p, msg->sl.rq.m_l); /* we can make use of server redirect on GET and HEAD */ if (txn->meth == HTTP_METH_GET || txn->meth == HTTP_METH_HEAD) s->flags |= SF_REDIRECTABLE; /* * 2: check if the URI matches the monitor_uri. * We have to do this for every request which gets in, because * the monitor-uri is defined by the frontend. */ if (unlikely((sess->fe->monitor_uri_len != 0) && (sess->fe->monitor_uri_len == msg->sl.rq.u_l) && !memcmp(req->buf->p + msg->sl.rq.u, sess->fe->monitor_uri, sess->fe->monitor_uri_len))) { /* * We have found the monitor URI */ struct acl_cond *cond; s->flags |= SF_MONITOR; sess->fe->fe_counters.intercepted_req++; /* Check if we want to fail this monitor request or not */ list_for_each_entry(cond, &sess->fe->mon_fail_cond, list) { int ret = acl_exec_cond(cond, sess->fe, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (cond->pol == ACL_COND_UNLESS) ret = !ret; if (ret) { /* we fail this request, let's return 503 service unavail */ txn->status = 503; http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_503)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_LOCAL; /* we don't want a real error here */ goto return_prx_cond; } } /* nothing to fail, let's reply normaly */ txn->status = 200; http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_200)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_LOCAL; /* we don't want a real error here */ goto return_prx_cond; } /* * 3: Maybe we have to copy the original REQURI for the logs ? * Note: we cannot log anymore if the request has been * classified as invalid. */ if (unlikely(s->logs.logwait & LW_REQ)) { /* we have a complete HTTP request that we must log */ if ((txn->uri = pool_alloc2(pool2_requri)) != NULL) { int urilen = msg->sl.rq.l; if (urilen >= REQURI_LEN) urilen = REQURI_LEN - 1; memcpy(txn->uri, req->buf->p, urilen); txn->uri[urilen] = 0; if (!(s->logs.logwait &= ~(LW_REQ|LW_INIT))) s->do_log(s); } else { Alert("HTTP logging : out of memory.\n"); } } /* RFC7230#2.6 has enforced the format of the HTTP version string to be * exactly one digit "." one digit. This check may be disabled using * option accept-invalid-http-request. */ if (!(sess->fe->options2 & PR_O2_REQBUG_OK)) { if (msg->sl.rq.v_l != 8) { msg->err_pos = msg->sl.rq.v; goto return_bad_req; } if (req->buf->p[msg->sl.rq.v + 4] != '/' || !isdigit((unsigned char)req->buf->p[msg->sl.rq.v + 5]) || req->buf->p[msg->sl.rq.v + 6] != '.' || !isdigit((unsigned char)req->buf->p[msg->sl.rq.v + 7])) { msg->err_pos = msg->sl.rq.v + 4; goto return_bad_req; } } else { /* 4. We may have to convert HTTP/0.9 requests to HTTP/1.0 */ if (unlikely(msg->sl.rq.v_l == 0) && !http_upgrade_v09_to_v10(txn)) goto return_bad_req; } /* ... and check if the request is HTTP/1.1 or above */ if ((msg->sl.rq.v_l == 8) && ((req->buf->p[msg->sl.rq.v + 5] > '1') || ((req->buf->p[msg->sl.rq.v + 5] == '1') && (req->buf->p[msg->sl.rq.v + 7] >= '1')))) msg->flags |= HTTP_MSGF_VER_11; /* "connection" has not been parsed yet */ txn->flags &= ~(TX_HDR_CONN_PRS | TX_HDR_CONN_CLO | TX_HDR_CONN_KAL | TX_HDR_CONN_UPG); /* if the frontend has "option http-use-proxy-header", we'll check if * we have what looks like a proxied connection instead of a connection, * and in this case set the TX_USE_PX_CONN flag to use Proxy-connection. * Note that this is *not* RFC-compliant, however browsers and proxies * happen to do that despite being non-standard :-( * We consider that a request not beginning with either '/' or '*' is * a proxied connection, which covers both "scheme://location" and * CONNECT ip:port. */ if ((sess->fe->options2 & PR_O2_USE_PXHDR) && req->buf->p[msg->sl.rq.u] != '/' && req->buf->p[msg->sl.rq.u] != '*') txn->flags |= TX_USE_PX_CONN; /* transfer length unknown*/ msg->flags &= ~HTTP_MSGF_XFER_LEN; /* 5: we may need to capture headers */ if (unlikely((s->logs.logwait & LW_REQHDR) && s->req_cap)) capture_headers(req->buf->p, &txn->hdr_idx, s->req_cap, sess->fe->req_cap); /* 6: determine the transfer-length according to RFC2616 #4.4, updated * by RFC7230#3.3.3 : * * The length of a message body is determined by one of the following * (in order of precedence): * * 1. Any response to a HEAD request and any response with a 1xx * (Informational), 204 (No Content), or 304 (Not Modified) status * code is always terminated by the first empty line after the * header fields, regardless of the header fields present in the * message, and thus cannot contain a message body. * * 2. Any 2xx (Successful) response to a CONNECT request implies that * the connection will become a tunnel immediately after the empty * line that concludes the header fields. A client MUST ignore any * Content-Length or Transfer-Encoding header fields received in * such a message. * * 3. If a Transfer-Encoding header field is present and the chunked * transfer coding (Section 4.1) is the final encoding, the message * body length is determined by reading and decoding the chunked * data until the transfer coding indicates the data is complete. * * If a Transfer-Encoding header field is present in a response and * the chunked transfer coding is not the final encoding, the * message body length is determined by reading the connection until * it is closed by the server. If a Transfer-Encoding header field * is present in a request and the chunked transfer coding is not * the final encoding, the message body length cannot be determined * reliably; the server MUST respond with the 400 (Bad Request) * status code and then close the connection. * * If a message is received with both a Transfer-Encoding and a * Content-Length header field, the Transfer-Encoding overrides the * Content-Length. Such a message might indicate an attempt to * perform request smuggling (Section 9.5) or response splitting * (Section 9.4) and ought to be handled as an error. A sender MUST * remove the received Content-Length field prior to forwarding such * a message downstream. * * 4. If a message is received without Transfer-Encoding and with * either multiple Content-Length header fields having differing * field-values or a single Content-Length header field having an * invalid value, then the message framing is invalid and the * recipient MUST treat it as an unrecoverable error. If this is a * request message, the server MUST respond with a 400 (Bad Request) * status code and then close the connection. If this is a response * message received by a proxy, the proxy MUST close the connection * to the server, discard the received response, and send a 502 (Bad * Gateway) response to the client. If this is a response message * received by a user agent, the user agent MUST close the * connection to the server and discard the received response. * * 5. If a valid Content-Length header field is present without * Transfer-Encoding, its decimal value defines the expected message * body length in octets. If the sender closes the connection or * the recipient times out before the indicated number of octets are * received, the recipient MUST consider the message to be * incomplete and close the connection. * * 6. If this is a request message and none of the above are true, then * the message body length is zero (no message body is present). * * 7. Otherwise, this is a response message without a declared message * body length, so the message body length is determined by the * number of octets received prior to the server closing the * connection. */ ctx.idx = 0; /* set TE_CHNK and XFER_LEN only if "chunked" is seen last */ while (http_find_header2("Transfer-Encoding", 17, req->buf->p, &txn->hdr_idx, &ctx)) { if (ctx.vlen == 7 && strncasecmp(ctx.line + ctx.val, "chunked", 7) == 0) msg->flags |= (HTTP_MSGF_TE_CHNK | HTTP_MSGF_XFER_LEN); else if (msg->flags & HTTP_MSGF_TE_CHNK) { /* chunked not last, return badreq */ goto return_bad_req; } } /* Chunked requests must have their content-length removed */ ctx.idx = 0; if (msg->flags & HTTP_MSGF_TE_CHNK) { while (http_find_header2("Content-Length", 14, req->buf->p, &txn->hdr_idx, &ctx)) http_remove_header2(msg, &txn->hdr_idx, &ctx); } else while (http_find_header2("Content-Length", 14, req->buf->p, &txn->hdr_idx, &ctx)) { signed long long cl; if (!ctx.vlen) { msg->err_pos = ctx.line + ctx.val - req->buf->p; goto return_bad_req; } if (strl2llrc(ctx.line + ctx.val, ctx.vlen, &cl)) { msg->err_pos = ctx.line + ctx.val - req->buf->p; goto return_bad_req; /* parse failure */ } if (cl < 0) { msg->err_pos = ctx.line + ctx.val - req->buf->p; goto return_bad_req; } if ((msg->flags & HTTP_MSGF_CNT_LEN) && (msg->chunk_len != cl)) { msg->err_pos = ctx.line + ctx.val - req->buf->p; goto return_bad_req; /* already specified, was different */ } msg->flags |= HTTP_MSGF_CNT_LEN | HTTP_MSGF_XFER_LEN; msg->body_len = msg->chunk_len = cl; } /* even bodyless requests have a known length */ msg->flags |= HTTP_MSGF_XFER_LEN; /* Until set to anything else, the connection mode is set as Keep-Alive. It will * only change if both the request and the config reference something else. * Option httpclose by itself sets tunnel mode where headers are mangled. * However, if another mode is set, it will affect it (eg: server-close/ * keep-alive + httpclose = close). Note that we avoid to redo the same work * if FE and BE have the same settings (common). The method consists in * checking if options changed between the two calls (implying that either * one is non-null, or one of them is non-null and we are there for the first * time. */ if (!(txn->flags & TX_HDR_CONN_PRS) || ((sess->fe->options & PR_O_HTTP_MODE) != (s->be->options & PR_O_HTTP_MODE))) http_adjust_conn_mode(s, txn, msg); /* we may have to wait for the request's body */ if ((s->be->options & PR_O_WREQ_BODY) && (msg->body_len || (msg->flags & HTTP_MSGF_TE_CHNK))) req->analysers |= AN_REQ_HTTP_BODY; /* end of job, return OK */ req->analysers &= ~an_bit; req->analyse_exp = TICK_ETERNITY; return 1; return_bad_req: /* We centralize bad requests processing here */ if (unlikely(msg->msg_state == HTTP_MSG_ERROR) || msg->err_pos >= 0) { /* we detected a parsing error. We want to archive this request * in the dedicated proxy area for later troubleshooting. */ http_capture_bad_message(&sess->fe->invalid_req, s, msg, msg->msg_state, sess->fe); } txn->req.msg_state = HTTP_MSG_ERROR; txn->status = 400; http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_400)); sess->fe->fe_counters.failed_req++; if (sess->listener->counters) sess->listener->counters->failed_req++; return_prx_cond: if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_PRXCOND; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_R; req->analysers = 0; req->analyse_exp = TICK_ETERNITY; return 0; } /* This function prepares an applet to handle the stats. It can deal with the * "100-continue" expectation, check that admin rules are met for POST requests, * and program a response message if something was unexpected. It cannot fail * and always relies on the stats applet to complete the job. It does not touch * analysers nor counters, which are left to the caller. It does not touch * s->target which is supposed to already point to the stats applet. The caller * is expected to have already assigned an appctx to the stream. */ int http_handle_stats(struct stream *s, struct channel *req) { struct stats_admin_rule *stats_admin_rule; struct stream_interface *si = &s->si[1]; struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &txn->req; struct uri_auth *uri_auth = s->be->uri_auth; const char *uri, *h, *lookup; struct appctx *appctx; appctx = si_appctx(si); memset(&appctx->ctx.stats, 0, sizeof(appctx->ctx.stats)); appctx->st1 = appctx->st2 = 0; appctx->ctx.stats.st_code = STAT_STATUS_INIT; appctx->ctx.stats.flags |= STAT_FMT_HTML; /* assume HTML mode by default */ if ((msg->flags & HTTP_MSGF_VER_11) && (s->txn->meth != HTTP_METH_HEAD)) appctx->ctx.stats.flags |= STAT_CHUNKED; uri = msg->chn->buf->p + msg->sl.rq.u; lookup = uri + uri_auth->uri_len; for (h = lookup; h <= uri + msg->sl.rq.u_l - 3; h++) { if (memcmp(h, ";up", 3) == 0) { appctx->ctx.stats.flags |= STAT_HIDE_DOWN; break; } } if (uri_auth->refresh) { for (h = lookup; h <= uri + msg->sl.rq.u_l - 10; h++) { if (memcmp(h, ";norefresh", 10) == 0) { appctx->ctx.stats.flags |= STAT_NO_REFRESH; break; } } } for (h = lookup; h <= uri + msg->sl.rq.u_l - 4; h++) { if (memcmp(h, ";csv", 4) == 0) { appctx->ctx.stats.flags &= ~STAT_FMT_HTML; break; } } for (h = lookup; h <= uri + msg->sl.rq.u_l - 8; h++) { if (memcmp(h, ";st=", 4) == 0) { int i; h += 4; appctx->ctx.stats.st_code = STAT_STATUS_UNKN; for (i = STAT_STATUS_INIT + 1; i < STAT_STATUS_SIZE; i++) { if (strncmp(stat_status_codes[i], h, 4) == 0) { appctx->ctx.stats.st_code = i; break; } } break; } } appctx->ctx.stats.scope_str = 0; appctx->ctx.stats.scope_len = 0; for (h = lookup; h <= uri + msg->sl.rq.u_l - 8; h++) { if (memcmp(h, STAT_SCOPE_INPUT_NAME "=", strlen(STAT_SCOPE_INPUT_NAME) + 1) == 0) { int itx = 0; const char *h2; char scope_txt[STAT_SCOPE_TXT_MAXLEN + 1]; const char *err; h += strlen(STAT_SCOPE_INPUT_NAME) + 1; h2 = h; appctx->ctx.stats.scope_str = h2 - msg->chn->buf->p; while (*h != ';' && *h != '\0' && *h != '&' && *h != ' ' && *h != '\n') { itx++; h++; } if (itx > STAT_SCOPE_TXT_MAXLEN) itx = STAT_SCOPE_TXT_MAXLEN; appctx->ctx.stats.scope_len = itx; /* scope_txt = search query, appctx->ctx.stats.scope_len is always <= STAT_SCOPE_TXT_MAXLEN */ memcpy(scope_txt, h2, itx); scope_txt[itx] = '\0'; err = invalid_char(scope_txt); if (err) { /* bad char in search text => clear scope */ appctx->ctx.stats.scope_str = 0; appctx->ctx.stats.scope_len = 0; } break; } } /* now check whether we have some admin rules for this request */ list_for_each_entry(stats_admin_rule, &uri_auth->admin_rules, list) { int ret = 1; if (stats_admin_rule->cond) { ret = acl_exec_cond(stats_admin_rule->cond, s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (stats_admin_rule->cond->pol == ACL_COND_UNLESS) ret = !ret; } if (ret) { /* no rule, or the rule matches */ appctx->ctx.stats.flags |= STAT_ADMIN; break; } } /* Was the status page requested with a POST ? */ if (unlikely(txn->meth == HTTP_METH_POST && txn->req.body_len > 0)) { if (appctx->ctx.stats.flags & STAT_ADMIN) { /* we'll need the request body, possibly after sending 100-continue */ if (msg->msg_state < HTTP_MSG_CHUNK_SIZE) req->analysers |= AN_REQ_HTTP_BODY; appctx->st0 = STAT_HTTP_POST; } else { appctx->ctx.stats.st_code = STAT_STATUS_DENY; appctx->st0 = STAT_HTTP_LAST; } } else { /* So it was another method (GET/HEAD) */ appctx->st0 = STAT_HTTP_HEAD; } s->task->nice = -32; /* small boost for HTTP statistics */ return 1; } /* Sets the TOS header in IPv4 and the traffic class header in IPv6 packets * (as per RFC3260 #4 and BCP37 #4.2 and #5.2). */ void inet_set_tos(int fd, struct sockaddr_storage from, int tos) { #ifdef IP_TOS if (from.ss_family == AF_INET) setsockopt(fd, IPPROTO_IP, IP_TOS, &tos, sizeof(tos)); #endif #ifdef IPV6_TCLASS if (from.ss_family == AF_INET6) { if (IN6_IS_ADDR_V4MAPPED(&((struct sockaddr_in6 *)&from)->sin6_addr)) /* v4-mapped addresses need IP_TOS */ setsockopt(fd, IPPROTO_IP, IP_TOS, &tos, sizeof(tos)); else setsockopt(fd, IPPROTO_IPV6, IPV6_TCLASS, &tos, sizeof(tos)); } #endif } int http_transform_header_str(struct stream* s, struct http_msg *msg, const char* name, unsigned int name_len, const char *str, struct my_regex *re, int action) { struct hdr_ctx ctx; char *buf = msg->chn->buf->p; struct hdr_idx *idx = &s->txn->hdr_idx; int (*http_find_hdr_func)(const char *name, int len, char *sol, struct hdr_idx *idx, struct hdr_ctx *ctx); struct chunk *output = get_trash_chunk(); ctx.idx = 0; /* Choose the header browsing function. */ switch (action) { case ACT_HTTP_REPLACE_VAL: http_find_hdr_func = http_find_header2; break; case ACT_HTTP_REPLACE_HDR: http_find_hdr_func = http_find_full_header2; break; default: /* impossible */ return -1; } while (http_find_hdr_func(name, name_len, buf, idx, &ctx)) { struct hdr_idx_elem *hdr = idx->v + ctx.idx; int delta; char *val = ctx.line + ctx.val; char* val_end = val + ctx.vlen; if (!regex_exec_match2(re, val, val_end-val, MAX_MATCH, pmatch, 0)) continue; output->len = exp_replace(output->str, output->size, val, str, pmatch); if (output->len == -1) return -1; delta = buffer_replace2(msg->chn->buf, val, val_end, output->str, output->len); hdr->len += delta; http_msg_move_end(msg, delta); /* Adjust the length of the current value of the index. */ ctx.vlen += delta; } return 0; } static int http_transform_header(struct stream* s, struct http_msg *msg, const char* name, unsigned int name_len, struct list *fmt, struct my_regex *re, int action) { struct chunk *replace = get_trash_chunk(); replace->len = build_logline(s, replace->str, replace->size, fmt); if (replace->len >= replace->size - 1) return -1; return http_transform_header_str(s, msg, name, name_len, replace->str, re, action); } /* Executes the http-request rules for stream , proxy and * transaction . Returns the verdict of the first rule that prevents * further processing of the request (auth, deny, ...), and defaults to * HTTP_RULE_RES_STOP if it executed all rules or stopped on an allow, or * HTTP_RULE_RES_CONT if the last rule was reached. It may set the TX_CLTARPIT * on txn->flags if it encounters a tarpit rule. */ enum rule_result http_req_get_intercept_rule(struct proxy *px, struct list *rules, struct stream *s) { struct session *sess = strm_sess(s); struct http_txn *txn = s->txn; struct connection *cli_conn; struct act_rule *rule; struct hdr_ctx ctx; const char *auth_realm; int act_flags = 0; /* If "the current_rule_list" match the executed rule list, we are in * resume condition. If a resume is needed it is always in the action * and never in the ACL or converters. In this case, we initialise the * current rule, and go to the action execution point. */ if (s->current_rule) { rule = s->current_rule; s->current_rule = NULL; if (s->current_rule_list == rules) goto resume_execution; } s->current_rule_list = rules; list_for_each_entry(rule, rules, list) { /* check optional condition */ if (rule->cond) { int ret; ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (rule->cond->pol == ACL_COND_UNLESS) ret = !ret; if (!ret) /* condition not matched */ continue; } act_flags |= ACT_FLAG_FIRST; resume_execution: switch (rule->action) { case ACT_ACTION_ALLOW: return HTTP_RULE_RES_STOP; case ACT_ACTION_DENY: txn->rule_deny_status = rule->deny_status; return HTTP_RULE_RES_DENY; case ACT_HTTP_REQ_TARPIT: txn->flags |= TX_CLTARPIT; txn->rule_deny_status = rule->deny_status; return HTTP_RULE_RES_DENY; case ACT_HTTP_REQ_AUTH: /* Auth might be performed on regular http-req rules as well as on stats */ auth_realm = rule->arg.auth.realm; if (!auth_realm) { if (px->uri_auth && rules == &px->uri_auth->http_req_rules) auth_realm = STATS_DEFAULT_REALM; else auth_realm = px->id; } /* send 401/407 depending on whether we use a proxy or not. We still * count one error, because normal browsing won't significantly * increase the counter but brute force attempts will. */ chunk_printf(&trash, (txn->flags & TX_USE_PX_CONN) ? HTTP_407_fmt : HTTP_401_fmt, auth_realm); txn->status = (txn->flags & TX_USE_PX_CONN) ? 407 : 401; http_reply_and_close(s, txn->status, &trash); stream_inc_http_err_ctr(s); return HTTP_RULE_RES_ABRT; case ACT_HTTP_REDIR: if (!http_apply_redirect_rule(rule->arg.redir, s, txn)) return HTTP_RULE_RES_BADREQ; return HTTP_RULE_RES_DONE; case ACT_HTTP_SET_NICE: s->task->nice = rule->arg.nice; break; case ACT_HTTP_SET_TOS: if ((cli_conn = objt_conn(sess->origin)) && conn_ctrl_ready(cli_conn)) inet_set_tos(cli_conn->t.sock.fd, cli_conn->addr.from, rule->arg.tos); break; case ACT_HTTP_SET_MARK: #ifdef SO_MARK if ((cli_conn = objt_conn(sess->origin)) && conn_ctrl_ready(cli_conn)) setsockopt(cli_conn->t.sock.fd, SOL_SOCKET, SO_MARK, &rule->arg.mark, sizeof(rule->arg.mark)); #endif break; case ACT_HTTP_SET_LOGL: s->logs.level = rule->arg.loglevel; break; case ACT_HTTP_REPLACE_HDR: case ACT_HTTP_REPLACE_VAL: if (http_transform_header(s, &txn->req, rule->arg.hdr_add.name, rule->arg.hdr_add.name_len, &rule->arg.hdr_add.fmt, &rule->arg.hdr_add.re, rule->action)) return HTTP_RULE_RES_BADREQ; break; case ACT_HTTP_DEL_HDR: ctx.idx = 0; /* remove all occurrences of the header */ while (http_find_header2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len, txn->req.chn->buf->p, &txn->hdr_idx, &ctx)) { http_remove_header2(&txn->req, &txn->hdr_idx, &ctx); } break; case ACT_HTTP_SET_HDR: case ACT_HTTP_ADD_HDR: chunk_printf(&trash, "%s: ", rule->arg.hdr_add.name); memcpy(trash.str, rule->arg.hdr_add.name, rule->arg.hdr_add.name_len); trash.len = rule->arg.hdr_add.name_len; trash.str[trash.len++] = ':'; trash.str[trash.len++] = ' '; trash.len += build_logline(s, trash.str + trash.len, trash.size - trash.len, &rule->arg.hdr_add.fmt); if (rule->action == ACT_HTTP_SET_HDR) { /* remove all occurrences of the header */ ctx.idx = 0; while (http_find_header2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len, txn->req.chn->buf->p, &txn->hdr_idx, &ctx)) { http_remove_header2(&txn->req, &txn->hdr_idx, &ctx); } } http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.str, trash.len); break; case ACT_HTTP_DEL_ACL: case ACT_HTTP_DEL_MAP: { struct pat_ref *ref; char *key; int len; /* collect reference */ ref = pat_ref_lookup(rule->arg.map.ref); if (!ref) continue; /* collect key */ len = build_logline(s, trash.str, trash.size, &rule->arg.map.key); key = trash.str; key[len] = '\0'; /* perform update */ /* returned code: 1=ok, 0=ko */ pat_ref_delete(ref, key); break; } case ACT_HTTP_ADD_ACL: { struct pat_ref *ref; char *key; struct chunk *trash_key; int len; trash_key = get_trash_chunk(); /* collect reference */ ref = pat_ref_lookup(rule->arg.map.ref); if (!ref) continue; /* collect key */ len = build_logline(s, trash_key->str, trash_key->size, &rule->arg.map.key); key = trash_key->str; key[len] = '\0'; /* perform update */ /* add entry only if it does not already exist */ if (pat_ref_find_elt(ref, key) == NULL) pat_ref_add(ref, key, NULL, NULL); break; } case ACT_HTTP_SET_MAP: { struct pat_ref *ref; char *key, *value; struct chunk *trash_key, *trash_value; int len; trash_key = get_trash_chunk(); trash_value = get_trash_chunk(); /* collect reference */ ref = pat_ref_lookup(rule->arg.map.ref); if (!ref) continue; /* collect key */ len = build_logline(s, trash_key->str, trash_key->size, &rule->arg.map.key); key = trash_key->str; key[len] = '\0'; /* collect value */ len = build_logline(s, trash_value->str, trash_value->size, &rule->arg.map.value); value = trash_value->str; value[len] = '\0'; /* perform update */ if (pat_ref_find_elt(ref, key) != NULL) /* update entry if it exists */ pat_ref_set(ref, key, value, NULL); else /* insert a new entry */ pat_ref_add(ref, key, value, NULL); break; } case ACT_CUSTOM: if ((px->options & PR_O_ABRT_CLOSE) && (s->req.flags & (CF_SHUTR|CF_READ_NULL|CF_READ_ERROR))) act_flags |= ACT_FLAG_FINAL; switch (rule->action_ptr(rule, px, s->sess, s, act_flags)) { case ACT_RET_ERR: case ACT_RET_CONT: break; case ACT_RET_STOP: return HTTP_RULE_RES_DONE; case ACT_RET_YIELD: s->current_rule = rule; return HTTP_RULE_RES_YIELD; } break; case ACT_ACTION_TRK_SC0 ... ACT_ACTION_TRK_SCMAX: /* Note: only the first valid tracking parameter of each * applies. */ if (stkctr_entry(&s->stkctr[http_req_trk_idx(rule->action)]) == NULL) { struct stktable *t; struct stksess *ts; struct stktable_key *key; void *ptr; t = rule->arg.trk_ctr.table.t; key = stktable_fetch_key(t, s->be, sess, s, SMP_OPT_DIR_REQ | SMP_OPT_FINAL, rule->arg.trk_ctr.expr, NULL); if (key && (ts = stktable_get_entry(t, key))) { stream_track_stkctr(&s->stkctr[http_req_trk_idx(rule->action)], t, ts); /* let's count a new HTTP request as it's the first time we do it */ ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_REQ_CNT); if (ptr) stktable_data_cast(ptr, http_req_cnt)++; ptr = stktable_data_ptr(t, ts, STKTABLE_DT_HTTP_REQ_RATE); if (ptr) update_freq_ctr_period(&stktable_data_cast(ptr, http_req_rate), t->data_arg[STKTABLE_DT_HTTP_REQ_RATE].u, 1); stkctr_set_flags(&s->stkctr[http_req_trk_idx(rule->action)], STKCTR_TRACK_CONTENT); if (sess->fe != s->be) stkctr_set_flags(&s->stkctr[http_req_trk_idx(rule->action)], STKCTR_TRACK_BACKEND); } } break; case ACT_HTTP_REQ_SET_SRC: if ((cli_conn = objt_conn(sess->origin)) && conn_ctrl_ready(cli_conn)) { struct sample *smp; smp = sample_fetch_as_type(px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->arg.expr, SMP_T_ADDR); if (smp) { if (smp->data.type == SMP_T_IPV4) { ((struct sockaddr_in *)&cli_conn->addr.from)->sin_family = AF_INET; ((struct sockaddr_in *)&cli_conn->addr.from)->sin_addr.s_addr = smp->data.u.ipv4.s_addr; ((struct sockaddr_in *)&cli_conn->addr.from)->sin_port = 0; } else if (smp->data.type == SMP_T_IPV6) { ((struct sockaddr_in6 *)&cli_conn->addr.from)->sin6_family = AF_INET6; memcpy(&((struct sockaddr_in6 *)&cli_conn->addr.from)->sin6_addr, &smp->data.u.ipv6, sizeof(struct in6_addr)); ((struct sockaddr_in6 *)&cli_conn->addr.from)->sin6_port = 0; } } } break; /* other flags exists, but normaly, they never be matched. */ default: break; } } /* we reached the end of the rules, nothing to report */ return HTTP_RULE_RES_CONT; } /* Executes the http-response rules for stream and proxy . It * returns one of 5 possible statuses: HTTP_RULE_RES_CONT, HTTP_RULE_RES_STOP, * HTTP_RULE_RES_DONE, HTTP_RULE_RES_YIELD, or HTTP_RULE_RES_BADREQ. If *CONT * is returned, the process can continue the evaluation of next rule list. If * *STOP or *DONE is returned, the process must stop the evaluation. If *BADREQ * is returned, it means the operation could not be processed and a server error * must be returned. It may set the TX_SVDENY on txn->flags if it encounters a * deny rule. If *YIELD is returned, the caller must call again the function * with the same context. */ static enum rule_result http_res_get_intercept_rule(struct proxy *px, struct list *rules, struct stream *s) { struct session *sess = strm_sess(s); struct http_txn *txn = s->txn; struct connection *cli_conn; struct act_rule *rule; struct hdr_ctx ctx; int act_flags = 0; /* If "the current_rule_list" match the executed rule list, we are in * resume condition. If a resume is needed it is always in the action * and never in the ACL or converters. In this case, we initialise the * current rule, and go to the action execution point. */ if (s->current_rule) { rule = s->current_rule; s->current_rule = NULL; if (s->current_rule_list == rules) goto resume_execution; } s->current_rule_list = rules; list_for_each_entry(rule, rules, list) { /* check optional condition */ if (rule->cond) { int ret; ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL); ret = acl_pass(ret); if (rule->cond->pol == ACL_COND_UNLESS) ret = !ret; if (!ret) /* condition not matched */ continue; } act_flags |= ACT_FLAG_FIRST; resume_execution: switch (rule->action) { case ACT_ACTION_ALLOW: return HTTP_RULE_RES_STOP; /* "allow" rules are OK */ case ACT_ACTION_DENY: txn->flags |= TX_SVDENY; return HTTP_RULE_RES_STOP; case ACT_HTTP_SET_NICE: s->task->nice = rule->arg.nice; break; case ACT_HTTP_SET_TOS: if ((cli_conn = objt_conn(sess->origin)) && conn_ctrl_ready(cli_conn)) inet_set_tos(cli_conn->t.sock.fd, cli_conn->addr.from, rule->arg.tos); break; case ACT_HTTP_SET_MARK: #ifdef SO_MARK if ((cli_conn = objt_conn(sess->origin)) && conn_ctrl_ready(cli_conn)) setsockopt(cli_conn->t.sock.fd, SOL_SOCKET, SO_MARK, &rule->arg.mark, sizeof(rule->arg.mark)); #endif break; case ACT_HTTP_SET_LOGL: s->logs.level = rule->arg.loglevel; break; case ACT_HTTP_REPLACE_HDR: case ACT_HTTP_REPLACE_VAL: if (http_transform_header(s, &txn->rsp, rule->arg.hdr_add.name, rule->arg.hdr_add.name_len, &rule->arg.hdr_add.fmt, &rule->arg.hdr_add.re, rule->action)) return HTTP_RULE_RES_STOP; /* note: we should report an error here */ break; case ACT_HTTP_DEL_HDR: ctx.idx = 0; /* remove all occurrences of the header */ while (http_find_header2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len, txn->rsp.chn->buf->p, &txn->hdr_idx, &ctx)) { http_remove_header2(&txn->rsp, &txn->hdr_idx, &ctx); } break; case ACT_HTTP_SET_HDR: case ACT_HTTP_ADD_HDR: chunk_printf(&trash, "%s: ", rule->arg.hdr_add.name); memcpy(trash.str, rule->arg.hdr_add.name, rule->arg.hdr_add.name_len); trash.len = rule->arg.hdr_add.name_len; trash.str[trash.len++] = ':'; trash.str[trash.len++] = ' '; trash.len += build_logline(s, trash.str + trash.len, trash.size - trash.len, &rule->arg.hdr_add.fmt); if (rule->action == ACT_HTTP_SET_HDR) { /* remove all occurrences of the header */ ctx.idx = 0; while (http_find_header2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len, txn->rsp.chn->buf->p, &txn->hdr_idx, &ctx)) { http_remove_header2(&txn->rsp, &txn->hdr_idx, &ctx); } } http_header_add_tail2(&txn->rsp, &txn->hdr_idx, trash.str, trash.len); break; case ACT_HTTP_DEL_ACL: case ACT_HTTP_DEL_MAP: { struct pat_ref *ref; char *key; int len; /* collect reference */ ref = pat_ref_lookup(rule->arg.map.ref); if (!ref) continue; /* collect key */ len = build_logline(s, trash.str, trash.size, &rule->arg.map.key); key = trash.str; key[len] = '\0'; /* perform update */ /* returned code: 1=ok, 0=ko */ pat_ref_delete(ref, key); break; } case ACT_HTTP_ADD_ACL: { struct pat_ref *ref; char *key; struct chunk *trash_key; int len; trash_key = get_trash_chunk(); /* collect reference */ ref = pat_ref_lookup(rule->arg.map.ref); if (!ref) continue; /* collect key */ len = build_logline(s, trash_key->str, trash_key->size, &rule->arg.map.key); key = trash_key->str; key[len] = '\0'; /* perform update */ /* check if the entry already exists */ if (pat_ref_find_elt(ref, key) == NULL) pat_ref_add(ref, key, NULL, NULL); break; } case ACT_HTTP_SET_MAP: { struct pat_ref *ref; char *key, *value; struct chunk *trash_key, *trash_value; int len; trash_key = get_trash_chunk(); trash_value = get_trash_chunk(); /* collect reference */ ref = pat_ref_lookup(rule->arg.map.ref); if (!ref) continue; /* collect key */ len = build_logline(s, trash_key->str, trash_key->size, &rule->arg.map.key); key = trash_key->str; key[len] = '\0'; /* collect value */ len = build_logline(s, trash_value->str, trash_value->size, &rule->arg.map.value); value = trash_value->str; value[len] = '\0'; /* perform update */ if (pat_ref_find_elt(ref, key) != NULL) /* update entry if it exists */ pat_ref_set(ref, key, value, NULL); else /* insert a new entry */ pat_ref_add(ref, key, value, NULL); break; } case ACT_HTTP_REDIR: if (!http_apply_redirect_rule(rule->arg.redir, s, txn)) return HTTP_RULE_RES_BADREQ; return HTTP_RULE_RES_DONE; case ACT_CUSTOM: if ((px->options & PR_O_ABRT_CLOSE) && (s->req.flags & (CF_SHUTR|CF_READ_NULL|CF_READ_ERROR))) act_flags |= ACT_FLAG_FINAL; switch (rule->action_ptr(rule, px, s->sess, s, act_flags)) { case ACT_RET_ERR: case ACT_RET_CONT: break; case ACT_RET_STOP: return HTTP_RULE_RES_STOP; case ACT_RET_YIELD: s->current_rule = rule; return HTTP_RULE_RES_YIELD; } break; /* other flags exists, but normaly, they never be matched. */ default: break; } } /* we reached the end of the rules, nothing to report */ return HTTP_RULE_RES_CONT; } /* Perform an HTTP redirect based on the information in . The function * returns non-zero on success, or zero in case of a, irrecoverable error such * as too large a request to build a valid response. */ static int http_apply_redirect_rule(struct redirect_rule *rule, struct stream *s, struct http_txn *txn) { struct http_msg *req = &txn->req; struct http_msg *res = &txn->rsp; const char *msg_fmt; const char *location; /* build redirect message */ switch(rule->code) { case 308: msg_fmt = HTTP_308; break; case 307: msg_fmt = HTTP_307; break; case 303: msg_fmt = HTTP_303; break; case 301: msg_fmt = HTTP_301; break; case 302: default: msg_fmt = HTTP_302; break; } if (unlikely(!chunk_strcpy(&trash, msg_fmt))) return 0; location = trash.str + trash.len; switch(rule->type) { case REDIRECT_TYPE_SCHEME: { const char *path; const char *host; struct hdr_ctx ctx; int pathlen; int hostlen; host = ""; hostlen = 0; ctx.idx = 0; if (http_find_header2("Host", 4, req->chn->buf->p, &txn->hdr_idx, &ctx)) { host = ctx.line + ctx.val; hostlen = ctx.vlen; } path = http_get_path(txn); /* build message using path */ if (path) { pathlen = req->sl.rq.u_l + (req->chn->buf->p + req->sl.rq.u) - path; if (rule->flags & REDIRECT_FLAG_DROP_QS) { int qs = 0; while (qs < pathlen) { if (path[qs] == '?') { pathlen = qs; break; } qs++; } } } else { path = "/"; pathlen = 1; } if (rule->rdr_str) { /* this is an old "redirect" rule */ /* check if we can add scheme + "://" + host + path */ if (trash.len + rule->rdr_len + 3 + hostlen + pathlen > trash.size - 4) return 0; /* add scheme */ memcpy(trash.str + trash.len, rule->rdr_str, rule->rdr_len); trash.len += rule->rdr_len; } else { /* add scheme with executing log format */ trash.len += build_logline(s, trash.str + trash.len, trash.size - trash.len, &rule->rdr_fmt); /* check if we can add scheme + "://" + host + path */ if (trash.len + 3 + hostlen + pathlen > trash.size - 4) return 0; } /* add "://" */ memcpy(trash.str + trash.len, "://", 3); trash.len += 3; /* add host */ memcpy(trash.str + trash.len, host, hostlen); trash.len += hostlen; /* add path */ memcpy(trash.str + trash.len, path, pathlen); trash.len += pathlen; /* append a slash at the end of the location if needed and missing */ if (trash.len && trash.str[trash.len - 1] != '/' && (rule->flags & REDIRECT_FLAG_APPEND_SLASH)) { if (trash.len > trash.size - 5) return 0; trash.str[trash.len] = '/'; trash.len++; } break; } case REDIRECT_TYPE_PREFIX: { const char *path; int pathlen; path = http_get_path(txn); /* build message using path */ if (path) { pathlen = req->sl.rq.u_l + (req->chn->buf->p + req->sl.rq.u) - path; if (rule->flags & REDIRECT_FLAG_DROP_QS) { int qs = 0; while (qs < pathlen) { if (path[qs] == '?') { pathlen = qs; break; } qs++; } } } else { path = "/"; pathlen = 1; } if (rule->rdr_str) { /* this is an old "redirect" rule */ if (trash.len + rule->rdr_len + pathlen > trash.size - 4) return 0; /* add prefix. Note that if prefix == "/", we don't want to * add anything, otherwise it makes it hard for the user to * configure a self-redirection. */ if (rule->rdr_len != 1 || *rule->rdr_str != '/') { memcpy(trash.str + trash.len, rule->rdr_str, rule->rdr_len); trash.len += rule->rdr_len; } } else { /* add prefix with executing log format */ trash.len += build_logline(s, trash.str + trash.len, trash.size - trash.len, &rule->rdr_fmt); /* Check length */ if (trash.len + pathlen > trash.size - 4) return 0; } /* add path */ memcpy(trash.str + trash.len, path, pathlen); trash.len += pathlen; /* append a slash at the end of the location if needed and missing */ if (trash.len && trash.str[trash.len - 1] != '/' && (rule->flags & REDIRECT_FLAG_APPEND_SLASH)) { if (trash.len > trash.size - 5) return 0; trash.str[trash.len] = '/'; trash.len++; } break; } case REDIRECT_TYPE_LOCATION: default: if (rule->rdr_str) { /* this is an old "redirect" rule */ if (trash.len + rule->rdr_len > trash.size - 4) return 0; /* add location */ memcpy(trash.str + trash.len, rule->rdr_str, rule->rdr_len); trash.len += rule->rdr_len; } else { /* add location with executing log format */ trash.len += build_logline(s, trash.str + trash.len, trash.size - trash.len, &rule->rdr_fmt); /* Check left length */ if (trash.len > trash.size - 4) return 0; } break; } if (rule->cookie_len) { memcpy(trash.str + trash.len, "\r\nSet-Cookie: ", 14); trash.len += 14; memcpy(trash.str + trash.len, rule->cookie_str, rule->cookie_len); trash.len += rule->cookie_len; memcpy(trash.str + trash.len, "\r\n", 2); trash.len += 2; } /* add end of headers and the keep-alive/close status. * We may choose to set keep-alive if the Location begins * with a slash, because the client will come back to the * same server. */ txn->status = rule->code; /* let's log the request time */ s->logs.tv_request = now; if (*location == '/' && (req->flags & HTTP_MSGF_XFER_LEN) && ((!(req->flags & HTTP_MSGF_TE_CHNK) && !req->body_len) || (req->msg_state == HTTP_MSG_DONE)) && ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL || (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL)) { /* keep-alive possible */ if (!(req->flags & HTTP_MSGF_VER_11)) { if (unlikely(txn->flags & TX_USE_PX_CONN)) { memcpy(trash.str + trash.len, "\r\nProxy-Connection: keep-alive", 30); trash.len += 30; } else { memcpy(trash.str + trash.len, "\r\nConnection: keep-alive", 24); trash.len += 24; } } memcpy(trash.str + trash.len, "\r\n\r\n", 4); trash.len += 4; bo_inject(res->chn, trash.str, trash.len); /* "eat" the request */ bi_fast_delete(req->chn->buf, req->sov); req->next -= req->sov; req->sov = 0; s->req.analysers = AN_REQ_HTTP_XFER_BODY; s->res.analysers = AN_RES_HTTP_XFER_BODY; req->msg_state = HTTP_MSG_CLOSED; res->msg_state = HTTP_MSG_DONE; /* Trim any possible response */ res->chn->buf->i = 0; res->next = res->sov = 0; } else { /* keep-alive not possible */ if (unlikely(txn->flags & TX_USE_PX_CONN)) { memcpy(trash.str + trash.len, "\r\nProxy-Connection: close\r\n\r\n", 29); trash.len += 29; } else { memcpy(trash.str + trash.len, "\r\nConnection: close\r\n\r\n", 23); trash.len += 23; } http_reply_and_close(s, txn->status, &trash); req->chn->analysers = 0; } if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_LOCAL; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_R; return 1; } /* This stream analyser runs all HTTP request processing which is common to * frontends and backends, which means blocking ACLs, filters, connection-close, * reqadd, stats and redirects. This is performed for the designated proxy. * It returns 1 if the processing can continue on next analysers, or zero if it * either needs more data or wants to immediately abort the request (eg: deny, * error, ...). */ int http_process_req_common(struct stream *s, struct channel *req, int an_bit, struct proxy *px) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &txn->req; struct redirect_rule *rule; struct cond_wordlist *wl; enum rule_result verdict; if (unlikely(msg->msg_state < HTTP_MSG_BODY)) { /* we need more data */ goto return_prx_yield; } DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n", now_ms, __FUNCTION__, s, req, req->rex, req->wex, req->flags, req->buf->i, req->analysers); /* just in case we have some per-backend tracking */ stream_inc_be_http_req_ctr(s); /* evaluate http-request rules */ if (!LIST_ISEMPTY(&px->http_req_rules)) { verdict = http_req_get_intercept_rule(px, &px->http_req_rules, s); switch (verdict) { case HTTP_RULE_RES_YIELD: /* some data miss, call the function later. */ goto return_prx_yield; case HTTP_RULE_RES_CONT: case HTTP_RULE_RES_STOP: /* nothing to do */ break; case HTTP_RULE_RES_DENY: /* deny or tarpit */ if (txn->flags & TX_CLTARPIT) goto tarpit; goto deny; case HTTP_RULE_RES_ABRT: /* abort request, response already sent. Eg: auth */ goto return_prx_cond; case HTTP_RULE_RES_DONE: /* OK, but terminate request processing (eg: redirect) */ goto done; case HTTP_RULE_RES_BADREQ: /* failed with a bad request */ goto return_bad_req; } } /* OK at this stage, we know that the request was accepted according to * the http-request rules, we can check for the stats. Note that the * URI is detected *before* the req* rules in order not to be affected * by a possible reqrep, while they are processed *after* so that a * reqdeny can still block them. This clearly needs to change in 1.6! */ if (stats_check_uri(&s->si[1], txn, px)) { s->target = &http_stats_applet.obj_type; if (unlikely(!stream_int_register_handler(&s->si[1], objt_applet(s->target)))) { txn->status = 500; s->logs.tv_request = now; http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_500)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_RESOURCE; goto return_prx_cond; } /* parse the whole stats request and extract the relevant information */ http_handle_stats(s, req); verdict = http_req_get_intercept_rule(px, &px->uri_auth->http_req_rules, s); /* not all actions implemented: deny, allow, auth */ if (verdict == HTTP_RULE_RES_DENY) /* stats http-request deny */ goto deny; if (verdict == HTTP_RULE_RES_ABRT) /* stats auth / stats http-request auth */ goto return_prx_cond; } /* evaluate the req* rules except reqadd */ if (px->req_exp != NULL) { if (apply_filters_to_request(s, req, px) < 0) goto return_bad_req; if (txn->flags & TX_CLDENY) goto deny; if (txn->flags & TX_CLTARPIT) goto tarpit; } /* add request headers from the rule sets in the same order */ list_for_each_entry(wl, &px->req_add, list) { if (wl->cond) { int ret = acl_exec_cond(wl->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (((struct acl_cond *)wl->cond)->pol == ACL_COND_UNLESS) ret = !ret; if (!ret) continue; } if (unlikely(http_header_add_tail(&txn->req, &txn->hdr_idx, wl->s) < 0)) goto return_bad_req; } /* Proceed with the stats now. */ if (unlikely(objt_applet(s->target) == &http_stats_applet)) { /* process the stats request now */ if (sess->fe == s->be) /* report it if the request was intercepted by the frontend */ sess->fe->fe_counters.intercepted_req++; if (!(s->flags & SF_ERR_MASK)) // this is not really an error but it is s->flags |= SF_ERR_LOCAL; // to mark that it comes from the proxy if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_R; /* we may want to compress the stats page */ if (sess->fe->comp || s->be->comp) select_compression_request_header(s, req->buf); /* enable the minimally required analyzers to handle keep-alive and compression on the HTTP response */ req->analysers = (req->analysers & AN_REQ_HTTP_BODY) | AN_REQ_HTTP_XFER_BODY; goto done; } /* check whether we have some ACLs set to redirect this request */ list_for_each_entry(rule, &px->redirect_rules, list) { if (rule->cond) { int ret; ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (rule->cond->pol == ACL_COND_UNLESS) ret = !ret; if (!ret) continue; } if (!http_apply_redirect_rule(rule, s, txn)) goto return_bad_req; goto done; } /* POST requests may be accompanied with an "Expect: 100-Continue" header. * If this happens, then the data will not come immediately, so we must * send all what we have without waiting. Note that due to the small gain * in waiting for the body of the request, it's easier to simply put the * CF_SEND_DONTWAIT flag any time. It's a one-shot flag so it will remove * itself once used. */ req->flags |= CF_SEND_DONTWAIT; done: /* done with this analyser, continue with next ones that the calling * points will have set, if any. */ req->analyse_exp = TICK_ETERNITY; done_without_exp: /* done with this analyser, but dont reset the analyse_exp. */ req->analysers &= ~an_bit; return 1; tarpit: /* When a connection is tarpitted, we use the tarpit timeout, * which may be the same as the connect timeout if unspecified. * If unset, then set it to zero because we really want it to * eventually expire. We build the tarpit as an analyser. */ channel_erase(&s->req); /* wipe the request out so that we can drop the connection early * if the client closes first. */ channel_dont_connect(req); req->analysers = 0; /* remove switching rules etc... */ req->analysers |= AN_REQ_HTTP_TARPIT; req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.tarpit); if (!req->analyse_exp) req->analyse_exp = tick_add(now_ms, 0); stream_inc_http_err_ctr(s); sess->fe->fe_counters.denied_req++; if (sess->fe != s->be) s->be->be_counters.denied_req++; if (sess->listener->counters) sess->listener->counters->denied_req++; goto done_without_exp; deny: /* this request was blocked (denied) */ txn->flags |= TX_CLDENY; txn->status = http_err_codes[txn->rule_deny_status]; s->logs.tv_request = now; http_reply_and_close(s, txn->status, http_error_message(s, txn->rule_deny_status)); stream_inc_http_err_ctr(s); sess->fe->fe_counters.denied_req++; if (sess->fe != s->be) s->be->be_counters.denied_req++; if (sess->listener->counters) sess->listener->counters->denied_req++; goto return_prx_cond; return_bad_req: /* We centralize bad requests processing here */ if (unlikely(msg->msg_state == HTTP_MSG_ERROR) || msg->err_pos >= 0) { /* we detected a parsing error. We want to archive this request * in the dedicated proxy area for later troubleshooting. */ http_capture_bad_message(&sess->fe->invalid_req, s, msg, msg->msg_state, sess->fe); } txn->req.msg_state = HTTP_MSG_ERROR; txn->status = 400; http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_400)); sess->fe->fe_counters.failed_req++; if (sess->listener->counters) sess->listener->counters->failed_req++; return_prx_cond: if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_PRXCOND; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_R; req->analysers = 0; req->analyse_exp = TICK_ETERNITY; return 0; return_prx_yield: channel_dont_connect(req); return 0; } /* This function performs all the processing enabled for the current request. * It returns 1 if the processing can continue on next analysers, or zero if it * needs more data, encounters an error, or wants to immediately abort the * request. It relies on buffers flags, and updates s->req.analysers. */ int http_process_request(struct stream *s, struct channel *req, int an_bit) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &txn->req; struct connection *cli_conn = objt_conn(strm_sess(s)->origin); if (unlikely(msg->msg_state < HTTP_MSG_BODY)) { /* we need more data */ channel_dont_connect(req); return 0; } DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n", now_ms, __FUNCTION__, s, req, req->rex, req->wex, req->flags, req->buf->i, req->analysers); if (sess->fe->comp || s->be->comp) select_compression_request_header(s, req->buf); /* * Right now, we know that we have processed the entire headers * and that unwanted requests have been filtered out. We can do * whatever we want with the remaining request. Also, now we * may have separate values for ->fe, ->be. */ /* * If HTTP PROXY is set we simply get remote server address parsing * incoming request. Note that this requires that a connection is * allocated on the server side. */ if ((s->be->options & PR_O_HTTP_PROXY) && !(s->flags & SF_ADDR_SET)) { struct connection *conn; char *path; /* Note that for now we don't reuse existing proxy connections */ if (unlikely((conn = si_alloc_conn(&s->si[1])) == NULL)) { txn->req.msg_state = HTTP_MSG_ERROR; txn->status = 500; req->analysers = 0; http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_500)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_RESOURCE; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_R; return 0; } path = http_get_path(txn); url2sa(req->buf->p + msg->sl.rq.u, path ? path - (req->buf->p + msg->sl.rq.u) : msg->sl.rq.u_l, &conn->addr.to, NULL); /* if the path was found, we have to remove everything between * req->buf->p + msg->sl.rq.u and path (excluded). If it was not * found, we need to replace from req->buf->p + msg->sl.rq.u for * u_l characters by a single "/". */ if (path) { char *cur_ptr = req->buf->p; char *cur_end = cur_ptr + txn->req.sl.rq.l; int delta; delta = buffer_replace2(req->buf, req->buf->p + msg->sl.rq.u, path, NULL, 0); http_msg_move_end(&txn->req, delta); cur_end += delta; if (http_parse_reqline(&txn->req, HTTP_MSG_RQMETH, cur_ptr, cur_end + 1, NULL, NULL) == NULL) goto return_bad_req; } else { char *cur_ptr = req->buf->p; char *cur_end = cur_ptr + txn->req.sl.rq.l; int delta; delta = buffer_replace2(req->buf, req->buf->p + msg->sl.rq.u, req->buf->p + msg->sl.rq.u + msg->sl.rq.u_l, "/", 1); http_msg_move_end(&txn->req, delta); cur_end += delta; if (http_parse_reqline(&txn->req, HTTP_MSG_RQMETH, cur_ptr, cur_end + 1, NULL, NULL) == NULL) goto return_bad_req; } } /* * 7: Now we can work with the cookies. * Note that doing so might move headers in the request, but * the fields will stay coherent and the URI will not move. * This should only be performed in the backend. */ if ((s->be->cookie_name || sess->fe->capture_name) && !(txn->flags & (TX_CLDENY|TX_CLTARPIT))) manage_client_side_cookies(s, req); /* add unique-id if "header-unique-id" is specified */ if (!LIST_ISEMPTY(&sess->fe->format_unique_id)) { if ((s->unique_id = pool_alloc2(pool2_uniqueid)) == NULL) goto return_bad_req; s->unique_id[0] = '\0'; build_logline(s, s->unique_id, UNIQUEID_LEN, &sess->fe->format_unique_id); } if (sess->fe->header_unique_id && s->unique_id) { chunk_printf(&trash, "%s: %s", sess->fe->header_unique_id, s->unique_id); if (trash.len < 0) goto return_bad_req; if (unlikely(http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.str, trash.len) < 0)) goto return_bad_req; } /* * 9: add X-Forwarded-For if either the frontend or the backend * asks for it. */ if ((sess->fe->options | s->be->options) & PR_O_FWDFOR) { struct hdr_ctx ctx = { .idx = 0 }; if (!((sess->fe->options | s->be->options) & PR_O_FF_ALWAYS) && http_find_header2(s->be->fwdfor_hdr_len ? s->be->fwdfor_hdr_name : sess->fe->fwdfor_hdr_name, s->be->fwdfor_hdr_len ? s->be->fwdfor_hdr_len : sess->fe->fwdfor_hdr_len, req->buf->p, &txn->hdr_idx, &ctx)) { /* The header is set to be added only if none is present * and we found it, so don't do anything. */ } else if (cli_conn && cli_conn->addr.from.ss_family == AF_INET) { /* Add an X-Forwarded-For header unless the source IP is * in the 'except' network range. */ if ((!sess->fe->except_mask.s_addr || (((struct sockaddr_in *)&cli_conn->addr.from)->sin_addr.s_addr & sess->fe->except_mask.s_addr) != sess->fe->except_net.s_addr) && (!s->be->except_mask.s_addr || (((struct sockaddr_in *)&cli_conn->addr.from)->sin_addr.s_addr & s->be->except_mask.s_addr) != s->be->except_net.s_addr)) { int len; unsigned char *pn; pn = (unsigned char *)&((struct sockaddr_in *)&cli_conn->addr.from)->sin_addr; /* Note: we rely on the backend to get the header name to be used for * x-forwarded-for, because the header is really meant for the backends. * However, if the backend did not specify any option, we have to rely * on the frontend's header name. */ if (s->be->fwdfor_hdr_len) { len = s->be->fwdfor_hdr_len; memcpy(trash.str, s->be->fwdfor_hdr_name, len); } else { len = sess->fe->fwdfor_hdr_len; memcpy(trash.str, sess->fe->fwdfor_hdr_name, len); } len += snprintf(trash.str + len, trash.size - len, ": %d.%d.%d.%d", pn[0], pn[1], pn[2], pn[3]); if (unlikely(http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.str, len) < 0)) goto return_bad_req; } } else if (cli_conn && cli_conn->addr.from.ss_family == AF_INET6) { /* FIXME: for the sake of completeness, we should also support * 'except' here, although it is mostly useless in this case. */ int len; char pn[INET6_ADDRSTRLEN]; inet_ntop(AF_INET6, (const void *)&((struct sockaddr_in6 *)(&cli_conn->addr.from))->sin6_addr, pn, sizeof(pn)); /* Note: we rely on the backend to get the header name to be used for * x-forwarded-for, because the header is really meant for the backends. * However, if the backend did not specify any option, we have to rely * on the frontend's header name. */ if (s->be->fwdfor_hdr_len) { len = s->be->fwdfor_hdr_len; memcpy(trash.str, s->be->fwdfor_hdr_name, len); } else { len = sess->fe->fwdfor_hdr_len; memcpy(trash.str, sess->fe->fwdfor_hdr_name, len); } len += snprintf(trash.str + len, trash.size - len, ": %s", pn); if (unlikely(http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.str, len) < 0)) goto return_bad_req; } } /* * 10: add X-Original-To if either the frontend or the backend * asks for it. */ if ((sess->fe->options | s->be->options) & PR_O_ORGTO) { /* FIXME: don't know if IPv6 can handle that case too. */ if (cli_conn && cli_conn->addr.from.ss_family == AF_INET) { /* Add an X-Original-To header unless the destination IP is * in the 'except' network range. */ conn_get_to_addr(cli_conn); if (cli_conn->addr.to.ss_family == AF_INET && ((!sess->fe->except_mask_to.s_addr || (((struct sockaddr_in *)&cli_conn->addr.to)->sin_addr.s_addr & sess->fe->except_mask_to.s_addr) != sess->fe->except_to.s_addr) && (!s->be->except_mask_to.s_addr || (((struct sockaddr_in *)&cli_conn->addr.to)->sin_addr.s_addr & s->be->except_mask_to.s_addr) != s->be->except_to.s_addr))) { int len; unsigned char *pn; pn = (unsigned char *)&((struct sockaddr_in *)&cli_conn->addr.to)->sin_addr; /* Note: we rely on the backend to get the header name to be used for * x-original-to, because the header is really meant for the backends. * However, if the backend did not specify any option, we have to rely * on the frontend's header name. */ if (s->be->orgto_hdr_len) { len = s->be->orgto_hdr_len; memcpy(trash.str, s->be->orgto_hdr_name, len); } else { len = sess->fe->orgto_hdr_len; memcpy(trash.str, sess->fe->orgto_hdr_name, len); } len += snprintf(trash.str + len, trash.size - len, ": %d.%d.%d.%d", pn[0], pn[1], pn[2], pn[3]); if (unlikely(http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.str, len) < 0)) goto return_bad_req; } } } /* 11: add "Connection: close" or "Connection: keep-alive" if needed and not yet set. * If an "Upgrade" token is found, the header is left untouched in order not to have * to deal with some servers bugs : some of them fail an Upgrade if anything but * "Upgrade" is present in the Connection header. */ if (!(txn->flags & TX_HDR_CONN_UPG) && (((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN) || ((sess->fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL || (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL))) { unsigned int want_flags = 0; if (msg->flags & HTTP_MSGF_VER_11) { if (((txn->flags & TX_CON_WANT_MSK) >= TX_CON_WANT_SCL || ((sess->fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL || (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL)) && !((sess->fe->options2|s->be->options2) & PR_O2_FAKE_KA)) want_flags |= TX_CON_CLO_SET; } else { if (((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL && ((sess->fe->options & PR_O_HTTP_MODE) != PR_O_HTTP_PCL && (s->be->options & PR_O_HTTP_MODE) != PR_O_HTTP_PCL)) || ((sess->fe->options2|s->be->options2) & PR_O2_FAKE_KA)) want_flags |= TX_CON_KAL_SET; } if (want_flags != (txn->flags & (TX_CON_CLO_SET|TX_CON_KAL_SET))) http_change_connection_header(txn, msg, want_flags); } /* If we have no server assigned yet and we're balancing on url_param * with a POST request, we may be interested in checking the body for * that parameter. This will be done in another analyser. */ if (!(s->flags & (SF_ASSIGNED|SF_DIRECT)) && s->txn->meth == HTTP_METH_POST && s->be->url_param_name != NULL && (msg->flags & (HTTP_MSGF_CNT_LEN|HTTP_MSGF_TE_CHNK))) { channel_dont_connect(req); req->analysers |= AN_REQ_HTTP_BODY; } if (msg->flags & HTTP_MSGF_XFER_LEN) { req->analysers |= AN_REQ_HTTP_XFER_BODY; #ifdef TCP_QUICKACK /* We expect some data from the client. Unless we know for sure * we already have a full request, we have to re-enable quick-ack * in case we previously disabled it, otherwise we might cause * the client to delay further data. */ if ((sess->listener->options & LI_O_NOQUICKACK) && cli_conn && conn_ctrl_ready(cli_conn) && ((msg->flags & HTTP_MSGF_TE_CHNK) || (msg->body_len > req->buf->i - txn->req.eoh - 2))) setsockopt(cli_conn->t.sock.fd, IPPROTO_TCP, TCP_QUICKACK, &one, sizeof(one)); #endif } /************************************************************* * OK, that's finished for the headers. We have done what we * * could. Let's switch to the DATA state. * ************************************************************/ req->analyse_exp = TICK_ETERNITY; req->analysers &= ~an_bit; /* if the server closes the connection, we want to immediately react * and close the socket to save packets and syscalls. */ if (!(req->analysers & AN_REQ_HTTP_XFER_BODY)) s->si[1].flags |= SI_FL_NOHALF; s->logs.tv_request = now; /* OK let's go on with the BODY now */ return 1; return_bad_req: /* let's centralize all bad requests */ if (unlikely(msg->msg_state == HTTP_MSG_ERROR) || msg->err_pos >= 0) { /* we detected a parsing error. We want to archive this request * in the dedicated proxy area for later troubleshooting. */ http_capture_bad_message(&sess->fe->invalid_req, s, msg, msg->msg_state, sess->fe); } txn->req.msg_state = HTTP_MSG_ERROR; txn->status = 400; req->analysers = 0; http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_400)); sess->fe->fe_counters.failed_req++; if (sess->listener->counters) sess->listener->counters->failed_req++; if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_PRXCOND; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_R; return 0; } /* This function is an analyser which processes the HTTP tarpit. It always * returns zero, at the beginning because it prevents any other processing * from occurring, and at the end because it terminates the request. */ int http_process_tarpit(struct stream *s, struct channel *req, int an_bit) { struct http_txn *txn = s->txn; /* This connection is being tarpitted. The CLIENT side has * already set the connect expiration date to the right * timeout. We just have to check that the client is still * there and that the timeout has not expired. */ channel_dont_connect(req); if ((req->flags & (CF_SHUTR|CF_READ_ERROR)) == 0 && !tick_is_expired(req->analyse_exp, now_ms)) return 0; /* We will set the queue timer to the time spent, just for * logging purposes. We fake a 500 server error, so that the * attacker will not suspect his connection has been tarpitted. * It will not cause trouble to the logs because we can exclude * the tarpitted connections by filtering on the 'PT' status flags. */ s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); txn->status = 500; if (!(req->flags & CF_READ_ERROR)) http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_500)); req->analysers = 0; req->analyse_exp = TICK_ETERNITY; if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_PRXCOND; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_T; return 0; } /* This function is an analyser which waits for the HTTP request body. It waits * for either the buffer to be full, or the full advertised contents to have * reached the buffer. It must only be called after the standard HTTP request * processing has occurred, because it expects the request to be parsed and will * look for the Expect header. It may send a 100-Continue interim response. It * takes in input any state starting from HTTP_MSG_BODY and leaves with one of * HTTP_MSG_CHK_SIZE, HTTP_MSG_DATA or HTTP_MSG_TRAILERS. It returns zero if it * needs to read more data, or 1 once it has completed its analysis. */ int http_wait_for_request_body(struct stream *s, struct channel *req, int an_bit) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &s->txn->req; /* We have to parse the HTTP request body to find any required data. * "balance url_param check_post" should have been the only way to get * into this. We were brought here after HTTP header analysis, so all * related structures are ready. */ if (msg->msg_state < HTTP_MSG_CHUNK_SIZE) { /* This is the first call */ if (msg->msg_state < HTTP_MSG_BODY) goto missing_data; if (msg->msg_state < HTTP_MSG_100_SENT) { /* If we have HTTP/1.1 and Expect: 100-continue, then we must * send an HTTP/1.1 100 Continue intermediate response. */ if (msg->flags & HTTP_MSGF_VER_11) { struct hdr_ctx ctx; ctx.idx = 0; /* Expect is allowed in 1.1, look for it */ if (http_find_header2("Expect", 6, req->buf->p, &txn->hdr_idx, &ctx) && unlikely(ctx.vlen == 12 && strncasecmp(ctx.line+ctx.val, "100-continue", 12) == 0)) { bo_inject(&s->res, http_100_chunk.str, http_100_chunk.len); } } msg->msg_state = HTTP_MSG_100_SENT; } /* we have msg->sov which points to the first byte of message body. * req->buf->p still points to the beginning of the message. We * must save the body in msg->next because it survives buffer * re-alignments. */ msg->next = msg->sov; if (msg->flags & HTTP_MSGF_TE_CHNK) msg->msg_state = HTTP_MSG_CHUNK_SIZE; else msg->msg_state = HTTP_MSG_DATA; } if (!(msg->flags & HTTP_MSGF_TE_CHNK)) { /* We're in content-length mode, we just have to wait for enough data. */ if (http_body_bytes(msg) < msg->body_len) goto missing_data; /* OK we have everything we need now */ goto http_end; } /* OK here we're parsing a chunked-encoded message */ if (msg->msg_state == HTTP_MSG_CHUNK_SIZE) { /* read the chunk size and assign it to ->chunk_len, then * set ->sov and ->next to point to the body and switch to DATA or * TRAILERS state. */ int ret = http_parse_chunk_size(msg); if (!ret) goto missing_data; else if (ret < 0) { stream_inc_http_err_ctr(s); goto return_bad_req; } } /* Now we're in HTTP_MSG_DATA or HTTP_MSG_TRAILERS state. * We have the first data byte is in msg->sov + msg->sol. We're waiting * for at least a whole chunk or the whole content length bytes after * msg->sov + msg->sol. */ if (msg->msg_state == HTTP_MSG_TRAILERS) goto http_end; if (http_body_bytes(msg) >= msg->body_len) /* we have enough bytes now */ goto http_end; missing_data: /* we get here if we need to wait for more data. If the buffer is full, * we have the maximum we can expect. */ if (buffer_full(req->buf, global.tune.maxrewrite)) goto http_end; if ((req->flags & CF_READ_TIMEOUT) || tick_is_expired(req->analyse_exp, now_ms)) { txn->status = 408; http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_408)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_CLITO; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_D; goto return_err_msg; } /* we get here if we need to wait for more data */ if (!(req->flags & (CF_SHUTR | CF_READ_ERROR))) { /* Not enough data. We'll re-use the http-request * timeout here. Ideally, we should set the timeout * relative to the accept() date. We just set the * request timeout once at the beginning of the * request. */ channel_dont_connect(req); if (!tick_isset(req->analyse_exp)) req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.httpreq); return 0; } http_end: /* The situation will not evolve, so let's give up on the analysis. */ s->logs.tv_request = now; /* update the request timer to reflect full request */ req->analysers &= ~an_bit; req->analyse_exp = TICK_ETERNITY; return 1; return_bad_req: /* let's centralize all bad requests */ txn->req.msg_state = HTTP_MSG_ERROR; txn->status = 400; http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_400)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_PRXCOND; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_R; return_err_msg: req->analysers = 0; sess->fe->fe_counters.failed_req++; if (sess->listener->counters) sess->listener->counters->failed_req++; return 0; } /* send a server's name with an outgoing request over an established connection. * Note: this function is designed to be called once the request has been scheduled * for being forwarded. This is the reason why it rewinds the buffer before * proceeding. */ int http_send_name_header(struct http_txn *txn, struct proxy* be, const char* srv_name) { struct hdr_ctx ctx; char *hdr_name = be->server_id_hdr_name; int hdr_name_len = be->server_id_hdr_len; struct channel *chn = txn->req.chn; char *hdr_val; unsigned int old_o, old_i; ctx.idx = 0; old_o = http_hdr_rewind(&txn->req); if (old_o) { /* The request was already skipped, let's restore it */ b_rew(chn->buf, old_o); txn->req.next += old_o; txn->req.sov += old_o; } old_i = chn->buf->i; while (http_find_header2(hdr_name, hdr_name_len, txn->req.chn->buf->p, &txn->hdr_idx, &ctx)) { /* remove any existing values from the header */ http_remove_header2(&txn->req, &txn->hdr_idx, &ctx); } /* Add the new header requested with the server value */ hdr_val = trash.str; memcpy(hdr_val, hdr_name, hdr_name_len); hdr_val += hdr_name_len; *hdr_val++ = ':'; *hdr_val++ = ' '; hdr_val += strlcpy2(hdr_val, srv_name, trash.str + trash.size - hdr_val); http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.str, hdr_val - trash.str); if (old_o) { /* If this was a forwarded request, we must readjust the amount of * data to be forwarded in order to take into account the size * variations. Note that the current state is >= HTTP_MSG_BODY, * so we don't have to adjust ->sol. */ old_o += chn->buf->i - old_i; b_adv(chn->buf, old_o); txn->req.next -= old_o; txn->req.sov -= old_o; } return 0; } /* Terminate current transaction and prepare a new one. This is very tricky * right now but it works. */ void http_end_txn_clean_session(struct stream *s) { int prev_status = s->txn->status; struct proxy *fe = strm_fe(s); struct proxy *be = s->be; struct connection *srv_conn; struct server *srv; unsigned int prev_flags = s->txn->flags; /* FIXME: We need a more portable way of releasing a backend's and a * server's connections. We need a safer way to reinitialize buffer * flags. We also need a more accurate method for computing per-request * data. */ srv_conn = objt_conn(s->si[1].end); /* unless we're doing keep-alive, we want to quickly close the connection * to the server. */ if (((s->txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_KAL) || !si_conn_ready(&s->si[1])) { s->si[1].flags |= SI_FL_NOLINGER | SI_FL_NOHALF; si_shutr(&s->si[1]); si_shutw(&s->si[1]); } if (s->flags & SF_BE_ASSIGNED) { be->beconn--; if (unlikely(s->srv_conn)) sess_change_server(s, NULL); } s->logs.t_close = tv_ms_elapsed(&s->logs.tv_accept, &now); stream_process_counters(s); if (s->txn->status) { int n; n = s->txn->status / 100; if (n < 1 || n > 5) n = 0; if (fe->mode == PR_MODE_HTTP) { fe->fe_counters.p.http.rsp[n]++; if (s->comp_algo && (s->flags & SF_COMP_READY)) fe->fe_counters.p.http.comp_rsp++; } if ((s->flags & SF_BE_ASSIGNED) && (be->mode == PR_MODE_HTTP)) { be->be_counters.p.http.rsp[n]++; be->be_counters.p.http.cum_req++; if (s->comp_algo && (s->flags & SF_COMP_READY)) be->be_counters.p.http.comp_rsp++; } } /* don't count other requests' data */ s->logs.bytes_in -= s->req.buf->i; s->logs.bytes_out -= s->res.buf->i; /* let's do a final log if we need it */ if (!LIST_ISEMPTY(&fe->logformat) && s->logs.logwait && !(s->flags & SF_MONITOR) && (!(fe->options & PR_O_NULLNOLOG) || s->req.total)) { s->do_log(s); } /* stop tracking content-based counters */ stream_stop_content_counters(s); stream_update_time_stats(s); s->logs.accept_date = date; /* user-visible date for logging */ s->logs.tv_accept = now; /* corrected date for internal use */ tv_zero(&s->logs.tv_request); s->logs.t_queue = -1; s->logs.t_connect = -1; s->logs.t_data = -1; s->logs.t_close = 0; s->logs.prx_queue_size = 0; /* we get the number of pending conns before us */ s->logs.srv_queue_size = 0; /* we will get this number soon */ s->logs.bytes_in = s->req.total = s->req.buf->i; s->logs.bytes_out = s->res.total = s->res.buf->i; if (s->pend_pos) pendconn_free(s->pend_pos); if (objt_server(s->target)) { if (s->flags & SF_CURR_SESS) { s->flags &= ~SF_CURR_SESS; objt_server(s->target)->cur_sess--; } if (may_dequeue_tasks(objt_server(s->target), be)) process_srv_queue(objt_server(s->target)); } s->target = NULL; /* only release our endpoint if we don't intend to reuse the * connection. */ if (((s->txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_KAL) || !si_conn_ready(&s->si[1])) { si_release_endpoint(&s->si[1]); srv_conn = NULL; } s->si[1].state = s->si[1].prev_state = SI_ST_INI; s->si[1].err_type = SI_ET_NONE; s->si[1].conn_retries = 0; /* used for logging too */ s->si[1].exp = TICK_ETERNITY; s->si[1].flags &= SI_FL_ISBACK | SI_FL_DONT_WAKE; /* we're in the context of process_stream */ s->req.flags &= ~(CF_SHUTW|CF_SHUTW_NOW|CF_AUTO_CONNECT|CF_WRITE_ERROR|CF_STREAMER|CF_STREAMER_FAST|CF_NEVER_WAIT|CF_WAKE_CONNECT|CF_WROTE_DATA); s->res.flags &= ~(CF_SHUTR|CF_SHUTR_NOW|CF_READ_ATTACHED|CF_READ_ERROR|CF_READ_NOEXP|CF_STREAMER|CF_STREAMER_FAST|CF_WRITE_PARTIAL|CF_NEVER_WAIT|CF_WROTE_DATA); s->flags &= ~(SF_DIRECT|SF_ASSIGNED|SF_ADDR_SET|SF_BE_ASSIGNED|SF_FORCE_PRST|SF_IGNORE_PRST); s->flags &= ~(SF_CURR_SESS|SF_REDIRECTABLE|SF_SRV_REUSED); s->flags &= ~(SF_ERR_MASK|SF_FINST_MASK|SF_REDISP); s->txn->meth = 0; http_reset_txn(s); s->txn->flags |= TX_NOT_FIRST | TX_WAIT_NEXT_RQ; if (prev_status == 401 || prev_status == 407) { /* In HTTP keep-alive mode, if we receive a 401, we still have * a chance of being able to send the visitor again to the same * server over the same connection. This is required by some * broken protocols such as NTLM, and anyway whenever there is * an opportunity for sending the challenge to the proper place, * it's better to do it (at least it helps with debugging). */ s->txn->flags |= TX_PREFER_LAST; if (srv_conn) srv_conn->flags |= CO_FL_PRIVATE; } if (fe->options2 & PR_O2_INDEPSTR) s->si[1].flags |= SI_FL_INDEP_STR; if (fe->options2 & PR_O2_NODELAY) { s->req.flags |= CF_NEVER_WAIT; s->res.flags |= CF_NEVER_WAIT; } /* if the request buffer is not empty, it means we're * about to process another request, so send pending * data with MSG_MORE to merge TCP packets when possible. * Just don't do this if the buffer is close to be full, * because the request will wait for it to flush a little * bit before proceeding. */ if (s->req.buf->i) { if (s->res.buf->o && !buffer_full(s->res.buf, global.tune.maxrewrite) && bi_end(s->res.buf) <= s->res.buf->data + s->res.buf->size - global.tune.maxrewrite) s->res.flags |= CF_EXPECT_MORE; } /* we're removing the analysers, we MUST re-enable events detection. * We don't enable close on the response channel since it's either * already closed, or in keep-alive with an idle connection handler. */ channel_auto_read(&s->req); channel_auto_close(&s->req); channel_auto_read(&s->res); /* we're in keep-alive with an idle connection, monitor it if not already done */ if (srv_conn && LIST_ISEMPTY(&srv_conn->list)) { srv = objt_server(srv_conn->target); if (!srv) si_idle_conn(&s->si[1], NULL); else if ((srv_conn->flags & CO_FL_PRIVATE) || ((be->options & PR_O_REUSE_MASK) == PR_O_REUSE_NEVR)) si_idle_conn(&s->si[1], &srv->priv_conns); else if (prev_flags & TX_NOT_FIRST) /* note: we check the request, not the connection, but * this is valid for strategies SAFE and AGGR, and in * case of ALWS, we don't care anyway. */ si_idle_conn(&s->si[1], &srv->safe_conns); else si_idle_conn(&s->si[1], &srv->idle_conns); } s->req.analysers = strm_li(s) ? strm_li(s)->analysers : 0; s->res.analysers = 0; } /* This function updates the request state machine according to the response * state machine and buffer flags. It returns 1 if it changes anything (flag * or state), otherwise zero. It ignores any state before HTTP_MSG_DONE, as * it is only used to find when a request/response couple is complete. Both * this function and its equivalent should loop until both return zero. It * can set its own state to DONE, CLOSING, CLOSED, TUNNEL, ERROR. */ int http_sync_req_state(struct stream *s) { struct channel *chn = &s->req; struct http_txn *txn = s->txn; unsigned int old_flags = chn->flags; unsigned int old_state = txn->req.msg_state; if (unlikely(txn->req.msg_state < HTTP_MSG_BODY)) return 0; if (txn->req.msg_state == HTTP_MSG_DONE) { /* No need to read anymore, the request was completely parsed. * We can shut the read side unless we want to abort_on_close, * or we have a POST request. The issue with POST requests is * that some browsers still send a CRLF after the request, and * this CRLF must be read so that it does not remain in the kernel * buffers, otherwise a close could cause an RST on some systems * (eg: Linux). * Note that if we're using keep-alive on the client side, we'd * rather poll now and keep the polling enabled for the whole * stream's life than enabling/disabling it between each * response and next request. */ if (((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_SCL) && ((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_KAL) && !(s->be->options & PR_O_ABRT_CLOSE) && txn->meth != HTTP_METH_POST) channel_dont_read(chn); /* if the server closes the connection, we want to immediately react * and close the socket to save packets and syscalls. */ s->si[1].flags |= SI_FL_NOHALF; /* In any case we've finished parsing the request so we must * disable Nagle when sending data because 1) we're not going * to shut this side, and 2) the server is waiting for us to * send pending data. */ chn->flags |= CF_NEVER_WAIT; if (txn->rsp.msg_state == HTTP_MSG_ERROR) goto wait_other_side; if (txn->rsp.msg_state < HTTP_MSG_DONE) { /* The server has not finished to respond, so we * don't want to move in order not to upset it. */ goto wait_other_side; } if (txn->rsp.msg_state == HTTP_MSG_TUNNEL) { /* if any side switches to tunnel mode, the other one does too */ channel_auto_read(chn); txn->req.msg_state = HTTP_MSG_TUNNEL; goto wait_other_side; } /* When we get here, it means that both the request and the * response have finished receiving. Depending on the connection * mode, we'll have to wait for the last bytes to leave in either * direction, and sometimes for a close to be effective. */ if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) { /* Server-close mode : queue a connection close to the server */ if (!(chn->flags & (CF_SHUTW|CF_SHUTW_NOW))) channel_shutw_now(chn); } else if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_CLO) { /* Option forceclose is set, or either side wants to close, * let's enforce it now that we're not expecting any new * data to come. The caller knows the stream is complete * once both states are CLOSED. */ if (!(chn->flags & (CF_SHUTW|CF_SHUTW_NOW))) { channel_shutr_now(chn); channel_shutw_now(chn); } } else { /* The last possible modes are keep-alive and tunnel. Tunnel mode * will not have any analyser so it needs to poll for reads. */ if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_TUN) { channel_auto_read(chn); txn->req.msg_state = HTTP_MSG_TUNNEL; } } if (chn->flags & (CF_SHUTW|CF_SHUTW_NOW)) { /* if we've just closed an output, let's switch */ s->si[1].flags |= SI_FL_NOLINGER; /* we want to close ASAP */ if (!channel_is_empty(chn)) { txn->req.msg_state = HTTP_MSG_CLOSING; goto http_msg_closing; } else { txn->req.msg_state = HTTP_MSG_CLOSED; goto http_msg_closed; } } goto wait_other_side; } if (txn->req.msg_state == HTTP_MSG_CLOSING) { http_msg_closing: /* nothing else to forward, just waiting for the output buffer * to be empty and for the shutw_now to take effect. */ if (channel_is_empty(chn)) { txn->req.msg_state = HTTP_MSG_CLOSED; goto http_msg_closed; } else if (chn->flags & CF_SHUTW) { txn->req.msg_state = HTTP_MSG_ERROR; goto wait_other_side; } } if (txn->req.msg_state == HTTP_MSG_CLOSED) { http_msg_closed: /* see above in MSG_DONE why we only do this in these states */ if (((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_SCL) && ((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_KAL) && !(s->be->options & PR_O_ABRT_CLOSE)) channel_dont_read(chn); goto wait_other_side; } wait_other_side: return txn->req.msg_state != old_state || chn->flags != old_flags; } /* This function updates the response state machine according to the request * state machine and buffer flags. It returns 1 if it changes anything (flag * or state), otherwise zero. It ignores any state before HTTP_MSG_DONE, as * it is only used to find when a request/response couple is complete. Both * this function and its equivalent should loop until both return zero. It * can set its own state to DONE, CLOSING, CLOSED, TUNNEL, ERROR. */ int http_sync_res_state(struct stream *s) { struct channel *chn = &s->res; struct http_txn *txn = s->txn; unsigned int old_flags = chn->flags; unsigned int old_state = txn->rsp.msg_state; if (unlikely(txn->rsp.msg_state < HTTP_MSG_BODY)) return 0; if (txn->rsp.msg_state == HTTP_MSG_DONE) { /* In theory, we don't need to read anymore, but we must * still monitor the server connection for a possible close * while the request is being uploaded, so we don't disable * reading. */ /* channel_dont_read(chn); */ if (txn->req.msg_state == HTTP_MSG_ERROR) goto wait_other_side; if (txn->req.msg_state < HTTP_MSG_DONE) { /* The client seems to still be sending data, probably * because we got an error response during an upload. * We have the choice of either breaking the connection * or letting it pass through. Let's do the later. */ goto wait_other_side; } if (txn->req.msg_state == HTTP_MSG_TUNNEL) { /* if any side switches to tunnel mode, the other one does too */ channel_auto_read(chn); txn->rsp.msg_state = HTTP_MSG_TUNNEL; chn->flags |= CF_NEVER_WAIT; goto wait_other_side; } /* When we get here, it means that both the request and the * response have finished receiving. Depending on the connection * mode, we'll have to wait for the last bytes to leave in either * direction, and sometimes for a close to be effective. */ if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) { /* Server-close mode : shut read and wait for the request * side to close its output buffer. The caller will detect * when we're in DONE and the other is in CLOSED and will * catch that for the final cleanup. */ if (!(chn->flags & (CF_SHUTR|CF_SHUTR_NOW))) channel_shutr_now(chn); } else if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_CLO) { /* Option forceclose is set, or either side wants to close, * let's enforce it now that we're not expecting any new * data to come. The caller knows the stream is complete * once both states are CLOSED. */ if (!(chn->flags & (CF_SHUTW|CF_SHUTW_NOW))) { channel_shutr_now(chn); channel_shutw_now(chn); } } else { /* The last possible modes are keep-alive and tunnel. Tunnel will * need to forward remaining data. Keep-alive will need to monitor * for connection closing. */ channel_auto_read(chn); chn->flags |= CF_NEVER_WAIT; if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_TUN) txn->rsp.msg_state = HTTP_MSG_TUNNEL; } if (chn->flags & (CF_SHUTW|CF_SHUTW_NOW)) { /* if we've just closed an output, let's switch */ if (!channel_is_empty(chn)) { txn->rsp.msg_state = HTTP_MSG_CLOSING; goto http_msg_closing; } else { txn->rsp.msg_state = HTTP_MSG_CLOSED; goto http_msg_closed; } } goto wait_other_side; } if (txn->rsp.msg_state == HTTP_MSG_CLOSING) { http_msg_closing: /* nothing else to forward, just waiting for the output buffer * to be empty and for the shutw_now to take effect. */ if (channel_is_empty(chn)) { txn->rsp.msg_state = HTTP_MSG_CLOSED; goto http_msg_closed; } else if (chn->flags & CF_SHUTW) { txn->rsp.msg_state = HTTP_MSG_ERROR; s->be->be_counters.cli_aborts++; if (objt_server(s->target)) objt_server(s->target)->counters.cli_aborts++; goto wait_other_side; } } if (txn->rsp.msg_state == HTTP_MSG_CLOSED) { http_msg_closed: /* drop any pending data */ channel_truncate(chn); channel_auto_close(chn); channel_auto_read(chn); goto wait_other_side; } wait_other_side: /* We force the response to leave immediately if we're waiting for the * other side, since there is no pending shutdown to push it out. */ if (!channel_is_empty(chn)) chn->flags |= CF_SEND_DONTWAIT; return txn->rsp.msg_state != old_state || chn->flags != old_flags; } /* Resync the request and response state machines. Return 1 if either state * changes. */ int http_resync_states(struct stream *s) { struct http_txn *txn = s->txn; int old_req_state = txn->req.msg_state; int old_res_state = txn->rsp.msg_state; http_sync_req_state(s); while (1) { if (!http_sync_res_state(s)) break; if (!http_sync_req_state(s)) break; } /* OK, both state machines agree on a compatible state. * There are a few cases we're interested in : * - HTTP_MSG_TUNNEL on either means we have to disable both analysers * - HTTP_MSG_CLOSED on both sides means we've reached the end in both * directions, so let's simply disable both analysers. * - HTTP_MSG_CLOSED on the response only means we must abort the * request. * - HTTP_MSG_CLOSED on the request and HTTP_MSG_DONE on the response * with server-close mode means we've completed one request and we * must re-initialize the server connection. */ if (txn->req.msg_state == HTTP_MSG_TUNNEL || txn->rsp.msg_state == HTTP_MSG_TUNNEL || (txn->req.msg_state == HTTP_MSG_CLOSED && txn->rsp.msg_state == HTTP_MSG_CLOSED)) { s->req.analysers = 0; channel_auto_close(&s->req); channel_auto_read(&s->req); s->res.analysers = 0; channel_auto_close(&s->res); channel_auto_read(&s->res); } else if ((txn->req.msg_state >= HTTP_MSG_DONE && (txn->rsp.msg_state == HTTP_MSG_CLOSED || (s->res.flags & CF_SHUTW))) || txn->rsp.msg_state == HTTP_MSG_ERROR || txn->req.msg_state == HTTP_MSG_ERROR) { s->res.analysers = 0; channel_auto_close(&s->res); channel_auto_read(&s->res); s->req.analysers = 0; channel_abort(&s->req); channel_auto_close(&s->req); channel_auto_read(&s->req); channel_truncate(&s->req); } else if ((txn->req.msg_state == HTTP_MSG_DONE || txn->req.msg_state == HTTP_MSG_CLOSED) && txn->rsp.msg_state == HTTP_MSG_DONE && ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL || (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL)) { /* server-close/keep-alive: terminate this transaction, * possibly killing the server connection and reinitialize * a fresh-new transaction. */ http_end_txn_clean_session(s); } return txn->req.msg_state != old_req_state || txn->rsp.msg_state != old_res_state; } /* This function is an analyser which forwards request body (including chunk * sizes if any). It is called as soon as we must forward, even if we forward * zero byte. The only situation where it must not be called is when we're in * tunnel mode and we want to forward till the close. It's used both to forward * remaining data and to resync after end of body. It expects the msg_state to * be between MSG_BODY and MSG_DONE (inclusive). It returns zero if it needs to * read more data, or 1 once we can go on with next request or end the stream. * When in MSG_DATA or MSG_TRAILERS, it will automatically forward chunk_len * bytes of pending data + the headers if not already done. */ int http_request_forward_body(struct stream *s, struct channel *req, int an_bit) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &s->txn->req; if (unlikely(msg->msg_state < HTTP_MSG_BODY)) return 0; if ((req->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) || ((req->flags & CF_SHUTW) && (req->to_forward || req->buf->o))) { /* Output closed while we were sending data. We must abort and * wake the other side up. */ msg->msg_state = HTTP_MSG_ERROR; http_resync_states(s); return 1; } /* Note that we don't have to send 100-continue back because we don't * need the data to complete our job, and it's up to the server to * decide whether to return 100, 417 or anything else in return of * an "Expect: 100-continue" header. */ if (msg->sov > 0) { /* we have msg->sov which points to the first byte of message * body, and req->buf.p still points to the beginning of the * message. We forward the headers now, as we don't need them * anymore, and we want to flush them. */ b_adv(req->buf, msg->sov); msg->next -= msg->sov; msg->sov = 0; /* The previous analysers guarantee that the state is somewhere * between MSG_BODY and the first MSG_DATA. So msg->sol and * msg->next are always correct. */ if (msg->msg_state < HTTP_MSG_CHUNK_SIZE) { if (msg->flags & HTTP_MSGF_TE_CHNK) msg->msg_state = HTTP_MSG_CHUNK_SIZE; else msg->msg_state = HTTP_MSG_DATA; } } /* Some post-connect processing might want us to refrain from starting to * forward data. Currently, the only reason for this is "balance url_param" * whichs need to parse/process the request after we've enabled forwarding. */ if (unlikely(msg->flags & HTTP_MSGF_WAIT_CONN)) { if (!(s->res.flags & CF_READ_ATTACHED)) { channel_auto_connect(req); req->flags |= CF_WAKE_CONNECT; goto missing_data; } msg->flags &= ~HTTP_MSGF_WAIT_CONN; } /* in most states, we should abort in case of early close */ channel_auto_close(req); if (req->to_forward) { /* We can't process the buffer's contents yet */ req->flags |= CF_WAKE_WRITE; goto missing_data; } while (1) { if (msg->msg_state == HTTP_MSG_DATA) { /* must still forward */ /* we may have some pending data starting at req->buf->p */ if (msg->chunk_len > req->buf->i - msg->next) { req->flags |= CF_WAKE_WRITE; goto missing_data; } msg->next += msg->chunk_len; msg->chunk_len = 0; /* nothing left to forward */ if (msg->flags & HTTP_MSGF_TE_CHNK) msg->msg_state = HTTP_MSG_CHUNK_CRLF; else msg->msg_state = HTTP_MSG_DONE; } else if (msg->msg_state == HTTP_MSG_CHUNK_SIZE) { /* read the chunk size and assign it to ->chunk_len, then * set ->next to point to the body and switch to DATA or * TRAILERS state. */ int ret = http_parse_chunk_size(msg); if (ret == 0) goto missing_data; else if (ret < 0) { stream_inc_http_err_ctr(s); if (msg->err_pos >= 0) http_capture_bad_message(&sess->fe->invalid_req, s, msg, HTTP_MSG_CHUNK_SIZE, s->be); goto return_bad_req; } /* otherwise we're in HTTP_MSG_DATA or HTTP_MSG_TRAILERS state */ } else if (msg->msg_state == HTTP_MSG_CHUNK_CRLF) { /* we want the CRLF after the data */ int ret = http_skip_chunk_crlf(msg); if (ret == 0) goto missing_data; else if (ret < 0) { stream_inc_http_err_ctr(s); if (msg->err_pos >= 0) http_capture_bad_message(&sess->fe->invalid_req, s, msg, HTTP_MSG_CHUNK_CRLF, s->be); goto return_bad_req; } /* we're in MSG_CHUNK_SIZE now */ } else if (msg->msg_state == HTTP_MSG_TRAILERS) { int ret = http_forward_trailers(msg); if (ret == 0) goto missing_data; else if (ret < 0) { stream_inc_http_err_ctr(s); if (msg->err_pos >= 0) http_capture_bad_message(&sess->fe->invalid_req, s, msg, HTTP_MSG_TRAILERS, s->be); goto return_bad_req; } /* we're in HTTP_MSG_DONE now */ } else { int old_state = msg->msg_state; /* other states, DONE...TUNNEL */ /* we may have some pending data starting at req->buf->p * such as last chunk of data or trailers. */ b_adv(req->buf, msg->next); if (unlikely(!(s->req.flags & CF_WROTE_DATA))) msg->sov -= msg->next; msg->next = 0; /* we don't want to forward closes on DONE except in * tunnel mode. */ if ((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN) channel_dont_close(req); if (http_resync_states(s)) { /* some state changes occurred, maybe the analyser * was disabled too. */ if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) { if (req->flags & CF_SHUTW) { /* request errors are most likely due to * the server aborting the transfer. */ goto aborted_xfer; } if (msg->err_pos >= 0) http_capture_bad_message(&sess->fe->invalid_req, s, msg, old_state, s->be); goto return_bad_req; } return 1; } /* If "option abortonclose" is set on the backend, we * want to monitor the client's connection and forward * any shutdown notification to the server, which will * decide whether to close or to go on processing the * request. We only do that in tunnel mode, and not in * other modes since it can be abused to exhaust source * ports. */ if (s->be->options & PR_O_ABRT_CLOSE) { channel_auto_read(req); if ((req->flags & (CF_SHUTR|CF_READ_NULL)) && ((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN)) s->si[1].flags |= SI_FL_NOLINGER; channel_auto_close(req); } else if (s->txn->meth == HTTP_METH_POST) { /* POST requests may require to read extra CRLF * sent by broken browsers and which could cause * an RST to be sent upon close on some systems * (eg: Linux). */ channel_auto_read(req); } return 0; } } missing_data: /* we may have some pending data starting at req->buf->p */ b_adv(req->buf, msg->next); if (unlikely(!(s->req.flags & CF_WROTE_DATA))) msg->sov -= msg->next + MIN(msg->chunk_len, req->buf->i); msg->next = 0; msg->chunk_len -= channel_forward(req, msg->chunk_len); /* stop waiting for data if the input is closed before the end */ if (req->flags & CF_SHUTR) { if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_CLICL; if (!(s->flags & SF_FINST_MASK)) { if (txn->rsp.msg_state < HTTP_MSG_ERROR) s->flags |= SF_FINST_H; else s->flags |= SF_FINST_D; } sess->fe->fe_counters.cli_aborts++; s->be->be_counters.cli_aborts++; if (objt_server(s->target)) objt_server(s->target)->counters.cli_aborts++; goto return_bad_req_stats_ok; } /* waiting for the last bits to leave the buffer */ if (req->flags & CF_SHUTW) goto aborted_xfer; /* When TE: chunked is used, we need to get there again to parse remaining * chunks even if the client has closed, so we don't want to set CF_DONTCLOSE. */ if (msg->flags & HTTP_MSGF_TE_CHNK) channel_dont_close(req); /* We know that more data are expected, but we couldn't send more that * what we did. So we always set the CF_EXPECT_MORE flag so that the * system knows it must not set a PUSH on this first part. Interactive * modes are already handled by the stream sock layer. We must not do * this in content-length mode because it could present the MSG_MORE * flag with the last block of forwarded data, which would cause an * additional delay to be observed by the receiver. */ if (msg->flags & HTTP_MSGF_TE_CHNK) req->flags |= CF_EXPECT_MORE; return 0; return_bad_req: /* let's centralize all bad requests */ sess->fe->fe_counters.failed_req++; if (sess->listener->counters) sess->listener->counters->failed_req++; return_bad_req_stats_ok: /* we may have some pending data starting at req->buf->p */ b_adv(req->buf, msg->next); msg->next = 0; txn->req.msg_state = HTTP_MSG_ERROR; if (txn->status) { /* Note: we don't send any error if some data were already sent */ http_reply_and_close(s, txn->status, NULL); } else { txn->status = 400; http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_400)); } req->analysers = 0; s->res.analysers = 0; /* we're in data phase, we want to abort both directions */ if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_PRXCOND; if (!(s->flags & SF_FINST_MASK)) { if (txn->rsp.msg_state < HTTP_MSG_ERROR) s->flags |= SF_FINST_H; else s->flags |= SF_FINST_D; } return 0; aborted_xfer: txn->req.msg_state = HTTP_MSG_ERROR; if (txn->status) { /* Note: we don't send any error if some data were already sent */ http_reply_and_close(s, txn->status, NULL); } else { txn->status = 502; http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_502)); } req->analysers = 0; s->res.analysers = 0; /* we're in data phase, we want to abort both directions */ sess->fe->fe_counters.srv_aborts++; s->be->be_counters.srv_aborts++; if (objt_server(s->target)) objt_server(s->target)->counters.srv_aborts++; if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_SRVCL; if (!(s->flags & SF_FINST_MASK)) { if (txn->rsp.msg_state < HTTP_MSG_ERROR) s->flags |= SF_FINST_H; else s->flags |= SF_FINST_D; } return 0; } /* This stream analyser waits for a complete HTTP response. It returns 1 if the * processing can continue on next analysers, or zero if it either needs more * data or wants to immediately abort the response (eg: timeout, error, ...). It * is tied to AN_RES_WAIT_HTTP and may may remove itself from s->res.analysers * when it has nothing left to do, and may remove any analyser when it wants to * abort. */ int http_wait_for_response(struct stream *s, struct channel *rep, int an_bit) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &txn->rsp; struct hdr_ctx ctx; int use_close_only; int cur_idx; int n; DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n", now_ms, __FUNCTION__, s, rep, rep->rex, rep->wex, rep->flags, rep->buf->i, rep->analysers); /* * Now parse the partial (or complete) lines. * We will check the response syntax, and also join multi-line * headers. An index of all the lines will be elaborated while * parsing. * * For the parsing, we use a 28 states FSM. * * Here is the information we currently have : * rep->buf->p = beginning of response * rep->buf->p + msg->eoh = end of processed headers / start of current one * rep->buf->p + rep->buf->i = end of input data * msg->eol = end of current header or line (LF or CRLF) * msg->next = first non-visited byte */ next_one: /* There's a protected area at the end of the buffer for rewriting * purposes. We don't want to start to parse the request if the * protected area is affected, because we may have to move processed * data later, which is much more complicated. */ if (buffer_not_empty(rep->buf) && msg->msg_state < HTTP_MSG_ERROR) { if (unlikely(!channel_is_rewritable(rep))) { /* some data has still not left the buffer, wake us once that's done */ if (rep->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) goto abort_response; channel_dont_close(rep); rep->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */ rep->flags |= CF_WAKE_WRITE; return 0; } if (unlikely(bi_end(rep->buf) < b_ptr(rep->buf, msg->next) || bi_end(rep->buf) > rep->buf->data + rep->buf->size - global.tune.maxrewrite)) buffer_slow_realign(rep->buf); if (likely(msg->next < rep->buf->i)) http_msg_analyzer(msg, &txn->hdr_idx); } /* 1: we might have to print this header in debug mode */ if (unlikely((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)) && msg->msg_state >= HTTP_MSG_BODY)) { char *eol, *sol; sol = rep->buf->p; eol = sol + (msg->sl.st.l ? msg->sl.st.l : rep->buf->i); debug_hdr("srvrep", s, sol, eol); sol += hdr_idx_first_pos(&txn->hdr_idx); cur_idx = hdr_idx_first_idx(&txn->hdr_idx); while (cur_idx) { eol = sol + txn->hdr_idx.v[cur_idx].len; debug_hdr("srvhdr", s, sol, eol); sol = eol + txn->hdr_idx.v[cur_idx].cr + 1; cur_idx = txn->hdr_idx.v[cur_idx].next; } } /* * Now we quickly check if we have found a full valid response. * If not so, we check the FD and buffer states before leaving. * A full response is indicated by the fact that we have seen * the double LF/CRLF, so the state is >= HTTP_MSG_BODY. Invalid * responses are checked first. * * Depending on whether the client is still there or not, we * may send an error response back or not. Note that normally * we should only check for HTTP status there, and check I/O * errors somewhere else. */ if (unlikely(msg->msg_state < HTTP_MSG_BODY)) { /* Invalid response */ if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) { /* we detected a parsing error. We want to archive this response * in the dedicated proxy area for later troubleshooting. */ hdr_response_bad: if (msg->msg_state == HTTP_MSG_ERROR || msg->err_pos >= 0) http_capture_bad_message(&s->be->invalid_rep, s, msg, msg->msg_state, sess->fe); s->be->be_counters.failed_resp++; if (objt_server(s->target)) { objt_server(s->target)->counters.failed_resp++; health_adjust(objt_server(s->target), HANA_STATUS_HTTP_HDRRSP); } abort_response: channel_auto_close(rep); rep->analysers = 0; txn->status = 502; s->si[1].flags |= SI_FL_NOLINGER; channel_truncate(rep); http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_502)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_PRXCOND; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_H; return 0; } /* too large response does not fit in buffer. */ else if (buffer_full(rep->buf, global.tune.maxrewrite)) { if (msg->err_pos < 0) msg->err_pos = rep->buf->i; goto hdr_response_bad; } /* read error */ else if (rep->flags & CF_READ_ERROR) { if (msg->err_pos >= 0) http_capture_bad_message(&s->be->invalid_rep, s, msg, msg->msg_state, sess->fe); else if (txn->flags & TX_NOT_FIRST) goto abort_keep_alive; s->be->be_counters.failed_resp++; if (objt_server(s->target)) { objt_server(s->target)->counters.failed_resp++; health_adjust(objt_server(s->target), HANA_STATUS_HTTP_READ_ERROR); } channel_auto_close(rep); rep->analysers = 0; txn->status = 502; s->si[1].flags |= SI_FL_NOLINGER; channel_truncate(rep); http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_502)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_SRVCL; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_H; return 0; } /* read timeout : return a 504 to the client. */ else if (rep->flags & CF_READ_TIMEOUT) { if (msg->err_pos >= 0) http_capture_bad_message(&s->be->invalid_rep, s, msg, msg->msg_state, sess->fe); s->be->be_counters.failed_resp++; if (objt_server(s->target)) { objt_server(s->target)->counters.failed_resp++; health_adjust(objt_server(s->target), HANA_STATUS_HTTP_READ_TIMEOUT); } channel_auto_close(rep); rep->analysers = 0; txn->status = 504; s->si[1].flags |= SI_FL_NOLINGER; channel_truncate(rep); http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_504)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_SRVTO; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_H; return 0; } /* client abort with an abortonclose */ else if ((rep->flags & CF_SHUTR) && ((s->req.flags & (CF_SHUTR|CF_SHUTW)) == (CF_SHUTR|CF_SHUTW))) { sess->fe->fe_counters.cli_aborts++; s->be->be_counters.cli_aborts++; if (objt_server(s->target)) objt_server(s->target)->counters.cli_aborts++; rep->analysers = 0; channel_auto_close(rep); txn->status = 400; channel_truncate(rep); http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_400)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_CLICL; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_H; /* process_stream() will take care of the error */ return 0; } /* close from server, capture the response if the server has started to respond */ else if (rep->flags & CF_SHUTR) { if (msg->msg_state >= HTTP_MSG_RPVER || msg->err_pos >= 0) http_capture_bad_message(&s->be->invalid_rep, s, msg, msg->msg_state, sess->fe); else if (txn->flags & TX_NOT_FIRST) goto abort_keep_alive; s->be->be_counters.failed_resp++; if (objt_server(s->target)) { objt_server(s->target)->counters.failed_resp++; health_adjust(objt_server(s->target), HANA_STATUS_HTTP_BROKEN_PIPE); } channel_auto_close(rep); rep->analysers = 0; txn->status = 502; s->si[1].flags |= SI_FL_NOLINGER; channel_truncate(rep); http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_502)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_SRVCL; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_H; return 0; } /* write error to client (we don't send any message then) */ else if (rep->flags & CF_WRITE_ERROR) { if (msg->err_pos >= 0) http_capture_bad_message(&s->be->invalid_rep, s, msg, msg->msg_state, sess->fe); else if (txn->flags & TX_NOT_FIRST) goto abort_keep_alive; s->be->be_counters.failed_resp++; rep->analysers = 0; channel_auto_close(rep); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_CLICL; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_H; /* process_stream() will take care of the error */ return 0; } channel_dont_close(rep); rep->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */ return 0; } /* More interesting part now : we know that we have a complete * response which at least looks like HTTP. We have an indicator * of each header's length, so we can parse them quickly. */ if (unlikely(msg->err_pos >= 0)) http_capture_bad_message(&s->be->invalid_rep, s, msg, msg->msg_state, sess->fe); /* * 1: get the status code */ n = rep->buf->p[msg->sl.st.c] - '0'; if (n < 1 || n > 5) n = 0; /* when the client triggers a 4xx from the server, it's most often due * to a missing object or permission. These events should be tracked * because if they happen often, it may indicate a brute force or a * vulnerability scan. */ if (n == 4) stream_inc_http_err_ctr(s); if (objt_server(s->target)) objt_server(s->target)->counters.p.http.rsp[n]++; /* RFC7230#2.6 has enforced the format of the HTTP version string to be * exactly one digit "." one digit. This check may be disabled using * option accept-invalid-http-response. */ if (!(s->be->options2 & PR_O2_RSPBUG_OK)) { if (msg->sl.st.v_l != 8) { msg->err_pos = 0; goto hdr_response_bad; } if (rep->buf->p[4] != '/' || !isdigit((unsigned char)rep->buf->p[5]) || rep->buf->p[6] != '.' || !isdigit((unsigned char)rep->buf->p[7])) { msg->err_pos = 4; goto hdr_response_bad; } } /* check if the response is HTTP/1.1 or above */ if ((msg->sl.st.v_l == 8) && ((rep->buf->p[5] > '1') || ((rep->buf->p[5] == '1') && (rep->buf->p[7] >= '1')))) msg->flags |= HTTP_MSGF_VER_11; /* "connection" has not been parsed yet */ txn->flags &= ~(TX_HDR_CONN_PRS|TX_HDR_CONN_CLO|TX_HDR_CONN_KAL|TX_HDR_CONN_UPG|TX_CON_CLO_SET|TX_CON_KAL_SET); /* transfer length unknown*/ msg->flags &= ~HTTP_MSGF_XFER_LEN; txn->status = strl2ui(rep->buf->p + msg->sl.st.c, msg->sl.st.c_l); /* Adjust server's health based on status code. Note: status codes 501 * and 505 are triggered on demand by client request, so we must not * count them as server failures. */ if (objt_server(s->target)) { if (txn->status >= 100 && (txn->status < 500 || txn->status == 501 || txn->status == 505)) health_adjust(objt_server(s->target), HANA_STATUS_HTTP_OK); else health_adjust(objt_server(s->target), HANA_STATUS_HTTP_STS); } /* * 2: check for cacheability. */ switch (txn->status) { case 100: /* * We may be facing a 100-continue response, in which case this * is not the right response, and we're waiting for the next one. * Let's allow this response to go to the client and wait for the * next one. */ hdr_idx_init(&txn->hdr_idx); msg->next -= channel_forward(rep, msg->next); msg->msg_state = HTTP_MSG_RPBEFORE; txn->status = 0; s->logs.t_data = -1; /* was not a response yet */ goto next_one; case 200: case 203: case 206: case 300: case 301: case 410: /* RFC2616 @13.4: * "A response received with a status code of * 200, 203, 206, 300, 301 or 410 MAY be stored * by a cache (...) unless a cache-control * directive prohibits caching." * * RFC2616 @9.5: POST method : * "Responses to this method are not cacheable, * unless the response includes appropriate * Cache-Control or Expires header fields." */ if (likely(txn->meth != HTTP_METH_POST) && ((s->be->options & PR_O_CHK_CACHE) || (s->be->ck_opts & PR_CK_NOC))) txn->flags |= TX_CACHEABLE | TX_CACHE_COOK; break; default: break; } /* * 3: we may need to capture headers */ s->logs.logwait &= ~LW_RESP; if (unlikely((s->logs.logwait & LW_RSPHDR) && s->res_cap)) capture_headers(rep->buf->p, &txn->hdr_idx, s->res_cap, sess->fe->rsp_cap); /* 4: determine the transfer-length according to RFC2616 #4.4, updated * by RFC7230#3.3.3 : * * The length of a message body is determined by one of the following * (in order of precedence): * * 1. Any response to a HEAD request and any response with a 1xx * (Informational), 204 (No Content), or 304 (Not Modified) status * code is always terminated by the first empty line after the * header fields, regardless of the header fields present in the * message, and thus cannot contain a message body. * * 2. Any 2xx (Successful) response to a CONNECT request implies that * the connection will become a tunnel immediately after the empty * line that concludes the header fields. A client MUST ignore any * Content-Length or Transfer-Encoding header fields received in * such a message. * * 3. If a Transfer-Encoding header field is present and the chunked * transfer coding (Section 4.1) is the final encoding, the message * body length is determined by reading and decoding the chunked * data until the transfer coding indicates the data is complete. * * If a Transfer-Encoding header field is present in a response and * the chunked transfer coding is not the final encoding, the * message body length is determined by reading the connection until * it is closed by the server. If a Transfer-Encoding header field * is present in a request and the chunked transfer coding is not * the final encoding, the message body length cannot be determined * reliably; the server MUST respond with the 400 (Bad Request) * status code and then close the connection. * * If a message is received with both a Transfer-Encoding and a * Content-Length header field, the Transfer-Encoding overrides the * Content-Length. Such a message might indicate an attempt to * perform request smuggling (Section 9.5) or response splitting * (Section 9.4) and ought to be handled as an error. A sender MUST * remove the received Content-Length field prior to forwarding such * a message downstream. * * 4. If a message is received without Transfer-Encoding and with * either multiple Content-Length header fields having differing * field-values or a single Content-Length header field having an * invalid value, then the message framing is invalid and the * recipient MUST treat it as an unrecoverable error. If this is a * request message, the server MUST respond with a 400 (Bad Request) * status code and then close the connection. If this is a response * message received by a proxy, the proxy MUST close the connection * to the server, discard the received response, and send a 502 (Bad * Gateway) response to the client. If this is a response message * received by a user agent, the user agent MUST close the * connection to the server and discard the received response. * * 5. If a valid Content-Length header field is present without * Transfer-Encoding, its decimal value defines the expected message * body length in octets. If the sender closes the connection or * the recipient times out before the indicated number of octets are * received, the recipient MUST consider the message to be * incomplete and close the connection. * * 6. If this is a request message and none of the above are true, then * the message body length is zero (no message body is present). * * 7. Otherwise, this is a response message without a declared message * body length, so the message body length is determined by the * number of octets received prior to the server closing the * connection. */ /* Skip parsing if no content length is possible. The response flags * remain 0 as well as the chunk_len, which may or may not mirror * the real header value, and we note that we know the response's length. * FIXME: should we parse anyway and return an error on chunked encoding ? */ if (txn->meth == HTTP_METH_HEAD || (txn->status >= 100 && txn->status < 200) || txn->status == 204 || txn->status == 304) { msg->flags |= HTTP_MSGF_XFER_LEN; s->comp_algo = NULL; goto skip_content_length; } use_close_only = 0; ctx.idx = 0; while (http_find_header2("Transfer-Encoding", 17, rep->buf->p, &txn->hdr_idx, &ctx)) { if (ctx.vlen == 7 && strncasecmp(ctx.line + ctx.val, "chunked", 7) == 0) msg->flags |= (HTTP_MSGF_TE_CHNK | HTTP_MSGF_XFER_LEN); else if (msg->flags & HTTP_MSGF_TE_CHNK) { /* bad transfer-encoding (chunked followed by something else) */ use_close_only = 1; msg->flags &= ~(HTTP_MSGF_TE_CHNK | HTTP_MSGF_XFER_LEN); break; } } /* Chunked responses must have their content-length removed */ ctx.idx = 0; if (use_close_only || (msg->flags & HTTP_MSGF_TE_CHNK)) { while (http_find_header2("Content-Length", 14, rep->buf->p, &txn->hdr_idx, &ctx)) http_remove_header2(msg, &txn->hdr_idx, &ctx); } else while (http_find_header2("Content-Length", 14, rep->buf->p, &txn->hdr_idx, &ctx)) { signed long long cl; if (!ctx.vlen) { msg->err_pos = ctx.line + ctx.val - rep->buf->p; goto hdr_response_bad; } if (strl2llrc(ctx.line + ctx.val, ctx.vlen, &cl)) { msg->err_pos = ctx.line + ctx.val - rep->buf->p; goto hdr_response_bad; /* parse failure */ } if (cl < 0) { msg->err_pos = ctx.line + ctx.val - rep->buf->p; goto hdr_response_bad; } if ((msg->flags & HTTP_MSGF_CNT_LEN) && (msg->chunk_len != cl)) { msg->err_pos = ctx.line + ctx.val - rep->buf->p; goto hdr_response_bad; /* already specified, was different */ } msg->flags |= HTTP_MSGF_CNT_LEN | HTTP_MSGF_XFER_LEN; msg->body_len = msg->chunk_len = cl; } if (sess->fe->comp || s->be->comp) select_compression_response_header(s, rep->buf); skip_content_length: /* Now we have to check if we need to modify the Connection header. * This is more difficult on the response than it is on the request, * because we can have two different HTTP versions and we don't know * how the client will interprete a response. For instance, let's say * that the client sends a keep-alive request in HTTP/1.0 and gets an * HTTP/1.1 response without any header. Maybe it will bound itself to * HTTP/1.0 because it only knows about it, and will consider the lack * of header as a close, or maybe it knows HTTP/1.1 and can consider * the lack of header as a keep-alive. Thus we will use two flags * indicating how a request MAY be understood by the client. In case * of multiple possibilities, we'll fix the header to be explicit. If * ambiguous cases such as both close and keepalive are seen, then we * will fall back to explicit close. Note that we won't take risks with * HTTP/1.0 clients which may not necessarily understand keep-alive. * See doc/internals/connection-header.txt for the complete matrix. */ if (unlikely((txn->meth == HTTP_METH_CONNECT && txn->status == 200) || txn->status == 101)) { /* Either we've established an explicit tunnel, or we're * switching the protocol. In both cases, we're very unlikely * to understand the next protocols. We have to switch to tunnel * mode, so that we transfer the request and responses then let * this protocol pass unmodified. When we later implement specific * parsers for such protocols, we'll want to check the Upgrade * header which contains information about that protocol for * responses with status 101 (eg: see RFC2817 about TLS). */ txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_TUN; } else if ((txn->status >= 200) && !(txn->flags & TX_HDR_CONN_PRS) && ((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN || ((sess->fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL || (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL))) { int to_del = 0; /* this situation happens when combining pretend-keepalive with httpclose. */ if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL && ((sess->fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL || (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL)) txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_CLO; /* on unknown transfer length, we must close */ if (!(msg->flags & HTTP_MSGF_XFER_LEN) && (txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN) txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_CLO; /* now adjust header transformations depending on current state */ if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_TUN || (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_CLO) { to_del |= 2; /* remove "keep-alive" on any response */ if (!(msg->flags & HTTP_MSGF_VER_11)) to_del |= 1; /* remove "close" for HTTP/1.0 responses */ } else { /* SCL / KAL */ to_del |= 1; /* remove "close" on any response */ if (txn->req.flags & msg->flags & HTTP_MSGF_VER_11) to_del |= 2; /* remove "keep-alive" on pure 1.1 responses */ } /* Parse and remove some headers from the connection header */ http_parse_connection_header(txn, msg, to_del); /* Some keep-alive responses are converted to Server-close if * the server wants to close. */ if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL) { if ((txn->flags & TX_HDR_CONN_CLO) || (!(txn->flags & TX_HDR_CONN_KAL) && !(msg->flags & HTTP_MSGF_VER_11))) txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_SCL; } } /* we want to have the response time before we start processing it */ s->logs.t_data = tv_ms_elapsed(&s->logs.tv_accept, &now); /* end of job, return OK */ rep->analysers &= ~an_bit; rep->analyse_exp = TICK_ETERNITY; channel_auto_close(rep); return 1; abort_keep_alive: /* A keep-alive request to the server failed on a network error. * The client is required to retry. We need to close without returning * any other information so that the client retries. */ txn->status = 0; rep->analysers = 0; s->req.analysers = 0; channel_auto_close(rep); s->logs.logwait = 0; s->logs.level = 0; s->res.flags &= ~CF_EXPECT_MORE; /* speed up sending a previous response */ channel_truncate(rep); http_reply_and_close(s, txn->status, NULL); return 0; } /* This function performs all the processing enabled for the current response. * It normally returns 1 unless it wants to break. It relies on buffers flags, * and updates s->res.analysers. It might make sense to explode it into several * other functions. It works like process_request (see indications above). */ int http_process_res_common(struct stream *s, struct channel *rep, int an_bit, struct proxy *px) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &txn->rsp; struct proxy *cur_proxy; struct cond_wordlist *wl; enum rule_result ret = HTTP_RULE_RES_CONT; DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n", now_ms, __FUNCTION__, s, rep, rep->rex, rep->wex, rep->flags, rep->buf->i, rep->analysers); if (unlikely(msg->msg_state < HTTP_MSG_BODY)) /* we need more data */ return 0; /* The stats applet needs to adjust the Connection header but we don't * apply any filter there. */ if (unlikely(objt_applet(s->target) == &http_stats_applet)) { rep->analysers &= ~an_bit; rep->analyse_exp = TICK_ETERNITY; goto skip_filters; } /* * We will have to evaluate the filters. * As opposed to version 1.2, now they will be evaluated in the * filters order and not in the header order. This means that * each filter has to be validated among all headers. * * Filters are tried with ->be first, then with ->fe if it is * different from ->be. * * Maybe we are in resume condiion. In this case I choose the * "struct proxy" which contains the rule list matching the resume * pointer. If none of theses "struct proxy" match, I initialise * the process with the first one. * * In fact, I check only correspondance betwwen the current list * pointer and the ->fe rule list. If it doesn't match, I initialize * the loop with the ->be. */ if (s->current_rule_list == &sess->fe->http_res_rules) cur_proxy = sess->fe; else cur_proxy = s->be; while (1) { struct proxy *rule_set = cur_proxy; /* evaluate http-response rules */ if (ret == HTTP_RULE_RES_CONT) { ret = http_res_get_intercept_rule(cur_proxy, &cur_proxy->http_res_rules, s); if (ret == HTTP_RULE_RES_BADREQ) goto return_srv_prx_502; if (ret == HTTP_RULE_RES_DONE) { rep->analysers &= ~an_bit; rep->analyse_exp = TICK_ETERNITY; return 1; } } /* we need to be called again. */ if (ret == HTTP_RULE_RES_YIELD) { channel_dont_close(rep); return 0; } /* try headers filters */ if (rule_set->rsp_exp != NULL) { if (apply_filters_to_response(s, rep, rule_set) < 0) { return_bad_resp: if (objt_server(s->target)) { objt_server(s->target)->counters.failed_resp++; health_adjust(objt_server(s->target), HANA_STATUS_HTTP_RSP); } s->be->be_counters.failed_resp++; return_srv_prx_502: rep->analysers = 0; txn->status = 502; s->logs.t_data = -1; /* was not a valid response */ s->si[1].flags |= SI_FL_NOLINGER; channel_truncate(rep); http_reply_and_close(s, txn->status, http_error_message(s, HTTP_ERR_502)); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_PRXCOND; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_H; return 0; } } /* has the response been denied ? */ if (txn->flags & TX_SVDENY) { if (objt_server(s->target)) objt_server(s->target)->counters.failed_secu++; s->be->be_counters.denied_resp++; sess->fe->fe_counters.denied_resp++; if (sess->listener->counters) sess->listener->counters->denied_resp++; goto return_srv_prx_502; } /* add response headers from the rule sets in the same order */ list_for_each_entry(wl, &rule_set->rsp_add, list) { if (txn->status < 200 && txn->status != 101) break; if (wl->cond) { int ret = acl_exec_cond(wl->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL); ret = acl_pass(ret); if (((struct acl_cond *)wl->cond)->pol == ACL_COND_UNLESS) ret = !ret; if (!ret) continue; } if (unlikely(http_header_add_tail(&txn->rsp, &txn->hdr_idx, wl->s) < 0)) goto return_bad_resp; } /* check whether we're already working on the frontend */ if (cur_proxy == sess->fe) break; cur_proxy = sess->fe; } /* After this point, this anayzer can't return yield, so we can * remove the bit corresponding to this analyzer from the list. * * Note that the intermediate returns and goto found previously * reset the analyzers. */ rep->analysers &= ~an_bit; rep->analyse_exp = TICK_ETERNITY; /* OK that's all we can do for 1xx responses */ if (unlikely(txn->status < 200 && txn->status != 101)) goto skip_header_mangling; /* * Now check for a server cookie. */ if (s->be->cookie_name || sess->fe->capture_name || (s->be->options & PR_O_CHK_CACHE)) manage_server_side_cookies(s, rep); /* * Check for cache-control or pragma headers if required. */ if (((s->be->options & PR_O_CHK_CACHE) || (s->be->ck_opts & PR_CK_NOC)) && txn->status != 101) check_response_for_cacheability(s, rep); /* * Add server cookie in the response if needed */ if (objt_server(s->target) && (s->be->ck_opts & PR_CK_INS) && !((txn->flags & TX_SCK_FOUND) && (s->be->ck_opts & PR_CK_PSV)) && (!(s->flags & SF_DIRECT) || ((s->be->cookie_maxidle || txn->cookie_last_date) && (!txn->cookie_last_date || (txn->cookie_last_date - date.tv_sec) < 0)) || (s->be->cookie_maxlife && !txn->cookie_first_date) || // set the first_date (!s->be->cookie_maxlife && txn->cookie_first_date)) && // remove the first_date (!(s->be->ck_opts & PR_CK_POST) || (txn->meth == HTTP_METH_POST)) && !(s->flags & SF_IGNORE_PRST)) { /* the server is known, it's not the one the client requested, or the * cookie's last seen date needs to be refreshed. We have to * insert a set-cookie here, except if we want to insert only on POST * requests and this one isn't. Note that servers which don't have cookies * (eg: some backup servers) will return a full cookie removal request. */ if (!objt_server(s->target)->cookie) { chunk_printf(&trash, "Set-Cookie: %s=; Expires=Thu, 01-Jan-1970 00:00:01 GMT; path=/", s->be->cookie_name); } else { chunk_printf(&trash, "Set-Cookie: %s=%s", s->be->cookie_name, objt_server(s->target)->cookie); if (s->be->cookie_maxidle || s->be->cookie_maxlife) { /* emit last_date, which is mandatory */ trash.str[trash.len++] = COOKIE_DELIM_DATE; s30tob64((date.tv_sec+3) >> 2, trash.str + trash.len); trash.len += 5; if (s->be->cookie_maxlife) { /* emit first_date, which is either the original one or * the current date. */ trash.str[trash.len++] = COOKIE_DELIM_DATE; s30tob64(txn->cookie_first_date ? txn->cookie_first_date >> 2 : (date.tv_sec+3) >> 2, trash.str + trash.len); trash.len += 5; } } chunk_appendf(&trash, "; path=/"); } if (s->be->cookie_domain) chunk_appendf(&trash, "; domain=%s", s->be->cookie_domain); if (s->be->ck_opts & PR_CK_HTTPONLY) chunk_appendf(&trash, "; HttpOnly"); if (s->be->ck_opts & PR_CK_SECURE) chunk_appendf(&trash, "; Secure"); if (unlikely(http_header_add_tail2(&txn->rsp, &txn->hdr_idx, trash.str, trash.len) < 0)) goto return_bad_resp; txn->flags &= ~TX_SCK_MASK; if (objt_server(s->target)->cookie && (s->flags & SF_DIRECT)) /* the server did not change, only the date was updated */ txn->flags |= TX_SCK_UPDATED; else txn->flags |= TX_SCK_INSERTED; /* Here, we will tell an eventual cache on the client side that we don't * want it to cache this reply because HTTP/1.0 caches also cache cookies ! * Some caches understand the correct form: 'no-cache="set-cookie"', but * others don't (eg: apache <= 1.3.26). So we use 'private' instead. */ if ((s->be->ck_opts & PR_CK_NOC) && (txn->flags & TX_CACHEABLE)) { txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; if (unlikely(http_header_add_tail2(&txn->rsp, &txn->hdr_idx, "Cache-control: private", 22) < 0)) goto return_bad_resp; } } /* * Check if result will be cacheable with a cookie. * We'll block the response if security checks have caught * nasty things such as a cacheable cookie. */ if (((txn->flags & (TX_CACHEABLE | TX_CACHE_COOK | TX_SCK_PRESENT)) == (TX_CACHEABLE | TX_CACHE_COOK | TX_SCK_PRESENT)) && (s->be->options & PR_O_CHK_CACHE)) { /* we're in presence of a cacheable response containing * a set-cookie header. We'll block it as requested by * the 'checkcache' option, and send an alert. */ if (objt_server(s->target)) objt_server(s->target)->counters.failed_secu++; s->be->be_counters.denied_resp++; sess->fe->fe_counters.denied_resp++; if (sess->listener->counters) sess->listener->counters->denied_resp++; Alert("Blocking cacheable cookie in response from instance %s, server %s.\n", s->be->id, objt_server(s->target) ? objt_server(s->target)->id : ""); send_log(s->be, LOG_ALERT, "Blocking cacheable cookie in response from instance %s, server %s.\n", s->be->id, objt_server(s->target) ? objt_server(s->target)->id : ""); goto return_srv_prx_502; } skip_filters: /* * Adjust "Connection: close" or "Connection: keep-alive" if needed. * If an "Upgrade" token is found, the header is left untouched in order * not to have to deal with some client bugs : some of them fail an upgrade * if anything but "Upgrade" is present in the Connection header. We don't * want to touch any 101 response either since it's switching to another * protocol. */ if ((txn->status != 101) && !(txn->flags & TX_HDR_CONN_UPG) && (((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN) || ((sess->fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL || (s->be->options & PR_O_HTTP_MODE) == PR_O_HTTP_PCL))) { unsigned int want_flags = 0; if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL || (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) { /* we want a keep-alive response here. Keep-alive header * required if either side is not 1.1. */ if (!(txn->req.flags & msg->flags & HTTP_MSGF_VER_11)) want_flags |= TX_CON_KAL_SET; } else { /* we want a close response here. Close header required if * the server is 1.1, regardless of the client. */ if (msg->flags & HTTP_MSGF_VER_11) want_flags |= TX_CON_CLO_SET; } if (want_flags != (txn->flags & (TX_CON_CLO_SET|TX_CON_KAL_SET))) http_change_connection_header(txn, msg, want_flags); } skip_header_mangling: if ((msg->flags & HTTP_MSGF_XFER_LEN) || (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_TUN) rep->analysers |= AN_RES_HTTP_XFER_BODY; /* if the user wants to log as soon as possible, without counting * bytes from the server, then this is the right moment. We have * to temporarily assign bytes_out to log what we currently have. */ if (!LIST_ISEMPTY(&sess->fe->logformat) && !(s->logs.logwait & LW_BYTES)) { s->logs.t_close = s->logs.t_data; /* to get a valid end date */ s->logs.bytes_out = txn->rsp.eoh; s->do_log(s); s->logs.bytes_out = 0; } return 1; } /* This function is an analyser which forwards response body (including chunk * sizes if any). It is called as soon as we must forward, even if we forward * zero byte. The only situation where it must not be called is when we're in * tunnel mode and we want to forward till the close. It's used both to forward * remaining data and to resync after end of body. It expects the msg_state to * be between MSG_BODY and MSG_DONE (inclusive). It returns zero if it needs to * read more data, or 1 once we can go on with next request or end the stream. * * It is capable of compressing response data both in content-length mode and * in chunked mode. The state machines follows different flows depending on * whether content-length and chunked modes are used, since there are no * trailers in content-length : * * chk-mode cl-mode * ,----- BODY -----. * / \ * V size > 0 V chk-mode * .--> SIZE -------------> DATA -------------> CRLF * | | size == 0 | last byte | * | v final crlf v inspected | * | TRAILERS -----------> DONE | * | | * `----------------------------------------------' * * Compression only happens in the DATA state, and must be flushed in final * states (TRAILERS/DONE) or when leaving on missing data. Normal forwarding * is performed at once on final states for all bytes parsed, or when leaving * on missing data. */ int http_response_forward_body(struct stream *s, struct channel *res, int an_bit) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct http_msg *msg = &s->txn->rsp; static struct buffer *tmpbuf = &buf_empty; int compressing = 0; int ret; if (unlikely(msg->msg_state < HTTP_MSG_BODY)) return 0; if ((res->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) || ((res->flags & CF_SHUTW) && (res->to_forward || res->buf->o)) || !s->req.analysers) { /* Output closed while we were sending data. We must abort and * wake the other side up. */ msg->msg_state = HTTP_MSG_ERROR; http_resync_states(s); return 1; } /* in most states, we should abort in case of early close */ channel_auto_close(res); if (msg->sov > 0) { /* we have msg->sov which points to the first byte of message * body, and res->buf.p still points to the beginning of the * message. We forward the headers now, as we don't need them * anymore, and we want to flush them. */ b_adv(res->buf, msg->sov); msg->next -= msg->sov; msg->sov = 0; /* The previous analysers guarantee that the state is somewhere * between MSG_BODY and the first MSG_DATA. So msg->sol and * msg->next are always correct. */ if (msg->msg_state < HTTP_MSG_CHUNK_SIZE) { if (msg->flags & HTTP_MSGF_TE_CHNK) msg->msg_state = HTTP_MSG_CHUNK_SIZE; else msg->msg_state = HTTP_MSG_DATA; } } if (res->to_forward) { /* We can't process the buffer's contents yet */ res->flags |= CF_WAKE_WRITE; goto missing_data; } if (unlikely(s->comp_algo != NULL) && msg->msg_state < HTTP_MSG_TRAILERS) { /* We need a compression buffer in the DATA state to put the * output of compressed data, and in CRLF state to let the * TRAILERS state finish the job of removing the trailing CRLF. */ if (unlikely(!tmpbuf->size)) { /* this is the first time we need the compression buffer */ if (b_alloc(&tmpbuf) == NULL) goto aborted_xfer; /* no memory */ } ret = http_compression_buffer_init(s, res->buf, tmpbuf); if (ret < 0) { res->flags |= CF_WAKE_WRITE; goto missing_data; /* not enough spaces in buffers */ } compressing = 1; } while (1) { switch (msg->msg_state - HTTP_MSG_DATA) { case HTTP_MSG_DATA - HTTP_MSG_DATA: /* must still forward */ /* we may have some pending data starting at res->buf->p */ if (unlikely(s->comp_algo)) { ret = http_compression_buffer_add_data(s, res->buf, tmpbuf); if (ret < 0) goto aborted_xfer; if (msg->chunk_len) { /* input empty or output full */ if (res->buf->i > msg->next) res->flags |= CF_WAKE_WRITE; goto missing_data; } } else { if (msg->chunk_len > res->buf->i - msg->next) { /* output full */ res->flags |= CF_WAKE_WRITE; goto missing_data; } msg->next += msg->chunk_len; msg->chunk_len = 0; } /* nothing left to forward */ if (msg->flags & HTTP_MSGF_TE_CHNK) { msg->msg_state = HTTP_MSG_CHUNK_CRLF; } else { msg->msg_state = HTTP_MSG_DONE; break; } /* fall through for HTTP_MSG_CHUNK_CRLF */ case HTTP_MSG_CHUNK_CRLF - HTTP_MSG_DATA: /* we want the CRLF after the data */ ret = http_skip_chunk_crlf(msg); if (ret == 0) goto missing_data; else if (ret < 0) { if (msg->err_pos >= 0) http_capture_bad_message(&s->be->invalid_rep, s, msg, HTTP_MSG_CHUNK_CRLF, sess->fe); goto return_bad_res; } /* we're in MSG_CHUNK_SIZE now, fall through */ case HTTP_MSG_CHUNK_SIZE - HTTP_MSG_DATA: /* read the chunk size and assign it to ->chunk_len, then * set ->next to point to the body and switch to DATA or * TRAILERS state. */ ret = http_parse_chunk_size(msg); if (ret == 0) goto missing_data; else if (ret < 0) { if (msg->err_pos >= 0) http_capture_bad_message(&s->be->invalid_rep, s, msg, HTTP_MSG_CHUNK_SIZE, sess->fe); goto return_bad_res; } /* otherwise we're in HTTP_MSG_DATA or HTTP_MSG_TRAILERS state */ break; case HTTP_MSG_TRAILERS - HTTP_MSG_DATA: if (unlikely(compressing)) { /* we need to flush output contents before syncing FSMs */ http_compression_buffer_end(s, &res->buf, &tmpbuf, 1); compressing = 0; } ret = http_forward_trailers(msg); if (ret == 0) goto missing_data; else if (ret < 0) { if (msg->err_pos >= 0) http_capture_bad_message(&s->be->invalid_rep, s, msg, HTTP_MSG_TRAILERS, sess->fe); goto return_bad_res; } /* we're in HTTP_MSG_DONE now, fall through */ default: /* other states, DONE...TUNNEL */ if (unlikely(compressing)) { /* we need to flush output contents before syncing FSMs */ http_compression_buffer_end(s, &res->buf, &tmpbuf, 1); compressing = 0; } /* we may have some pending data starting at res->buf->p * such as a last chunk of data or trailers. */ b_adv(res->buf, msg->next); msg->next = 0; ret = msg->msg_state; /* for keep-alive we don't want to forward closes on DONE */ if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL || (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) channel_dont_close(res); if (http_resync_states(s)) { /* some state changes occurred, maybe the analyser * was disabled too. */ if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) { if (res->flags & CF_SHUTW) { /* response errors are most likely due to * the client aborting the transfer. */ goto aborted_xfer; } if (msg->err_pos >= 0) http_capture_bad_message(&s->be->invalid_rep, s, msg, ret, sess->fe); goto return_bad_res; } return 1; } return 0; } } missing_data: /* we may have some pending data starting at res->buf->p */ if (unlikely(compressing)) { http_compression_buffer_end(s, &res->buf, &tmpbuf, msg->msg_state >= HTTP_MSG_TRAILERS); compressing = 0; } if ((s->comp_algo == NULL || msg->msg_state >= HTTP_MSG_TRAILERS)) { b_adv(res->buf, msg->next); msg->next = 0; msg->chunk_len -= channel_forward(res, msg->chunk_len); } if (res->flags & CF_SHUTW) goto aborted_xfer; /* stop waiting for data if the input is closed before the end. If the * client side was already closed, it means that the client has aborted, * so we don't want to count this as a server abort. Otherwise it's a * server abort. */ if (res->flags & CF_SHUTR) { if ((s->req.flags & (CF_SHUTR|CF_SHUTW)) == (CF_SHUTR|CF_SHUTW)) goto aborted_xfer; /* If we have some pending data, we continue the processing */ if (!buffer_pending(res->buf)) { if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_SRVCL; s->be->be_counters.srv_aborts++; if (objt_server(s->target)) objt_server(s->target)->counters.srv_aborts++; goto return_bad_res_stats_ok; } } /* we need to obey the req analyser, so if it leaves, we must too */ if (!s->req.analysers) goto return_bad_res; /* When TE: chunked is used, we need to get there again to parse remaining * chunks even if the server has closed, so we don't want to set CF_DONTCLOSE. * Similarly, with keep-alive on the client side, we don't want to forward a * close. */ if ((msg->flags & HTTP_MSGF_TE_CHNK) || s->comp_algo || (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL || (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) channel_dont_close(res); /* We know that more data are expected, but we couldn't send more that * what we did. So we always set the CF_EXPECT_MORE flag so that the * system knows it must not set a PUSH on this first part. Interactive * modes are already handled by the stream sock layer. We must not do * this in content-length mode because it could present the MSG_MORE * flag with the last block of forwarded data, which would cause an * additional delay to be observed by the receiver. */ if ((msg->flags & HTTP_MSGF_TE_CHNK) || s->comp_algo) res->flags |= CF_EXPECT_MORE; /* the stream handler will take care of timeouts and errors */ return 0; return_bad_res: /* let's centralize all bad responses */ s->be->be_counters.failed_resp++; if (objt_server(s->target)) objt_server(s->target)->counters.failed_resp++; return_bad_res_stats_ok: if (unlikely(compressing)) { http_compression_buffer_end(s, &res->buf, &tmpbuf, msg->msg_state >= HTTP_MSG_TRAILERS); compressing = 0; } /* we may have some pending data starting at res->buf->p */ if (s->comp_algo == NULL) { b_adv(res->buf, msg->next); msg->next = 0; } txn->rsp.msg_state = HTTP_MSG_ERROR; /* don't send any error message as we're in the body */ http_reply_and_close(s, txn->status, NULL); res->analysers = 0; s->req.analysers = 0; /* we're in data phase, we want to abort both directions */ if (objt_server(s->target)) health_adjust(objt_server(s->target), HANA_STATUS_HTTP_HDRRSP); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_PRXCOND; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_D; return 0; aborted_xfer: if (unlikely(compressing)) { http_compression_buffer_end(s, &res->buf, &tmpbuf, msg->msg_state >= HTTP_MSG_TRAILERS); compressing = 0; } txn->rsp.msg_state = HTTP_MSG_ERROR; /* don't send any error message as we're in the body */ http_reply_and_close(s, txn->status, NULL); res->analysers = 0; s->req.analysers = 0; /* we're in data phase, we want to abort both directions */ sess->fe->fe_counters.cli_aborts++; s->be->be_counters.cli_aborts++; if (objt_server(s->target)) objt_server(s->target)->counters.cli_aborts++; if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_CLICL; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_D; return 0; } /* Iterate the same filter through all request headers. * Returns 1 if this filter can be stopped upon return, otherwise 0. * Since it can manage the switch to another backend, it updates the per-proxy * DENY stats. */ int apply_filter_to_req_headers(struct stream *s, struct channel *req, struct hdr_exp *exp) { char *cur_ptr, *cur_end, *cur_next; int cur_idx, old_idx, last_hdr; struct http_txn *txn = s->txn; struct hdr_idx_elem *cur_hdr; int delta; last_hdr = 0; cur_next = req->buf->p + hdr_idx_first_pos(&txn->hdr_idx); old_idx = 0; while (!last_hdr) { if (unlikely(txn->flags & (TX_CLDENY | TX_CLTARPIT))) return 1; else if (unlikely(txn->flags & TX_CLALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY || exp->action == ACT_TARPIT)) return 0; cur_idx = txn->hdr_idx.v[old_idx].next; if (!cur_idx) break; cur_hdr = &txn->hdr_idx.v[cur_idx]; cur_ptr = cur_next; cur_end = cur_ptr + cur_hdr->len; cur_next = cur_end + cur_hdr->cr + 1; /* Now we have one header between cur_ptr and cur_end, * and the next header starts at cur_next. */ if (regex_exec_match2(exp->preg, cur_ptr, cur_end-cur_ptr, MAX_MATCH, pmatch, 0)) { switch (exp->action) { case ACT_ALLOW: txn->flags |= TX_CLALLOW; last_hdr = 1; break; case ACT_DENY: txn->flags |= TX_CLDENY; last_hdr = 1; break; case ACT_TARPIT: txn->flags |= TX_CLTARPIT; last_hdr = 1; break; case ACT_REPLACE: trash.len = exp_replace(trash.str, trash.size, cur_ptr, exp->replace, pmatch); if (trash.len < 0) return -1; delta = buffer_replace2(req->buf, cur_ptr, cur_end, trash.str, trash.len); /* FIXME: if the user adds a newline in the replacement, the * index will not be recalculated for now, and the new line * will not be counted as a new header. */ cur_end += delta; cur_next += delta; cur_hdr->len += delta; http_msg_move_end(&txn->req, delta); break; case ACT_REMOVE: delta = buffer_replace2(req->buf, cur_ptr, cur_next, NULL, 0); cur_next += delta; http_msg_move_end(&txn->req, delta); txn->hdr_idx.v[old_idx].next = cur_hdr->next; txn->hdr_idx.used--; cur_hdr->len = 0; cur_end = NULL; /* null-term has been rewritten */ cur_idx = old_idx; break; } } /* keep the link from this header to next one in case of later * removal of next header. */ old_idx = cur_idx; } return 0; } /* Apply the filter to the request line. * Returns 0 if nothing has been done, 1 if the filter has been applied, * or -1 if a replacement resulted in an invalid request line. * Since it can manage the switch to another backend, it updates the per-proxy * DENY stats. */ int apply_filter_to_req_line(struct stream *s, struct channel *req, struct hdr_exp *exp) { char *cur_ptr, *cur_end; int done; struct http_txn *txn = s->txn; int delta; if (unlikely(txn->flags & (TX_CLDENY | TX_CLTARPIT))) return 1; else if (unlikely(txn->flags & TX_CLALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY || exp->action == ACT_TARPIT)) return 0; else if (exp->action == ACT_REMOVE) return 0; done = 0; cur_ptr = req->buf->p; cur_end = cur_ptr + txn->req.sl.rq.l; /* Now we have the request line between cur_ptr and cur_end */ if (regex_exec_match2(exp->preg, cur_ptr, cur_end-cur_ptr, MAX_MATCH, pmatch, 0)) { switch (exp->action) { case ACT_ALLOW: txn->flags |= TX_CLALLOW; done = 1; break; case ACT_DENY: txn->flags |= TX_CLDENY; done = 1; break; case ACT_TARPIT: txn->flags |= TX_CLTARPIT; done = 1; break; case ACT_REPLACE: trash.len = exp_replace(trash.str, trash.size, cur_ptr, exp->replace, pmatch); if (trash.len < 0) return -1; delta = buffer_replace2(req->buf, cur_ptr, cur_end, trash.str, trash.len); /* FIXME: if the user adds a newline in the replacement, the * index will not be recalculated for now, and the new line * will not be counted as a new header. */ http_msg_move_end(&txn->req, delta); cur_end += delta; cur_end = (char *)http_parse_reqline(&txn->req, HTTP_MSG_RQMETH, cur_ptr, cur_end + 1, NULL, NULL); if (unlikely(!cur_end)) return -1; /* we have a full request and we know that we have either a CR * or an LF at . */ txn->meth = find_http_meth(cur_ptr, txn->req.sl.rq.m_l); hdr_idx_set_start(&txn->hdr_idx, txn->req.sl.rq.l, *cur_end == '\r'); /* there is no point trying this regex on headers */ return 1; } } return done; } /* * Apply all the req filters of proxy to all headers in buffer of stream . * Returns 0 if everything is alright, or -1 in case a replacement lead to an * unparsable request. Since it can manage the switch to another backend, it * updates the per-proxy DENY stats. */ int apply_filters_to_request(struct stream *s, struct channel *req, struct proxy *px) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct hdr_exp *exp; for (exp = px->req_exp; exp; exp = exp->next) { int ret; /* * The interleaving of transformations and verdicts * makes it difficult to decide to continue or stop * the evaluation. */ if (txn->flags & (TX_CLDENY|TX_CLTARPIT)) break; if ((txn->flags & TX_CLALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY || exp->action == ACT_TARPIT || exp->action == ACT_PASS)) continue; /* if this filter had a condition, evaluate it now and skip to * next filter if the condition does not match. */ if (exp->cond) { ret = acl_exec_cond(exp->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (((struct acl_cond *)exp->cond)->pol == ACL_COND_UNLESS) ret = !ret; if (!ret) continue; } /* Apply the filter to the request line. */ ret = apply_filter_to_req_line(s, req, exp); if (unlikely(ret < 0)) return -1; if (likely(ret == 0)) { /* The filter did not match the request, it can be * iterated through all headers. */ if (unlikely(apply_filter_to_req_headers(s, req, exp) < 0)) return -1; } } return 0; } /* Find the end of a cookie value contained between and . It works the * same way as with headers above except that the semi-colon also ends a token. * See RFC2965 for more information. Note that it requires a valid header to * return a valid result. */ char *find_cookie_value_end(char *s, const char *e) { int quoted, qdpair; quoted = qdpair = 0; for (; s < e; s++) { if (qdpair) qdpair = 0; else if (quoted) { if (*s == '\\') qdpair = 1; else if (*s == '"') quoted = 0; } else if (*s == '"') quoted = 1; else if (*s == ',' || *s == ';') return s; } return s; } /* Delete a value in a header between delimiters and in buffer * . The number of characters displaced is returned, and the pointer to * the first delimiter is updated if required. The function tries as much as * possible to respect the following principles : * - replace delimiter by the one unless points to a * colon, in which case is simply removed * - set exactly one space character after the new first delimiter, unless * there are not enough characters in the block being moved to do so. * - remove unneeded spaces before the previous delimiter and after the new * one. * * It is the caller's responsibility to ensure that : * - points to a valid delimiter or the colon ; * - points to a valid delimiter or the final CR/LF ; * - there are non-space chars before ; * - there is a CR/LF at or after . */ int del_hdr_value(struct buffer *buf, char **from, char *next) { char *prev = *from; if (*prev == ':') { /* We're removing the first value, preserve the colon and add a * space if possible. */ if (!http_is_crlf[(unsigned char)*next]) next++; prev++; if (prev < next) *prev++ = ' '; while (http_is_spht[(unsigned char)*next]) next++; } else { /* Remove useless spaces before the old delimiter. */ while (http_is_spht[(unsigned char)*(prev-1)]) prev--; *from = prev; /* copy the delimiter and if possible a space if we're * not at the end of the line. */ if (!http_is_crlf[(unsigned char)*next]) { *prev++ = *next++; if (prev + 1 < next) *prev++ = ' '; while (http_is_spht[(unsigned char)*next]) next++; } } return buffer_replace2(buf, prev, next, NULL, 0); } /* * Manage client-side cookie. It can impact performance by about 2% so it is * desirable to call it only when needed. This code is quite complex because * of the multiple very crappy and ambiguous syntaxes we have to support. it * highly recommended not to touch this part without a good reason ! */ void manage_client_side_cookies(struct stream *s, struct channel *req) { struct http_txn *txn = s->txn; struct session *sess = s->sess; int preserve_hdr; int cur_idx, old_idx; char *hdr_beg, *hdr_end, *hdr_next, *del_from; char *prev, *att_beg, *att_end, *equal, *val_beg, *val_end, *next; /* Iterate through the headers, we start with the start line. */ old_idx = 0; hdr_next = req->buf->p + hdr_idx_first_pos(&txn->hdr_idx); while ((cur_idx = txn->hdr_idx.v[old_idx].next)) { struct hdr_idx_elem *cur_hdr; int val; cur_hdr = &txn->hdr_idx.v[cur_idx]; hdr_beg = hdr_next; hdr_end = hdr_beg + cur_hdr->len; hdr_next = hdr_end + cur_hdr->cr + 1; /* We have one full header between hdr_beg and hdr_end, and the * next header starts at hdr_next. We're only interested in * "Cookie:" headers. */ val = http_header_match2(hdr_beg, hdr_end, "Cookie", 6); if (!val) { old_idx = cur_idx; continue; } del_from = NULL; /* nothing to be deleted */ preserve_hdr = 0; /* assume we may kill the whole header */ /* Now look for cookies. Conforming to RFC2109, we have to support * attributes whose name begin with a '$', and associate them with * the right cookie, if we want to delete this cookie. * So there are 3 cases for each cookie read : * 1) it's a special attribute, beginning with a '$' : ignore it. * 2) it's a server id cookie that we *MAY* want to delete : save * some pointers on it (last semi-colon, beginning of cookie...) * 3) it's an application cookie : we *MAY* have to delete a previous * "special" cookie. * At the end of loop, if a "special" cookie remains, we may have to * remove it. If no application cookie persists in the header, we * *MUST* delete it. * * Note: RFC2965 is unclear about the processing of spaces around * the equal sign in the ATTR=VALUE form. A careful inspection of * the RFC explicitly allows spaces before it, and not within the * tokens (attrs or values). An inspection of RFC2109 allows that * too but section 10.1.3 lets one think that spaces may be allowed * after the equal sign too, resulting in some (rare) buggy * implementations trying to do that. So let's do what servers do. * Latest ietf draft forbids spaces all around. Also, earlier RFCs * allowed quoted strings in values, with any possible character * after a backslash, including control chars and delimitors, which * causes parsing to become ambiguous. Browsers also allow spaces * within values even without quotes. * * We have to keep multiple pointers in order to support cookie * removal at the beginning, middle or end of header without * corrupting the header. All of these headers are valid : * * Cookie:NAME1=VALUE1;NAME2=VALUE2;NAME3=VALUE3\r\n * Cookie:NAME1=VALUE1;NAME2_ONLY ;NAME3=VALUE3\r\n * Cookie: NAME1 = VALUE 1 ; NAME2 = VALUE2 ; NAME3 = VALUE3\r\n * | | | | | | | | | * | | | | | | | | hdr_end <--+ * | | | | | | | +--> next * | | | | | | +----> val_end * | | | | | +-----------> val_beg * | | | | +--------------> equal * | | | +----------------> att_end * | | +---------------------> att_beg * | +--------------------------> prev * +--------------------------------> hdr_beg */ for (prev = hdr_beg + 6; prev < hdr_end; prev = next) { /* Iterate through all cookies on this line */ /* find att_beg */ att_beg = prev + 1; while (att_beg < hdr_end && http_is_spht[(unsigned char)*att_beg]) att_beg++; /* find att_end : this is the first character after the last non * space before the equal. It may be equal to hdr_end. */ equal = att_end = att_beg; while (equal < hdr_end) { if (*equal == '=' || *equal == ',' || *equal == ';') break; if (http_is_spht[(unsigned char)*equal++]) continue; att_end = equal; } /* here, points to '=', a delimitor or the end. * is between and , both may be identical. */ /* look for end of cookie if there is an equal sign */ if (equal < hdr_end && *equal == '=') { /* look for the beginning of the value */ val_beg = equal + 1; while (val_beg < hdr_end && http_is_spht[(unsigned char)*val_beg]) val_beg++; /* find the end of the value, respecting quotes */ next = find_cookie_value_end(val_beg, hdr_end); /* make val_end point to the first white space or delimitor after the value */ val_end = next; while (val_end > val_beg && http_is_spht[(unsigned char)*(val_end - 1)]) val_end--; } else { val_beg = val_end = next = equal; } /* We have nothing to do with attributes beginning with '$'. However, * they will automatically be removed if a header before them is removed, * since they're supposed to be linked together. */ if (*att_beg == '$') continue; /* Ignore cookies with no equal sign */ if (equal == next) { /* This is not our cookie, so we must preserve it. But if we already * scheduled another cookie for removal, we cannot remove the * complete header, but we can remove the previous block itself. */ preserve_hdr = 1; if (del_from != NULL) { int delta = del_hdr_value(req->buf, &del_from, prev); val_end += delta; next += delta; hdr_end += delta; hdr_next += delta; cur_hdr->len += delta; http_msg_move_end(&txn->req, delta); prev = del_from; del_from = NULL; } continue; } /* if there are spaces around the equal sign, we need to * strip them otherwise we'll get trouble for cookie captures, * or even for rewrites. Since this happens extremely rarely, * it does not hurt performance. */ if (unlikely(att_end != equal || val_beg > equal + 1)) { int stripped_before = 0; int stripped_after = 0; if (att_end != equal) { stripped_before = buffer_replace2(req->buf, att_end, equal, NULL, 0); equal += stripped_before; val_beg += stripped_before; } if (val_beg > equal + 1) { stripped_after = buffer_replace2(req->buf, equal + 1, val_beg, NULL, 0); val_beg += stripped_after; stripped_before += stripped_after; } val_end += stripped_before; next += stripped_before; hdr_end += stripped_before; hdr_next += stripped_before; cur_hdr->len += stripped_before; http_msg_move_end(&txn->req, stripped_before); } /* now everything is as on the diagram above */ /* First, let's see if we want to capture this cookie. We check * that we don't already have a client side cookie, because we * can only capture one. Also as an optimisation, we ignore * cookies shorter than the declared name. */ if (sess->fe->capture_name != NULL && txn->cli_cookie == NULL && (val_end - att_beg >= sess->fe->capture_namelen) && memcmp(att_beg, sess->fe->capture_name, sess->fe->capture_namelen) == 0) { int log_len = val_end - att_beg; if ((txn->cli_cookie = pool_alloc2(pool2_capture)) == NULL) { Alert("HTTP logging : out of memory.\n"); } else { if (log_len > sess->fe->capture_len) log_len = sess->fe->capture_len; memcpy(txn->cli_cookie, att_beg, log_len); txn->cli_cookie[log_len] = 0; } } /* Persistence cookies in passive, rewrite or insert mode have the * following form : * * Cookie: NAME=SRV[|[|]] * * For cookies in prefix mode, the form is : * * Cookie: NAME=SRV~VALUE */ if ((att_end - att_beg == s->be->cookie_len) && (s->be->cookie_name != NULL) && (memcmp(att_beg, s->be->cookie_name, att_end - att_beg) == 0)) { struct server *srv = s->be->srv; char *delim; /* if we're in cookie prefix mode, we'll search the delimitor so that we * have the server ID between val_beg and delim, and the original cookie between * delim+1 and val_end. Otherwise, delim==val_end : * * Cookie: NAME=SRV; # in all but prefix modes * Cookie: NAME=SRV~OPAQUE ; # in prefix mode * | || || | |+-> next * | || || | +--> val_end * | || || +---------> delim * | || |+------------> val_beg * | || +-------------> att_end = equal * | |+-----------------> att_beg * | +------------------> prev * +-------------------------> hdr_beg */ if (s->be->ck_opts & PR_CK_PFX) { for (delim = val_beg; delim < val_end; delim++) if (*delim == COOKIE_DELIM) break; } else { char *vbar1; delim = val_end; /* Now check if the cookie contains a date field, which would * appear after a vertical bar ('|') just after the server name * and before the delimiter. */ vbar1 = memchr(val_beg, COOKIE_DELIM_DATE, val_end - val_beg); if (vbar1) { /* OK, so left of the bar is the server's cookie and * right is the last seen date. It is a base64 encoded * 30-bit value representing the UNIX date since the * epoch in 4-second quantities. */ int val; delim = vbar1++; if (val_end - vbar1 >= 5) { val = b64tos30(vbar1); if (val > 0) txn->cookie_last_date = val << 2; } /* look for a second vertical bar */ vbar1 = memchr(vbar1, COOKIE_DELIM_DATE, val_end - vbar1); if (vbar1 && (val_end - vbar1 > 5)) { val = b64tos30(vbar1 + 1); if (val > 0) txn->cookie_first_date = val << 2; } } } /* if the cookie has an expiration date and the proxy wants to check * it, then we do that now. We first check if the cookie is too old, * then only if it has expired. We detect strict overflow because the * time resolution here is not great (4 seconds). Cookies with dates * in the future are ignored if their offset is beyond one day. This * allows an admin to fix timezone issues without expiring everyone * and at the same time avoids keeping unwanted side effects for too * long. */ if (txn->cookie_first_date && s->be->cookie_maxlife && (((signed)(date.tv_sec - txn->cookie_first_date) > (signed)s->be->cookie_maxlife) || ((signed)(txn->cookie_first_date - date.tv_sec) > 86400))) { txn->flags &= ~TX_CK_MASK; txn->flags |= TX_CK_OLD; delim = val_beg; // let's pretend we have not found the cookie txn->cookie_first_date = 0; txn->cookie_last_date = 0; } else if (txn->cookie_last_date && s->be->cookie_maxidle && (((signed)(date.tv_sec - txn->cookie_last_date) > (signed)s->be->cookie_maxidle) || ((signed)(txn->cookie_last_date - date.tv_sec) > 86400))) { txn->flags &= ~TX_CK_MASK; txn->flags |= TX_CK_EXPIRED; delim = val_beg; // let's pretend we have not found the cookie txn->cookie_first_date = 0; txn->cookie_last_date = 0; } /* Here, we'll look for the first running server which supports the cookie. * This allows to share a same cookie between several servers, for example * to dedicate backup servers to specific servers only. * However, to prevent clients from sticking to cookie-less backup server * when they have incidentely learned an empty cookie, we simply ignore * empty cookies and mark them as invalid. * The same behaviour is applied when persistence must be ignored. */ if ((delim == val_beg) || (s->flags & (SF_IGNORE_PRST | SF_ASSIGNED))) srv = NULL; while (srv) { if (srv->cookie && (srv->cklen == delim - val_beg) && !memcmp(val_beg, srv->cookie, delim - val_beg)) { if ((srv->state != SRV_ST_STOPPED) || (s->be->options & PR_O_PERSIST) || (s->flags & SF_FORCE_PRST)) { /* we found the server and we can use it */ txn->flags &= ~TX_CK_MASK; txn->flags |= (srv->state != SRV_ST_STOPPED) ? TX_CK_VALID : TX_CK_DOWN; s->flags |= SF_DIRECT | SF_ASSIGNED; s->target = &srv->obj_type; break; } else { /* we found a server, but it's down, * mark it as such and go on in case * another one is available. */ txn->flags &= ~TX_CK_MASK; txn->flags |= TX_CK_DOWN; } } srv = srv->next; } if (!srv && !(txn->flags & (TX_CK_DOWN|TX_CK_EXPIRED|TX_CK_OLD))) { /* no server matched this cookie or we deliberately skipped it */ txn->flags &= ~TX_CK_MASK; if ((s->flags & (SF_IGNORE_PRST | SF_ASSIGNED))) txn->flags |= TX_CK_UNUSED; else txn->flags |= TX_CK_INVALID; } /* depending on the cookie mode, we may have to either : * - delete the complete cookie if we're in insert+indirect mode, so that * the server never sees it ; * - remove the server id from the cookie value, and tag the cookie as an * application cookie so that it does not get accidentely removed later, * if we're in cookie prefix mode */ if ((s->be->ck_opts & PR_CK_PFX) && (delim != val_end)) { int delta; /* negative */ delta = buffer_replace2(req->buf, val_beg, delim + 1, NULL, 0); val_end += delta; next += delta; hdr_end += delta; hdr_next += delta; cur_hdr->len += delta; http_msg_move_end(&txn->req, delta); del_from = NULL; preserve_hdr = 1; /* we want to keep this cookie */ } else if (del_from == NULL && (s->be->ck_opts & (PR_CK_INS | PR_CK_IND)) == (PR_CK_INS | PR_CK_IND)) { del_from = prev; } } else { /* This is not our cookie, so we must preserve it. But if we already * scheduled another cookie for removal, we cannot remove the * complete header, but we can remove the previous block itself. */ preserve_hdr = 1; if (del_from != NULL) { int delta = del_hdr_value(req->buf, &del_from, prev); if (att_beg >= del_from) att_beg += delta; if (att_end >= del_from) att_end += delta; val_beg += delta; val_end += delta; next += delta; hdr_end += delta; hdr_next += delta; cur_hdr->len += delta; http_msg_move_end(&txn->req, delta); prev = del_from; del_from = NULL; } } /* continue with next cookie on this header line */ att_beg = next; } /* for each cookie */ /* There are no more cookies on this line. * We may still have one (or several) marked for deletion at the * end of the line. We must do this now in two ways : * - if some cookies must be preserved, we only delete from the * mark to the end of line ; * - if nothing needs to be preserved, simply delete the whole header */ if (del_from) { int delta; if (preserve_hdr) { delta = del_hdr_value(req->buf, &del_from, hdr_end); hdr_end = del_from; cur_hdr->len += delta; } else { delta = buffer_replace2(req->buf, hdr_beg, hdr_next, NULL, 0); /* FIXME: this should be a separate function */ txn->hdr_idx.v[old_idx].next = cur_hdr->next; txn->hdr_idx.used--; cur_hdr->len = 0; cur_idx = old_idx; } hdr_next += delta; http_msg_move_end(&txn->req, delta); } /* check next header */ old_idx = cur_idx; } } /* Iterate the same filter through all response headers contained in . * Returns 1 if this filter can be stopped upon return, otherwise 0. */ int apply_filter_to_resp_headers(struct stream *s, struct channel *rtr, struct hdr_exp *exp) { char *cur_ptr, *cur_end, *cur_next; int cur_idx, old_idx, last_hdr; struct http_txn *txn = s->txn; struct hdr_idx_elem *cur_hdr; int delta; last_hdr = 0; cur_next = rtr->buf->p + hdr_idx_first_pos(&txn->hdr_idx); old_idx = 0; while (!last_hdr) { if (unlikely(txn->flags & TX_SVDENY)) return 1; else if (unlikely(txn->flags & TX_SVALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY)) return 0; cur_idx = txn->hdr_idx.v[old_idx].next; if (!cur_idx) break; cur_hdr = &txn->hdr_idx.v[cur_idx]; cur_ptr = cur_next; cur_end = cur_ptr + cur_hdr->len; cur_next = cur_end + cur_hdr->cr + 1; /* Now we have one header between cur_ptr and cur_end, * and the next header starts at cur_next. */ if (regex_exec_match2(exp->preg, cur_ptr, cur_end-cur_ptr, MAX_MATCH, pmatch, 0)) { switch (exp->action) { case ACT_ALLOW: txn->flags |= TX_SVALLOW; last_hdr = 1; break; case ACT_DENY: txn->flags |= TX_SVDENY; last_hdr = 1; break; case ACT_REPLACE: trash.len = exp_replace(trash.str, trash.size, cur_ptr, exp->replace, pmatch); if (trash.len < 0) return -1; delta = buffer_replace2(rtr->buf, cur_ptr, cur_end, trash.str, trash.len); /* FIXME: if the user adds a newline in the replacement, the * index will not be recalculated for now, and the new line * will not be counted as a new header. */ cur_end += delta; cur_next += delta; cur_hdr->len += delta; http_msg_move_end(&txn->rsp, delta); break; case ACT_REMOVE: delta = buffer_replace2(rtr->buf, cur_ptr, cur_next, NULL, 0); cur_next += delta; http_msg_move_end(&txn->rsp, delta); txn->hdr_idx.v[old_idx].next = cur_hdr->next; txn->hdr_idx.used--; cur_hdr->len = 0; cur_end = NULL; /* null-term has been rewritten */ cur_idx = old_idx; break; } } /* keep the link from this header to next one in case of later * removal of next header. */ old_idx = cur_idx; } return 0; } /* Apply the filter to the status line in the response buffer . * Returns 0 if nothing has been done, 1 if the filter has been applied, * or -1 if a replacement resulted in an invalid status line. */ int apply_filter_to_sts_line(struct stream *s, struct channel *rtr, struct hdr_exp *exp) { char *cur_ptr, *cur_end; int done; struct http_txn *txn = s->txn; int delta; if (unlikely(txn->flags & TX_SVDENY)) return 1; else if (unlikely(txn->flags & TX_SVALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY)) return 0; else if (exp->action == ACT_REMOVE) return 0; done = 0; cur_ptr = rtr->buf->p; cur_end = cur_ptr + txn->rsp.sl.st.l; /* Now we have the status line between cur_ptr and cur_end */ if (regex_exec_match2(exp->preg, cur_ptr, cur_end-cur_ptr, MAX_MATCH, pmatch, 0)) { switch (exp->action) { case ACT_ALLOW: txn->flags |= TX_SVALLOW; done = 1; break; case ACT_DENY: txn->flags |= TX_SVDENY; done = 1; break; case ACT_REPLACE: trash.len = exp_replace(trash.str, trash.size, cur_ptr, exp->replace, pmatch); if (trash.len < 0) return -1; delta = buffer_replace2(rtr->buf, cur_ptr, cur_end, trash.str, trash.len); /* FIXME: if the user adds a newline in the replacement, the * index will not be recalculated for now, and the new line * will not be counted as a new header. */ http_msg_move_end(&txn->rsp, delta); cur_end += delta; cur_end = (char *)http_parse_stsline(&txn->rsp, HTTP_MSG_RPVER, cur_ptr, cur_end + 1, NULL, NULL); if (unlikely(!cur_end)) return -1; /* we have a full respnse and we know that we have either a CR * or an LF at . */ txn->status = strl2ui(rtr->buf->p + txn->rsp.sl.st.c, txn->rsp.sl.st.c_l); hdr_idx_set_start(&txn->hdr_idx, txn->rsp.sl.st.l, *cur_end == '\r'); /* there is no point trying this regex on headers */ return 1; } } return done; } /* * Apply all the resp filters of proxy to all headers in buffer of stream . * Returns 0 if everything is alright, or -1 in case a replacement lead to an * unparsable response. */ int apply_filters_to_response(struct stream *s, struct channel *rtr, struct proxy *px) { struct session *sess = s->sess; struct http_txn *txn = s->txn; struct hdr_exp *exp; for (exp = px->rsp_exp; exp; exp = exp->next) { int ret; /* * The interleaving of transformations and verdicts * makes it difficult to decide to continue or stop * the evaluation. */ if (txn->flags & TX_SVDENY) break; if ((txn->flags & TX_SVALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY || exp->action == ACT_PASS)) { exp = exp->next; continue; } /* if this filter had a condition, evaluate it now and skip to * next filter if the condition does not match. */ if (exp->cond) { ret = acl_exec_cond(exp->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL); ret = acl_pass(ret); if (((struct acl_cond *)exp->cond)->pol == ACL_COND_UNLESS) ret = !ret; if (!ret) continue; } /* Apply the filter to the status line. */ ret = apply_filter_to_sts_line(s, rtr, exp); if (unlikely(ret < 0)) return -1; if (likely(ret == 0)) { /* The filter did not match the response, it can be * iterated through all headers. */ if (unlikely(apply_filter_to_resp_headers(s, rtr, exp) < 0)) return -1; } } return 0; } /* * Manage server-side cookies. It can impact performance by about 2% so it is * desirable to call it only when needed. This function is also used when we * just need to know if there is a cookie (eg: for check-cache). */ void manage_server_side_cookies(struct stream *s, struct channel *res) { struct http_txn *txn = s->txn; struct session *sess = s->sess; struct server *srv; int is_cookie2; int cur_idx, old_idx, delta; char *hdr_beg, *hdr_end, *hdr_next; char *prev, *att_beg, *att_end, *equal, *val_beg, *val_end, *next; /* Iterate through the headers. * we start with the start line. */ old_idx = 0; hdr_next = res->buf->p + hdr_idx_first_pos(&txn->hdr_idx); while ((cur_idx = txn->hdr_idx.v[old_idx].next)) { struct hdr_idx_elem *cur_hdr; int val; cur_hdr = &txn->hdr_idx.v[cur_idx]; hdr_beg = hdr_next; hdr_end = hdr_beg + cur_hdr->len; hdr_next = hdr_end + cur_hdr->cr + 1; /* We have one full header between hdr_beg and hdr_end, and the * next header starts at hdr_next. We're only interested in * "Set-Cookie" and "Set-Cookie2" headers. */ is_cookie2 = 0; prev = hdr_beg + 10; val = http_header_match2(hdr_beg, hdr_end, "Set-Cookie", 10); if (!val) { val = http_header_match2(hdr_beg, hdr_end, "Set-Cookie2", 11); if (!val) { old_idx = cur_idx; continue; } is_cookie2 = 1; prev = hdr_beg + 11; } /* OK, right now we know we have a Set-Cookie* at hdr_beg, and * points to the colon. */ txn->flags |= TX_SCK_PRESENT; /* Maybe we only wanted to see if there was a Set-Cookie (eg: * check-cache is enabled) and we are not interested in checking * them. Warning, the cookie capture is declared in the frontend. */ if (s->be->cookie_name == NULL && sess->fe->capture_name == NULL) return; /* OK so now we know we have to process this response cookie. * The format of the Set-Cookie header is slightly different * from the format of the Cookie header in that it does not * support the comma as a cookie delimiter (thus the header * cannot be folded) because the Expires attribute described in * the original Netscape's spec may contain an unquoted date * with a comma inside. We have to live with this because * many browsers don't support Max-Age and some browsers don't * support quoted strings. However the Set-Cookie2 header is * clean. * * We have to keep multiple pointers in order to support cookie * removal at the beginning, middle or end of header without * corrupting the header (in case of set-cookie2). A special * pointer, points to the beginning of the set-cookie-av * fields after the first semi-colon. The pointer points * either to the end of line (set-cookie) or next unquoted comma * (set-cookie2). All of these headers are valid : * * Set-Cookie: NAME1 = VALUE 1 ; Secure; Path="/"\r\n * Set-Cookie:NAME=VALUE; Secure; Expires=Thu, 01-Jan-1970 00:00:01 GMT\r\n * Set-Cookie: NAME = VALUE ; Secure; Expires=Thu, 01-Jan-1970 00:00:01 GMT\r\n * Set-Cookie2: NAME1 = VALUE 1 ; Max-Age=0, NAME2=VALUE2; Discard\r\n * | | | | | | | | | | * | | | | | | | | +-> next hdr_end <--+ * | | | | | | | +------------> scav * | | | | | | +--------------> val_end * | | | | | +--------------------> val_beg * | | | | +----------------------> equal * | | | +------------------------> att_end * | | +----------------------------> att_beg * | +------------------------------> prev * +-----------------------------------------> hdr_beg */ for (; prev < hdr_end; prev = next) { /* Iterate through all cookies on this line */ /* find att_beg */ att_beg = prev + 1; while (att_beg < hdr_end && http_is_spht[(unsigned char)*att_beg]) att_beg++; /* find att_end : this is the first character after the last non * space before the equal. It may be equal to hdr_end. */ equal = att_end = att_beg; while (equal < hdr_end) { if (*equal == '=' || *equal == ';' || (is_cookie2 && *equal == ',')) break; if (http_is_spht[(unsigned char)*equal++]) continue; att_end = equal; } /* here, points to '=', a delimitor or the end. * is between and , both may be identical. */ /* look for end of cookie if there is an equal sign */ if (equal < hdr_end && *equal == '=') { /* look for the beginning of the value */ val_beg = equal + 1; while (val_beg < hdr_end && http_is_spht[(unsigned char)*val_beg]) val_beg++; /* find the end of the value, respecting quotes */ next = find_cookie_value_end(val_beg, hdr_end); /* make val_end point to the first white space or delimitor after the value */ val_end = next; while (val_end > val_beg && http_is_spht[(unsigned char)*(val_end - 1)]) val_end--; } else { /* points to next comma, semi-colon or EOL */ val_beg = val_end = next = equal; } if (next < hdr_end) { /* Set-Cookie2 supports multiple cookies, and points to * a colon or semi-colon before the end. So skip all attr-value * pairs and look for the next comma. For Set-Cookie, since * commas are permitted in values, skip to the end. */ if (is_cookie2) next = find_hdr_value_end(next, hdr_end); else next = hdr_end; } /* Now everything is as on the diagram above */ /* Ignore cookies with no equal sign */ if (equal == val_end) continue; /* If there are spaces around the equal sign, we need to * strip them otherwise we'll get trouble for cookie captures, * or even for rewrites. Since this happens extremely rarely, * it does not hurt performance. */ if (unlikely(att_end != equal || val_beg > equal + 1)) { int stripped_before = 0; int stripped_after = 0; if (att_end != equal) { stripped_before = buffer_replace2(res->buf, att_end, equal, NULL, 0); equal += stripped_before; val_beg += stripped_before; } if (val_beg > equal + 1) { stripped_after = buffer_replace2(res->buf, equal + 1, val_beg, NULL, 0); val_beg += stripped_after; stripped_before += stripped_after; } val_end += stripped_before; next += stripped_before; hdr_end += stripped_before; hdr_next += stripped_before; cur_hdr->len += stripped_before; http_msg_move_end(&txn->rsp, stripped_before); } /* First, let's see if we want to capture this cookie. We check * that we don't already have a server side cookie, because we * can only capture one. Also as an optimisation, we ignore * cookies shorter than the declared name. */ if (sess->fe->capture_name != NULL && txn->srv_cookie == NULL && (val_end - att_beg >= sess->fe->capture_namelen) && memcmp(att_beg, sess->fe->capture_name, sess->fe->capture_namelen) == 0) { int log_len = val_end - att_beg; if ((txn->srv_cookie = pool_alloc2(pool2_capture)) == NULL) { Alert("HTTP logging : out of memory.\n"); } else { if (log_len > sess->fe->capture_len) log_len = sess->fe->capture_len; memcpy(txn->srv_cookie, att_beg, log_len); txn->srv_cookie[log_len] = 0; } } srv = objt_server(s->target); /* now check if we need to process it for persistence */ if (!(s->flags & SF_IGNORE_PRST) && (att_end - att_beg == s->be->cookie_len) && (s->be->cookie_name != NULL) && (memcmp(att_beg, s->be->cookie_name, att_end - att_beg) == 0)) { /* assume passive cookie by default */ txn->flags &= ~TX_SCK_MASK; txn->flags |= TX_SCK_FOUND; /* If the cookie is in insert mode on a known server, we'll delete * this occurrence because we'll insert another one later. * We'll delete it too if the "indirect" option is set and we're in * a direct access. */ if (s->be->ck_opts & PR_CK_PSV) { /* The "preserve" flag was set, we don't want to touch the * server's cookie. */ } else if ((srv && (s->be->ck_opts & PR_CK_INS)) || ((s->flags & SF_DIRECT) && (s->be->ck_opts & PR_CK_IND))) { /* this cookie must be deleted */ if (*prev == ':' && next == hdr_end) { /* whole header */ delta = buffer_replace2(res->buf, hdr_beg, hdr_next, NULL, 0); txn->hdr_idx.v[old_idx].next = cur_hdr->next; txn->hdr_idx.used--; cur_hdr->len = 0; cur_idx = old_idx; hdr_next += delta; http_msg_move_end(&txn->rsp, delta); /* note: while both invalid now, and * are still equal, so the for() will stop as expected. */ } else { /* just remove the value */ int delta = del_hdr_value(res->buf, &prev, next); next = prev; hdr_end += delta; hdr_next += delta; cur_hdr->len += delta; http_msg_move_end(&txn->rsp, delta); } txn->flags &= ~TX_SCK_MASK; txn->flags |= TX_SCK_DELETED; /* and go on with next cookie */ } else if (srv && srv->cookie && (s->be->ck_opts & PR_CK_RW)) { /* replace bytes val_beg->val_end with the cookie name associated * with this server since we know it. */ delta = buffer_replace2(res->buf, val_beg, val_end, srv->cookie, srv->cklen); next += delta; hdr_end += delta; hdr_next += delta; cur_hdr->len += delta; http_msg_move_end(&txn->rsp, delta); txn->flags &= ~TX_SCK_MASK; txn->flags |= TX_SCK_REPLACED; } else if (srv && srv->cookie && (s->be->ck_opts & PR_CK_PFX)) { /* insert the cookie name associated with this server * before existing cookie, and insert a delimiter between them.. */ delta = buffer_replace2(res->buf, val_beg, val_beg, srv->cookie, srv->cklen + 1); next += delta; hdr_end += delta; hdr_next += delta; cur_hdr->len += delta; http_msg_move_end(&txn->rsp, delta); val_beg[srv->cklen] = COOKIE_DELIM; txn->flags &= ~TX_SCK_MASK; txn->flags |= TX_SCK_REPLACED; } } /* that's done for this cookie, check the next one on the same * line when next != hdr_end (only if is_cookie2). */ } /* check next header */ old_idx = cur_idx; } } /* * Check if response is cacheable or not. Updates s->flags. */ void check_response_for_cacheability(struct stream *s, struct channel *rtr) { struct http_txn *txn = s->txn; char *p1, *p2; char *cur_ptr, *cur_end, *cur_next; int cur_idx; if (!(txn->flags & TX_CACHEABLE)) return; /* Iterate through the headers. * we start with the start line. */ cur_idx = 0; cur_next = rtr->buf->p + hdr_idx_first_pos(&txn->hdr_idx); while ((cur_idx = txn->hdr_idx.v[cur_idx].next)) { struct hdr_idx_elem *cur_hdr; int val; cur_hdr = &txn->hdr_idx.v[cur_idx]; cur_ptr = cur_next; cur_end = cur_ptr + cur_hdr->len; cur_next = cur_end + cur_hdr->cr + 1; /* We have one full header between cur_ptr and cur_end, and the * next header starts at cur_next. We're only interested in * "Cookie:" headers. */ val = http_header_match2(cur_ptr, cur_end, "Pragma", 6); if (val) { if ((cur_end - (cur_ptr + val) >= 8) && strncasecmp(cur_ptr + val, "no-cache", 8) == 0) { txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; return; } } val = http_header_match2(cur_ptr, cur_end, "Cache-control", 13); if (!val) continue; /* OK, right now we know we have a cache-control header at cur_ptr */ p1 = cur_ptr + val; /* first non-space char after 'cache-control:' */ if (p1 >= cur_end) /* no more info */ continue; /* p1 is at the beginning of the value */ p2 = p1; while (p2 < cur_end && *p2 != '=' && *p2 != ',' && !isspace((unsigned char)*p2)) p2++; /* we have a complete value between p1 and p2 */ if (p2 < cur_end && *p2 == '=') { /* we have something of the form no-cache="set-cookie" */ if ((cur_end - p1 >= 21) && strncasecmp(p1, "no-cache=\"set-cookie", 20) == 0 && (p1[20] == '"' || p1[20] == ',')) txn->flags &= ~TX_CACHE_COOK; continue; } /* OK, so we know that either p2 points to the end of string or to a comma */ if (((p2 - p1 == 7) && strncasecmp(p1, "private", 7) == 0) || ((p2 - p1 == 8) && strncasecmp(p1, "no-cache", 8) == 0) || ((p2 - p1 == 8) && strncasecmp(p1, "no-store", 8) == 0) || ((p2 - p1 == 9) && strncasecmp(p1, "max-age=0", 9) == 0) || ((p2 - p1 == 10) && strncasecmp(p1, "s-maxage=0", 10) == 0)) { txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; return; } if ((p2 - p1 == 6) && strncasecmp(p1, "public", 6) == 0) { txn->flags |= TX_CACHEABLE | TX_CACHE_COOK; continue; } } } /* * In a GET, HEAD or POST request, check if the requested URI matches the stats uri * for the current backend. * * It is assumed that the request is either a HEAD, GET, or POST and that the * uri_auth field is valid. * * Returns 1 if stats should be provided, otherwise 0. */ int stats_check_uri(struct stream_interface *si, struct http_txn *txn, struct proxy *backend) { struct uri_auth *uri_auth = backend->uri_auth; struct http_msg *msg = &txn->req; const char *uri = msg->chn->buf->p+ msg->sl.rq.u; if (!uri_auth) return 0; if (txn->meth != HTTP_METH_GET && txn->meth != HTTP_METH_HEAD && txn->meth != HTTP_METH_POST) return 0; /* check URI size */ if (uri_auth->uri_len > msg->sl.rq.u_l) return 0; if (memcmp(uri, uri_auth->uri_prefix, uri_auth->uri_len) != 0) return 0; return 1; } /* * Capture a bad request or response and archive it in the proxy's structure. * By default it tries to report the error position as msg->err_pos. However if * this one is not set, it will then report msg->next, which is the last known * parsing point. The function is able to deal with wrapping buffers. It always * displays buffers as a contiguous area starting at buf->p. */ void http_capture_bad_message(struct error_snapshot *es, struct stream *s, struct http_msg *msg, enum ht_state state, struct proxy *other_end) { struct session *sess = strm_sess(s); struct channel *chn = msg->chn; int len1, len2; es->len = MIN(chn->buf->i, sizeof(es->buf)); len1 = chn->buf->data + chn->buf->size - chn->buf->p; len1 = MIN(len1, es->len); len2 = es->len - len1; /* remaining data if buffer wraps */ memcpy(es->buf, chn->buf->p, len1); if (len2) memcpy(es->buf + len1, chn->buf->data, len2); if (msg->err_pos >= 0) es->pos = msg->err_pos; else es->pos = msg->next; es->when = date; // user-visible date es->sid = s->uniq_id; es->srv = objt_server(s->target); es->oe = other_end; if (objt_conn(sess->origin)) es->src = __objt_conn(sess->origin)->addr.from; else memset(&es->src, 0, sizeof(es->src)); es->state = state; es->ev_id = error_snapshot_id++; es->b_flags = chn->flags; es->s_flags = s->flags; es->t_flags = s->txn->flags; es->m_flags = msg->flags; es->b_out = chn->buf->o; es->b_wrap = chn->buf->data + chn->buf->size - chn->buf->p; es->b_tot = chn->total; es->m_clen = msg->chunk_len; es->m_blen = msg->body_len; } /* Return in and the pointer and length of occurrence of * header whose name is of length . If is null, lookup is * performed over the whole headers. Otherwise it must contain a valid header * context, initialised with ctx->idx=0 for the first lookup in a series. If * is positive or null, occurrence #occ from the beginning (or last ctx) * is returned. Occ #0 and #1 are equivalent. If is negative (and no less * than -MAX_HDR_HISTORY), the occurrence is counted from the last one which is * -1. The value fetch stops at commas, so this function is suited for use with * list headers. * The return value is 0 if nothing was found, or non-zero otherwise. */ unsigned int http_get_hdr(const struct http_msg *msg, const char *hname, int hlen, struct hdr_idx *idx, int occ, struct hdr_ctx *ctx, char **vptr, int *vlen) { struct hdr_ctx local_ctx; char *ptr_hist[MAX_HDR_HISTORY]; int len_hist[MAX_HDR_HISTORY]; unsigned int hist_ptr; int found; if (!ctx) { local_ctx.idx = 0; ctx = &local_ctx; } if (occ >= 0) { /* search from the beginning */ while (http_find_header2(hname, hlen, msg->chn->buf->p, idx, ctx)) { occ--; if (occ <= 0) { *vptr = ctx->line + ctx->val; *vlen = ctx->vlen; return 1; } } return 0; } /* negative occurrence, we scan all the list then walk back */ if (-occ > MAX_HDR_HISTORY) return 0; found = hist_ptr = 0; while (http_find_header2(hname, hlen, msg->chn->buf->p, idx, ctx)) { ptr_hist[hist_ptr] = ctx->line + ctx->val; len_hist[hist_ptr] = ctx->vlen; if (++hist_ptr >= MAX_HDR_HISTORY) hist_ptr = 0; found++; } if (-occ > found) return 0; /* OK now we have the last occurrence in [hist_ptr-1], and we need to * find occurrence -occ. 0 <= hist_ptr < MAX_HDR_HISTORY, and we have * -10 <= occ <= -1. So we have to check [hist_ptr%MAX_HDR_HISTORY+occ] * to remain in the 0..9 range. */ hist_ptr += occ + MAX_HDR_HISTORY; if (hist_ptr >= MAX_HDR_HISTORY) hist_ptr -= MAX_HDR_HISTORY; *vptr = ptr_hist[hist_ptr]; *vlen = len_hist[hist_ptr]; return 1; } /* Return in and the pointer and length of occurrence of * header whose name is of length . If is null, lookup is * performed over the whole headers. Otherwise it must contain a valid header * context, initialised with ctx->idx=0 for the first lookup in a series. If * is positive or null, occurrence #occ from the beginning (or last ctx) * is returned. Occ #0 and #1 are equivalent. If is negative (and no less * than -MAX_HDR_HISTORY), the occurrence is counted from the last one which is * -1. This function differs from http_get_hdr() in that it only returns full * line header values and does not stop at commas. * The return value is 0 if nothing was found, or non-zero otherwise. */ unsigned int http_get_fhdr(const struct http_msg *msg, const char *hname, int hlen, struct hdr_idx *idx, int occ, struct hdr_ctx *ctx, char **vptr, int *vlen) { struct hdr_ctx local_ctx; char *ptr_hist[MAX_HDR_HISTORY]; int len_hist[MAX_HDR_HISTORY]; unsigned int hist_ptr; int found; if (!ctx) { local_ctx.idx = 0; ctx = &local_ctx; } if (occ >= 0) { /* search from the beginning */ while (http_find_full_header2(hname, hlen, msg->chn->buf->p, idx, ctx)) { occ--; if (occ <= 0) { *vptr = ctx->line + ctx->val; *vlen = ctx->vlen; return 1; } } return 0; } /* negative occurrence, we scan all the list then walk back */ if (-occ > MAX_HDR_HISTORY) return 0; found = hist_ptr = 0; while (http_find_full_header2(hname, hlen, msg->chn->buf->p, idx, ctx)) { ptr_hist[hist_ptr] = ctx->line + ctx->val; len_hist[hist_ptr] = ctx->vlen; if (++hist_ptr >= MAX_HDR_HISTORY) hist_ptr = 0; found++; } if (-occ > found) return 0; /* OK now we have the last occurrence in [hist_ptr-1], and we need to * find occurrence -occ, so we have to check [hist_ptr+occ]. */ hist_ptr += occ; if (hist_ptr >= MAX_HDR_HISTORY) hist_ptr -= MAX_HDR_HISTORY; *vptr = ptr_hist[hist_ptr]; *vlen = len_hist[hist_ptr]; return 1; } /* * Print a debug line with a header. Always stop at the first CR or LF char, * so it is safe to pass it a full buffer if needed. If is not NULL, an * arrow is printed after the line which contains the pointer. */ void debug_hdr(const char *dir, struct stream *s, const char *start, const char *end) { struct session *sess = strm_sess(s); int max; chunk_printf(&trash, "%08x:%s.%s[%04x:%04x]: ", s->uniq_id, s->be->id, dir, objt_conn(sess->origin) ? (unsigned short)objt_conn(sess->origin)->t.sock.fd : -1, objt_conn(s->si[1].end) ? (unsigned short)objt_conn(s->si[1].end)->t.sock.fd : -1); for (max = 0; start + max < end; max++) if (start[max] == '\r' || start[max] == '\n') break; UBOUND(max, trash.size - trash.len - 3); trash.len += strlcpy2(trash.str + trash.len, start, max + 1); trash.str[trash.len++] = '\n'; shut_your_big_mouth_gcc(write(1, trash.str, trash.len)); } /* Allocate a new HTTP transaction for stream unless there is one already. * The hdr_idx is allocated as well. In case of allocation failure, everything * allocated is freed and NULL is returned. Otherwise the new transaction is * assigned to the stream and returned. */ struct http_txn *http_alloc_txn(struct stream *s) { struct http_txn *txn = s->txn; if (txn) return txn; txn = pool_alloc2(pool2_http_txn); if (!txn) return txn; txn->hdr_idx.size = global.tune.max_http_hdr; txn->hdr_idx.v = pool_alloc2(pool2_hdr_idx); if (!txn->hdr_idx.v) { pool_free2(pool2_http_txn, txn); return NULL; } s->txn = txn; return txn; } void http_txn_reset_req(struct http_txn *txn) { txn->req.flags = 0; txn->req.sol = txn->req.eol = txn->req.eoh = 0; /* relative to the buffer */ txn->req.next = 0; txn->req.chunk_len = 0LL; txn->req.body_len = 0LL; txn->req.msg_state = HTTP_MSG_RQBEFORE; /* at the very beginning of the request */ } void http_txn_reset_res(struct http_txn *txn) { txn->rsp.flags = 0; txn->rsp.sol = txn->rsp.eol = txn->rsp.eoh = 0; /* relative to the buffer */ txn->rsp.next = 0; txn->rsp.chunk_len = 0LL; txn->rsp.body_len = 0LL; txn->rsp.msg_state = HTTP_MSG_RPBEFORE; /* at the very beginning of the response */ } /* * Initialize a new HTTP transaction for stream . It is assumed that all * the required fields are properly allocated and that we only need to (re)init * them. This should be used before processing any new request. */ void http_init_txn(struct stream *s) { struct http_txn *txn = s->txn; struct proxy *fe = strm_fe(s); txn->flags = 0; txn->status = -1; txn->cookie_first_date = 0; txn->cookie_last_date = 0; txn->srv_cookie = NULL; txn->cli_cookie = NULL; txn->uri = NULL; http_txn_reset_req(txn); http_txn_reset_res(txn); txn->req.chn = &s->req; txn->rsp.chn = &s->res; txn->auth.method = HTTP_AUTH_UNKNOWN; txn->req.err_pos = txn->rsp.err_pos = -2; /* block buggy requests/responses */ if (fe->options2 & PR_O2_REQBUG_OK) txn->req.err_pos = -1; /* let buggy requests pass */ if (txn->hdr_idx.v) hdr_idx_init(&txn->hdr_idx); vars_init(&s->vars_txn, SCOPE_TXN); vars_init(&s->vars_reqres, SCOPE_REQ); } /* to be used at the end of a transaction */ void http_end_txn(struct stream *s) { struct http_txn *txn = s->txn; struct proxy *fe = strm_fe(s); /* release any possible compression context */ if (s->flags & SF_COMP_READY) s->comp_algo->end(&s->comp_ctx); s->comp_algo = NULL; s->flags &= ~SF_COMP_READY; /* these ones will have been dynamically allocated */ pool_free2(pool2_requri, txn->uri); pool_free2(pool2_capture, txn->cli_cookie); pool_free2(pool2_capture, txn->srv_cookie); pool_free2(pool2_uniqueid, s->unique_id); s->unique_id = NULL; txn->uri = NULL; txn->srv_cookie = NULL; txn->cli_cookie = NULL; if (s->req_cap) { struct cap_hdr *h; for (h = fe->req_cap; h; h = h->next) pool_free2(h->pool, s->req_cap[h->index]); memset(s->req_cap, 0, fe->nb_req_cap * sizeof(void *)); } if (s->res_cap) { struct cap_hdr *h; for (h = fe->rsp_cap; h; h = h->next) pool_free2(h->pool, s->res_cap[h->index]); memset(s->res_cap, 0, fe->nb_rsp_cap * sizeof(void *)); } vars_prune(&s->vars_txn, s); vars_prune(&s->vars_reqres, s); } /* to be used at the end of a transaction to prepare a new one */ void http_reset_txn(struct stream *s) { http_end_txn(s); http_init_txn(s); /* reinitialise the current rule list pointer to NULL. We are sure that * any rulelist match the NULL pointer. */ s->current_rule_list = NULL; s->be = strm_fe(s); s->logs.logwait = strm_fe(s)->to_log; s->logs.level = 0; stream_del_srv_conn(s); s->target = NULL; /* re-init store persistence */ s->store_count = 0; s->uniq_id = global.req_count++; s->pend_pos = NULL; s->req.flags |= CF_READ_DONTWAIT; /* one read is usually enough */ /* We must trim any excess data from the response buffer, because we * may have blocked an invalid response from a server that we don't * want to accidentely forward once we disable the analysers, nor do * we want those data to come along with next response. A typical * example of such data would be from a buggy server responding to * a HEAD with some data, or sending more than the advertised * content-length. */ if (unlikely(s->res.buf->i)) s->res.buf->i = 0; s->req.rto = strm_fe(s)->timeout.client; s->req.wto = TICK_ETERNITY; s->res.rto = TICK_ETERNITY; s->res.wto = strm_fe(s)->timeout.client; s->req.rex = TICK_ETERNITY; s->req.wex = TICK_ETERNITY; s->req.analyse_exp = TICK_ETERNITY; s->res.rex = TICK_ETERNITY; s->res.wex = TICK_ETERNITY; s->res.analyse_exp = TICK_ETERNITY; } void free_http_res_rules(struct list *r) { struct act_rule *tr, *pr; list_for_each_entry_safe(pr, tr, r, list) { LIST_DEL(&pr->list); regex_free(&pr->arg.hdr_add.re); free(pr); } } void free_http_req_rules(struct list *r) { struct act_rule *tr, *pr; list_for_each_entry_safe(pr, tr, r, list) { LIST_DEL(&pr->list); if (pr->action == ACT_HTTP_REQ_AUTH) free(pr->arg.auth.realm); regex_free(&pr->arg.hdr_add.re); free(pr); } } /* parse an "http-request" rule */ struct act_rule *parse_http_req_cond(const char **args, const char *file, int linenum, struct proxy *proxy) { struct act_rule *rule; struct action_kw *custom = NULL; int cur_arg; char *error; rule = (struct act_rule*)calloc(1, sizeof(struct act_rule)); if (!rule) { Alert("parsing [%s:%d]: out of memory.\n", file, linenum); goto out_err; } rule->deny_status = HTTP_ERR_403; if (!strcmp(args[0], "allow")) { rule->action = ACT_ACTION_ALLOW; cur_arg = 1; } else if (!strcmp(args[0], "deny") || !strcmp(args[0], "block")) { int code; int hc; rule->action = ACT_ACTION_DENY; cur_arg = 1; if (strcmp(args[cur_arg], "deny_status") == 0) { cur_arg++; if (!args[cur_arg]) { Alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-request %s' rule : missing status code.\n", file, linenum, proxy_type_str(proxy), proxy->id, args[0]); goto out_err; } code = atol(args[cur_arg]); cur_arg++; for (hc = 0; hc < HTTP_ERR_SIZE; hc++) { if (http_err_codes[hc] == code) { rule->deny_status = hc; break; } } if (hc >= HTTP_ERR_SIZE) { Warning("parsing [%s:%d] : status code %d not handled, using default code 403.\n", file, linenum, code); } } } else if (!strcmp(args[0], "tarpit")) { rule->action = ACT_HTTP_REQ_TARPIT; cur_arg = 1; } else if (!strcmp(args[0], "auth")) { rule->action = ACT_HTTP_REQ_AUTH; cur_arg = 1; while(*args[cur_arg]) { if (!strcmp(args[cur_arg], "realm")) { rule->arg.auth.realm = strdup(args[cur_arg + 1]); cur_arg+=2; continue; } else break; } } else if (!strcmp(args[0], "set-nice")) { rule->action = ACT_HTTP_SET_NICE; cur_arg = 1; if (!*args[cur_arg] || (*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) { Alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument (integer value).\n", file, linenum, args[0]); goto out_err; } rule->arg.nice = atoi(args[cur_arg]); if (rule->arg.nice < -1024) rule->arg.nice = -1024; else if (rule->arg.nice > 1024) rule->arg.nice = 1024; cur_arg++; } else if (!strcmp(args[0], "set-tos")) { #ifdef IP_TOS char *err; rule->action = ACT_HTTP_SET_TOS; cur_arg = 1; if (!*args[cur_arg] || (*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) { Alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument (integer/hex value).\n", file, linenum, args[0]); goto out_err; } rule->arg.tos = strtol(args[cur_arg], &err, 0); if (err && *err != '\0') { Alert("parsing [%s:%d]: invalid character starting at '%s' in 'http-request %s' (integer/hex value expected).\n", file, linenum, err, args[0]); goto out_err; } cur_arg++; #else Alert("parsing [%s:%d]: 'http-request %s' is not supported on this platform (IP_TOS undefined).\n", file, linenum, args[0]); goto out_err; #endif } else if (!strcmp(args[0], "set-mark")) { #ifdef SO_MARK char *err; rule->action = ACT_HTTP_SET_MARK; cur_arg = 1; if (!*args[cur_arg] || (*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) { Alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument (integer/hex value).\n", file, linenum, args[0]); goto out_err; } rule->arg.mark = strtoul(args[cur_arg], &err, 0); if (err && *err != '\0') { Alert("parsing [%s:%d]: invalid character starting at '%s' in 'http-request %s' (integer/hex value expected).\n", file, linenum, err, args[0]); goto out_err; } cur_arg++; global.last_checks |= LSTCHK_NETADM; #else Alert("parsing [%s:%d]: 'http-request %s' is not supported on this platform (SO_MARK undefined).\n", file, linenum, args[0]); goto out_err; #endif } else if (!strcmp(args[0], "set-log-level")) { rule->action = ACT_HTTP_SET_LOGL; cur_arg = 1; if (!*args[cur_arg] || (*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) { bad_log_level: Alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument (log level name or 'silent').\n", file, linenum, args[0]); goto out_err; } if (strcmp(args[cur_arg], "silent") == 0) rule->arg.loglevel = -1; else if ((rule->arg.loglevel = get_log_level(args[cur_arg]) + 1) == 0) goto bad_log_level; cur_arg++; } else if (strcmp(args[0], "add-header") == 0 || strcmp(args[0], "set-header") == 0) { rule->action = *args[0] == 'a' ? ACT_HTTP_ADD_HDR : ACT_HTTP_SET_HDR; cur_arg = 1; if (!*args[cur_arg] || !*args[cur_arg+1] || (*args[cur_arg+2] && strcmp(args[cur_arg+2], "if") != 0 && strcmp(args[cur_arg+2], "unless") != 0)) { Alert("parsing [%s:%d]: 'http-request %s' expects exactly 2 arguments.\n", file, linenum, args[0]); goto out_err; } rule->arg.hdr_add.name = strdup(args[cur_arg]); rule->arg.hdr_add.name_len = strlen(rule->arg.hdr_add.name); LIST_INIT(&rule->arg.hdr_add.fmt); proxy->conf.args.ctx = ARGC_HRQ; parse_logformat_string(args[cur_arg + 1], proxy, &rule->arg.hdr_add.fmt, LOG_OPT_HTTP, (proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, file, linenum); free(proxy->conf.lfs_file); proxy->conf.lfs_file = strdup(proxy->conf.args.file); proxy->conf.lfs_line = proxy->conf.args.line; cur_arg += 2; } else if (strcmp(args[0], "replace-header") == 0 || strcmp(args[0], "replace-value") == 0) { rule->action = args[0][8] == 'h' ? ACT_HTTP_REPLACE_HDR : ACT_HTTP_REPLACE_VAL; cur_arg = 1; if (!*args[cur_arg] || !*args[cur_arg+1] || !*args[cur_arg+2] || (*args[cur_arg+3] && strcmp(args[cur_arg+3], "if") != 0 && strcmp(args[cur_arg+3], "unless") != 0)) { Alert("parsing [%s:%d]: 'http-request %s' expects exactly 3 arguments.\n", file, linenum, args[0]); goto out_err; } rule->arg.hdr_add.name = strdup(args[cur_arg]); rule->arg.hdr_add.name_len = strlen(rule->arg.hdr_add.name); LIST_INIT(&rule->arg.hdr_add.fmt); error = NULL; if (!regex_comp(args[cur_arg + 1], &rule->arg.hdr_add.re, 1, 1, &error)) { Alert("parsing [%s:%d] : '%s' : %s.\n", file, linenum, args[cur_arg + 1], error); free(error); goto out_err; } proxy->conf.args.ctx = ARGC_HRQ; parse_logformat_string(args[cur_arg + 2], proxy, &rule->arg.hdr_add.fmt, LOG_OPT_HTTP, (proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, file, linenum); free(proxy->conf.lfs_file); proxy->conf.lfs_file = strdup(proxy->conf.args.file); proxy->conf.lfs_line = proxy->conf.args.line; cur_arg += 3; } else if (strcmp(args[0], "del-header") == 0) { rule->action = ACT_HTTP_DEL_HDR; cur_arg = 1; if (!*args[cur_arg] || (*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) { Alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument.\n", file, linenum, args[0]); goto out_err; } rule->arg.hdr_add.name = strdup(args[cur_arg]); rule->arg.hdr_add.name_len = strlen(rule->arg.hdr_add.name); proxy->conf.args.ctx = ARGC_HRQ; free(proxy->conf.lfs_file); proxy->conf.lfs_file = strdup(proxy->conf.args.file); proxy->conf.lfs_line = proxy->conf.args.line; cur_arg += 1; } else if (strncmp(args[0], "track-sc", 8) == 0 && args[0][9] == '\0' && args[0][8] >= '0' && args[0][8] < '0' + MAX_SESS_STKCTR) { /* track-sc 0..9 */ struct sample_expr *expr; unsigned int where; char *err = NULL; cur_arg = 1; proxy->conf.args.ctx = ARGC_TRK; expr = sample_parse_expr((char **)args, &cur_arg, file, linenum, &err, &proxy->conf.args); if (!expr) { Alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-request %s' rule : %s.\n", file, linenum, proxy_type_str(proxy), proxy->id, args[0], err); free(err); goto out_err; } where = 0; if (proxy->cap & PR_CAP_FE) where |= SMP_VAL_FE_HRQ_HDR; if (proxy->cap & PR_CAP_BE) where |= SMP_VAL_BE_HRQ_HDR; if (!(expr->fetch->val & where)) { Alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-request %s' rule :" " fetch method '%s' extracts information from '%s', none of which is available here.\n", file, linenum, proxy_type_str(proxy), proxy->id, args[0], args[cur_arg-1], sample_src_names(expr->fetch->use)); free(expr); goto out_err; } if (strcmp(args[cur_arg], "table") == 0) { cur_arg++; if (!args[cur_arg]) { Alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-request %s' rule : missing table name.\n", file, linenum, proxy_type_str(proxy), proxy->id, args[0]); free(expr); goto out_err; } /* we copy the table name for now, it will be resolved later */ rule->arg.trk_ctr.table.n = strdup(args[cur_arg]); cur_arg++; } rule->arg.trk_ctr.expr = expr; rule->action = ACT_ACTION_TRK_SC0 + args[0][8] - '0'; } else if (strcmp(args[0], "redirect") == 0) { struct redirect_rule *redir; char *errmsg = NULL; if ((redir = http_parse_redirect_rule(file, linenum, proxy, (const char **)args + 1, &errmsg, 1, 0)) == NULL) { Alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-request %s' rule : %s.\n", file, linenum, proxy_type_str(proxy), proxy->id, args[0], errmsg); goto out_err; } /* this redirect rule might already contain a parsed condition which * we'll pass to the http-request rule. */ rule->action = ACT_HTTP_REDIR; rule->arg.redir = redir; rule->cond = redir->cond; redir->cond = NULL; cur_arg = 2; return rule; } else if (strncmp(args[0], "add-acl", 7) == 0) { /* http-request add-acl() */ rule->action = ACT_HTTP_ADD_ACL; /* * '+ 8' for 'add-acl(' * '- 9' for 'add-acl(' + trailing ')' */ rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9); cur_arg = 1; if (!*args[cur_arg] || (*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) { Alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument.\n", file, linenum, args[0]); goto out_err; } LIST_INIT(&rule->arg.map.key); proxy->conf.args.ctx = ARGC_HRQ; parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP, (proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, file, linenum); free(proxy->conf.lfs_file); proxy->conf.lfs_file = strdup(proxy->conf.args.file); proxy->conf.lfs_line = proxy->conf.args.line; cur_arg += 1; } else if (strncmp(args[0], "del-acl", 7) == 0) { /* http-request del-acl() */ rule->action = ACT_HTTP_DEL_ACL; /* * '+ 8' for 'del-acl(' * '- 9' for 'del-acl(' + trailing ')' */ rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9); cur_arg = 1; if (!*args[cur_arg] || (*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) { Alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument.\n", file, linenum, args[0]); goto out_err; } LIST_INIT(&rule->arg.map.key); proxy->conf.args.ctx = ARGC_HRQ; parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP, (proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, file, linenum); free(proxy->conf.lfs_file); proxy->conf.lfs_file = strdup(proxy->conf.args.file); proxy->conf.lfs_line = proxy->conf.args.line; cur_arg += 1; } else if (strncmp(args[0], "del-map", 7) == 0) { /* http-request del-map() */ rule->action = ACT_HTTP_DEL_MAP; /* * '+ 8' for 'del-map(' * '- 9' for 'del-map(' + trailing ')' */ rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9); cur_arg = 1; if (!*args[cur_arg] || (*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) { Alert("parsing [%s:%d]: 'http-request %s' expects exactly 1 argument.\n", file, linenum, args[0]); goto out_err; } LIST_INIT(&rule->arg.map.key); proxy->conf.args.ctx = ARGC_HRQ; parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP, (proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, file, linenum); free(proxy->conf.lfs_file); proxy->conf.lfs_file = strdup(proxy->conf.args.file); proxy->conf.lfs_line = proxy->conf.args.line; cur_arg += 1; } else if (strncmp(args[0], "set-map", 7) == 0) { /* http-request set-map() */ rule->action = ACT_HTTP_SET_MAP; /* * '+ 8' for 'set-map(' * '- 9' for 'set-map(' + trailing ')' */ rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9); cur_arg = 1; if (!*args[cur_arg] || !*args[cur_arg+1] || (*args[cur_arg+2] && strcmp(args[cur_arg+2], "if") != 0 && strcmp(args[cur_arg+2], "unless") != 0)) { Alert("parsing [%s:%d]: 'http-request %s' expects exactly 2 arguments.\n", file, linenum, args[0]); goto out_err; } LIST_INIT(&rule->arg.map.key); LIST_INIT(&rule->arg.map.value); proxy->conf.args.ctx = ARGC_HRQ; /* key pattern */ parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP, (proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, file, linenum); /* value pattern */ parse_logformat_string(args[cur_arg + 1], proxy, &rule->arg.map.value, LOG_OPT_HTTP, (proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, file, linenum); free(proxy->conf.lfs_file); proxy->conf.lfs_file = strdup(proxy->conf.args.file); proxy->conf.lfs_line = proxy->conf.args.line; cur_arg += 2; } else if (strncmp(args[0], "set-src", 7) == 0) { struct sample_expr *expr; unsigned int where; char *err = NULL; cur_arg = 1; proxy->conf.args.ctx = ARGC_HRQ; expr = sample_parse_expr((char **)args, &cur_arg, file, linenum, &err, &proxy->conf.args); if (!expr) { Alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-request %s' rule : %s.\n", file, linenum, proxy_type_str(proxy), proxy->id, args[0], err); free(err); goto out_err; } where = 0; if (proxy->cap & PR_CAP_FE) where |= SMP_VAL_FE_HRQ_HDR; if (proxy->cap & PR_CAP_BE) where |= SMP_VAL_BE_HRQ_HDR; if (!(expr->fetch->val & where)) { Alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-request %s' rule :" " fetch method '%s' extracts information from '%s', none of which is available here.\n", file, linenum, proxy_type_str(proxy), proxy->id, args[0], args[cur_arg-1], sample_src_names(expr->fetch->use)); free(expr); goto out_err; } rule->arg.expr = expr; rule->action = ACT_HTTP_REQ_SET_SRC; } else if (((custom = action_http_req_custom(args[0])) != NULL)) { char *errmsg = NULL; cur_arg = 1; /* try in the module list */ rule->from = ACT_F_HTTP_REQ; rule->kw = custom; if (custom->parse(args, &cur_arg, proxy, rule, &errmsg) == ACT_RET_PRS_ERR) { Alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-request %s' rule : %s.\n", file, linenum, proxy_type_str(proxy), proxy->id, args[0], errmsg); free(errmsg); goto out_err; } } else { action_build_list(&http_req_keywords.list, &trash); Alert("parsing [%s:%d]: 'http-request' expects 'allow', 'deny', 'auth', 'redirect', " "'tarpit', 'add-header', 'set-header', 'replace-header', 'replace-value', 'set-nice', " "'set-tos', 'set-mark', 'set-log-level', 'add-acl', 'del-acl', 'del-map', 'set-map', " "'set-src'%s%s, but got '%s'%s.\n", file, linenum, *trash.str ? ", " : "", trash.str, args[0], *args[0] ? "" : " (missing argument)"); goto out_err; } if (strcmp(args[cur_arg], "if") == 0 || strcmp(args[cur_arg], "unless") == 0) { struct acl_cond *cond; char *errmsg = NULL; if ((cond = build_acl_cond(file, linenum, proxy, args+cur_arg, &errmsg)) == NULL) { Alert("parsing [%s:%d] : error detected while parsing an 'http-request %s' condition : %s.\n", file, linenum, args[0], errmsg); free(errmsg); goto out_err; } rule->cond = cond; } else if (*args[cur_arg]) { Alert("parsing [%s:%d]: 'http-request %s' expects 'realm' for 'auth' or" " either 'if' or 'unless' followed by a condition but found '%s'.\n", file, linenum, args[0], args[cur_arg]); goto out_err; } return rule; out_err: free(rule); return NULL; } /* parse an "http-respose" rule */ struct act_rule *parse_http_res_cond(const char **args, const char *file, int linenum, struct proxy *proxy) { struct act_rule *rule; struct action_kw *custom = NULL; int cur_arg; char *error; rule = calloc(1, sizeof(*rule)); if (!rule) { Alert("parsing [%s:%d]: out of memory.\n", file, linenum); goto out_err; } if (!strcmp(args[0], "allow")) { rule->action = ACT_ACTION_ALLOW; cur_arg = 1; } else if (!strcmp(args[0], "deny")) { rule->action = ACT_ACTION_DENY; cur_arg = 1; } else if (!strcmp(args[0], "set-nice")) { rule->action = ACT_HTTP_SET_NICE; cur_arg = 1; if (!*args[cur_arg] || (*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) { Alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument (integer value).\n", file, linenum, args[0]); goto out_err; } rule->arg.nice = atoi(args[cur_arg]); if (rule->arg.nice < -1024) rule->arg.nice = -1024; else if (rule->arg.nice > 1024) rule->arg.nice = 1024; cur_arg++; } else if (!strcmp(args[0], "set-tos")) { #ifdef IP_TOS char *err; rule->action = ACT_HTTP_SET_TOS; cur_arg = 1; if (!*args[cur_arg] || (*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) { Alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument (integer/hex value).\n", file, linenum, args[0]); goto out_err; } rule->arg.tos = strtol(args[cur_arg], &err, 0); if (err && *err != '\0') { Alert("parsing [%s:%d]: invalid character starting at '%s' in 'http-response %s' (integer/hex value expected).\n", file, linenum, err, args[0]); goto out_err; } cur_arg++; #else Alert("parsing [%s:%d]: 'http-response %s' is not supported on this platform (IP_TOS undefined).\n", file, linenum, args[0]); goto out_err; #endif } else if (!strcmp(args[0], "set-mark")) { #ifdef SO_MARK char *err; rule->action = ACT_HTTP_SET_MARK; cur_arg = 1; if (!*args[cur_arg] || (*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) { Alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument (integer/hex value).\n", file, linenum, args[0]); goto out_err; } rule->arg.mark = strtoul(args[cur_arg], &err, 0); if (err && *err != '\0') { Alert("parsing [%s:%d]: invalid character starting at '%s' in 'http-response %s' (integer/hex value expected).\n", file, linenum, err, args[0]); goto out_err; } cur_arg++; global.last_checks |= LSTCHK_NETADM; #else Alert("parsing [%s:%d]: 'http-response %s' is not supported on this platform (SO_MARK undefined).\n", file, linenum, args[0]); goto out_err; #endif } else if (!strcmp(args[0], "set-log-level")) { rule->action = ACT_HTTP_SET_LOGL; cur_arg = 1; if (!*args[cur_arg] || (*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) { bad_log_level: Alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument (log level name or 'silent').\n", file, linenum, args[0]); goto out_err; } if (strcmp(args[cur_arg], "silent") == 0) rule->arg.loglevel = -1; else if ((rule->arg.loglevel = get_log_level(args[cur_arg] + 1)) == 0) goto bad_log_level; cur_arg++; } else if (strcmp(args[0], "add-header") == 0 || strcmp(args[0], "set-header") == 0) { rule->action = *args[0] == 'a' ? ACT_HTTP_ADD_HDR : ACT_HTTP_SET_HDR; cur_arg = 1; if (!*args[cur_arg] || !*args[cur_arg+1] || (*args[cur_arg+2] && strcmp(args[cur_arg+2], "if") != 0 && strcmp(args[cur_arg+2], "unless") != 0)) { Alert("parsing [%s:%d]: 'http-response %s' expects exactly 2 arguments.\n", file, linenum, args[0]); goto out_err; } rule->arg.hdr_add.name = strdup(args[cur_arg]); rule->arg.hdr_add.name_len = strlen(rule->arg.hdr_add.name); LIST_INIT(&rule->arg.hdr_add.fmt); proxy->conf.args.ctx = ARGC_HRS; parse_logformat_string(args[cur_arg + 1], proxy, &rule->arg.hdr_add.fmt, LOG_OPT_HTTP, (proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, file, linenum); free(proxy->conf.lfs_file); proxy->conf.lfs_file = strdup(proxy->conf.args.file); proxy->conf.lfs_line = proxy->conf.args.line; cur_arg += 2; } else if (strcmp(args[0], "replace-header") == 0 || strcmp(args[0], "replace-value") == 0) { rule->action = args[0][8] == 'h' ? ACT_HTTP_REPLACE_HDR : ACT_HTTP_REPLACE_VAL; cur_arg = 1; if (!*args[cur_arg] || !*args[cur_arg+1] || !*args[cur_arg+2] || (*args[cur_arg+3] && strcmp(args[cur_arg+3], "if") != 0 && strcmp(args[cur_arg+3], "unless") != 0)) { Alert("parsing [%s:%d]: 'http-response %s' expects exactly 3 arguments.\n", file, linenum, args[0]); goto out_err; } rule->arg.hdr_add.name = strdup(args[cur_arg]); rule->arg.hdr_add.name_len = strlen(rule->arg.hdr_add.name); LIST_INIT(&rule->arg.hdr_add.fmt); error = NULL; if (!regex_comp(args[cur_arg + 1], &rule->arg.hdr_add.re, 1, 1, &error)) { Alert("parsing [%s:%d] : '%s' : %s.\n", file, linenum, args[cur_arg + 1], error); free(error); goto out_err; } proxy->conf.args.ctx = ARGC_HRQ; parse_logformat_string(args[cur_arg + 2], proxy, &rule->arg.hdr_add.fmt, LOG_OPT_HTTP, (proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, file, linenum); free(proxy->conf.lfs_file); proxy->conf.lfs_file = strdup(proxy->conf.args.file); proxy->conf.lfs_line = proxy->conf.args.line; cur_arg += 3; } else if (strcmp(args[0], "del-header") == 0) { rule->action = ACT_HTTP_DEL_HDR; cur_arg = 1; if (!*args[cur_arg] || (*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) { Alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument.\n", file, linenum, args[0]); goto out_err; } rule->arg.hdr_add.name = strdup(args[cur_arg]); rule->arg.hdr_add.name_len = strlen(rule->arg.hdr_add.name); proxy->conf.args.ctx = ARGC_HRS; free(proxy->conf.lfs_file); proxy->conf.lfs_file = strdup(proxy->conf.args.file); proxy->conf.lfs_line = proxy->conf.args.line; cur_arg += 1; } else if (strncmp(args[0], "add-acl", 7) == 0) { /* http-request add-acl() */ rule->action = ACT_HTTP_ADD_ACL; /* * '+ 8' for 'add-acl(' * '- 9' for 'add-acl(' + trailing ')' */ rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9); cur_arg = 1; if (!*args[cur_arg] || (*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) { Alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument.\n", file, linenum, args[0]); goto out_err; } LIST_INIT(&rule->arg.map.key); proxy->conf.args.ctx = ARGC_HRS; parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP, (proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, file, linenum); free(proxy->conf.lfs_file); proxy->conf.lfs_file = strdup(proxy->conf.args.file); proxy->conf.lfs_line = proxy->conf.args.line; cur_arg += 1; } else if (strncmp(args[0], "del-acl", 7) == 0) { /* http-response del-acl() */ rule->action = ACT_HTTP_DEL_ACL; /* * '+ 8' for 'del-acl(' * '- 9' for 'del-acl(' + trailing ')' */ rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9); cur_arg = 1; if (!*args[cur_arg] || (*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) { Alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument.\n", file, linenum, args[0]); goto out_err; } LIST_INIT(&rule->arg.map.key); proxy->conf.args.ctx = ARGC_HRS; parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP, (proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, file, linenum); free(proxy->conf.lfs_file); proxy->conf.lfs_file = strdup(proxy->conf.args.file); proxy->conf.lfs_line = proxy->conf.args.line; cur_arg += 1; } else if (strncmp(args[0], "del-map", 7) == 0) { /* http-response del-map() */ rule->action = ACT_HTTP_DEL_MAP; /* * '+ 8' for 'del-map(' * '- 9' for 'del-map(' + trailing ')' */ rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9); cur_arg = 1; if (!*args[cur_arg] || (*args[cur_arg+1] && strcmp(args[cur_arg+1], "if") != 0 && strcmp(args[cur_arg+1], "unless") != 0)) { Alert("parsing [%s:%d]: 'http-response %s' expects exactly 1 argument.\n", file, linenum, args[0]); goto out_err; } LIST_INIT(&rule->arg.map.key); proxy->conf.args.ctx = ARGC_HRS; parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP, (proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, file, linenum); free(proxy->conf.lfs_file); proxy->conf.lfs_file = strdup(proxy->conf.args.file); proxy->conf.lfs_line = proxy->conf.args.line; cur_arg += 1; } else if (strncmp(args[0], "set-map", 7) == 0) { /* http-response set-map() */ rule->action = ACT_HTTP_SET_MAP; /* * '+ 8' for 'set-map(' * '- 9' for 'set-map(' + trailing ')' */ rule->arg.map.ref = my_strndup(args[0] + 8, strlen(args[0]) - 9); cur_arg = 1; if (!*args[cur_arg] || !*args[cur_arg+1] || (*args[cur_arg+2] && strcmp(args[cur_arg+2], "if") != 0 && strcmp(args[cur_arg+2], "unless") != 0)) { Alert("parsing [%s:%d]: 'http-response %s' expects exactly 2 arguments.\n", file, linenum, args[0]); goto out_err; } LIST_INIT(&rule->arg.map.key); LIST_INIT(&rule->arg.map.value); proxy->conf.args.ctx = ARGC_HRS; /* key pattern */ parse_logformat_string(args[cur_arg], proxy, &rule->arg.map.key, LOG_OPT_HTTP, (proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, file, linenum); /* value pattern */ parse_logformat_string(args[cur_arg + 1], proxy, &rule->arg.map.value, LOG_OPT_HTTP, (proxy->cap & PR_CAP_BE) ? SMP_VAL_BE_HRS_HDR : SMP_VAL_FE_HRS_HDR, file, linenum); free(proxy->conf.lfs_file); proxy->conf.lfs_file = strdup(proxy->conf.args.file); proxy->conf.lfs_line = proxy->conf.args.line; cur_arg += 2; } else if (strcmp(args[0], "redirect") == 0) { struct redirect_rule *redir; char *errmsg = NULL; if ((redir = http_parse_redirect_rule(file, linenum, proxy, (const char **)args + 1, &errmsg, 1, 1)) == NULL) { Alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-response %s' rule : %s.\n", file, linenum, proxy_type_str(proxy), proxy->id, args[0], errmsg); goto out_err; } /* this redirect rule might already contain a parsed condition which * we'll pass to the http-request rule. */ rule->action = ACT_HTTP_REDIR; rule->arg.redir = redir; rule->cond = redir->cond; redir->cond = NULL; cur_arg = 2; return rule; } else if (((custom = action_http_res_custom(args[0])) != NULL)) { char *errmsg = NULL; cur_arg = 1; /* try in the module list */ rule->from = ACT_F_HTTP_RES; rule->kw = custom; if (custom->parse(args, &cur_arg, proxy, rule, &errmsg) == ACT_RET_PRS_ERR) { Alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-response %s' rule : %s.\n", file, linenum, proxy_type_str(proxy), proxy->id, args[0], errmsg); free(errmsg); goto out_err; } } else { action_build_list(&http_res_keywords.list, &trash); Alert("parsing [%s:%d]: 'http-response' expects 'allow', 'deny', 'redirect', " "'add-header', 'del-header', 'set-header', 'replace-header', 'replace-value', 'set-nice', " "'set-tos', 'set-mark', 'set-log-level', 'add-acl', 'del-acl', 'del-map', 'set-map', " "'set-src'%s%s, but got '%s'%s.\n", file, linenum, *trash.str ? ", " : "", trash.str, args[0], *args[0] ? "" : " (missing argument)"); goto out_err; } if (strcmp(args[cur_arg], "if") == 0 || strcmp(args[cur_arg], "unless") == 0) { struct acl_cond *cond; char *errmsg = NULL; if ((cond = build_acl_cond(file, linenum, proxy, args+cur_arg, &errmsg)) == NULL) { Alert("parsing [%s:%d] : error detected while parsing an 'http-response %s' condition : %s.\n", file, linenum, args[0], errmsg); free(errmsg); goto out_err; } rule->cond = cond; } else if (*args[cur_arg]) { Alert("parsing [%s:%d]: 'http-response %s' expects" " either 'if' or 'unless' followed by a condition but found '%s'.\n", file, linenum, args[0], args[cur_arg]); goto out_err; } return rule; out_err: free(rule); return NULL; } /* Parses a redirect rule. Returns the redirect rule on success or NULL on error, * with filled with the error message. If is not null, builds a * dynamic log-format rule instead of a static string. Parameter indicates * the direction of the rule, and equals 0 for request, non-zero for responses. */ struct redirect_rule *http_parse_redirect_rule(const char *file, int linenum, struct proxy *curproxy, const char **args, char **errmsg, int use_fmt, int dir) { struct redirect_rule *rule; int cur_arg; int type = REDIRECT_TYPE_NONE; int code = 302; const char *destination = NULL; const char *cookie = NULL; int cookie_set = 0; unsigned int flags = REDIRECT_FLAG_NONE; struct acl_cond *cond = NULL; cur_arg = 0; while (*(args[cur_arg])) { if (strcmp(args[cur_arg], "location") == 0) { if (!*args[cur_arg + 1]) goto missing_arg; type = REDIRECT_TYPE_LOCATION; cur_arg++; destination = args[cur_arg]; } else if (strcmp(args[cur_arg], "prefix") == 0) { if (!*args[cur_arg + 1]) goto missing_arg; type = REDIRECT_TYPE_PREFIX; cur_arg++; destination = args[cur_arg]; } else if (strcmp(args[cur_arg], "scheme") == 0) { if (!*args[cur_arg + 1]) goto missing_arg; type = REDIRECT_TYPE_SCHEME; cur_arg++; destination = args[cur_arg]; } else if (strcmp(args[cur_arg], "set-cookie") == 0) { if (!*args[cur_arg + 1]) goto missing_arg; cur_arg++; cookie = args[cur_arg]; cookie_set = 1; } else if (strcmp(args[cur_arg], "clear-cookie") == 0) { if (!*args[cur_arg + 1]) goto missing_arg; cur_arg++; cookie = args[cur_arg]; cookie_set = 0; } else if (strcmp(args[cur_arg], "code") == 0) { if (!*args[cur_arg + 1]) goto missing_arg; cur_arg++; code = atol(args[cur_arg]); if (code < 301 || code > 308 || (code > 303 && code < 307)) { memprintf(errmsg, "'%s': unsupported HTTP code '%s' (must be one of 301, 302, 303, 307 or 308)", args[cur_arg - 1], args[cur_arg]); return NULL; } } else if (!strcmp(args[cur_arg],"drop-query")) { flags |= REDIRECT_FLAG_DROP_QS; } else if (!strcmp(args[cur_arg],"append-slash")) { flags |= REDIRECT_FLAG_APPEND_SLASH; } else if (strcmp(args[cur_arg], "if") == 0 || strcmp(args[cur_arg], "unless") == 0) { cond = build_acl_cond(file, linenum, curproxy, (const char **)args + cur_arg, errmsg); if (!cond) { memprintf(errmsg, "error in condition: %s", *errmsg); return NULL; } break; } else { memprintf(errmsg, "expects 'code', 'prefix', 'location', 'scheme', 'set-cookie', 'clear-cookie', 'drop-query' or 'append-slash' (was '%s')", args[cur_arg]); return NULL; } cur_arg++; } if (type == REDIRECT_TYPE_NONE) { memprintf(errmsg, "redirection type expected ('prefix', 'location', or 'scheme')"); return NULL; } if (dir && type != REDIRECT_TYPE_LOCATION) { memprintf(errmsg, "response only supports redirect type 'location'"); return NULL; } rule = (struct redirect_rule *)calloc(1, sizeof(*rule)); rule->cond = cond; LIST_INIT(&rule->rdr_fmt); if (!use_fmt) { /* old-style static redirect rule */ rule->rdr_str = strdup(destination); rule->rdr_len = strlen(destination); } else { /* log-format based redirect rule */ /* Parse destination. Note that in the REDIRECT_TYPE_PREFIX case, * if prefix == "/", we don't want to add anything, otherwise it * makes it hard for the user to configure a self-redirection. */ curproxy->conf.args.ctx = ARGC_RDR; if (!(type == REDIRECT_TYPE_PREFIX && destination[0] == '/' && destination[1] == '\0')) { parse_logformat_string(destination, curproxy, &rule->rdr_fmt, LOG_OPT_HTTP, dir ? (curproxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRS_HDR : SMP_VAL_BE_HRS_HDR : (curproxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, file, linenum); free(curproxy->conf.lfs_file); curproxy->conf.lfs_file = strdup(curproxy->conf.args.file); curproxy->conf.lfs_line = curproxy->conf.args.line; } } if (cookie) { /* depending on cookie_set, either we want to set the cookie, or to clear it. * a clear consists in appending "; path=/; Max-Age=0;" at the end. */ rule->cookie_len = strlen(cookie); if (cookie_set) { rule->cookie_str = malloc(rule->cookie_len + 10); memcpy(rule->cookie_str, cookie, rule->cookie_len); memcpy(rule->cookie_str + rule->cookie_len, "; path=/;", 10); rule->cookie_len += 9; } else { rule->cookie_str = malloc(rule->cookie_len + 21); memcpy(rule->cookie_str, cookie, rule->cookie_len); memcpy(rule->cookie_str + rule->cookie_len, "; path=/; Max-Age=0;", 21); rule->cookie_len += 20; } } rule->type = type; rule->code = code; rule->flags = flags; LIST_INIT(&rule->list); return rule; missing_arg: memprintf(errmsg, "missing argument for '%s'", args[cur_arg]); return NULL; } /************************************************************************/ /* The code below is dedicated to ACL parsing and matching */ /************************************************************************/ /* This function ensures that the prerequisites for an L7 fetch are ready, * which means that a request or response is ready. If some data is missing, * a parsing attempt is made. This is useful in TCP-based ACLs which are able * to extract data from L7. If is non-null during a request prefetch, * another test is made to ensure the required information is not gone. * * The function returns : * 0 with SMP_F_MAY_CHANGE in the sample flags if some data is missing to * decide whether or not an HTTP message is present ; * 0 if the requested data cannot be fetched or if it is certain that * we'll never have any HTTP message there ; * 1 if an HTTP message is ready */ int smp_prefetch_http(struct proxy *px, struct stream *s, unsigned int opt, const struct arg *args, struct sample *smp, int req_vol) { struct http_txn *txn; struct http_msg *msg; /* Note: this function may only be used from places where * http_init_txn() has already been done, and implies that , * , and are properly set. An extra check protects * against an eventual mistake in the fetch capability matrix. */ if (!s) return 0; if (!s->txn) { if (unlikely(!http_alloc_txn(s))) return 0; /* not enough memory */ http_init_txn(s); } txn = s->txn; msg = &txn->req; /* Check for a dependency on a request */ smp->data.type = SMP_T_BOOL; if ((opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) { /* If the buffer does not leave enough free space at the end, * we must first realign it. */ if (s->req.buf->p > s->req.buf->data && s->req.buf->i + s->req.buf->p > s->req.buf->data + s->req.buf->size - global.tune.maxrewrite) buffer_slow_realign(s->req.buf); if (unlikely(txn->req.msg_state < HTTP_MSG_BODY)) { if (msg->msg_state == HTTP_MSG_ERROR) return 0; /* Try to decode HTTP request */ if (likely(msg->next < s->req.buf->i)) http_msg_analyzer(msg, &txn->hdr_idx); /* Still no valid request ? */ if (unlikely(msg->msg_state < HTTP_MSG_BODY)) { if ((msg->msg_state == HTTP_MSG_ERROR) || buffer_full(s->req.buf, global.tune.maxrewrite)) { return 0; } /* wait for final state */ smp->flags |= SMP_F_MAY_CHANGE; return 0; } /* OK we just got a valid HTTP request. We have some minor * preparation to perform so that further checks can rely * on HTTP tests. */ /* If the request was parsed but was too large, we must absolutely * return an error so that it is not processed. At the moment this * cannot happen, but if the parsers are to change in the future, * we want this check to be maintained. */ if (unlikely(s->req.buf->i + s->req.buf->p > s->req.buf->data + s->req.buf->size - global.tune.maxrewrite)) { msg->msg_state = HTTP_MSG_ERROR; smp->data.u.sint = 1; return 1; } txn->meth = find_http_meth(msg->chn->buf->p, msg->sl.rq.m_l); if (txn->meth == HTTP_METH_GET || txn->meth == HTTP_METH_HEAD) s->flags |= SF_REDIRECTABLE; if (unlikely(msg->sl.rq.v_l == 0) && !http_upgrade_v09_to_v10(txn)) return 0; } if (req_vol && txn->rsp.msg_state != HTTP_MSG_RPBEFORE) { return 0; /* data might have moved and indexes changed */ } /* otherwise everything's ready for the request */ } else { /* Check for a dependency on a response */ if (txn->rsp.msg_state < HTTP_MSG_BODY) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } } /* everything's OK */ smp->data.u.sint = 1; return 1; } /* 1. Check on METHOD * We use the pre-parsed method if it is known, and store its number as an * integer. If it is unknown, we use the pointer and the length. */ static int pat_parse_meth(const char *text, struct pattern *pattern, int mflags, char **err) { int len, meth; len = strlen(text); meth = find_http_meth(text, len); pattern->val.i = meth; if (meth == HTTP_METH_OTHER) { pattern->ptr.str = (char *)text; pattern->len = len; } else { pattern->ptr.str = NULL; pattern->len = 0; } return 1; } /* This function fetches the method of current HTTP request and stores * it in the global pattern struct as a chunk. There are two possibilities : * - if the method is known (not HTTP_METH_OTHER), its identifier is stored * in and is NULL ; * - if the method is unknown (HTTP_METH_OTHER), points to the text and * to its length. * This is intended to be used with pat_match_meth() only. */ static int smp_fetch_meth(const struct arg *args, struct sample *smp, const char *kw, void *private) { int meth; struct http_txn *txn = smp->strm->txn; CHECK_HTTP_MESSAGE_FIRST_PERM(); meth = txn->meth; smp->data.type = SMP_T_METH; smp->data.u.meth.meth = meth; if (meth == HTTP_METH_OTHER) { if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE) /* ensure the indexes are not affected */ return 0; smp->flags |= SMP_F_CONST; smp->data.u.meth.str.len = txn->req.sl.rq.m_l; smp->data.u.meth.str.str = txn->req.chn->buf->p; } smp->flags |= SMP_F_VOL_1ST; return 1; } /* See above how the method is stored in the global pattern */ static struct pattern *pat_match_meth(struct sample *smp, struct pattern_expr *expr, int fill) { int icase; struct pattern_list *lst; struct pattern *pattern; list_for_each_entry(lst, &expr->patterns, list) { pattern = &lst->pat; /* well-known method */ if (pattern->val.i != HTTP_METH_OTHER) { if (smp->data.u.meth.meth == pattern->val.i) return pattern; else continue; } /* Other method, we must compare the strings */ if (pattern->len != smp->data.u.meth.str.len) continue; icase = expr->mflags & PAT_MF_IGNORE_CASE; if ((icase && strncasecmp(pattern->ptr.str, smp->data.u.meth.str.str, smp->data.u.meth.str.len) == 0) || (!icase && strncmp(pattern->ptr.str, smp->data.u.meth.str.str, smp->data.u.meth.str.len) == 0)) return pattern; } return NULL; } static int smp_fetch_rqver(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct http_txn *txn = smp->strm->txn; char *ptr; int len; CHECK_HTTP_MESSAGE_FIRST(); len = txn->req.sl.rq.v_l; ptr = txn->req.chn->buf->p + txn->req.sl.rq.v; while ((len-- > 0) && (*ptr++ != '/')); if (len <= 0) return 0; smp->data.type = SMP_T_STR; smp->data.u.str.str = ptr; smp->data.u.str.len = len; smp->flags = SMP_F_VOL_1ST | SMP_F_CONST; return 1; } static int smp_fetch_stver(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct http_txn *txn; char *ptr; int len; CHECK_HTTP_MESSAGE_FIRST(); txn = smp->strm->txn; if (txn->rsp.msg_state < HTTP_MSG_BODY) return 0; len = txn->rsp.sl.st.v_l; ptr = txn->rsp.chn->buf->p; while ((len-- > 0) && (*ptr++ != '/')); if (len <= 0) return 0; smp->data.type = SMP_T_STR; smp->data.u.str.str = ptr; smp->data.u.str.len = len; smp->flags = SMP_F_VOL_1ST | SMP_F_CONST; return 1; } /* 3. Check on Status Code. We manipulate integers here. */ static int smp_fetch_stcode(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct http_txn *txn; char *ptr; int len; CHECK_HTTP_MESSAGE_FIRST(); txn = smp->strm->txn; if (txn->rsp.msg_state < HTTP_MSG_BODY) return 0; len = txn->rsp.sl.st.c_l; ptr = txn->rsp.chn->buf->p + txn->rsp.sl.st.c; smp->data.type = SMP_T_SINT; smp->data.u.sint = __strl2ui(ptr, len); smp->flags = SMP_F_VOL_1ST; return 1; } /* returns the longest available part of the body. This requires that the body * has been waited for using http-buffer-request. */ static int smp_fetch_body(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct http_txn *txn = smp->strm->txn; struct http_msg *msg; unsigned long len; unsigned long block1; char *body; struct chunk *temp; CHECK_HTTP_MESSAGE_FIRST(); if ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) msg = &txn->req; else msg = &txn->rsp; len = http_body_bytes(msg); body = b_ptr(msg->chn->buf, -http_data_rewind(msg)); block1 = len; if (block1 > msg->chn->buf->data + msg->chn->buf->size - body) block1 = msg->chn->buf->data + msg->chn->buf->size - body; if (block1 == len) { /* buffer is not wrapped (or empty) */ smp->data.type = SMP_T_BIN; smp->data.u.str.str = body; smp->data.u.str.len = len; smp->flags = SMP_F_VOL_TEST | SMP_F_CONST; } else { /* buffer is wrapped, we need to defragment it */ temp = get_trash_chunk(); memcpy(temp->str, body, block1); memcpy(temp->str + block1, msg->chn->buf->data, len - block1); smp->data.type = SMP_T_BIN; smp->data.u.str.str = temp->str; smp->data.u.str.len = len; smp->flags = SMP_F_VOL_TEST; } return 1; } /* returns the available length of the body. This requires that the body * has been waited for using http-buffer-request. */ static int smp_fetch_body_len(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct http_txn *txn = smp->strm->txn; struct http_msg *msg; CHECK_HTTP_MESSAGE_FIRST(); if ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) msg = &txn->req; else msg = &txn->rsp; smp->data.type = SMP_T_SINT; smp->data.u.sint = http_body_bytes(msg); smp->flags = SMP_F_VOL_TEST; return 1; } /* returns the advertised length of the body, or the advertised size of the * chunks available in the buffer. This requires that the body has been waited * for using http-buffer-request. */ static int smp_fetch_body_size(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct http_txn *txn = smp->strm->txn; struct http_msg *msg; CHECK_HTTP_MESSAGE_FIRST(); if ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) msg = &txn->req; else msg = &txn->rsp; smp->data.type = SMP_T_SINT; smp->data.u.sint = msg->body_len; smp->flags = SMP_F_VOL_TEST; return 1; } /* 4. Check on URL/URI. A pointer to the URI is stored. */ static int smp_fetch_url(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct http_txn *txn; CHECK_HTTP_MESSAGE_FIRST(); txn = smp->strm->txn; smp->data.type = SMP_T_STR; smp->data.u.str.len = txn->req.sl.rq.u_l; smp->data.u.str.str = txn->req.chn->buf->p + txn->req.sl.rq.u; smp->flags = SMP_F_VOL_1ST | SMP_F_CONST; return 1; } static int smp_fetch_url_ip(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct http_txn *txn; struct sockaddr_storage addr; CHECK_HTTP_MESSAGE_FIRST(); txn = smp->strm->txn; url2sa(txn->req.chn->buf->p + txn->req.sl.rq.u, txn->req.sl.rq.u_l, &addr, NULL); if (((struct sockaddr_in *)&addr)->sin_family != AF_INET) return 0; smp->data.type = SMP_T_IPV4; smp->data.u.ipv4 = ((struct sockaddr_in *)&addr)->sin_addr; smp->flags = 0; return 1; } static int smp_fetch_url_port(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct http_txn *txn; struct sockaddr_storage addr; CHECK_HTTP_MESSAGE_FIRST(); txn = smp->strm->txn; url2sa(txn->req.chn->buf->p + txn->req.sl.rq.u, txn->req.sl.rq.u_l, &addr, NULL); if (((struct sockaddr_in *)&addr)->sin_family != AF_INET) return 0; smp->data.type = SMP_T_SINT; smp->data.u.sint = ntohs(((struct sockaddr_in *)&addr)->sin_port); smp->flags = 0; return 1; } /* Fetch an HTTP header. A pointer to the beginning of the value is returned. * Accepts an optional argument of type string containing the header field name, * and an optional argument of type signed or unsigned integer to request an * explicit occurrence of the header. Note that in the event of a missing name, * headers are considered from the first one. It does not stop on commas and * returns full lines instead (useful for User-Agent or Date for example). */ static int smp_fetch_fhdr(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct hdr_idx *idx; struct hdr_ctx *ctx = smp->ctx.a[0]; const struct http_msg *msg; int occ = 0; const char *name_str = NULL; int name_len = 0; if (!ctx) { /* first call */ ctx = &static_hdr_ctx; ctx->idx = 0; smp->ctx.a[0] = ctx; } if (args) { if (args[0].type != ARGT_STR) return 0; name_str = args[0].data.str.str; name_len = args[0].data.str.len; if (args[1].type == ARGT_SINT) occ = args[1].data.sint; } CHECK_HTTP_MESSAGE_FIRST(); idx = &smp->strm->txn->hdr_idx; msg = ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) ? &smp->strm->txn->req : &smp->strm->txn->rsp; if (ctx && !(smp->flags & SMP_F_NOT_LAST)) /* search for header from the beginning */ ctx->idx = 0; if (!occ && !(smp->opt & SMP_OPT_ITERATE)) /* no explicit occurrence and single fetch => last header by default */ occ = -1; if (!occ) /* prepare to report multiple occurrences for ACL fetches */ smp->flags |= SMP_F_NOT_LAST; smp->data.type = SMP_T_STR; smp->flags |= SMP_F_VOL_HDR | SMP_F_CONST; if (http_get_fhdr(msg, name_str, name_len, idx, occ, ctx, &smp->data.u.str.str, &smp->data.u.str.len)) return 1; smp->flags &= ~SMP_F_NOT_LAST; return 0; } /* 6. Check on HTTP header count. The number of occurrences is returned. * Accepts exactly 1 argument of type string. It does not stop on commas and * returns full lines instead (useful for User-Agent or Date for example). */ static int smp_fetch_fhdr_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct hdr_idx *idx; struct hdr_ctx ctx; const struct http_msg *msg; int cnt; const char *name = NULL; int len = 0; if (args && args->type == ARGT_STR) { name = args->data.str.str; len = args->data.str.len; } CHECK_HTTP_MESSAGE_FIRST(); idx = &smp->strm->txn->hdr_idx; msg = ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) ? &smp->strm->txn->req : &smp->strm->txn->rsp; ctx.idx = 0; cnt = 0; while (http_find_full_header2(name, len, msg->chn->buf->p, idx, &ctx)) cnt++; smp->data.type = SMP_T_SINT; smp->data.u.sint = cnt; smp->flags = SMP_F_VOL_HDR; return 1; } static int smp_fetch_hdr_names(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct hdr_idx *idx; struct hdr_ctx ctx; const struct http_msg *msg; struct chunk *temp; char del = ','; if (args && args->type == ARGT_STR) del = *args[0].data.str.str; CHECK_HTTP_MESSAGE_FIRST(); idx = &smp->strm->txn->hdr_idx; msg = ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) ? &smp->strm->txn->req : &smp->strm->txn->rsp; temp = get_trash_chunk(); ctx.idx = 0; while (http_find_next_header(msg->chn->buf->p, idx, &ctx)) { if (temp->len) temp->str[temp->len++] = del; memcpy(temp->str + temp->len, ctx.line, ctx.del); temp->len += ctx.del; } smp->data.type = SMP_T_STR; smp->data.u.str.str = temp->str; smp->data.u.str.len = temp->len; smp->flags = SMP_F_VOL_HDR; return 1; } /* Fetch an HTTP header. A pointer to the beginning of the value is returned. * Accepts an optional argument of type string containing the header field name, * and an optional argument of type signed or unsigned integer to request an * explicit occurrence of the header. Note that in the event of a missing name, * headers are considered from the first one. */ static int smp_fetch_hdr(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct hdr_idx *idx; struct hdr_ctx *ctx = smp->ctx.a[0]; const struct http_msg *msg; int occ = 0; const char *name_str = NULL; int name_len = 0; if (!ctx) { /* first call */ ctx = &static_hdr_ctx; ctx->idx = 0; smp->ctx.a[0] = ctx; } if (args) { if (args[0].type != ARGT_STR) return 0; name_str = args[0].data.str.str; name_len = args[0].data.str.len; if (args[1].type == ARGT_SINT) occ = args[1].data.sint; } CHECK_HTTP_MESSAGE_FIRST(); idx = &smp->strm->txn->hdr_idx; msg = ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) ? &smp->strm->txn->req : &smp->strm->txn->rsp; if (ctx && !(smp->flags & SMP_F_NOT_LAST)) /* search for header from the beginning */ ctx->idx = 0; if (!occ && !(smp->opt & SMP_OPT_ITERATE)) /* no explicit occurrence and single fetch => last header by default */ occ = -1; if (!occ) /* prepare to report multiple occurrences for ACL fetches */ smp->flags |= SMP_F_NOT_LAST; smp->data.type = SMP_T_STR; smp->flags |= SMP_F_VOL_HDR | SMP_F_CONST; if (http_get_hdr(msg, name_str, name_len, idx, occ, ctx, &smp->data.u.str.str, &smp->data.u.str.len)) return 1; smp->flags &= ~SMP_F_NOT_LAST; return 0; } /* 6. Check on HTTP header count. The number of occurrences is returned. * Accepts exactly 1 argument of type string. */ static int smp_fetch_hdr_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct hdr_idx *idx; struct hdr_ctx ctx; const struct http_msg *msg; int cnt; const char *name = NULL; int len = 0; if (args && args->type == ARGT_STR) { name = args->data.str.str; len = args->data.str.len; } CHECK_HTTP_MESSAGE_FIRST(); idx = &smp->strm->txn->hdr_idx; msg = ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) ? &smp->strm->txn->req : &smp->strm->txn->rsp; ctx.idx = 0; cnt = 0; while (http_find_header2(name, len, msg->chn->buf->p, idx, &ctx)) cnt++; smp->data.type = SMP_T_SINT; smp->data.u.sint = cnt; smp->flags = SMP_F_VOL_HDR; return 1; } /* Fetch an HTTP header's integer value. The integer value is returned. It * takes a mandatory argument of type string and an optional one of type int * to designate a specific occurrence. It returns an unsigned integer, which * may or may not be appropriate for everything. */ static int smp_fetch_hdr_val(const struct arg *args, struct sample *smp, const char *kw, void *private) { int ret = smp_fetch_hdr(args, smp, kw, private); if (ret > 0) { smp->data.type = SMP_T_SINT; smp->data.u.sint = strl2ic(smp->data.u.str.str, smp->data.u.str.len); } return ret; } /* Fetch an HTTP header's IP value. takes a mandatory argument of type string * and an optional one of type int to designate a specific occurrence. * It returns an IPv4 or IPv6 address. */ static int smp_fetch_hdr_ip(const struct arg *args, struct sample *smp, const char *kw, void *private) { int ret; while ((ret = smp_fetch_hdr(args, smp, kw, private)) > 0) { if (url2ipv4((char *)smp->data.u.str.str, &smp->data.u.ipv4)) { smp->data.type = SMP_T_IPV4; break; } else { struct chunk *temp = get_trash_chunk(); if (smp->data.u.str.len < temp->size - 1) { memcpy(temp->str, smp->data.u.str.str, smp->data.u.str.len); temp->str[smp->data.u.str.len] = '\0'; if (inet_pton(AF_INET6, temp->str, &smp->data.u.ipv6)) { smp->data.type = SMP_T_IPV6; break; } } } /* if the header doesn't match an IP address, fetch next one */ if (!(smp->flags & SMP_F_NOT_LAST)) return 0; } return ret; } /* 8. Check on URI PATH. A pointer to the PATH is stored. The path starts at * the first '/' after the possible hostname, and ends before the possible '?'. */ static int smp_fetch_path(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct http_txn *txn; char *ptr, *end; CHECK_HTTP_MESSAGE_FIRST(); txn = smp->strm->txn; end = txn->req.chn->buf->p + txn->req.sl.rq.u + txn->req.sl.rq.u_l; ptr = http_get_path(txn); if (!ptr) return 0; /* OK, we got the '/' ! */ smp->data.type = SMP_T_STR; smp->data.u.str.str = ptr; while (ptr < end && *ptr != '?') ptr++; smp->data.u.str.len = ptr - smp->data.u.str.str; smp->flags = SMP_F_VOL_1ST | SMP_F_CONST; return 1; } /* This produces a concatenation of the first occurrence of the Host header * followed by the path component if it begins with a slash ('/'). This means * that '*' will not be added, resulting in exactly the first Host entry. * If no Host header is found, then the path is returned as-is. The returned * value is stored in the trash so it does not need to be marked constant. * The returned sample is of type string. */ static int smp_fetch_base(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct http_txn *txn; char *ptr, *end, *beg; struct hdr_ctx ctx; struct chunk *temp; CHECK_HTTP_MESSAGE_FIRST(); txn = smp->strm->txn; ctx.idx = 0; if (!http_find_header2("Host", 4, txn->req.chn->buf->p, &txn->hdr_idx, &ctx) || !ctx.vlen) return smp_fetch_path(args, smp, kw, private); /* OK we have the header value in ctx.line+ctx.val for ctx.vlen bytes */ temp = get_trash_chunk(); memcpy(temp->str, ctx.line + ctx.val, ctx.vlen); smp->data.type = SMP_T_STR; smp->data.u.str.str = temp->str; smp->data.u.str.len = ctx.vlen; /* now retrieve the path */ end = txn->req.chn->buf->p + txn->req.sl.rq.u + txn->req.sl.rq.u_l; beg = http_get_path(txn); if (!beg) beg = end; for (ptr = beg; ptr < end && *ptr != '?'; ptr++); if (beg < ptr && *beg == '/') { memcpy(smp->data.u.str.str + smp->data.u.str.len, beg, ptr - beg); smp->data.u.str.len += ptr - beg; } smp->flags = SMP_F_VOL_1ST; return 1; } /* This produces a 32-bit hash of the concatenation of the first occurrence of * the Host header followed by the path component if it begins with a slash ('/'). * This means that '*' will not be added, resulting in exactly the first Host * entry. If no Host header is found, then the path is used. The resulting value * is hashed using the path hash followed by a full avalanche hash and provides a * 32-bit integer value. This fetch is useful for tracking per-path activity on * high-traffic sites without having to store whole paths. */ int smp_fetch_base32(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct http_txn *txn; struct hdr_ctx ctx; unsigned int hash = 0; char *ptr, *beg, *end; int len; CHECK_HTTP_MESSAGE_FIRST(); txn = smp->strm->txn; ctx.idx = 0; if (http_find_header2("Host", 4, txn->req.chn->buf->p, &txn->hdr_idx, &ctx)) { /* OK we have the header value in ctx.line+ctx.val for ctx.vlen bytes */ ptr = ctx.line + ctx.val; len = ctx.vlen; while (len--) hash = *(ptr++) + (hash << 6) + (hash << 16) - hash; } /* now retrieve the path */ end = txn->req.chn->buf->p + txn->req.sl.rq.u + txn->req.sl.rq.u_l; beg = http_get_path(txn); if (!beg) beg = end; for (ptr = beg; ptr < end && *ptr != '?'; ptr++); if (beg < ptr && *beg == '/') { while (beg < ptr) hash = *(beg++) + (hash << 6) + (hash << 16) - hash; } hash = full_hash(hash); smp->data.type = SMP_T_SINT; smp->data.u.sint = hash; smp->flags = SMP_F_VOL_1ST; return 1; } /* This concatenates the source address with the 32-bit hash of the Host and * path as returned by smp_fetch_base32(). The idea is to have per-source and * per-path counters. The result is a binary block from 8 to 20 bytes depending * on the source address length. The path hash is stored before the address so * that in environments where IPv6 is insignificant, truncating the output to * 8 bytes would still work. */ static int smp_fetch_base32_src(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct chunk *temp; struct connection *cli_conn = objt_conn(smp->sess->origin); if (!cli_conn) return 0; if (!smp_fetch_base32(args, smp, kw, private)) return 0; temp = get_trash_chunk(); *(unsigned int *)temp->str = htonl(smp->data.u.sint); temp->len += sizeof(unsigned int); switch (cli_conn->addr.from.ss_family) { case AF_INET: memcpy(temp->str + temp->len, &((struct sockaddr_in *)&cli_conn->addr.from)->sin_addr, 4); temp->len += 4; break; case AF_INET6: memcpy(temp->str + temp->len, &((struct sockaddr_in6 *)&cli_conn->addr.from)->sin6_addr, 16); temp->len += 16; break; default: return 0; } smp->data.u.str = *temp; smp->data.type = SMP_T_BIN; return 1; } /* Extracts the query string, which comes after the question mark '?'. If no * question mark is found, nothing is returned. Otherwise it returns a sample * of type string carrying the whole query string. */ static int smp_fetch_query(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct http_txn *txn; char *ptr, *end; CHECK_HTTP_MESSAGE_FIRST(); txn = smp->strm->txn; ptr = txn->req.chn->buf->p + txn->req.sl.rq.u; end = ptr + txn->req.sl.rq.u_l; /* look up the '?' */ do { if (ptr == end) return 0; } while (*ptr++ != '?'); smp->data.type = SMP_T_STR; smp->data.u.str.str = ptr; smp->data.u.str.len = end - ptr; smp->flags = SMP_F_VOL_1ST | SMP_F_CONST; return 1; } static int smp_fetch_proto_http(const struct arg *args, struct sample *smp, const char *kw, void *private) { /* Note: hdr_idx.v cannot be NULL in this ACL because the ACL is tagged * as a layer7 ACL, which involves automatic allocation of hdr_idx. */ CHECK_HTTP_MESSAGE_FIRST_PERM(); smp->data.type = SMP_T_BOOL; smp->data.u.sint = 1; return 1; } /* return a valid test if the current request is the first one on the connection */ static int smp_fetch_http_first_req(const struct arg *args, struct sample *smp, const char *kw, void *private) { smp->data.type = SMP_T_BOOL; smp->data.u.sint = !(smp->strm->txn->flags & TX_NOT_FIRST); return 1; } /* Accepts exactly 1 argument of type userlist */ static int smp_fetch_http_auth(const struct arg *args, struct sample *smp, const char *kw, void *private) { if (!args || args->type != ARGT_USR) return 0; CHECK_HTTP_MESSAGE_FIRST(); if (!get_http_auth(smp->strm)) return 0; smp->data.type = SMP_T_BOOL; smp->data.u.sint = check_user(args->data.usr, smp->strm->txn->auth.user, smp->strm->txn->auth.pass); return 1; } /* Accepts exactly 1 argument of type userlist */ static int smp_fetch_http_auth_grp(const struct arg *args, struct sample *smp, const char *kw, void *private) { if (!args || args->type != ARGT_USR) return 0; CHECK_HTTP_MESSAGE_FIRST(); if (!get_http_auth(smp->strm)) return 0; /* if the user does not belong to the userlist or has a wrong password, * report that it unconditionally does not match. Otherwise we return * a string containing the username. */ if (!check_user(args->data.usr, smp->strm->txn->auth.user, smp->strm->txn->auth.pass)) return 0; /* pat_match_auth() will need the user list */ smp->ctx.a[0] = args->data.usr; smp->data.type = SMP_T_STR; smp->flags = SMP_F_CONST; smp->data.u.str.str = smp->strm->txn->auth.user; smp->data.u.str.len = strlen(smp->strm->txn->auth.user); return 1; } /* Try to find the next occurrence of a cookie name in a cookie header value. * The lookup begins at . The pointer and size of the next occurrence of * the cookie value is returned into *value and *value_l, and the function * returns a pointer to the next pointer to search from if the value was found. * Otherwise if the cookie was not found, NULL is returned and neither value * nor value_l are touched. The input string should first point to the * header's value, and the pointer must point to the first character * not part of the value. must be non-zero if value may represent a list * of values (cookie headers). This makes it faster to abort parsing when no * list is expected. */ char * extract_cookie_value(char *hdr, const char *hdr_end, char *cookie_name, size_t cookie_name_l, int list, char **value, int *value_l) { char *equal, *att_end, *att_beg, *val_beg, *val_end; char *next; /* we search at least a cookie name followed by an equal, and more * generally something like this : * Cookie: NAME1 = VALUE 1 ; NAME2 = VALUE2 ; NAME3 = VALUE3\r\n */ for (att_beg = hdr; att_beg + cookie_name_l + 1 < hdr_end; att_beg = next + 1) { /* Iterate through all cookies on this line */ while (att_beg < hdr_end && http_is_spht[(unsigned char)*att_beg]) att_beg++; /* find att_end : this is the first character after the last non * space before the equal. It may be equal to hdr_end. */ equal = att_end = att_beg; while (equal < hdr_end) { if (*equal == '=' || *equal == ';' || (list && *equal == ',')) break; if (http_is_spht[(unsigned char)*equal++]) continue; att_end = equal; } /* here, points to '=', a delimitor or the end. * is between and , both may be identical. */ /* look for end of cookie if there is an equal sign */ if (equal < hdr_end && *equal == '=') { /* look for the beginning of the value */ val_beg = equal + 1; while (val_beg < hdr_end && http_is_spht[(unsigned char)*val_beg]) val_beg++; /* find the end of the value, respecting quotes */ next = find_cookie_value_end(val_beg, hdr_end); /* make val_end point to the first white space or delimitor after the value */ val_end = next; while (val_end > val_beg && http_is_spht[(unsigned char)*(val_end - 1)]) val_end--; } else { val_beg = val_end = next = equal; } /* We have nothing to do with attributes beginning with '$'. However, * they will automatically be removed if a header before them is removed, * since they're supposed to be linked together. */ if (*att_beg == '$') continue; /* Ignore cookies with no equal sign */ if (equal == next) continue; /* Now we have the cookie name between att_beg and att_end, and * its value between val_beg and val_end. */ if (att_end - att_beg == cookie_name_l && memcmp(att_beg, cookie_name, cookie_name_l) == 0) { /* let's return this value and indicate where to go on from */ *value = val_beg; *value_l = val_end - val_beg; return next + 1; } /* Set-Cookie headers only have the name in the first attr=value part */ if (!list) break; } return NULL; } /* Fetch a captured HTTP request header. The index is the position of * the "capture" option in the configuration file */ static int smp_fetch_capture_header_req(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct proxy *fe = strm_fe(smp->strm); int idx; if (!args || args->type != ARGT_SINT) return 0; idx = args->data.sint; if (idx > (fe->nb_req_cap - 1) || smp->strm->req_cap == NULL || smp->strm->req_cap[idx] == NULL) return 0; smp->data.type = SMP_T_STR; smp->flags |= SMP_F_CONST; smp->data.u.str.str = smp->strm->req_cap[idx]; smp->data.u.str.len = strlen(smp->strm->req_cap[idx]); return 1; } /* Fetch a captured HTTP response header. The index is the position of * the "capture" option in the configuration file */ static int smp_fetch_capture_header_res(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct proxy *fe = strm_fe(smp->strm); int idx; if (!args || args->type != ARGT_SINT) return 0; idx = args->data.sint; if (idx > (fe->nb_rsp_cap - 1) || smp->strm->res_cap == NULL || smp->strm->res_cap[idx] == NULL) return 0; smp->data.type = SMP_T_STR; smp->flags |= SMP_F_CONST; smp->data.u.str.str = smp->strm->res_cap[idx]; smp->data.u.str.len = strlen(smp->strm->res_cap[idx]); return 1; } /* Extracts the METHOD in the HTTP request, the txn->uri should be filled before the call */ static int smp_fetch_capture_req_method(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct chunk *temp; struct http_txn *txn = smp->strm->txn; char *ptr; if (!txn || !txn->uri) return 0; ptr = txn->uri; while (*ptr != ' ' && *ptr != '\0') /* find first space */ ptr++; temp = get_trash_chunk(); temp->str = txn->uri; temp->len = ptr - txn->uri; smp->data.u.str = *temp; smp->data.type = SMP_T_STR; smp->flags = SMP_F_CONST; return 1; } /* Extracts the path in the HTTP request, the txn->uri should be filled before the call */ static int smp_fetch_capture_req_uri(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct chunk *temp; struct http_txn *txn = smp->strm->txn; char *ptr; if (!txn || !txn->uri) return 0; ptr = txn->uri; while (*ptr != ' ' && *ptr != '\0') /* find first space */ ptr++; if (!*ptr) return 0; ptr++; /* skip the space */ temp = get_trash_chunk(); ptr = temp->str = http_get_path_from_string(ptr); if (!ptr) return 0; while (*ptr != ' ' && *ptr != '\0') /* find space after URI */ ptr++; smp->data.u.str = *temp; smp->data.u.str.len = ptr - temp->str; smp->data.type = SMP_T_STR; smp->flags = SMP_F_CONST; return 1; } /* Retrieves the HTTP version from the request (either 1.0 or 1.1) and emits it * as a string (either "HTTP/1.0" or "HTTP/1.1"). */ static int smp_fetch_capture_req_ver(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct http_txn *txn = smp->strm->txn; if (!txn || txn->req.msg_state < HTTP_MSG_HDR_FIRST) return 0; if (txn->req.flags & HTTP_MSGF_VER_11) smp->data.u.str.str = "HTTP/1.1"; else smp->data.u.str.str = "HTTP/1.0"; smp->data.u.str.len = 8; smp->data.type = SMP_T_STR; smp->flags = SMP_F_CONST; return 1; } /* Retrieves the HTTP version from the response (either 1.0 or 1.1) and emits it * as a string (either "HTTP/1.0" or "HTTP/1.1"). */ static int smp_fetch_capture_res_ver(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct http_txn *txn = smp->strm->txn; if (!txn || txn->rsp.msg_state < HTTP_MSG_HDR_FIRST) return 0; if (txn->rsp.flags & HTTP_MSGF_VER_11) smp->data.u.str.str = "HTTP/1.1"; else smp->data.u.str.str = "HTTP/1.0"; smp->data.u.str.len = 8; smp->data.type = SMP_T_STR; smp->flags = SMP_F_CONST; return 1; } /* Iterate over all cookies present in a message. The context is stored in * smp->ctx.a[0] for the in-header position, smp->ctx.a[1] for the * end-of-header-value, and smp->ctx.a[2] for the hdr_ctx. Depending on * the direction, multiple cookies may be parsed on the same line or not. * The cookie name is in args and the name length in args->data.str.len. * Accepts exactly 1 argument of type string. If the input options indicate * that no iterating is desired, then only last value is fetched if any. * The returned sample is of type CSTR. Can be used to parse cookies in other * files. */ int smp_fetch_cookie(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct http_txn *txn; struct hdr_idx *idx; struct hdr_ctx *ctx = smp->ctx.a[2]; const struct http_msg *msg; const char *hdr_name; int hdr_name_len; char *sol; int occ = 0; int found = 0; if (!args || args->type != ARGT_STR) return 0; if (!ctx) { /* first call */ ctx = &static_hdr_ctx; ctx->idx = 0; smp->ctx.a[2] = ctx; } CHECK_HTTP_MESSAGE_FIRST(); txn = smp->strm->txn; idx = &smp->strm->txn->hdr_idx; if ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) { msg = &txn->req; hdr_name = "Cookie"; hdr_name_len = 6; } else { msg = &txn->rsp; hdr_name = "Set-Cookie"; hdr_name_len = 10; } if (!occ && !(smp->opt & SMP_OPT_ITERATE)) /* no explicit occurrence and single fetch => last cookie by default */ occ = -1; /* OK so basically here, either we want only one value and it's the * last one, or we want to iterate over all of them and we fetch the * next one. */ sol = msg->chn->buf->p; if (!(smp->flags & SMP_F_NOT_LAST)) { /* search for the header from the beginning, we must first initialize * the search parameters. */ smp->ctx.a[0] = NULL; ctx->idx = 0; } smp->flags |= SMP_F_VOL_HDR; while (1) { /* Note: smp->ctx.a[0] == NULL every time we need to fetch a new header */ if (!smp->ctx.a[0]) { if (!http_find_header2(hdr_name, hdr_name_len, sol, idx, ctx)) goto out; if (ctx->vlen < args->data.str.len + 1) continue; smp->ctx.a[0] = ctx->line + ctx->val; smp->ctx.a[1] = smp->ctx.a[0] + ctx->vlen; } smp->data.type = SMP_T_STR; smp->flags |= SMP_F_CONST; smp->ctx.a[0] = extract_cookie_value(smp->ctx.a[0], smp->ctx.a[1], args->data.str.str, args->data.str.len, (smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ, &smp->data.u.str.str, &smp->data.u.str.len); if (smp->ctx.a[0]) { found = 1; if (occ >= 0) { /* one value was returned into smp->data.u.str.{str,len} */ smp->flags |= SMP_F_NOT_LAST; return 1; } } /* if we're looking for last occurrence, let's loop */ } /* all cookie headers and values were scanned. If we're looking for the * last occurrence, we may return it now. */ out: smp->flags &= ~SMP_F_NOT_LAST; return found; } /* Iterate over all cookies present in a request to count how many occurrences * match the name in args and args->data.str.len. If is non-null, then * multiple cookies may be parsed on the same line. The returned sample is of * type UINT. Accepts exactly 1 argument of type string. */ static int smp_fetch_cookie_cnt(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct http_txn *txn; struct hdr_idx *idx; struct hdr_ctx ctx; const struct http_msg *msg; const char *hdr_name; int hdr_name_len; int cnt; char *val_beg, *val_end; char *sol; if (!args || args->type != ARGT_STR) return 0; CHECK_HTTP_MESSAGE_FIRST(); txn = smp->strm->txn; idx = &smp->strm->txn->hdr_idx; if ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) { msg = &txn->req; hdr_name = "Cookie"; hdr_name_len = 6; } else { msg = &txn->rsp; hdr_name = "Set-Cookie"; hdr_name_len = 10; } sol = msg->chn->buf->p; val_end = val_beg = NULL; ctx.idx = 0; cnt = 0; while (1) { /* Note: val_beg == NULL every time we need to fetch a new header */ if (!val_beg) { if (!http_find_header2(hdr_name, hdr_name_len, sol, idx, &ctx)) break; if (ctx.vlen < args->data.str.len + 1) continue; val_beg = ctx.line + ctx.val; val_end = val_beg + ctx.vlen; } smp->data.type = SMP_T_STR; smp->flags |= SMP_F_CONST; while ((val_beg = extract_cookie_value(val_beg, val_end, args->data.str.str, args->data.str.len, (smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ, &smp->data.u.str.str, &smp->data.u.str.len))) { cnt++; } } smp->data.type = SMP_T_SINT; smp->data.u.sint = cnt; smp->flags |= SMP_F_VOL_HDR; return 1; } /* Fetch an cookie's integer value. The integer value is returned. It * takes a mandatory argument of type string. It relies on smp_fetch_cookie(). */ static int smp_fetch_cookie_val(const struct arg *args, struct sample *smp, const char *kw, void *private) { int ret = smp_fetch_cookie(args, smp, kw, private); if (ret > 0) { smp->data.type = SMP_T_SINT; smp->data.u.sint = strl2ic(smp->data.u.str.str, smp->data.u.str.len); } return ret; } /************************************************************************/ /* The code below is dedicated to sample fetches */ /************************************************************************/ /* * Given a path string and its length, find the position of beginning of the * query string. Returns NULL if no query string is found in the path. * * Example: if path = "/foo/bar/fubar?yo=mama;ye=daddy", and n = 22: * * find_query_string(path, n, '?') points to "yo=mama;ye=daddy" string. */ static inline char *find_param_list(char *path, size_t path_l, char delim) { char *p; p = memchr(path, delim, path_l); return p ? p + 1 : NULL; } static inline int is_param_delimiter(char c, char delim) { return c == '&' || c == ';' || c == delim; } /* after increasing a pointer value, it can exceed the first buffer * size. This function transform the value of according with * the expected position. is an array of the one or two * avalaible chunks. The first value is the start of the first chunk, * the second value if the end+1 of the first chunks. The third value * is NULL or the start of the second chunk and the fourth value is * the end+1 of the second chunk. The function returns 1 if does a * wrap, else returns 0. */ static inline int fix_pointer_if_wrap(const char **chunks, const char **ptr) { if (*ptr < chunks[1]) return 0; if (!chunks[2]) return 0; *ptr = chunks[2] + ( *ptr - chunks[1] ); return 1; } /* * Given a url parameter, find the starting position of the first occurence, * or NULL if the parameter is not found. * * Example: if query_string is "yo=mama;ye=daddy" and url_param_name is "ye", * the function will return query_string+8. * * Warning: this function returns a pointer that can point to the first chunk * or the second chunk. The caller must be check the position before using the * result. */ static const char * find_url_param_pos(const char **chunks, const char* url_param_name, size_t url_param_name_l, char delim) { const char *pos, *last, *equal; const char **bufs = chunks; int l1, l2; pos = bufs[0]; last = bufs[1]; while (pos < last) { /* Check the equal. */ equal = pos + url_param_name_l; if (fix_pointer_if_wrap(chunks, &equal)) { if (equal >= chunks[3]) return NULL; } else { if (equal >= chunks[1]) return NULL; } if (*equal == '=') { if (pos + url_param_name_l > last) { /* process wrap case, we detect a wrap. In this case, the * comparison is performed in two parts. */ /* This is the end, we dont have any other chunk. */ if (bufs != chunks || !bufs[2]) return NULL; /* Compute the length of each part of the comparison. */ l1 = last - pos; l2 = url_param_name_l - l1; /* The second buffer is too short to contain the compared string. */ if (bufs[2] + l2 > bufs[3]) return NULL; if (memcmp(pos, url_param_name, l1) == 0 && memcmp(bufs[2], url_param_name+l1, l2) == 0) return pos; /* Perform wrapping and jump the string who fail the comparison. */ bufs += 2; pos = bufs[0] + l2; last = bufs[1]; } else { /* process a simple comparison. */ if (memcmp(pos, url_param_name, url_param_name_l) == 0) return pos; pos += url_param_name_l + 1; if (fix_pointer_if_wrap(chunks, &pos)) last = bufs[2]; } } while (1) { /* Look for the next delimiter. */ while (pos < last && !is_param_delimiter(*pos, delim)) pos++; if (pos < last) break; /* process buffer wrapping. */ if (bufs != chunks || !bufs[2]) return NULL; bufs += 2; pos = bufs[0]; last = bufs[1]; } pos++; } return NULL; } /* * Given a url parameter name and a query string, find the next value. * An empty url_param_name matches the first available parameter. * If the parameter is found, 1 is returned and *vstart / *vend are updated to * respectively provide a pointer to the value and its end. * Otherwise, 0 is returned and vstart/vend are not modified. */ static int find_next_url_param(const char **chunks, const char* url_param_name, size_t url_param_name_l, const char **vstart, const char **vend, char delim) { const char *arg_start, *qs_end; const char *value_start, *value_end; arg_start = chunks[0]; qs_end = chunks[1]; if (url_param_name_l) { /* Looks for an argument name. */ arg_start = find_url_param_pos(chunks, url_param_name, url_param_name_l, delim); /* Check for wrapping. */ if (arg_start >= qs_end) qs_end = chunks[3]; } if (!arg_start) return 0; if (!url_param_name_l) { while (1) { /* looks for the first argument. */ value_start = memchr(arg_start, '=', qs_end - arg_start); if (!value_start) { /* Check for wrapping. */ if (arg_start >= chunks[0] && arg_start < chunks[1] && chunks[2]) { arg_start = chunks[2]; qs_end = chunks[3]; continue; } return 0; } break; } value_start++; } else { /* Jump the argument length. */ value_start = arg_start + url_param_name_l + 1; /* Check for pointer wrapping. */ if (fix_pointer_if_wrap(chunks, &value_start)) { /* Update the end pointer. */ qs_end = chunks[3]; /* Check for overflow. */ if (value_start >= qs_end) return 0; } } value_end = value_start; while (1) { while ((value_end < qs_end) && !is_param_delimiter(*value_end, delim)) value_end++; if (value_end < qs_end) break; /* process buffer wrapping. */ if (value_end >= chunks[0] && value_end < chunks[1] && chunks[2]) { value_end = chunks[2]; qs_end = chunks[3]; continue; } break; } *vstart = value_start; *vend = value_end; return 1; } /* This scans a URL-encoded query string. It takes an optionally wrapping * string whose first contigous chunk has its beginning in ctx->a[0] and end * in ctx->a[1], and the optional second part in (ctx->a[2]..ctx->a[3]). The * pointers are updated for next iteration before leaving. */ static int smp_fetch_param(char delim, const char *name, int name_len, const struct arg *args, struct sample *smp, const char *kw, void *private) { const char *vstart, *vend; struct chunk *temp; const char **chunks = (const char **)smp->ctx.a; if (!find_next_url_param(chunks, name, name_len, &vstart, &vend, delim)) return 0; /* Create sample. If the value is contiguous, return the pointer as CONST, * if the value is wrapped, copy-it in a buffer. */ smp->data.type = SMP_T_STR; if (chunks[2] && vstart >= chunks[0] && vstart <= chunks[1] && vend >= chunks[2] && vend <= chunks[3]) { /* Wrapped case. */ temp = get_trash_chunk(); memcpy(temp->str, vstart, chunks[1] - vstart); memcpy(temp->str + ( chunks[1] - vstart ), chunks[2], vend - chunks[2]); smp->data.u.str.str = temp->str; smp->data.u.str.len = ( chunks[1] - vstart ) + ( vend - chunks[2] ); } else { /* Contiguous case. */ smp->data.u.str.str = (char *)vstart; smp->data.u.str.len = vend - vstart; smp->flags = SMP_F_VOL_1ST | SMP_F_CONST; } /* Update context, check wrapping. */ chunks[0] = vend; if (chunks[2] && vend >= chunks[2] && vend <= chunks[3]) { chunks[1] = chunks[3]; chunks[2] = NULL; } if (chunks[0] < chunks[1]) smp->flags |= SMP_F_NOT_LAST; return 1; } /* This function iterates over each parameter of the query string. It uses * ctx->a[0] and ctx->a[1] to store the beginning and end of the current * parameter. Since it uses smp_fetch_param(), ctx->a[2..3] are both NULL. * An optional parameter name is passed in args[0], otherwise any parameter is * considered. It supports an optional delimiter argument for the beginning of * the string in args[1], which defaults to "?". */ static int smp_fetch_url_param(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct http_msg *msg; char delim = '?'; const char *name; int name_len; if (!args || (args[0].type && args[0].type != ARGT_STR) || (args[1].type && args[1].type != ARGT_STR)) return 0; name = ""; name_len = 0; if (args->type == ARGT_STR) { name = args->data.str.str; name_len = args->data.str.len; } if (args[1].type) delim = *args[1].data.str.str; if (!smp->ctx.a[0]) { // first call, find the query string CHECK_HTTP_MESSAGE_FIRST(); msg = &smp->strm->txn->req; smp->ctx.a[0] = find_param_list(msg->chn->buf->p + msg->sl.rq.u, msg->sl.rq.u_l, delim); if (!smp->ctx.a[0]) return 0; smp->ctx.a[1] = msg->chn->buf->p + msg->sl.rq.u + msg->sl.rq.u_l; /* Assume that the context is filled with NULL pointer * before the first call. * smp->ctx.a[2] = NULL; * smp->ctx.a[3] = NULL; */ } return smp_fetch_param(delim, name, name_len, args, smp, kw, private); } /* This function iterates over each parameter of the body. This requires * that the body has been waited for using http-buffer-request. It uses * ctx->a[0] and ctx->a[1] to store the beginning and end of the first * contigous part of the body, and optionally ctx->a[2..3] to reference the * optional second part if the body wraps at the end of the buffer. An optional * parameter name is passed in args[0], otherwise any parameter is considered. */ static int smp_fetch_body_param(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct http_txn *txn = smp->strm->txn; struct http_msg *msg; unsigned long len; unsigned long block1; char *body; const char *name; int name_len; if (!args || (args[0].type && args[0].type != ARGT_STR)) return 0; name = ""; name_len = 0; if (args[0].type == ARGT_STR) { name = args[0].data.str.str; name_len = args[0].data.str.len; } if (!smp->ctx.a[0]) { // first call, find the query string CHECK_HTTP_MESSAGE_FIRST(); if ((smp->opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) msg = &txn->req; else msg = &txn->rsp; len = http_body_bytes(msg); body = b_ptr(msg->chn->buf, -http_data_rewind(msg)); block1 = len; if (block1 > msg->chn->buf->data + msg->chn->buf->size - body) block1 = msg->chn->buf->data + msg->chn->buf->size - body; if (block1 == len) { /* buffer is not wrapped (or empty) */ smp->ctx.a[0] = body; smp->ctx.a[1] = body + len; /* Assume that the context is filled with NULL pointer * before the first call. * smp->ctx.a[2] = NULL; * smp->ctx.a[3] = NULL; */ } else { /* buffer is wrapped, we need to defragment it */ smp->ctx.a[0] = body; smp->ctx.a[1] = body + block1; smp->ctx.a[2] = msg->chn->buf->data; smp->ctx.a[3] = msg->chn->buf->data + ( len - block1 ); } } return smp_fetch_param('&', name, name_len, args, smp, kw, private); } /* Return the signed integer value for the specified url parameter (see url_param * above). */ static int smp_fetch_url_param_val(const struct arg *args, struct sample *smp, const char *kw, void *private) { int ret = smp_fetch_url_param(args, smp, kw, private); if (ret > 0) { smp->data.type = SMP_T_SINT; smp->data.u.sint = strl2ic(smp->data.u.str.str, smp->data.u.str.len); } return ret; } /* This produces a 32-bit hash of the concatenation of the first occurrence of * the Host header followed by the path component if it begins with a slash ('/'). * This means that '*' will not be added, resulting in exactly the first Host * entry. If no Host header is found, then the path is used. The resulting value * is hashed using the url hash followed by a full avalanche hash and provides a * 32-bit integer value. This fetch is useful for tracking per-URL activity on * high-traffic sites without having to store whole paths. * this differs from the base32 functions in that it includes the url parameters * as well as the path */ static int smp_fetch_url32(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct http_txn *txn; struct hdr_ctx ctx; unsigned int hash = 0; char *ptr, *beg, *end; int len; CHECK_HTTP_MESSAGE_FIRST(); txn = smp->strm->txn; ctx.idx = 0; if (http_find_header2("Host", 4, txn->req.chn->buf->p, &txn->hdr_idx, &ctx)) { /* OK we have the header value in ctx.line+ctx.val for ctx.vlen bytes */ ptr = ctx.line + ctx.val; len = ctx.vlen; while (len--) hash = *(ptr++) + (hash << 6) + (hash << 16) - hash; } /* now retrieve the path */ end = txn->req.chn->buf->p + txn->req.sl.rq.u + txn->req.sl.rq.u_l; beg = http_get_path(txn); if (!beg) beg = end; for (ptr = beg; ptr < end ; ptr++); if (beg < ptr && *beg == '/') { while (beg < ptr) hash = *(beg++) + (hash << 6) + (hash << 16) - hash; } hash = full_hash(hash); smp->data.type = SMP_T_SINT; smp->data.u.sint = hash; smp->flags = SMP_F_VOL_1ST; return 1; } /* This concatenates the source address with the 32-bit hash of the Host and * URL as returned by smp_fetch_base32(). The idea is to have per-source and * per-url counters. The result is a binary block from 8 to 20 bytes depending * on the source address length. The URL hash is stored before the address so * that in environments where IPv6 is insignificant, truncating the output to * 8 bytes would still work. */ static int smp_fetch_url32_src(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct chunk *temp; struct connection *cli_conn = objt_conn(smp->sess->origin); unsigned int hash; if (!smp_fetch_url32(args, smp, kw, private)) return 0; /* The returned hash is a 32 bytes integer. */ hash = smp->data.u.sint; temp = get_trash_chunk(); memcpy(temp->str + temp->len, &hash, sizeof(hash)); temp->len += sizeof(hash); switch (cli_conn->addr.from.ss_family) { case AF_INET: memcpy(temp->str + temp->len, &((struct sockaddr_in *)&cli_conn->addr.from)->sin_addr, 4); temp->len += 4; break; case AF_INET6: memcpy(temp->str + temp->len, &((struct sockaddr_in6 *)&cli_conn->addr.from)->sin6_addr, 16); temp->len += 16; break; default: return 0; } smp->data.u.str = *temp; smp->data.type = SMP_T_BIN; return 1; } /* This function is used to validate the arguments passed to any "hdr" fetch * keyword. These keywords support an optional positive or negative occurrence * number. We must ensure that the number is greater than -MAX_HDR_HISTORY. It * is assumed that the types are already the correct ones. Returns 0 on error, * non-zero if OK. If is not NULL, it will be filled with a pointer to an * error message in case of error, that the caller is responsible for freeing. * The initial location must either be freeable or NULL. */ int val_hdr(struct arg *arg, char **err_msg) { if (arg && arg[1].type == ARGT_SINT && arg[1].data.sint < -MAX_HDR_HISTORY) { memprintf(err_msg, "header occurrence must be >= %d", -MAX_HDR_HISTORY); return 0; } return 1; } /* takes an UINT value on input supposed to represent the time since EPOCH, * adds an optional offset found in args[0] and emits a string representing * the date in RFC-1123/5322 format. */ static int sample_conv_http_date(const struct arg *args, struct sample *smp, void *private) { const char day[7][4] = { "Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun" }; const char mon[12][4] = { "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" }; struct chunk *temp; struct tm *tm; /* With high numbers, the date returned can be negative, the 55 bits mask prevent this. */ time_t curr_date = smp->data.u.sint & 0x007fffffffffffffLL; /* add offset */ if (args && (args[0].type == ARGT_SINT)) curr_date += args[0].data.sint; tm = gmtime(&curr_date); if (!tm) return 0; temp = get_trash_chunk(); temp->len = snprintf(temp->str, temp->size - temp->len, "%s, %02d %s %04d %02d:%02d:%02d GMT", day[tm->tm_wday], tm->tm_mday, mon[tm->tm_mon], 1900+tm->tm_year, tm->tm_hour, tm->tm_min, tm->tm_sec); smp->data.u.str = *temp; smp->data.type = SMP_T_STR; return 1; } /* Match language range with language tag. RFC2616 14.4: * * A language-range matches a language-tag if it exactly equals * the tag, or if it exactly equals a prefix of the tag such * that the first tag character following the prefix is "-". * * Return 1 if the strings match, else return 0. */ static inline int language_range_match(const char *range, int range_len, const char *tag, int tag_len) { const char *end = range + range_len; const char *tend = tag + tag_len; while (range < end) { if (*range == '-' && tag == tend) return 1; if (*range != *tag || tag == tend) return 0; range++; tag++; } /* Return true only if the last char of the tag is matched. */ return tag == tend; } /* Arguments: The list of expected value, the number of parts returned and the separator */ static int sample_conv_q_prefered(const struct arg *args, struct sample *smp, void *private) { const char *al = smp->data.u.str.str; const char *end = al + smp->data.u.str.len; const char *token; int toklen; int qvalue; const char *str; const char *w; int best_q = 0; /* Set the constant to the sample, because the output of the * function will be peek in the constant configuration string. */ smp->flags |= SMP_F_CONST; smp->data.u.str.size = 0; smp->data.u.str.str = ""; smp->data.u.str.len = 0; /* Parse the accept language */ while (1) { /* Jump spaces, quit if the end is detected. */ while (al < end && isspace((unsigned char)*al)) al++; if (al >= end) break; /* Start of the fisrt word. */ token = al; /* Look for separator: isspace(), ',' or ';'. Next value if 0 length word. */ while (al < end && *al != ';' && *al != ',' && !isspace((unsigned char)*al)) al++; if (al == token) goto expect_comma; /* Length of the token. */ toklen = al - token; qvalue = 1000; /* Check if the token exists in the list. If the token not exists, * jump to the next token. */ str = args[0].data.str.str; w = str; while (1) { if (*str == ';' || *str == '\0') { if (language_range_match(token, toklen, w, str-w)) goto look_for_q; if (*str == '\0') goto expect_comma; w = str + 1; } str++; } goto expect_comma; look_for_q: /* Jump spaces, quit if the end is detected. */ while (al < end && isspace((unsigned char)*al)) al++; if (al >= end) goto process_value; /* If ',' is found, process the result */ if (*al == ',') goto process_value; /* If the character is different from ';', look * for the end of the header part in best effort. */ if (*al != ';') goto expect_comma; /* Assumes that the char is ';', now expect "q=". */ al++; /* Jump spaces, process value if the end is detected. */ while (al < end && isspace((unsigned char)*al)) al++; if (al >= end) goto process_value; /* Expect 'q'. If no 'q', continue in best effort */ if (*al != 'q') goto process_value; al++; /* Jump spaces, process value if the end is detected. */ while (al < end && isspace((unsigned char)*al)) al++; if (al >= end) goto process_value; /* Expect '='. If no '=', continue in best effort */ if (*al != '=') goto process_value; al++; /* Jump spaces, process value if the end is detected. */ while (al < end && isspace((unsigned char)*al)) al++; if (al >= end) goto process_value; /* Parse the q value. */ qvalue = parse_qvalue(al, &al); process_value: /* If the new q value is the best q value, then store the associated * language in the response. If qvalue is the biggest value (1000), * break the process. */ if (qvalue > best_q) { smp->data.u.str.str = (char *)w; smp->data.u.str.len = str - w; if (qvalue >= 1000) break; best_q = qvalue; } expect_comma: /* Expect comma or end. If the end is detected, quit the loop. */ while (al < end && *al != ',') al++; if (al >= end) break; /* Comma is found, jump it and restart the analyzer. */ al++; } /* Set default value if required. */ if (smp->data.u.str.len == 0 && args[1].type == ARGT_STR) { smp->data.u.str.str = args[1].data.str.str; smp->data.u.str.len = args[1].data.str.len; } /* Return true only if a matching language was found. */ return smp->data.u.str.len != 0; } /* This fetch url-decode any input string. */ static int sample_conv_url_dec(const struct arg *args, struct sample *smp, void *private) { /* If the constant flag is set or if not size is avalaible at * the end of the buffer, copy the string in other buffer * before decoding. */ if (smp->flags & SMP_F_CONST || smp->data.u.str.size <= smp->data.u.str.len) { struct chunk *str = get_trash_chunk(); memcpy(str->str, smp->data.u.str.str, smp->data.u.str.len); smp->data.u.str.str = str->str; smp->data.u.str.size = str->size; smp->flags &= ~SMP_F_CONST; } /* Add final \0 required by url_decode(), and convert the input string. */ smp->data.u.str.str[smp->data.u.str.len] = '\0'; smp->data.u.str.len = url_decode(smp->data.u.str.str); return 1; } static int smp_conv_req_capture(const struct arg *args, struct sample *smp, void *private) { struct proxy *fe = strm_fe(smp->strm); int idx, i; struct cap_hdr *hdr; int len; if (!args || args->type != ARGT_SINT) return 0; idx = args->data.sint; /* Check the availibity of the capture id. */ if (idx > fe->nb_req_cap - 1) return 0; /* Look for the original configuration. */ for (hdr = fe->req_cap, i = fe->nb_req_cap - 1; hdr != NULL && i != idx ; i--, hdr = hdr->next); if (!hdr) return 0; /* check for the memory allocation */ if (smp->strm->req_cap[hdr->index] == NULL) smp->strm->req_cap[hdr->index] = pool_alloc2(hdr->pool); if (smp->strm->req_cap[hdr->index] == NULL) return 0; /* Check length. */ len = smp->data.u.str.len; if (len > hdr->len) len = hdr->len; /* Capture input data. */ memcpy(smp->strm->req_cap[idx], smp->data.u.str.str, len); smp->strm->req_cap[idx][len] = '\0'; return 1; } static int smp_conv_res_capture(const struct arg *args, struct sample *smp, void *private) { struct proxy *fe = strm_fe(smp->strm); int idx, i; struct cap_hdr *hdr; int len; if (!args || args->type != ARGT_SINT) return 0; idx = args->data.sint; /* Check the availibity of the capture id. */ if (idx > fe->nb_rsp_cap - 1) return 0; /* Look for the original configuration. */ for (hdr = fe->rsp_cap, i = fe->nb_rsp_cap - 1; hdr != NULL && i != idx ; i--, hdr = hdr->next); if (!hdr) return 0; /* check for the memory allocation */ if (smp->strm->res_cap[hdr->index] == NULL) smp->strm->res_cap[hdr->index] = pool_alloc2(hdr->pool); if (smp->strm->res_cap[hdr->index] == NULL) return 0; /* Check length. */ len = smp->data.u.str.len; if (len > hdr->len) len = hdr->len; /* Capture input data. */ memcpy(smp->strm->res_cap[idx], smp->data.u.str.str, len); smp->strm->res_cap[idx][len] = '\0'; return 1; } /* This function executes one of the set-{method,path,query,uri} actions. It * takes the string from the variable 'replace' with length 'len', then modifies * the relevant part of the request line accordingly. Then it updates various * pointers to the next elements which were moved, and the total buffer length. * It finds the action to be performed in p[2], previously filled by function * parse_set_req_line(). It returns 0 in case of success, -1 in case of internal * error, though this can be revisited when this code is finally exploited. * * 'action' can be '0' to replace method, '1' to replace path, '2' to replace * query string and 3 to replace uri. * * In query string case, the mark question '?' must be set at the start of the * string by the caller, event if the replacement query string is empty. */ int http_replace_req_line(int action, const char *replace, int len, struct proxy *px, struct stream *s) { struct http_txn *txn = s->txn; char *cur_ptr, *cur_end; int offset = 0; int delta; switch (action) { case 0: // method cur_ptr = s->req.buf->p; cur_end = cur_ptr + txn->req.sl.rq.m_l; /* adjust req line offsets and lengths */ delta = len - offset - (cur_end - cur_ptr); txn->req.sl.rq.m_l += delta; txn->req.sl.rq.u += delta; txn->req.sl.rq.v += delta; break; case 1: // path cur_ptr = http_get_path(txn); if (!cur_ptr) cur_ptr = s->req.buf->p + txn->req.sl.rq.u; cur_end = cur_ptr; while (cur_end < s->req.buf->p + txn->req.sl.rq.u + txn->req.sl.rq.u_l && *cur_end != '?') cur_end++; /* adjust req line offsets and lengths */ delta = len - offset - (cur_end - cur_ptr); txn->req.sl.rq.u_l += delta; txn->req.sl.rq.v += delta; break; case 2: // query offset = 1; cur_ptr = s->req.buf->p + txn->req.sl.rq.u; cur_end = cur_ptr + txn->req.sl.rq.u_l; while (cur_ptr < cur_end && *cur_ptr != '?') cur_ptr++; /* skip the question mark or indicate that we must insert it * (but only if the format string is not empty then). */ if (cur_ptr < cur_end) cur_ptr++; else if (len > 1) offset = 0; /* adjust req line offsets and lengths */ delta = len - offset - (cur_end - cur_ptr); txn->req.sl.rq.u_l += delta; txn->req.sl.rq.v += delta; break; case 3: // uri cur_ptr = s->req.buf->p + txn->req.sl.rq.u; cur_end = cur_ptr + txn->req.sl.rq.u_l; /* adjust req line offsets and lengths */ delta = len - offset - (cur_end - cur_ptr); txn->req.sl.rq.u_l += delta; txn->req.sl.rq.v += delta; break; default: return -1; } /* commit changes and adjust end of message */ delta = buffer_replace2(s->req.buf, cur_ptr, cur_end, replace + offset, len - offset); txn->req.sl.rq.l += delta; txn->hdr_idx.v[0].len += delta; http_msg_move_end(&txn->req, delta); return 0; } /* This function replace the HTTP status code and the associated message. The * variable contains the new status code. This function never fails. */ void http_set_status(unsigned int status, struct stream *s) { struct http_txn *txn = s->txn; char *cur_ptr, *cur_end; int delta; char *res; int c_l; const char *msg; int msg_len; chunk_reset(&trash); res = ultoa_o(status, trash.str, trash.size); c_l = res - trash.str; trash.str[c_l] = ' '; trash.len = c_l + 1; msg = get_reason(status); msg_len = strlen(msg); strncpy(&trash.str[trash.len], msg, trash.size - trash.len); trash.len += msg_len; cur_ptr = s->res.buf->p + txn->rsp.sl.st.c; cur_end = s->res.buf->p + txn->rsp.sl.st.r + txn->rsp.sl.st.r_l; /* commit changes and adjust message */ delta = buffer_replace2(s->res.buf, cur_ptr, cur_end, trash.str, trash.len); /* adjust res line offsets and lengths */ txn->rsp.sl.st.r += c_l - txn->rsp.sl.st.c_l; txn->rsp.sl.st.c_l = c_l; txn->rsp.sl.st.r_l = msg_len; delta = trash.len - (cur_end - cur_ptr); txn->rsp.sl.st.l += delta; txn->hdr_idx.v[0].len += delta; http_msg_move_end(&txn->rsp, delta); } /* This function executes one of the set-{method,path,query,uri} actions. It * builds a string in the trash from the specified format string. It finds * the action to be performed in , previously filled by function * parse_set_req_line(). The replacement action is excuted by the function * http_action_set_req_line(). It always returns ACT_RET_CONT. If an error * occurs the action is canceled, but the rule processing continue. */ enum act_return http_action_set_req_line(struct act_rule *rule, struct proxy *px, struct session *sess, struct stream *s, int flags) { chunk_reset(&trash); /* If we have to create a query string, prepare a '?'. */ if (rule->arg.http.action == 2) trash.str[trash.len++] = '?'; trash.len += build_logline(s, trash.str + trash.len, trash.size - trash.len, &rule->arg.http.logfmt); http_replace_req_line(rule->arg.http.action, trash.str, trash.len, px, s); return ACT_RET_CONT; } /* This function is just a compliant action wrapper for "set-status". */ enum act_return action_http_set_status(struct act_rule *rule, struct proxy *px, struct session *sess, struct stream *s, int flags) { http_set_status(rule->arg.status.code, s); return ACT_RET_CONT; } /* parse an http-request action among : * set-method * set-path * set-query * set-uri * * All of them accept a single argument of type string representing a log-format. * The resulting rule makes use of arg->act.p[0..1] to store the log-format list * head, and p[2] to store the action as an int (0=method, 1=path, 2=query, 3=uri). * It returns ACT_RET_PRS_OK on success, ACT_RET_PRS_ERR on error. */ enum act_parse_ret parse_set_req_line(const char **args, int *orig_arg, struct proxy *px, struct act_rule *rule, char **err) { int cur_arg = *orig_arg; rule->action = ACT_CUSTOM; switch (args[0][4]) { case 'm' : rule->arg.http.action = 0; rule->action_ptr = http_action_set_req_line; break; case 'p' : rule->arg.http.action = 1; rule->action_ptr = http_action_set_req_line; break; case 'q' : rule->arg.http.action = 2; rule->action_ptr = http_action_set_req_line; break; case 'u' : rule->arg.http.action = 3; rule->action_ptr = http_action_set_req_line; break; default: memprintf(err, "internal error: unhandled action '%s'", args[0]); return ACT_RET_PRS_ERR; } if (!*args[cur_arg] || (*args[cur_arg + 1] && strcmp(args[cur_arg + 1], "if") != 0 && strcmp(args[cur_arg + 1], "unless") != 0)) { memprintf(err, "expects exactly 1 argument "); return ACT_RET_PRS_ERR; } LIST_INIT(&rule->arg.http.logfmt); proxy->conf.args.ctx = ARGC_HRQ; parse_logformat_string(args[cur_arg], proxy, &rule->arg.http.logfmt, LOG_OPT_HTTP, (proxy->cap & PR_CAP_FE) ? SMP_VAL_FE_HRQ_HDR : SMP_VAL_BE_HRQ_HDR, proxy->conf.args.file, proxy->conf.args.line); (*orig_arg)++; return ACT_RET_PRS_OK; } /* parse set-status action: * This action accepts a single argument of type int representing * an http status code. It returns ACT_RET_PRS_OK on success, * ACT_RET_PRS_ERR on error. */ enum act_parse_ret parse_http_set_status(const char **args, int *orig_arg, struct proxy *px, struct act_rule *rule, char **err) { char *error; rule->action = ACT_CUSTOM; rule->action_ptr = action_http_set_status; /* Check if an argument is available */ if (!*args[*orig_arg]) { memprintf(err, "expects exactly 1 argument "); return ACT_RET_PRS_ERR; } /* convert status code as integer */ rule->arg.status.code = strtol(args[*orig_arg], &error, 10); if (*error != '\0' || rule->arg.status.code < 100 || rule->arg.status.code > 999) { memprintf(err, "expects an integer status code between 100 and 999"); return ACT_RET_PRS_ERR; } (*orig_arg)++; return ACT_RET_PRS_OK; } /* This function executes the "capture" action. It executes a fetch expression, * turns the result into a string and puts it in a capture slot. It always * returns 1. If an error occurs the action is cancelled, but the rule * processing continues. */ enum act_return http_action_req_capture(struct act_rule *rule, struct proxy *px, struct session *sess, struct stream *s, int flags) { struct sample *key; struct cap_hdr *h = rule->arg.cap.hdr; char **cap = s->req_cap; int len; key = sample_fetch_as_type(s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->arg.cap.expr, SMP_T_STR); if (!key) return ACT_RET_CONT; if (cap[h->index] == NULL) cap[h->index] = pool_alloc2(h->pool); if (cap[h->index] == NULL) /* no more capture memory */ return ACT_RET_CONT; len = key->data.u.str.len; if (len > h->len) len = h->len; memcpy(cap[h->index], key->data.u.str.str, len); cap[h->index][len] = 0; return ACT_RET_CONT; } /* This function executes the "capture" action and store the result in a * capture slot if exists. It executes a fetch expression, turns the result * into a string and puts it in a capture slot. It always returns 1. If an * error occurs the action is cancelled, but the rule processing continues. */ enum act_return http_action_req_capture_by_id(struct act_rule *rule, struct proxy *px, struct session *sess, struct stream *s, int flags) { struct sample *key; struct cap_hdr *h; char **cap = s->req_cap; struct proxy *fe = strm_fe(s); int len; int i; /* Look for the original configuration. */ for (h = fe->req_cap, i = fe->nb_req_cap - 1; h != NULL && i != rule->arg.capid.idx ; i--, h = h->next); if (!h) return ACT_RET_CONT; key = sample_fetch_as_type(s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->arg.capid.expr, SMP_T_STR); if (!key) return ACT_RET_CONT; if (cap[h->index] == NULL) cap[h->index] = pool_alloc2(h->pool); if (cap[h->index] == NULL) /* no more capture memory */ return ACT_RET_CONT; len = key->data.u.str.len; if (len > h->len) len = h->len; memcpy(cap[h->index], key->data.u.str.str, len); cap[h->index][len] = 0; return ACT_RET_CONT; } /* parse an "http-request capture" action. It takes a single argument which is * a sample fetch expression. It stores the expression into arg->act.p[0] and * the allocated hdr_cap struct or the preallocated "id" into arg->act.p[1]. * It returns ACT_RET_PRS_OK on success, ACT_RET_PRS_ERR on error. */ enum act_parse_ret parse_http_req_capture(const char **args, int *orig_arg, struct proxy *px, struct act_rule *rule, char **err) { struct sample_expr *expr; struct cap_hdr *hdr; int cur_arg; int len = 0; for (cur_arg = *orig_arg; cur_arg < *orig_arg + 3 && *args[cur_arg]; cur_arg++) if (strcmp(args[cur_arg], "if") == 0 || strcmp(args[cur_arg], "unless") == 0) break; if (cur_arg < *orig_arg + 3) { memprintf(err, "expects [ 'len' | id ]"); return ACT_RET_PRS_ERR; } cur_arg = *orig_arg; expr = sample_parse_expr((char **)args, &cur_arg, px->conf.args.file, px->conf.args.line, err, &px->conf.args); if (!expr) return ACT_RET_PRS_ERR; if (!(expr->fetch->val & SMP_VAL_FE_HRQ_HDR)) { memprintf(err, "fetch method '%s' extracts information from '%s', none of which is available here", args[cur_arg-1], sample_src_names(expr->fetch->use)); free(expr); return ACT_RET_PRS_ERR; } if (!args[cur_arg] || !*args[cur_arg]) { memprintf(err, "expects 'len or 'id'"); free(expr); return ACT_RET_PRS_ERR; } if (strcmp(args[cur_arg], "len") == 0) { cur_arg++; if (!(px->cap & PR_CAP_FE)) { memprintf(err, "proxy '%s' has no frontend capability", px->id); return ACT_RET_PRS_ERR; } proxy->conf.args.ctx = ARGC_CAP; if (!args[cur_arg]) { memprintf(err, "missing length value"); free(expr); return ACT_RET_PRS_ERR; } /* we copy the table name for now, it will be resolved later */ len = atoi(args[cur_arg]); if (len <= 0) { memprintf(err, "length must be > 0"); free(expr); return ACT_RET_PRS_ERR; } cur_arg++; if (!len) { memprintf(err, "a positive 'len' argument is mandatory"); free(expr); return ACT_RET_PRS_ERR; } hdr = calloc(sizeof(struct cap_hdr), 1); hdr->next = px->req_cap; hdr->name = NULL; /* not a header capture */ hdr->namelen = 0; hdr->len = len; hdr->pool = create_pool("caphdr", hdr->len + 1, MEM_F_SHARED); hdr->index = px->nb_req_cap++; px->req_cap = hdr; px->to_log |= LW_REQHDR; rule->action = ACT_CUSTOM; rule->action_ptr = http_action_req_capture; rule->arg.cap.expr = expr; rule->arg.cap.hdr = hdr; } else if (strcmp(args[cur_arg], "id") == 0) { int id; char *error; cur_arg++; if (!args[cur_arg]) { memprintf(err, "missing id value"); free(expr); return ACT_RET_PRS_ERR; } id = strtol(args[cur_arg], &error, 10); if (*error != '\0') { memprintf(err, "cannot parse id '%s'", args[cur_arg]); free(expr); return ACT_RET_PRS_ERR; } cur_arg++; proxy->conf.args.ctx = ARGC_CAP; rule->action = ACT_CUSTOM; rule->action_ptr = http_action_req_capture_by_id; rule->arg.capid.expr = expr; rule->arg.capid.idx = id; } else { memprintf(err, "expects 'len' or 'id', found '%s'", args[cur_arg]); free(expr); return ACT_RET_PRS_ERR; } *orig_arg = cur_arg; return ACT_RET_PRS_OK; } /* This function executes the "capture" action and store the result in a * capture slot if exists. It executes a fetch expression, turns the result * into a string and puts it in a capture slot. It always returns 1. If an * error occurs the action is cancelled, but the rule processing continues. */ enum act_return http_action_res_capture_by_id(struct act_rule *rule, struct proxy *px, struct session *sess, struct stream *s, int flags) { struct sample *key; struct cap_hdr *h; char **cap = s->res_cap; struct proxy *fe = strm_fe(s); int len; int i; /* Look for the original configuration. */ for (h = fe->rsp_cap, i = fe->nb_rsp_cap - 1; h != NULL && i != rule->arg.capid.idx ; i--, h = h->next); if (!h) return ACT_RET_CONT; key = sample_fetch_as_type(s->be, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL, rule->arg.capid.expr, SMP_T_STR); if (!key) return ACT_RET_CONT; if (cap[h->index] == NULL) cap[h->index] = pool_alloc2(h->pool); if (cap[h->index] == NULL) /* no more capture memory */ return ACT_RET_CONT; len = key->data.u.str.len; if (len > h->len) len = h->len; memcpy(cap[h->index], key->data.u.str.str, len); cap[h->index][len] = 0; return ACT_RET_CONT; } /* parse an "http-response capture" action. It takes a single argument which is * a sample fetch expression. It stores the expression into arg->act.p[0] and * the allocated hdr_cap struct od the preallocated id into arg->act.p[1]. * It returns ACT_RET_PRS_OK on success, ACT_RET_PRS_ERR on error. */ enum act_parse_ret parse_http_res_capture(const char **args, int *orig_arg, struct proxy *px, struct act_rule *rule, char **err) { struct sample_expr *expr; int cur_arg; int id; char *error; for (cur_arg = *orig_arg; cur_arg < *orig_arg + 3 && *args[cur_arg]; cur_arg++) if (strcmp(args[cur_arg], "if") == 0 || strcmp(args[cur_arg], "unless") == 0) break; if (cur_arg < *orig_arg + 3) { memprintf(err, "expects [ 'len' | id ]"); return ACT_RET_PRS_ERR; } cur_arg = *orig_arg; expr = sample_parse_expr((char **)args, &cur_arg, px->conf.args.file, px->conf.args.line, err, &px->conf.args); if (!expr) return ACT_RET_PRS_ERR; if (!(expr->fetch->val & SMP_VAL_FE_HRS_HDR)) { memprintf(err, "fetch method '%s' extracts information from '%s', none of which is available here", args[cur_arg-1], sample_src_names(expr->fetch->use)); free(expr); return ACT_RET_PRS_ERR; } if (!args[cur_arg] || !*args[cur_arg]) { memprintf(err, "expects 'len or 'id'"); free(expr); return ACT_RET_PRS_ERR; } if (strcmp(args[cur_arg], "id") != 0) { memprintf(err, "expects 'id', found '%s'", args[cur_arg]); free(expr); return ACT_RET_PRS_ERR; } cur_arg++; if (!args[cur_arg]) { memprintf(err, "missing id value"); free(expr); return ACT_RET_PRS_ERR; } id = strtol(args[cur_arg], &error, 10); if (*error != '\0') { memprintf(err, "cannot parse id '%s'", args[cur_arg]); free(expr); return ACT_RET_PRS_ERR; } cur_arg++; proxy->conf.args.ctx = ARGC_CAP; rule->action = ACT_CUSTOM; rule->action_ptr = http_action_res_capture_by_id; rule->arg.capid.expr = expr; rule->arg.capid.idx = id; *orig_arg = cur_arg; return ACT_RET_PRS_OK; } /* * Return the struct http_req_action_kw associated to a keyword. */ struct action_kw *action_http_req_custom(const char *kw) { return action_lookup(&http_req_keywords.list, kw); } /* * Return the struct http_res_action_kw associated to a keyword. */ struct action_kw *action_http_res_custom(const char *kw) { return action_lookup(&http_res_keywords.list, kw); } /************************************************************************/ /* All supported ACL keywords must be declared here. */ /************************************************************************/ /* Note: must not be declared as its list will be overwritten. * Please take care of keeping this list alphabetically sorted. */ static struct acl_kw_list acl_kws = {ILH, { { "base", "base", PAT_MATCH_STR }, { "base_beg", "base", PAT_MATCH_BEG }, { "base_dir", "base", PAT_MATCH_DIR }, { "base_dom", "base", PAT_MATCH_DOM }, { "base_end", "base", PAT_MATCH_END }, { "base_len", "base", PAT_MATCH_LEN }, { "base_reg", "base", PAT_MATCH_REG }, { "base_sub", "base", PAT_MATCH_SUB }, { "cook", "req.cook", PAT_MATCH_STR }, { "cook_beg", "req.cook", PAT_MATCH_BEG }, { "cook_dir", "req.cook", PAT_MATCH_DIR }, { "cook_dom", "req.cook", PAT_MATCH_DOM }, { "cook_end", "req.cook", PAT_MATCH_END }, { "cook_len", "req.cook", PAT_MATCH_LEN }, { "cook_reg", "req.cook", PAT_MATCH_REG }, { "cook_sub", "req.cook", PAT_MATCH_SUB }, { "hdr", "req.hdr", PAT_MATCH_STR }, { "hdr_beg", "req.hdr", PAT_MATCH_BEG }, { "hdr_dir", "req.hdr", PAT_MATCH_DIR }, { "hdr_dom", "req.hdr", PAT_MATCH_DOM }, { "hdr_end", "req.hdr", PAT_MATCH_END }, { "hdr_len", "req.hdr", PAT_MATCH_LEN }, { "hdr_reg", "req.hdr", PAT_MATCH_REG }, { "hdr_sub", "req.hdr", PAT_MATCH_SUB }, /* these two declarations uses strings with list storage (in place * of tree storage). The basic match is PAT_MATCH_STR, but the indexation * and delete functions are relative to the list management. The parse * and match method are related to the corresponding fetch methods. This * is very particular ACL declaration mode. */ { "http_auth_group", NULL, PAT_MATCH_STR, NULL, pat_idx_list_str, pat_del_list_ptr, NULL, pat_match_auth }, { "method", NULL, PAT_MATCH_STR, pat_parse_meth, pat_idx_list_str, pat_del_list_ptr, NULL, pat_match_meth }, { "path", "path", PAT_MATCH_STR }, { "path_beg", "path", PAT_MATCH_BEG }, { "path_dir", "path", PAT_MATCH_DIR }, { "path_dom", "path", PAT_MATCH_DOM }, { "path_end", "path", PAT_MATCH_END }, { "path_len", "path", PAT_MATCH_LEN }, { "path_reg", "path", PAT_MATCH_REG }, { "path_sub", "path", PAT_MATCH_SUB }, { "req_ver", "req.ver", PAT_MATCH_STR }, { "resp_ver", "res.ver", PAT_MATCH_STR }, { "scook", "res.cook", PAT_MATCH_STR }, { "scook_beg", "res.cook", PAT_MATCH_BEG }, { "scook_dir", "res.cook", PAT_MATCH_DIR }, { "scook_dom", "res.cook", PAT_MATCH_DOM }, { "scook_end", "res.cook", PAT_MATCH_END }, { "scook_len", "res.cook", PAT_MATCH_LEN }, { "scook_reg", "res.cook", PAT_MATCH_REG }, { "scook_sub", "res.cook", PAT_MATCH_SUB }, { "shdr", "res.hdr", PAT_MATCH_STR }, { "shdr_beg", "res.hdr", PAT_MATCH_BEG }, { "shdr_dir", "res.hdr", PAT_MATCH_DIR }, { "shdr_dom", "res.hdr", PAT_MATCH_DOM }, { "shdr_end", "res.hdr", PAT_MATCH_END }, { "shdr_len", "res.hdr", PAT_MATCH_LEN }, { "shdr_reg", "res.hdr", PAT_MATCH_REG }, { "shdr_sub", "res.hdr", PAT_MATCH_SUB }, { "url", "url", PAT_MATCH_STR }, { "url_beg", "url", PAT_MATCH_BEG }, { "url_dir", "url", PAT_MATCH_DIR }, { "url_dom", "url", PAT_MATCH_DOM }, { "url_end", "url", PAT_MATCH_END }, { "url_len", "url", PAT_MATCH_LEN }, { "url_reg", "url", PAT_MATCH_REG }, { "url_sub", "url", PAT_MATCH_SUB }, { "urlp", "urlp", PAT_MATCH_STR }, { "urlp_beg", "urlp", PAT_MATCH_BEG }, { "urlp_dir", "urlp", PAT_MATCH_DIR }, { "urlp_dom", "urlp", PAT_MATCH_DOM }, { "urlp_end", "urlp", PAT_MATCH_END }, { "urlp_len", "urlp", PAT_MATCH_LEN }, { "urlp_reg", "urlp", PAT_MATCH_REG }, { "urlp_sub", "urlp", PAT_MATCH_SUB }, { /* END */ }, }}; /************************************************************************/ /* All supported pattern keywords must be declared here. */ /************************************************************************/ /* Note: must not be declared as its list will be overwritten */ static struct sample_fetch_kw_list sample_fetch_keywords = {ILH, { { "base", smp_fetch_base, 0, NULL, SMP_T_STR, SMP_USE_HRQHV }, { "base32", smp_fetch_base32, 0, NULL, SMP_T_SINT, SMP_USE_HRQHV }, { "base32+src", smp_fetch_base32_src, 0, NULL, SMP_T_BIN, SMP_USE_HRQHV }, /* capture are allocated and are permanent in the stream */ { "capture.req.hdr", smp_fetch_capture_header_req, ARG1(1,SINT), NULL, SMP_T_STR, SMP_USE_HRQHP }, /* retrieve these captures from the HTTP logs */ { "capture.req.method", smp_fetch_capture_req_method, 0, NULL, SMP_T_STR, SMP_USE_HRQHP }, { "capture.req.uri", smp_fetch_capture_req_uri, 0, NULL, SMP_T_STR, SMP_USE_HRQHP }, { "capture.req.ver", smp_fetch_capture_req_ver, 0, NULL, SMP_T_STR, SMP_USE_HRQHP }, { "capture.res.hdr", smp_fetch_capture_header_res, ARG1(1,SINT), NULL, SMP_T_STR, SMP_USE_HRSHP }, { "capture.res.ver", smp_fetch_capture_res_ver, 0, NULL, SMP_T_STR, SMP_USE_HRQHP }, /* cookie is valid in both directions (eg: for "stick ...") but cook* * are only here to match the ACL's name, are request-only and are used * for ACL compatibility only. */ { "cook", smp_fetch_cookie, ARG1(0,STR), NULL, SMP_T_STR, SMP_USE_HRQHV }, { "cookie", smp_fetch_cookie, ARG1(0,STR), NULL, SMP_T_STR, SMP_USE_HRQHV|SMP_USE_HRSHV }, { "cook_cnt", smp_fetch_cookie_cnt, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRQHV }, { "cook_val", smp_fetch_cookie_val, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRQHV }, /* hdr is valid in both directions (eg: for "stick ...") but hdr_* are * only here to match the ACL's name, are request-only and are used for * ACL compatibility only. */ { "hdr", smp_fetch_hdr, ARG2(0,STR,SINT), val_hdr, SMP_T_STR, SMP_USE_HRQHV|SMP_USE_HRSHV }, { "hdr_cnt", smp_fetch_hdr_cnt, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRQHV }, { "hdr_ip", smp_fetch_hdr_ip, ARG2(0,STR,SINT), val_hdr, SMP_T_IPV4, SMP_USE_HRQHV }, { "hdr_val", smp_fetch_hdr_val, ARG2(0,STR,SINT), val_hdr, SMP_T_SINT, SMP_USE_HRQHV }, { "http_auth", smp_fetch_http_auth, ARG1(1,USR), NULL, SMP_T_BOOL, SMP_USE_HRQHV }, { "http_auth_group", smp_fetch_http_auth_grp, ARG1(1,USR), NULL, SMP_T_STR, SMP_USE_HRQHV }, { "http_first_req", smp_fetch_http_first_req, 0, NULL, SMP_T_BOOL, SMP_USE_HRQHP }, { "method", smp_fetch_meth, 0, NULL, SMP_T_METH, SMP_USE_HRQHP }, { "path", smp_fetch_path, 0, NULL, SMP_T_STR, SMP_USE_HRQHV }, { "query", smp_fetch_query, 0, NULL, SMP_T_STR, SMP_USE_HRQHV }, /* HTTP protocol on the request path */ { "req.proto_http", smp_fetch_proto_http, 0, NULL, SMP_T_BOOL, SMP_USE_HRQHP }, { "req_proto_http", smp_fetch_proto_http, 0, NULL, SMP_T_BOOL, SMP_USE_HRQHP }, /* HTTP version on the request path */ { "req.ver", smp_fetch_rqver, 0, NULL, SMP_T_STR, SMP_USE_HRQHV }, { "req_ver", smp_fetch_rqver, 0, NULL, SMP_T_STR, SMP_USE_HRQHV }, { "req.body", smp_fetch_body, 0, NULL, SMP_T_BIN, SMP_USE_HRQHV }, { "req.body_len", smp_fetch_body_len, 0, NULL, SMP_T_SINT, SMP_USE_HRQHV }, { "req.body_size", smp_fetch_body_size, 0, NULL, SMP_T_SINT, SMP_USE_HRQHV }, { "req.body_param", smp_fetch_body_param, ARG1(0,STR), NULL, SMP_T_BIN, SMP_USE_HRQHV }, /* HTTP version on the response path */ { "res.ver", smp_fetch_stver, 0, NULL, SMP_T_STR, SMP_USE_HRSHV }, { "resp_ver", smp_fetch_stver, 0, NULL, SMP_T_STR, SMP_USE_HRSHV }, /* explicit req.{cook,hdr} are used to force the fetch direction to be request-only */ { "req.cook", smp_fetch_cookie, ARG1(0,STR), NULL, SMP_T_STR, SMP_USE_HRQHV }, { "req.cook_cnt", smp_fetch_cookie_cnt, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRQHV }, { "req.cook_val", smp_fetch_cookie_val, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRQHV }, { "req.fhdr", smp_fetch_fhdr, ARG2(0,STR,SINT), val_hdr, SMP_T_STR, SMP_USE_HRQHV }, { "req.fhdr_cnt", smp_fetch_fhdr_cnt, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRQHV }, { "req.hdr", smp_fetch_hdr, ARG2(0,STR,SINT), val_hdr, SMP_T_STR, SMP_USE_HRQHV }, { "req.hdr_cnt", smp_fetch_hdr_cnt, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRQHV }, { "req.hdr_ip", smp_fetch_hdr_ip, ARG2(0,STR,SINT), val_hdr, SMP_T_IPV4, SMP_USE_HRQHV }, { "req.hdr_names", smp_fetch_hdr_names, ARG1(0,STR), NULL, SMP_T_STR, SMP_USE_HRQHV }, { "req.hdr_val", smp_fetch_hdr_val, ARG2(0,STR,SINT), val_hdr, SMP_T_SINT, SMP_USE_HRQHV }, /* explicit req.{cook,hdr} are used to force the fetch direction to be response-only */ { "res.cook", smp_fetch_cookie, ARG1(0,STR), NULL, SMP_T_STR, SMP_USE_HRSHV }, { "res.cook_cnt", smp_fetch_cookie_cnt, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRSHV }, { "res.cook_val", smp_fetch_cookie_val, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRSHV }, { "res.fhdr", smp_fetch_fhdr, ARG2(0,STR,SINT), val_hdr, SMP_T_STR, SMP_USE_HRSHV }, { "res.fhdr_cnt", smp_fetch_fhdr_cnt, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRSHV }, { "res.hdr", smp_fetch_hdr, ARG2(0,STR,SINT), val_hdr, SMP_T_STR, SMP_USE_HRSHV }, { "res.hdr_cnt", smp_fetch_hdr_cnt, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRSHV }, { "res.hdr_ip", smp_fetch_hdr_ip, ARG2(0,STR,SINT), val_hdr, SMP_T_IPV4, SMP_USE_HRSHV }, { "res.hdr_names", smp_fetch_hdr_names, ARG1(0,STR), NULL, SMP_T_STR, SMP_USE_HRSHV }, { "res.hdr_val", smp_fetch_hdr_val, ARG2(0,STR,SINT), val_hdr, SMP_T_SINT, SMP_USE_HRSHV }, /* scook is valid only on the response and is used for ACL compatibility */ { "scook", smp_fetch_cookie, ARG1(0,STR), NULL, SMP_T_STR, SMP_USE_HRSHV }, { "scook_cnt", smp_fetch_cookie_cnt, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRSHV }, { "scook_val", smp_fetch_cookie_val, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRSHV }, { "set-cookie", smp_fetch_cookie, ARG1(0,STR), NULL, SMP_T_STR, SMP_USE_HRSHV }, /* deprecated */ /* shdr is valid only on the response and is used for ACL compatibility */ { "shdr", smp_fetch_hdr, ARG2(0,STR,SINT), val_hdr, SMP_T_STR, SMP_USE_HRSHV }, { "shdr_cnt", smp_fetch_hdr_cnt, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_HRSHV }, { "shdr_ip", smp_fetch_hdr_ip, ARG2(0,STR,SINT), val_hdr, SMP_T_IPV4, SMP_USE_HRSHV }, { "shdr_val", smp_fetch_hdr_val, ARG2(0,STR,SINT), val_hdr, SMP_T_SINT, SMP_USE_HRSHV }, { "status", smp_fetch_stcode, 0, NULL, SMP_T_SINT, SMP_USE_HRSHP }, { "url", smp_fetch_url, 0, NULL, SMP_T_STR, SMP_USE_HRQHV }, { "url32", smp_fetch_url32, 0, NULL, SMP_T_SINT, SMP_USE_HRQHV }, { "url32+src", smp_fetch_url32_src, 0, NULL, SMP_T_BIN, SMP_USE_HRQHV }, { "url_ip", smp_fetch_url_ip, 0, NULL, SMP_T_IPV4, SMP_USE_HRQHV }, { "url_port", smp_fetch_url_port, 0, NULL, SMP_T_SINT, SMP_USE_HRQHV }, { "url_param", smp_fetch_url_param, ARG2(0,STR,STR), NULL, SMP_T_STR, SMP_USE_HRQHV }, { "urlp" , smp_fetch_url_param, ARG2(0,STR,STR), NULL, SMP_T_STR, SMP_USE_HRQHV }, { "urlp_val", smp_fetch_url_param_val, ARG2(0,STR,STR), NULL, SMP_T_SINT, SMP_USE_HRQHV }, { /* END */ }, }}; /************************************************************************/ /* All supported converter keywords must be declared here. */ /************************************************************************/ /* Note: must not be declared as its list will be overwritten */ static struct sample_conv_kw_list sample_conv_kws = {ILH, { { "http_date", sample_conv_http_date, ARG1(0,SINT), NULL, SMP_T_SINT, SMP_T_STR}, { "language", sample_conv_q_prefered, ARG2(1,STR,STR), NULL, SMP_T_STR, SMP_T_STR}, { "capture-req", smp_conv_req_capture, ARG1(1,SINT), NULL, SMP_T_STR, SMP_T_STR}, { "capture-res", smp_conv_res_capture, ARG1(1,SINT), NULL, SMP_T_STR, SMP_T_STR}, { "url_dec", sample_conv_url_dec, 0, NULL, SMP_T_STR, SMP_T_STR}, { NULL, NULL, 0, 0, 0 }, }}; /************************************************************************/ /* All supported http-request action keywords must be declared here. */ /************************************************************************/ struct action_kw_list http_req_actions = { .kw = { { "capture", parse_http_req_capture }, { "set-method", parse_set_req_line }, { "set-path", parse_set_req_line }, { "set-query", parse_set_req_line }, { "set-uri", parse_set_req_line }, { NULL, NULL } } }; struct action_kw_list http_res_actions = { .kw = { { "capture", parse_http_res_capture }, { "set-status", parse_http_set_status }, { NULL, NULL } } }; __attribute__((constructor)) static void __http_protocol_init(void) { acl_register_keywords(&acl_kws); sample_register_fetches(&sample_fetch_keywords); sample_register_convs(&sample_conv_kws); http_req_keywords_register(&http_req_actions); http_res_keywords_register(&http_res_actions); } /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */