/* * Time calculation functions. * * Copyright 2000-2011 Willy Tarreau * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include THREAD_LOCAL unsigned int now_ms; /* internal date in milliseconds (may wrap) */ THREAD_LOCAL unsigned int samp_time; /* total elapsed time over current sample */ THREAD_LOCAL unsigned int idle_time; /* total idle time over current sample */ THREAD_LOCAL struct timeval now; /* internal date is a monotonic function of real clock */ THREAD_LOCAL struct timeval date; /* the real current date */ struct timeval start_date; /* the process's start date */ THREAD_LOCAL struct timeval before_poll; /* system date before calling poll() */ THREAD_LOCAL struct timeval after_poll; /* system date after leaving poll() */ static unsigned long long now_offset; /* global offset between system time and global time */ volatile unsigned long long global_now; /* common monotonic date between all threads (32:32) */ volatile unsigned int global_now_ms; /* common monotonic date in milliseconds (may wrap) */ static THREAD_LOCAL unsigned int iso_time_sec; /* last iso time value for this thread */ static THREAD_LOCAL char iso_time_str[34]; /* ISO time representation of gettimeofday() */ /* * adds ms to , set the result to and returns a pointer */ struct timeval *_tv_ms_add(struct timeval *tv, const struct timeval *from, int ms) { tv->tv_usec = from->tv_usec + (ms % 1000) * 1000; tv->tv_sec = from->tv_sec + (ms / 1000); while (tv->tv_usec >= 1000000) { tv->tv_usec -= 1000000; tv->tv_sec++; } return tv; } /* * compares and modulo 1ms: returns 0 if equal, -1 if tv1 < tv2, 1 if tv1 > tv2 * Must not be used when either argument is eternity. Use tv_ms_cmp2() for that. */ int _tv_ms_cmp(const struct timeval *tv1, const struct timeval *tv2) { return __tv_ms_cmp(tv1, tv2); } /* * compares and modulo 1 ms: returns 0 if equal, -1 if tv1 < tv2, 1 if tv1 > tv2, * assuming that TV_ETERNITY is greater than everything. */ int _tv_ms_cmp2(const struct timeval *tv1, const struct timeval *tv2) { return __tv_ms_cmp2(tv1, tv2); } /* * compares and modulo 1 ms: returns 1 if tv1 <= tv2, 0 if tv1 > tv2, * assuming that TV_ETERNITY is greater than everything. Returns 0 if tv1 is * TV_ETERNITY, and always assumes that tv2 != TV_ETERNITY. Designed to replace * occurrences of (tv_ms_cmp2(tv,now) <= 0). */ int _tv_ms_le2(const struct timeval *tv1, const struct timeval *tv2) { return __tv_ms_le2(tv1, tv2); } /* * returns the remaining time between tv1=now and event=tv2 * if tv2 is passed, 0 is returned. * Must not be used when either argument is eternity. */ unsigned long _tv_ms_remain(const struct timeval *tv1, const struct timeval *tv2) { return __tv_ms_remain(tv1, tv2); } /* * returns the remaining time between tv1=now and event=tv2 * if tv2 is passed, 0 is returned. * Returns TIME_ETERNITY if tv2 is eternity. */ unsigned long _tv_ms_remain2(const struct timeval *tv1, const struct timeval *tv2) { if (tv_iseternity(tv2)) return TIME_ETERNITY; return __tv_ms_remain(tv1, tv2); } /* * Returns the time in ms elapsed between tv1 and tv2, assuming that tv1<=tv2. * Must not be used when either argument is eternity. */ unsigned long _tv_ms_elapsed(const struct timeval *tv1, const struct timeval *tv2) { return __tv_ms_elapsed(tv1, tv2); } /* * adds to , set the result to and returns a pointer */ struct timeval *_tv_add(struct timeval *tv, const struct timeval *from, const struct timeval *inc) { return __tv_add(tv, from, inc); } /* * If is set, then add it to and set the result to , then * return 1, otherwise return 0. It is meant to be used in if conditions. */ int _tv_add_ifset(struct timeval *tv, const struct timeval *from, const struct timeval *inc) { return __tv_add_ifset(tv, from, inc); } /* * Computes the remaining time between tv1=now and event=tv2. if tv2 is passed, * 0 is returned. The result is stored into tv. */ struct timeval *_tv_remain(const struct timeval *tv1, const struct timeval *tv2, struct timeval *tv) { return __tv_remain(tv1, tv2, tv); } /* * Computes the remaining time between tv1=now and event=tv2. if tv2 is passed, * 0 is returned. The result is stored into tv. Returns ETERNITY if tv2 is * eternity. */ struct timeval *_tv_remain2(const struct timeval *tv1, const struct timeval *tv2, struct timeval *tv) { return __tv_remain2(tv1, tv2, tv); } /* tv_isle: compares and : returns 1 if tv1 <= tv2, otherwise 0 */ int _tv_isle(const struct timeval *tv1, const struct timeval *tv2) { return __tv_isle(tv1, tv2); } /* tv_isgt: compares and : returns 1 if tv1 > tv2, otherwise 0 */ int _tv_isgt(const struct timeval *tv1, const struct timeval *tv2) { return __tv_isgt(tv1, tv2); } /* tv_update_date: sets to system time, and sets to something as * close as possible to real time, following a monotonic function. The main * principle consists in detecting backwards and forwards time jumps and adjust * an offset to correct them. This function should be called once after each * poll, and never farther apart than MAX_DELAY_MS*2. The poll's timeout should * be passed in , and the return value in (a non-zero * value means that we have not expired the timeout). * * tv_init_process_date() must have been called once first, and * tv_init_thread_date() must also have been called once for each thread. * * An offset is used to adjust the current time (date), to figure a monotonic * local time (now). The offset is not critical, as it is only updated after a * clock jump is detected. From this point all threads will apply it to their * locally measured time, and will then agree around a common monotonic * global_now value that serves to further refine their local time. As it is * not possible to atomically update a timeval, both global_now and the * now_offset values are instead stored as 64-bit integers made of two 32 bit * values for the tv_sec and tv_usec parts. The offset is made of two signed * ints so that the clock can be adjusted in the two directions. */ void tv_update_date(int max_wait, int interrupted) { struct timeval min_deadline, max_deadline, tmp_now; unsigned int old_now_ms; unsigned long long old_now; unsigned long long new_now; ullong ofs, ofs_new; uint sec_ofs, usec_ofs; gettimeofday(&date, NULL); /* compute the minimum and maximum local date we may have reached based * on our past date and the associated timeout. There are three possible * extremities: * - the new date cannot be older than before_poll * - if not interrupted, the new date cannot be older than * before_poll+max_wait * - in any case the new date cannot be newer than * before_poll+max_wait+some margin (100ms used here). * In case of violation, we'll ignore the current date and instead * restart from the last date we knew. */ _tv_ms_add(&min_deadline, &before_poll, max_wait); _tv_ms_add(&max_deadline, &before_poll, max_wait + 100); ofs = HA_ATOMIC_LOAD(&now_offset); if (unlikely(__tv_islt(&date, &before_poll) || // big jump backwards (!interrupted && __tv_islt(&date, &min_deadline)) || // small jump backwards __tv_islt(&max_deadline, &date))) { // big jump forwards if (!interrupted) _tv_ms_add(&now, &now, max_wait); } else { /* The date is still within expectations. Let's apply the * now_offset to the system date. Note: ofs if made of two * independent signed ints. */ now.tv_sec = date.tv_sec + (int)(ofs >> 32); // note: may be positive or negative now.tv_usec = date.tv_usec + (int)ofs; // note: may be positive or negative if ((int)now.tv_usec < 0) { now.tv_usec += 1000000; now.tv_sec -= 1; } else if (now.tv_usec >= 1000000) { now.tv_usec -= 1000000; now.tv_sec += 1; } } /* now that we have bounded the local time, let's check if it's * realistic regarding the global date, which only moves forward, * otherwise catch up. */ old_now = global_now; old_now_ms = global_now_ms; do { tmp_now.tv_sec = (unsigned int)(old_now >> 32); tmp_now.tv_usec = old_now & 0xFFFFFFFFU; if (__tv_islt(&now, &tmp_now)) now = tmp_now; /* now is expected to be the most accurate date, * equal to or newer. */ new_now = ((ullong)now.tv_sec << 32) + (uint)now.tv_usec; now_ms = __tv_to_ms(&now); /* let's try to update the global (both in timeval * and ms forms) or loop again. */ } while (((new_now != old_now && !_HA_ATOMIC_CAS(&global_now, &old_now, new_now)) || (now_ms != old_now_ms && !_HA_ATOMIC_CAS(&global_now_ms, &old_now_ms, now_ms))) && __ha_cpu_relax()); /* and are now updated to the last value of global_now * and global_now_ms, which were also monotonically updated. We can * compute the latest offset, we don't care who writes it last, the * variations will not break the monotonic property. */ sec_ofs = now.tv_sec - date.tv_sec; usec_ofs = now.tv_usec - date.tv_usec; if ((int)usec_ofs < 0) { usec_ofs += 1000000; sec_ofs -= 1; } ofs_new = ((ullong)sec_ofs << 32) + usec_ofs; if (ofs_new != ofs) HA_ATOMIC_STORE(&now_offset, ofs_new); } /* must be called once at boot to initialize some global variables */ void tv_init_process_date() { now_offset = 0; gettimeofday(&date, NULL); now = after_poll = before_poll = date; global_now = ((ullong)date.tv_sec << 32) + (uint)date.tv_usec; global_now_ms = now.tv_sec * 1000 + now.tv_usec / 1000; samp_time = idle_time = 0; ti->idle_pct = 100; tv_update_date(0, 1); } /* must be called once per thread to initialize their thread-local variables. * Note that other threads might also be initializing and running in parallel. */ void tv_init_thread_date() { ullong old_now; gettimeofday(&date, NULL); after_poll = before_poll = date; old_now = _HA_ATOMIC_LOAD(&global_now); now.tv_sec = old_now >> 32; now.tv_usec = (uint)old_now; samp_time = idle_time = 0; ti->idle_pct = 100; tv_update_date(0, 1); } /* returns the current date as returned by gettimeofday() in ISO+microsecond * format. It uses a thread-local static variable that the reader can consume * for as long as it wants until next call. Thus, do not call it from a signal * handler. If is non-0, a trailing space will be added. It will always * return exactly 32 or 33 characters (depending on padding) and will always be * zero-terminated, thus it will always fit into a 34 bytes buffer. * This also always include the local timezone (in +/-HH:mm format) . */ char *timeofday_as_iso_us(int pad) { struct timeval new_date; struct tm tm; const char *offset; char c; gettimeofday(&new_date, NULL); if (new_date.tv_sec != iso_time_sec || !new_date.tv_sec) { get_localtime(new_date.tv_sec, &tm); offset = get_gmt_offset(new_date.tv_sec, &tm); if (unlikely(strftime(iso_time_str, sizeof(iso_time_str), "%Y-%m-%dT%H:%M:%S.000000+00:00", &tm) != 32)) strcpy(iso_time_str, "YYYY-mm-ddTHH:MM:SS.000000-00:00"); // make the failure visible but respect format. iso_time_str[26] = offset[0]; iso_time_str[27] = offset[1]; iso_time_str[28] = offset[2]; iso_time_str[30] = offset[3]; iso_time_str[31] = offset[4]; iso_time_sec = new_date.tv_sec; } /* utoa_pad adds a trailing 0 so we save the char for restore */ c = iso_time_str[26]; utoa_pad(new_date.tv_usec, iso_time_str + 20, 7); iso_time_str[26] = c; if (pad) { iso_time_str[32] = ' '; iso_time_str[33] = 0; } return iso_time_str; } /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */