/* * include/proto/buffers.h * Buffer management definitions, macros and inline functions. * * Copyright (C) 2000-2012 Willy Tarreau - w@1wt.eu * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation, version 2.1 * exclusively. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef _PROTO_BUFFERS_H #define _PROTO_BUFFERS_H #include #include #include #include #include #include #include #include #include extern struct pool_head *pool2_buffer; /* perform minimal intializations, report 0 in case of error, 1 if OK. */ int init_buffer(); /* SI-to-buffer functions : buffer_{get,put}_{char,block,string,chunk} */ int bo_inject(struct buffer *buf, const char *msg, int len); int bi_putblk(struct buffer *buf, const char *str, int len); int bi_putchr(struct buffer *buf, char c); int bo_getline(struct buffer *buf, char *str, int len); int bo_getblk(struct buffer *buf, char *blk, int len, int offset); int buffer_replace2(struct buffer *b, char *pos, char *end, const char *str, int len); int buffer_insert_line2(struct buffer *b, char *pos, const char *str, int len); void buffer_dump(FILE *o, struct buffer *b, int from, int to); void buffer_bounce_realign(struct buffer *buf); unsigned long long buffer_forward(struct buffer *buf, unsigned long long bytes); /* Initialize all fields in the buffer. The BF_OUT_EMPTY flags is set. */ static inline void buffer_init(struct buffer *buf) { buf->o = 0; buf->i = 0; buf->to_forward = 0; buf->total = 0; buf->pipe = NULL; buf->analysers = 0; buf->cons = NULL; buf->flags = BF_OUT_EMPTY; buf->p = buf->data; } /*****************************************************************/ /* These functions are used to compute various buffer area sizes */ /*****************************************************************/ /* Returns an absolute pointer for a position relative to the current buffer's * pointer. It is written so that it is optimal when is a const. It is * written as a macro instead of an inline function so that the compiler knows * when it can optimize out the sign test on when passed an unsigned int. */ #define b_ptr(b, ofs) \ ({ \ char *__ret = (b)->p + (ofs); \ if ((ofs) > 0 && __ret >= (b)->data + (b)->size) \ __ret -= (b)->size; \ else if ((ofs) < 0 && __ret < (b)->data) \ __ret += (b)->size; \ __ret; \ }) /* Returns the start of the input data in a buffer */ static inline char *bi_ptr(const struct buffer *b) { return b->p; } /* Returns the end of the input data in a buffer (pointer to next * insertion point). */ static inline char *bi_end(const struct buffer *b) { char *ret = b->p + b->i; if (ret >= b->data + b->size) ret -= b->size; return ret; } /* Returns the amount of input data that can contiguously be read at once */ static inline int bi_contig_data(const struct buffer *b) { int data = b->data + b->size - b->p; if (data > b->i) data = b->i; return data; } /* Returns the start of the output data in a buffer */ static inline char *bo_ptr(const struct buffer *b) { char *ret = b->p - b->o; if (ret < b->data) ret += b->size; return ret; } /* Returns the end of the output data in a buffer */ static inline char *bo_end(const struct buffer *b) { return b->p; } /* Returns the amount of output data that can contiguously be read at once */ static inline int bo_contig_data(const struct buffer *b) { char *beg = b->p - b->o; if (beg < b->data) return b->data - beg; return b->o; } /* Return the buffer's length in bytes by summing the input and the output */ static inline int buffer_len(const struct buffer *buf) { return buf->i + buf->o; } /* Return non-zero only if the buffer is not empty */ static inline int buffer_not_empty(const struct buffer *buf) { return buf->i | buf->o; } /* Return non-zero only if the buffer is empty */ static inline int buffer_empty(const struct buffer *buf) { return !buffer_not_empty(buf); } /* Normalizes a pointer after a subtract */ static inline char *buffer_wrap_sub(const struct buffer *buf, char *ptr) { if (ptr < buf->data) ptr += buf->size; return ptr; } /* Normalizes a pointer after an addition */ static inline char *buffer_wrap_add(const struct buffer *buf, char *ptr) { if (ptr - buf->size >= buf->data) ptr -= buf->size; return ptr; } /* Return the number of reserved bytes in the buffer, which ensures that once * all pending data are forwarded, the buffer still has global.tune.maxrewrite * bytes free. The result is between 0 and global.maxrewrite, which is itself * smaller than any buf->size. */ static inline int buffer_reserved(const struct buffer *buf) { int ret = global.tune.maxrewrite - buf->to_forward - buf->o; if (buf->to_forward == BUF_INFINITE_FORWARD) return 0; if (ret <= 0) return 0; return ret; } /* Return the max number of bytes the buffer can contain so that once all the * pending bytes are forwarded, the buffer still has global.tune.maxrewrite * bytes free. The result sits between buf->size - maxrewrite and buf->size. */ static inline int buffer_max_len(const struct buffer *buf) { return buf->size - buffer_reserved(buf); } /* Returns non-zero if the buffer input is considered full. The reserved space * is taken into account if ->to_forward indicates that an end of transfer is * close to happen. The test is optimized to avoid as many operations as * possible for the fast case and to be used as an "if" condition. */ static inline int bi_full(const struct buffer *b) { int rem = b->size; rem -= b->o; rem -= b->i; if (!rem) return 1; /* buffer already full */ if (b->to_forward >= b->size || (BUF_INFINITE_FORWARD < MAX_RANGE(typeof(b->size)) && // just there to ensure gcc b->to_forward == BUF_INFINITE_FORWARD)) // avoids the useless second return 0; // test whenever possible rem -= global.tune.maxrewrite; rem += b->o; rem += b->to_forward; return rem <= 0; } /* Returns the amount of space available at the input of the buffer, taking the * reserved space into account if ->to_forward indicates that an end of transfer * is close to happen. The test is optimized to avoid as many operations as * possible for the fast case. */ static inline int bi_avail(const struct buffer *b) { int rem = b->size; int rem2; rem -= b->o; rem -= b->i; if (!rem) return rem; /* buffer already full */ if (b->to_forward >= b->size || (BUF_INFINITE_FORWARD < MAX_RANGE(typeof(b->size)) && // just there to ensure gcc b->to_forward == BUF_INFINITE_FORWARD)) // avoids the useless second return rem; // test whenever possible rem2 = rem - global.tune.maxrewrite; rem2 += b->o; rem2 += b->to_forward; if (rem > rem2) rem = rem2; if (rem > 0) return rem; return 0; } /* Return the maximum amount of bytes that can be written into the buffer, * including reserved space which may be overwritten. */ static inline int buffer_total_space(const struct buffer *buf) { return buf->size - buffer_len(buf); } /* Returns the number of contiguous bytes between and +, * and enforces a limit on buf->data + buf->size. must be within the * buffer. */ static inline int buffer_contig_area(const struct buffer *buf, const char *start, int count) { if (count > buf->data - start + buf->size) count = buf->data - start + buf->size; return count; } /* Return the amount of bytes that can be written into the buffer at once, * including reserved space which may be overwritten. */ static inline int buffer_contig_space(const struct buffer *buf) { const char *left, *right; if (buf->data + buf->o <= buf->p) right = buf->data + buf->size; else right = buf->p + buf->size - buf->o; left = buffer_wrap_add(buf, buf->p + buf->i); return right - left; } /* Advances the buffer by bytes, which means that the buffer * pointer advances, and that as many bytes from in are transferred * to out. The caller is responsible for ensuring that adv is always * smaller than or equal to b->i. The BF_OUT_EMPTY flag is updated. */ static inline void b_adv(struct buffer *b, unsigned int adv) { b->i -= adv; b->o += adv; if (b->o) b->flags &= ~BF_OUT_EMPTY; b->p = b_ptr(b, adv); } /* Return the amount of bytes that can be written into the buffer at once, * excluding the amount of reserved space passed in , which is * preserved. */ static inline int buffer_contig_space_with_res(const struct buffer *buf, int res) { /* Proceed differently if the buffer is full, partially used or empty. * The hard situation is when it's partially used and either data or * reserved space wraps at the end. */ int spare = buf->size - res; if (buffer_len(buf) >= spare) spare = 0; else if (buffer_len(buf)) { spare = buffer_contig_space(buf) - res; if (spare < 0) spare = 0; } return spare; } /* Return the amount of bytes that can be written into the buffer at once, * excluding reserved space, which is preserved. */ static inline int buffer_contig_space_res(const struct buffer *buf) { return buffer_contig_space_with_res(buf, buffer_reserved(buf)); } /* Normalizes a pointer which is supposed to be relative to the beginning of a * buffer, so that wrapping is correctly handled. The intent is to use this * when increasing a pointer. Note that the wrapping test is only performed * once, so the original pointer must be between ->data-size and ->data+2*size-1, * otherwise an invalid pointer might be returned. */ static inline const char *buffer_pointer(const struct buffer *buf, const char *ptr) { if (ptr < buf->data) ptr += buf->size; else if (ptr - buf->size >= buf->data) ptr -= buf->size; return ptr; } /* Returns the distance between two pointers, taking into account the ability * to wrap around the buffer's end. */ static inline int buffer_count(const struct buffer *buf, const char *from, const char *to) { int count = to - from; if (count < 0) count += buf->size; return count; } /* returns the amount of pending bytes in the buffer. It is the amount of bytes * that is not scheduled to be sent. */ static inline int buffer_pending(const struct buffer *buf) { return buf->i; } /* Returns the size of the working area which the caller knows ends at . * If equals buf->r (modulo size), then it means that the free area which * follows is part of the working area. Otherwise, the working area stops at * . It always starts at buf->p. The work area includes the * reserved area. */ static inline int buffer_work_area(const struct buffer *buf, const char *end) { end = buffer_pointer(buf, end); if (end == buffer_wrap_add(buf, buf->p + buf->i)) /* pointer exactly at end, lets push forwards */ end = buffer_wrap_sub(buf, buf->p - buf->o); return buffer_count(buf, buf->p, end); } /* Return 1 if the buffer has less than 1/4 of its capacity free, otherwise 0 */ static inline int buffer_almost_full(const struct buffer *buf) { if (buffer_total_space(buf) < buf->size / 4) return 1; return 0; } /* Returns true if the buffer's input is already closed */ static inline int buffer_input_closed(struct buffer *buf) { return ((buf->flags & BF_SHUTR) != 0); } /* Returns true if the buffer's output is already closed */ static inline int buffer_output_closed(struct buffer *buf) { return ((buf->flags & BF_SHUTW) != 0); } /* Check buffer timeouts, and set the corresponding flags. The * likely/unlikely have been optimized for fastest normal path. * The read/write timeouts are not set if there was activity on the buffer. * That way, we don't have to update the timeout on every I/O. Note that the * analyser timeout is always checked. */ static inline void buffer_check_timeouts(struct buffer *b) { if (likely(!(b->flags & (BF_SHUTR|BF_READ_TIMEOUT|BF_READ_ACTIVITY|BF_READ_NOEXP))) && unlikely(tick_is_expired(b->rex, now_ms))) b->flags |= BF_READ_TIMEOUT; if (likely(!(b->flags & (BF_SHUTW|BF_WRITE_TIMEOUT|BF_WRITE_ACTIVITY))) && unlikely(tick_is_expired(b->wex, now_ms))) b->flags |= BF_WRITE_TIMEOUT; if (likely(!(b->flags & BF_ANA_TIMEOUT)) && unlikely(tick_is_expired(b->analyse_exp, now_ms))) b->flags |= BF_ANA_TIMEOUT; } /* Schedule all remaining buffer data to be sent. ->o is not touched if it * already covers those data. That permits doing a flush even after a forward, * although not recommended. */ static inline void buffer_flush(struct buffer *buf) { buf->p = buffer_wrap_add(buf, buf->p + buf->i); buf->o += buf->i; buf->i = 0; if (buf->o) buf->flags &= ~BF_OUT_EMPTY; } /* Erase any content from buffer and adjusts flags accordingly. Note * that any spliced data is not affected since we may not have any access to * it. */ static inline void buffer_erase(struct buffer *buf) { buf->o = 0; buf->i = 0; buf->to_forward = 0; buf->p = buf->data; buf->flags &= ~(BF_FULL | BF_OUT_EMPTY); if (!buf->pipe) buf->flags |= BF_OUT_EMPTY; } /* Cut the "tail" of the buffer, which means strip it to the length of unsent * data only, and kill any remaining unsent data. Any scheduled forwarding is * stopped. This is mainly to be used to send error messages after existing * data. */ static inline void bi_erase(struct buffer *buf) { if (!buf->o) return buffer_erase(buf); buf->to_forward = 0; if (!buf->i) return; buf->i = 0; buf->flags &= ~BF_FULL; if (bi_full(buf)) buf->flags |= BF_FULL; } /* Cut the first pending bytes in a contiguous buffer. It is illegal to * call this function with remaining data waiting to be sent (o > 0). The * caller must ensure that is smaller than the actual buffer's length. * This is mainly used to remove empty lines at the beginning of a request * or a response. */ static inline void bi_fast_delete(struct buffer *buf, int n) { buf->i -= n; buf->p += n; } /* marks the buffer as "shutdown" ASAP for reads */ static inline void buffer_shutr_now(struct buffer *buf) { buf->flags |= BF_SHUTR_NOW; } /* marks the buffer as "shutdown" ASAP for writes */ static inline void buffer_shutw_now(struct buffer *buf) { buf->flags |= BF_SHUTW_NOW; } /* marks the buffer as "shutdown" ASAP in both directions */ static inline void buffer_abort(struct buffer *buf) { buf->flags |= BF_SHUTR_NOW | BF_SHUTW_NOW; buf->flags &= ~BF_AUTO_CONNECT; } /* Installs as a hijacker on the buffer for session . The hijack * flag is set, and the function called once. The function is responsible for * clearing the hijack bit. It is possible that the function clears the flag * during this first call. */ static inline void buffer_install_hijacker(struct session *s, struct buffer *b, void (*func)(struct session *, struct buffer *)) { b->hijacker = func; b->flags |= BF_HIJACK; func(s, b); } /* Releases the buffer from hijacking mode. Often used by the hijack function */ static inline void buffer_stop_hijack(struct buffer *buf) { buf->flags &= ~BF_HIJACK; } /* allow the consumer to try to establish a new connection. */ static inline void buffer_auto_connect(struct buffer *buf) { buf->flags |= BF_AUTO_CONNECT; } /* prevent the consumer from trying to establish a new connection, and also * disable auto shutdown forwarding. */ static inline void buffer_dont_connect(struct buffer *buf) { buf->flags &= ~(BF_AUTO_CONNECT|BF_AUTO_CLOSE); } /* allow the producer to forward shutdown requests */ static inline void buffer_auto_close(struct buffer *buf) { buf->flags |= BF_AUTO_CLOSE; } /* prevent the producer from forwarding shutdown requests */ static inline void buffer_dont_close(struct buffer *buf) { buf->flags &= ~BF_AUTO_CLOSE; } /* allow the producer to read / poll the input */ static inline void buffer_auto_read(struct buffer *buf) { buf->flags &= ~BF_DONT_READ; } /* prevent the producer from read / poll the input */ static inline void buffer_dont_read(struct buffer *buf) { buf->flags |= BF_DONT_READ; } /* * Tries to realign the given buffer, and returns how many bytes can be written * there at once without overwriting anything. */ static inline int buffer_realign(struct buffer *buf) { if (!(buf->i | buf->o)) { /* let's realign the buffer to optimize I/O */ buf->p = buf->data; } return buffer_contig_space(buf); } /* * Advance the buffer's read pointer by bytes. This is useful when data * have been read directly from the buffer. It is illegal to call this function * with causing a wrapping at the end of the buffer. It's the caller's * responsibility to ensure that is never larger than buf->o. */ static inline void bo_skip(struct buffer *buf, int len) { buf->o -= len; if (!buf->o && !buf->pipe) buf->flags |= BF_OUT_EMPTY; if (buffer_len(buf) == 0) buf->p = buf->data; if (!bi_full(buf)) buf->flags &= ~BF_FULL; /* notify that some data was written to the SI from the buffer */ buf->flags |= BF_WRITE_PARTIAL; } /* Tries to copy chunk into buffer after length controls. * The ->o and to_forward pointers are updated. If the buffer's input is * closed, -2 is returned. If the block is too large for this buffer, -3 is * returned. If there is not enough room left in the buffer, -1 is returned. * Otherwise the number of bytes copied is returned (0 being a valid number). * Buffer flags FULL, EMPTY and READ_PARTIAL are updated if some data can be * transferred. The chunk's length is updated with the number of bytes sent. */ static inline int bi_putchk(struct buffer *buf, struct chunk *chunk) { int ret; ret = bi_putblk(buf, chunk->str, chunk->len); if (ret > 0) chunk->len -= ret; return ret; } /* Tries to copy string at once into buffer after length controls. * The ->o and to_forward pointers are updated. If the buffer's input is * closed, -2 is returned. If the block is too large for this buffer, -3 is * returned. If there is not enough room left in the buffer, -1 is returned. * Otherwise the number of bytes copied is returned (0 being a valid number). * Buffer flags FULL, EMPTY and READ_PARTIAL are updated if some data can be * transferred. */ static inline int bi_putstr(struct buffer *buf, const char *str) { return bi_putblk(buf, str, strlen(str)); } /* * Return one char from the buffer. If the buffer is empty and closed, return -2. * If the buffer is just empty, return -1. The buffer's pointer is not advanced, * it's up to the caller to call bo_skip(buf, 1) when it has consumed the char. * Also note that this function respects the ->o limit. */ static inline int bo_getchr(struct buffer *buf) { /* closed or empty + imminent close = -2; empty = -1 */ if (unlikely(buf->flags & (BF_OUT_EMPTY|BF_SHUTW))) { if (buf->flags & (BF_SHUTW|BF_SHUTW_NOW)) return -2; return -1; } return *buffer_wrap_sub(buf, buf->p - buf->o); } /* This function writes the string at position which must be in * buffer , and moves just after the end of . 's parameters * (l, r, lr) are updated to be valid after the shift. the shift value * (positive or negative) is returned. If there's no space left, the move is * not done. The function does not adjust ->o nor BF_OUT_EMPTY because * it does not make sense to use it on data scheduled to be sent. */ static inline int buffer_replace(struct buffer *b, char *pos, char *end, const char *str) { return buffer_replace2(b, pos, end, str, strlen(str)); } /* * * Functions below are used to manage chunks * */ static inline void chunk_init(struct chunk *chk, char *str, size_t size) { chk->str = str; chk->len = 0; chk->size = size; } /* report 0 in case of error, 1 if OK. */ static inline int chunk_initlen(struct chunk *chk, char *str, size_t size, int len) { if (size && len > size) return 0; chk->str = str; chk->len = len; chk->size = size; return 1; } static inline void chunk_initstr(struct chunk *chk, char *str) { chk->str = str; chk->len = strlen(str); chk->size = 0; /* mark it read-only */ } static inline int chunk_strcpy(struct chunk *chk, const char *str) { size_t len; len = strlen(str); if (unlikely(len > chk->size)) return 0; chk->len = len; memcpy(chk->str, str, len); return 1; } int chunk_printf(struct chunk *chk, const char *fmt, ...) __attribute__ ((format(printf, 2, 3))); int chunk_htmlencode(struct chunk *dst, struct chunk *src); int chunk_asciiencode(struct chunk *dst, struct chunk *src, char qc); static inline void chunk_reset(struct chunk *chk) { chk->str = NULL; chk->len = -1; chk->size = 0; } static inline void chunk_destroy(struct chunk *chk) { if (!chk->size) return; if (chk->str) free(chk->str); chunk_reset(chk); } /* * frees the destination chunk if already allocated, allocates a new string, * and copies the source into it. The pointer to the destination string is * returned, or NULL if the allocation fails or if any pointer is NULL.. */ static inline char *chunk_dup(struct chunk *dst, const struct chunk *src) { if (!dst || !src || !src->str) return NULL; if (dst->str) free(dst->str); dst->len = src->len; dst->str = (char *)malloc(dst->len); memcpy(dst->str, src->str, dst->len); return dst->str; } #endif /* _PROTO_BUFFERS_H */ /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */