/* * HTTP protocol analyzer * * Copyright 2000-2009 Willy Tarreau * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include const char HTTP_100[] = "HTTP/1.1 100 Continue\r\n\r\n"; const struct chunk http_100_chunk = { .str = (char *)&HTTP_100, .len = sizeof(HTTP_100)-1 }; /* This is used by remote monitoring */ const char HTTP_200[] = "HTTP/1.0 200 OK\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

200 OK

\nHAProxy: service ready.\n\n"; const struct chunk http_200_chunk = { .str = (char *)&HTTP_200, .len = sizeof(HTTP_200)-1 }; const char *HTTP_301 = "HTTP/1.1 301 Moved Permanently\r\n" "Cache-Control: no-cache\r\n" "Content-length: 0\r\n" "Connection: close\r\n" "Location: "; /* not terminated since it will be concatenated with the URL */ const char *HTTP_302 = "HTTP/1.1 302 Found\r\n" "Cache-Control: no-cache\r\n" "Content-length: 0\r\n" "Connection: close\r\n" "Location: "; /* not terminated since it will be concatenated with the URL */ /* same as 302 except that the browser MUST retry with the GET method */ const char *HTTP_303 = "HTTP/1.1 303 See Other\r\n" "Cache-Control: no-cache\r\n" "Content-length: 0\r\n" "Connection: close\r\n" "Location: "; /* not terminated since it will be concatenated with the URL */ /* Warning: this one is an sprintf() fmt string, with as its only argument */ const char *HTTP_401_fmt = "HTTP/1.0 401 Unauthorized\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "WWW-Authenticate: Basic realm=\"%s\"\r\n" "\r\n" "

401 Unauthorized

\nYou need a valid user and password to access this content.\n\n"; const int http_err_codes[HTTP_ERR_SIZE] = { [HTTP_ERR_400] = 400, [HTTP_ERR_403] = 403, [HTTP_ERR_408] = 408, [HTTP_ERR_500] = 500, [HTTP_ERR_502] = 502, [HTTP_ERR_503] = 503, [HTTP_ERR_504] = 504, }; static const char *http_err_msgs[HTTP_ERR_SIZE] = { [HTTP_ERR_400] = "HTTP/1.0 400 Bad request\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

400 Bad request

\nYour browser sent an invalid request.\n\n", [HTTP_ERR_403] = "HTTP/1.0 403 Forbidden\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

403 Forbidden

\nRequest forbidden by administrative rules.\n\n", [HTTP_ERR_408] = "HTTP/1.0 408 Request Time-out\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

408 Request Time-out

\nYour browser didn't send a complete request in time.\n\n", [HTTP_ERR_500] = "HTTP/1.0 500 Server Error\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

500 Server Error

\nAn internal server error occured.\n\n", [HTTP_ERR_502] = "HTTP/1.0 502 Bad Gateway\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

502 Bad Gateway

\nThe server returned an invalid or incomplete response.\n\n", [HTTP_ERR_503] = "HTTP/1.0 503 Service Unavailable\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

503 Service Unavailable

\nNo server is available to handle this request.\n\n", [HTTP_ERR_504] = "HTTP/1.0 504 Gateway Time-out\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

504 Gateway Time-out

\nThe server didn't respond in time.\n\n", }; /* We must put the messages here since GCC cannot initialize consts depending * on strlen(). */ struct chunk http_err_chunks[HTTP_ERR_SIZE]; #define FD_SETS_ARE_BITFIELDS #ifdef FD_SETS_ARE_BITFIELDS /* * This map is used with all the FD_* macros to check whether a particular bit * is set or not. Each bit represents an ACSII code. FD_SET() sets those bytes * which should be encoded. When FD_ISSET() returns non-zero, it means that the * byte should be encoded. Be careful to always pass bytes from 0 to 255 * exclusively to the macros. */ fd_set hdr_encode_map[(sizeof(fd_set) > (256/8)) ? 1 : ((256/8) / sizeof(fd_set))]; fd_set url_encode_map[(sizeof(fd_set) > (256/8)) ? 1 : ((256/8) / sizeof(fd_set))]; #else #error "Check if your OS uses bitfields for fd_sets" #endif void init_proto_http() { int i; char *tmp; int msg; for (msg = 0; msg < HTTP_ERR_SIZE; msg++) { if (!http_err_msgs[msg]) { Alert("Internal error: no message defined for HTTP return code %d. Aborting.\n", msg); abort(); } http_err_chunks[msg].str = (char *)http_err_msgs[msg]; http_err_chunks[msg].len = strlen(http_err_msgs[msg]); } /* initialize the log header encoding map : '{|}"#' should be encoded with * '#' as prefix, as well as non-printable characters ( <32 or >= 127 ). * URL encoding only requires '"', '#' to be encoded as well as non- * printable characters above. */ memset(hdr_encode_map, 0, sizeof(hdr_encode_map)); memset(url_encode_map, 0, sizeof(url_encode_map)); for (i = 0; i < 32; i++) { FD_SET(i, hdr_encode_map); FD_SET(i, url_encode_map); } for (i = 127; i < 256; i++) { FD_SET(i, hdr_encode_map); FD_SET(i, url_encode_map); } tmp = "\"#{|}"; while (*tmp) { FD_SET(*tmp, hdr_encode_map); tmp++; } tmp = "\"#"; while (*tmp) { FD_SET(*tmp, url_encode_map); tmp++; } /* memory allocations */ pool2_requri = create_pool("requri", REQURI_LEN, MEM_F_SHARED); pool2_capture = create_pool("capture", CAPTURE_LEN, MEM_F_SHARED); } /* * We have 26 list of methods (1 per first letter), each of which can have * up to 3 entries (2 valid, 1 null). */ struct http_method_desc { http_meth_t meth; int len; const char text[8]; }; const struct http_method_desc http_methods[26][3] = { ['C' - 'A'] = { [0] = { .meth = HTTP_METH_CONNECT , .len=7, .text="CONNECT" }, }, ['D' - 'A'] = { [0] = { .meth = HTTP_METH_DELETE , .len=6, .text="DELETE" }, }, ['G' - 'A'] = { [0] = { .meth = HTTP_METH_GET , .len=3, .text="GET" }, }, ['H' - 'A'] = { [0] = { .meth = HTTP_METH_HEAD , .len=4, .text="HEAD" }, }, ['P' - 'A'] = { [0] = { .meth = HTTP_METH_POST , .len=4, .text="POST" }, [1] = { .meth = HTTP_METH_PUT , .len=3, .text="PUT" }, }, ['T' - 'A'] = { [0] = { .meth = HTTP_METH_TRACE , .len=5, .text="TRACE" }, }, /* rest is empty like this : * [1] = { .meth = HTTP_METH_NONE , .len=0, .text="" }, */ }; /* It is about twice as fast on recent architectures to lookup a byte in a * table than to perform a boolean AND or OR between two tests. Refer to * RFC2616 for those chars. */ const char http_is_spht[256] = { [' '] = 1, ['\t'] = 1, }; const char http_is_crlf[256] = { ['\r'] = 1, ['\n'] = 1, }; const char http_is_lws[256] = { [' '] = 1, ['\t'] = 1, ['\r'] = 1, ['\n'] = 1, }; const char http_is_sep[256] = { ['('] = 1, [')'] = 1, ['<'] = 1, ['>'] = 1, ['@'] = 1, [','] = 1, [';'] = 1, [':'] = 1, ['"'] = 1, ['/'] = 1, ['['] = 1, [']'] = 1, ['{'] = 1, ['}'] = 1, ['?'] = 1, ['='] = 1, [' '] = 1, ['\t'] = 1, ['\\'] = 1, }; const char http_is_ctl[256] = { [0 ... 31] = 1, [127] = 1, }; /* * A token is any ASCII char that is neither a separator nor a CTL char. * Do not overwrite values in assignment since gcc-2.95 will not handle * them correctly. Instead, define every non-CTL char's status. */ const char http_is_token[256] = { [' '] = 0, ['!'] = 1, ['"'] = 0, ['#'] = 1, ['$'] = 1, ['%'] = 1, ['&'] = 1, ['\''] = 1, ['('] = 0, [')'] = 0, ['*'] = 1, ['+'] = 1, [','] = 0, ['-'] = 1, ['.'] = 1, ['/'] = 0, ['0'] = 1, ['1'] = 1, ['2'] = 1, ['3'] = 1, ['4'] = 1, ['5'] = 1, ['6'] = 1, ['7'] = 1, ['8'] = 1, ['9'] = 1, [':'] = 0, [';'] = 0, ['<'] = 0, ['='] = 0, ['>'] = 0, ['?'] = 0, ['@'] = 0, ['A'] = 1, ['B'] = 1, ['C'] = 1, ['D'] = 1, ['E'] = 1, ['F'] = 1, ['G'] = 1, ['H'] = 1, ['I'] = 1, ['J'] = 1, ['K'] = 1, ['L'] = 1, ['M'] = 1, ['N'] = 1, ['O'] = 1, ['P'] = 1, ['Q'] = 1, ['R'] = 1, ['S'] = 1, ['T'] = 1, ['U'] = 1, ['V'] = 1, ['W'] = 1, ['X'] = 1, ['Y'] = 1, ['Z'] = 1, ['['] = 0, ['\\'] = 0, [']'] = 0, ['^'] = 1, ['_'] = 1, ['`'] = 1, ['a'] = 1, ['b'] = 1, ['c'] = 1, ['d'] = 1, ['e'] = 1, ['f'] = 1, ['g'] = 1, ['h'] = 1, ['i'] = 1, ['j'] = 1, ['k'] = 1, ['l'] = 1, ['m'] = 1, ['n'] = 1, ['o'] = 1, ['p'] = 1, ['q'] = 1, ['r'] = 1, ['s'] = 1, ['t'] = 1, ['u'] = 1, ['v'] = 1, ['w'] = 1, ['x'] = 1, ['y'] = 1, ['z'] = 1, ['{'] = 0, ['|'] = 1, ['}'] = 0, ['~'] = 1, }; /* * An http ver_token is any ASCII which can be found in an HTTP version, * which includes 'H', 'T', 'P', '/', '.' and any digit. */ const char http_is_ver_token[256] = { ['.'] = 1, ['/'] = 1, ['0'] = 1, ['1'] = 1, ['2'] = 1, ['3'] = 1, ['4'] = 1, ['5'] = 1, ['6'] = 1, ['7'] = 1, ['8'] = 1, ['9'] = 1, ['H'] = 1, ['P'] = 1, ['T'] = 1, }; /* * Adds a header and its CRLF at the tail of buffer , just before the last * CRLF. Text length is measured first, so it cannot be NULL. * The header is also automatically added to the index , and the end * of headers is automatically adjusted. The number of bytes added is returned * on success, otherwise <0 is returned indicating an error. */ int http_header_add_tail(struct buffer *b, struct http_msg *msg, struct hdr_idx *hdr_idx, const char *text) { int bytes, len; len = strlen(text); bytes = buffer_insert_line2(b, b->data + msg->eoh, text, len); if (!bytes) return -1; http_msg_move_end(msg, bytes); return hdr_idx_add(len, 1, hdr_idx, hdr_idx->tail); } /* * Adds a header and its CRLF at the tail of buffer , just before the last * CRLF. bytes are copied, not counting the CRLF. If is NULL, then * the buffer is only opened and the space reserved, but nothing is copied. * The header is also automatically added to the index , and the end * of headers is automatically adjusted. The number of bytes added is returned * on success, otherwise <0 is returned indicating an error. */ int http_header_add_tail2(struct buffer *b, struct http_msg *msg, struct hdr_idx *hdr_idx, const char *text, int len) { int bytes; bytes = buffer_insert_line2(b, b->data + msg->eoh, text, len); if (!bytes) return -1; http_msg_move_end(msg, bytes); return hdr_idx_add(len, 1, hdr_idx, hdr_idx->tail); } /* * Checks if is exactly for chars, and ends with a colon. * If so, returns the position of the first non-space character relative to * , or - if not found before. If no value is found, it tries * to return a pointer to the place after the first space. Returns 0 if the * header name does not match. Checks are case-insensitive. */ int http_header_match2(const char *hdr, const char *end, const char *name, int len) { const char *val; if (hdr + len >= end) return 0; if (hdr[len] != ':') return 0; if (strncasecmp(hdr, name, len) != 0) return 0; val = hdr + len + 1; while (val < end && HTTP_IS_SPHT(*val)) val++; if ((val >= end) && (len + 2 <= end - hdr)) return len + 2; /* we may replace starting from second space */ return val - hdr; } /* Find the end of the header value contained between and . * See RFC2616, par 2.2 for more information. Note that it requires * a valid header to return a valid result. */ const char *find_hdr_value_end(const char *s, const char *e) { int quoted, qdpair; quoted = qdpair = 0; for (; s < e; s++) { if (qdpair) qdpair = 0; else if (quoted && *s == '\\') qdpair = 1; else if (quoted && *s == '"') quoted = 0; else if (*s == '"') quoted = 1; else if (*s == ',') return s; } return s; } /* Find the first or next occurrence of header in message buffer * using headers index , and return it in the structure. This * structure holds everything necessary to use the header and find next * occurrence. If its member is 0, the header is searched from the * beginning. Otherwise, the next occurrence is returned. The function returns * 1 when it finds a value, and 0 when there is no more. */ int http_find_header2(const char *name, int len, const char *sol, struct hdr_idx *idx, struct hdr_ctx *ctx) { const char *eol, *sov; int cur_idx; if (ctx->idx) { /* We have previously returned a value, let's search * another one on the same line. */ cur_idx = ctx->idx; sol = ctx->line; sov = sol + ctx->val + ctx->vlen; eol = sol + idx->v[cur_idx].len; if (sov >= eol) /* no more values in this header */ goto next_hdr; /* values remaining for this header, skip the comma */ sov++; while (sov < eol && http_is_lws[(unsigned char)*sov]) sov++; goto return_hdr; } /* first request for this header */ sol += hdr_idx_first_pos(idx); cur_idx = hdr_idx_first_idx(idx); while (cur_idx) { eol = sol + idx->v[cur_idx].len; if (len == 0) { /* No argument was passed, we want any header. * To achieve this, we simply build a fake request. */ while (sol + len < eol && sol[len] != ':') len++; name = sol; } if ((len < eol - sol) && (sol[len] == ':') && (strncasecmp(sol, name, len) == 0)) { sov = sol + len + 1; while (sov < eol && http_is_lws[(unsigned char)*sov]) sov++; return_hdr: ctx->line = sol; ctx->idx = cur_idx; ctx->val = sov - sol; eol = find_hdr_value_end(sov, eol); ctx->vlen = eol - sov; return 1; } next_hdr: sol = eol + idx->v[cur_idx].cr + 1; cur_idx = idx->v[cur_idx].next; } return 0; } int http_find_header(const char *name, const char *sol, struct hdr_idx *idx, struct hdr_ctx *ctx) { return http_find_header2(name, strlen(name), sol, idx, ctx); } /* This function handles a server error at the stream interface level. The * stream interface is assumed to be already in a closed state. An optional * message is copied into the input buffer, and an HTTP status code stored. * The error flags are set to the values in arguments. Any pending request * in this buffer will be lost. */ static void http_server_error(struct session *t, struct stream_interface *si, int err, int finst, int status, const struct chunk *msg) { buffer_erase(si->ob); buffer_erase(si->ib); buffer_auto_close(si->ib); if (status > 0 && msg) { t->txn.status = status; buffer_write(si->ib, msg->str, msg->len); } if (!(t->flags & SN_ERR_MASK)) t->flags |= err; if (!(t->flags & SN_FINST_MASK)) t->flags |= finst; } /* This function returns the appropriate error location for the given session * and message. */ struct chunk *error_message(struct session *s, int msgnum) { if (s->be->errmsg[msgnum].str) return &s->be->errmsg[msgnum]; else if (s->fe->errmsg[msgnum].str) return &s->fe->errmsg[msgnum]; else return &http_err_chunks[msgnum]; } /* * returns HTTP_METH_NONE if there is nothing valid to read (empty or non-text * string), HTTP_METH_OTHER for unknown methods, or the identified method. */ static http_meth_t find_http_meth(const char *str, const int len) { unsigned char m; const struct http_method_desc *h; m = ((unsigned)*str - 'A'); if (m < 26) { for (h = http_methods[m]; h->len > 0; h++) { if (unlikely(h->len != len)) continue; if (likely(memcmp(str, h->text, h->len) == 0)) return h->meth; }; return HTTP_METH_OTHER; } return HTTP_METH_NONE; } /* Parse the URI from the given transaction (which is assumed to be in request * phase) and look for the "/" beginning the PATH. If not found, return NULL. * It is returned otherwise. */ static char * http_get_path(struct http_txn *txn) { char *ptr, *end; ptr = txn->req.sol - txn->req.som + txn->req.sl.rq.u; end = ptr + txn->req.sl.rq.u_l; if (ptr >= end) return NULL; /* RFC2616, par. 5.1.2 : * Request-URI = "*" | absuri | abspath | authority */ if (*ptr == '*') return NULL; if (isalpha((unsigned char)*ptr)) { /* this is a scheme as described by RFC3986, par. 3.1 */ ptr++; while (ptr < end && (isalnum((unsigned char)*ptr) || *ptr == '+' || *ptr == '-' || *ptr == '.')) ptr++; /* skip '://' */ if (ptr == end || *ptr++ != ':') return NULL; if (ptr == end || *ptr++ != '/') return NULL; if (ptr == end || *ptr++ != '/') return NULL; } /* skip [user[:passwd]@]host[:[port]] */ while (ptr < end && *ptr != '/') ptr++; if (ptr == end) return NULL; /* OK, we got the '/' ! */ return ptr; } /* Returns a 302 for a redirectable request. This may only be called just after * the stream interface has moved to SI_ST_ASS. Unprocessable requests are * left unchanged and will follow normal proxy processing. */ void perform_http_redirect(struct session *s, struct stream_interface *si) { struct http_txn *txn; struct chunk rdr; char *path; int len; /* 1: create the response header */ rdr.len = strlen(HTTP_302); rdr.str = trash; memcpy(rdr.str, HTTP_302, rdr.len); /* 2: add the server's prefix */ if (rdr.len + s->srv->rdr_len > rdr.size) return; memcpy(rdr.str + rdr.len, s->srv->rdr_pfx, s->srv->rdr_len); rdr.len += s->srv->rdr_len; /* 3: add the request URI */ txn = &s->txn; path = http_get_path(txn); if (!path) return; len = txn->req.sl.rq.u_l + (txn->req.sol-txn->req.som+txn->req.sl.rq.u) - path; if (rdr.len + len > rdr.size - 4) /* 4 for CRLF-CRLF */ return; memcpy(rdr.str + rdr.len, path, len); rdr.len += len; memcpy(rdr.str + rdr.len, "\r\n\r\n", 4); rdr.len += 4; /* prepare to return without error. */ si->shutr(si); si->shutw(si); si->err_type = SI_ET_NONE; si->err_loc = NULL; si->state = SI_ST_CLO; /* send the message */ http_server_error(s, si, SN_ERR_PRXCOND, SN_FINST_C, 302, &rdr); /* FIXME: we should increase a counter of redirects per server and per backend. */ if (s->srv) srv_inc_sess_ctr(s->srv); } /* Return the error message corresponding to si->err_type. It is assumed * that the server side is closed. Note that err_type is actually a * bitmask, where almost only aborts may be cumulated with other * values. We consider that aborted operations are more important * than timeouts or errors due to the fact that nobody else in the * logs might explain incomplete retries. All others should avoid * being cumulated. It should normally not be possible to have multiple * aborts at once, but just in case, the first one in sequence is reported. */ void http_return_srv_error(struct session *s, struct stream_interface *si) { int err_type = si->err_type; if (err_type & SI_ET_QUEUE_ABRT) http_server_error(s, si, SN_ERR_CLICL, SN_FINST_Q, 503, error_message(s, HTTP_ERR_503)); else if (err_type & SI_ET_CONN_ABRT) http_server_error(s, si, SN_ERR_CLICL, SN_FINST_C, 503, error_message(s, HTTP_ERR_503)); else if (err_type & SI_ET_QUEUE_TO) http_server_error(s, si, SN_ERR_SRVTO, SN_FINST_Q, 503, error_message(s, HTTP_ERR_503)); else if (err_type & SI_ET_QUEUE_ERR) http_server_error(s, si, SN_ERR_SRVCL, SN_FINST_Q, 503, error_message(s, HTTP_ERR_503)); else if (err_type & SI_ET_CONN_TO) http_server_error(s, si, SN_ERR_SRVTO, SN_FINST_C, 503, error_message(s, HTTP_ERR_503)); else if (err_type & SI_ET_CONN_ERR) http_server_error(s, si, SN_ERR_SRVCL, SN_FINST_C, 503, error_message(s, HTTP_ERR_503)); else /* SI_ET_CONN_OTHER and others */ http_server_error(s, si, SN_ERR_INTERNAL, SN_FINST_C, 500, error_message(s, HTTP_ERR_500)); } extern const char sess_term_cond[8]; extern const char sess_fin_state[8]; extern const char *monthname[12]; const char sess_cookie[4] = "NIDV"; /* No cookie, Invalid cookie, cookie for a Down server, Valid cookie */ const char sess_set_cookie[8] = "N1I3PD5R"; /* No set-cookie, unknown, Set-Cookie Inserted, unknown, Set-cookie seen and left unchanged (passive), Set-cookie Deleted, unknown, Set-cookie Rewritten */ struct pool_head *pool2_requri; struct pool_head *pool2_capture; void http_sess_clflog(struct session *s) { char pn[INET6_ADDRSTRLEN + strlen(":65535")]; struct proxy *fe = s->fe; struct proxy *be = s->be; struct proxy *prx_log; struct http_txn *txn = &s->txn; int tolog, level, err; char *uri, *h; char *svid; struct tm tm; static char tmpline[MAX_SYSLOG_LEN]; int hdr; size_t w; int t_request; prx_log = fe; err = (s->flags & (SN_ERR_MASK | SN_REDISP)) || (s->conn_retries != be->conn_retries) || txn->status >= 500; if (s->cli_addr.ss_family == AF_INET) inet_ntop(AF_INET, (const void *)&((struct sockaddr_in *)&s->cli_addr)->sin_addr, pn, sizeof(pn)); else inet_ntop(AF_INET6, (const void *)&((struct sockaddr_in6 *)(&s->cli_addr))->sin6_addr, pn, sizeof(pn)); get_gmtime(s->logs.accept_date.tv_sec, &tm); /* FIXME: let's limit ourselves to frontend logging for now. */ tolog = fe->to_log; h = tmpline; w = snprintf(h, sizeof(tmpline), "%s - - [%02d/%s/%04d:%02d:%02d:%02d +0000]", pn, tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900, tm.tm_hour, tm.tm_min, tm.tm_sec); if (w < 0 || w >= sizeof(tmpline) - (h - tmpline)) goto trunc; h += w; if (h >= tmpline + sizeof(tmpline) - 4) goto trunc; *(h++) = ' '; *(h++) = '\"'; uri = txn->uri ? txn->uri : ""; h = encode_string(h, tmpline + sizeof(tmpline) - 1, '#', url_encode_map, uri); *(h++) = '\"'; w = snprintf(h, sizeof(tmpline) - (h - tmpline), " %d %lld", txn->status, s->logs.bytes_out); if (w < 0 || w >= sizeof(tmpline) - (h - tmpline)) goto trunc; h += w; if (h >= tmpline + sizeof(tmpline) - 9) goto trunc; memcpy(h, " \"-\" \"-\"", 8); h += 8; w = snprintf(h, sizeof(tmpline) - (h - tmpline), " %d %03d", (s->cli_addr.ss_family == AF_INET) ? ntohs(((struct sockaddr_in *)&s->cli_addr)->sin_port) : ntohs(((struct sockaddr_in6 *)&s->cli_addr)->sin6_port), (int)s->logs.accept_date.tv_usec/1000); if (w < 0 || w >= sizeof(tmpline) - (h - tmpline)) goto trunc; h += w; w = strlen(fe->id); if (h >= tmpline + sizeof(tmpline) - 4 - w) goto trunc; *(h++) = ' '; *(h++) = '\"'; memcpy(h, fe->id, w); h += w; *(h++) = '\"'; w = strlen(be->id); if (h >= tmpline + sizeof(tmpline) - 4 - w) goto trunc; *(h++) = ' '; *(h++) = '\"'; memcpy(h, be->id, w); h += w; *(h++) = '\"'; svid = (tolog & LW_SVID) ? (s->data_source != DATA_SRC_STATS) ? (s->srv != NULL) ? s->srv->id : "" : "" : "-"; w = strlen(svid); if (h >= tmpline + sizeof(tmpline) - 4 - w) goto trunc; *(h++) = ' '; *(h++) = '\"'; memcpy(h, svid, w); h += w; *(h++) = '\"'; t_request = -1; if (tv_isge(&s->logs.tv_request, &s->logs.tv_accept)) t_request = tv_ms_elapsed(&s->logs.tv_accept, &s->logs.tv_request); w = snprintf(h, sizeof(tmpline) - (h - tmpline), " %d %ld %ld %ld %ld", t_request, (s->logs.t_queue >= 0) ? s->logs.t_queue - t_request : -1, (s->logs.t_connect >= 0) ? s->logs.t_connect - s->logs.t_queue : -1, (s->logs.t_data >= 0) ? s->logs.t_data - s->logs.t_connect : -1, s->logs.t_close); if (w < 0 || w >= sizeof(tmpline) - (h - tmpline)) goto trunc; h += w; if (h >= tmpline + sizeof(tmpline) - 8) goto trunc; *(h++) = ' '; *(h++) = '\"'; *(h++) = sess_term_cond[(s->flags & SN_ERR_MASK) >> SN_ERR_SHIFT]; *(h++) = sess_fin_state[(s->flags & SN_FINST_MASK) >> SN_FINST_SHIFT]; *(h++) = (be->options & PR_O_COOK_ANY) ? sess_cookie[(txn->flags & TX_CK_MASK) >> TX_CK_SHIFT] : '-', *(h++) = (be->options & PR_O_COOK_ANY) ? sess_set_cookie[(txn->flags & TX_SCK_MASK) >> TX_SCK_SHIFT] : '-'; *(h++) = '\"'; w = snprintf(h, sizeof(tmpline) - (h - tmpline), " %d %d %d %d %d %ld %ld", actconn, fe->feconn, be->beconn, s->srv ? s->srv->cur_sess : 0, (s->conn_retries > 0) ? (be->conn_retries - s->conn_retries) : be->conn_retries, s->logs.srv_queue_size, s->logs.prx_queue_size); if (w < 0 || w >= sizeof(tmpline) - (h - tmpline)) goto trunc; h += w; if (txn->cli_cookie) { w = strlen(txn->cli_cookie); if (h >= tmpline + sizeof(tmpline) - 4 - w) goto trunc; *(h++) = ' '; *(h++) = '\"'; memcpy(h, txn->cli_cookie, w); h += w; *(h++) = '\"'; } else { if (h >= tmpline + sizeof(tmpline) - 5) goto trunc; memcpy(h, " \"-\"", 4); h += 4; } if (txn->srv_cookie) { w = strlen(txn->srv_cookie); if (h >= tmpline + sizeof(tmpline) - 4 - w) goto trunc; *(h++) = ' '; *(h++) = '\"'; memcpy(h, txn->srv_cookie, w); h += w; *(h++) = '\"'; } else { if (h >= tmpline + sizeof(tmpline) - 5) goto trunc; memcpy(h, " \"-\"", 4); h += 4; } if ((fe->to_log & LW_REQHDR) && txn->req.cap) { for (hdr = 0; hdr < fe->nb_req_cap; hdr++) { if (h >= sizeof (tmpline) + tmpline - 4) goto trunc; *(h++) = ' '; *(h++) = '\"'; h = encode_string(h, tmpline + sizeof(tmpline) - 2, '#', hdr_encode_map, txn->req.cap[hdr]); *(h++) = '\"'; } } if ((fe->to_log & LW_RSPHDR) && txn->rsp.cap) { for (hdr = 0; hdr < fe->nb_rsp_cap; hdr++) { if (h >= sizeof (tmpline) + tmpline - 4) goto trunc; *(h++) = ' '; *(h++) = '\"'; h = encode_string(h, tmpline + sizeof(tmpline) - 2, '#', hdr_encode_map, txn->rsp.cap[hdr]); *(h++) = '\"'; } } trunc: *h = '\0'; level = LOG_INFO; if (err && (fe->options2 & PR_O2_LOGERRORS)) level = LOG_ERR; send_log(prx_log, level, "%s\n", tmpline); s->logs.logwait = 0; } /* * send a log for the session when we have enough info about it. * Will not log if the frontend has no log defined. */ void http_sess_log(struct session *s) { char pn[INET6_ADDRSTRLEN + strlen(":65535")]; struct proxy *fe = s->fe; struct proxy *be = s->be; struct proxy *prx_log; struct http_txn *txn = &s->txn; int tolog, level, err; char *uri, *h; char *svid; struct tm tm; static char tmpline[MAX_SYSLOG_LEN]; int t_request; int hdr; /* if we don't want to log normal traffic, return now */ err = (s->flags & (SN_ERR_MASK | SN_REDISP)) || (s->conn_retries != be->conn_retries) || txn->status >= 500; if (!err && (fe->options2 & PR_O2_NOLOGNORM)) return; if (fe->logfac1 < 0 && fe->logfac2 < 0) return; prx_log = fe; if (prx_log->options2 & PR_O2_CLFLOG) return http_sess_clflog(s); if (s->cli_addr.ss_family == AF_INET) inet_ntop(AF_INET, (const void *)&((struct sockaddr_in *)&s->cli_addr)->sin_addr, pn, sizeof(pn)); else inet_ntop(AF_INET6, (const void *)&((struct sockaddr_in6 *)(&s->cli_addr))->sin6_addr, pn, sizeof(pn)); get_localtime(s->logs.accept_date.tv_sec, &tm); /* FIXME: let's limit ourselves to frontend logging for now. */ tolog = fe->to_log; h = tmpline; if (fe->to_log & LW_REQHDR && txn->req.cap && (h < tmpline + sizeof(tmpline) - 10)) { *(h++) = ' '; *(h++) = '{'; for (hdr = 0; hdr < fe->nb_req_cap; hdr++) { if (hdr) *(h++) = '|'; if (txn->req.cap[hdr] != NULL) h = encode_string(h, tmpline + sizeof(tmpline) - 7, '#', hdr_encode_map, txn->req.cap[hdr]); } *(h++) = '}'; } if (fe->to_log & LW_RSPHDR && txn->rsp.cap && (h < tmpline + sizeof(tmpline) - 7)) { *(h++) = ' '; *(h++) = '{'; for (hdr = 0; hdr < fe->nb_rsp_cap; hdr++) { if (hdr) *(h++) = '|'; if (txn->rsp.cap[hdr] != NULL) h = encode_string(h, tmpline + sizeof(tmpline) - 4, '#', hdr_encode_map, txn->rsp.cap[hdr]); } *(h++) = '}'; } if (h < tmpline + sizeof(tmpline) - 4) { *(h++) = ' '; *(h++) = '"'; uri = txn->uri ? txn->uri : ""; h = encode_string(h, tmpline + sizeof(tmpline) - 1, '#', url_encode_map, uri); *(h++) = '"'; } *h = '\0'; svid = (tolog & LW_SVID) ? (s->data_source != DATA_SRC_STATS) ? (s->srv != NULL) ? s->srv->id : "" : "" : "-"; t_request = -1; if (tv_isge(&s->logs.tv_request, &s->logs.tv_accept)) t_request = tv_ms_elapsed(&s->logs.tv_accept, &s->logs.tv_request); level = LOG_INFO; if (err && (fe->options2 & PR_O2_LOGERRORS)) level = LOG_ERR; send_log(prx_log, level, "%s:%d [%02d/%s/%04d:%02d:%02d:%02d.%03d]" " %s %s/%s %d/%ld/%ld/%ld/%s%ld %d %s%lld" " %s %s %c%c%c%c %d/%d/%d/%d/%s%u %ld/%ld%s\n", pn, (s->cli_addr.ss_family == AF_INET) ? ntohs(((struct sockaddr_in *)&s->cli_addr)->sin_port) : ntohs(((struct sockaddr_in6 *)&s->cli_addr)->sin6_port), tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900, tm.tm_hour, tm.tm_min, tm.tm_sec, (int)s->logs.accept_date.tv_usec/1000, fe->id, be->id, svid, t_request, (s->logs.t_queue >= 0) ? s->logs.t_queue - t_request : -1, (s->logs.t_connect >= 0) ? s->logs.t_connect - s->logs.t_queue : -1, (s->logs.t_data >= 0) ? s->logs.t_data - s->logs.t_connect : -1, (tolog & LW_BYTES) ? "" : "+", s->logs.t_close, txn->status, (tolog & LW_BYTES) ? "" : "+", s->logs.bytes_out, txn->cli_cookie ? txn->cli_cookie : "-", txn->srv_cookie ? txn->srv_cookie : "-", sess_term_cond[(s->flags & SN_ERR_MASK) >> SN_ERR_SHIFT], sess_fin_state[(s->flags & SN_FINST_MASK) >> SN_FINST_SHIFT], (be->options & PR_O_COOK_ANY) ? sess_cookie[(txn->flags & TX_CK_MASK) >> TX_CK_SHIFT] : '-', (be->options & PR_O_COOK_ANY) ? sess_set_cookie[(txn->flags & TX_SCK_MASK) >> TX_SCK_SHIFT] : '-', actconn, fe->feconn, be->beconn, s->srv ? s->srv->cur_sess : 0, (s->flags & SN_REDISP)?"+":"", (s->conn_retries>0)?(be->conn_retries - s->conn_retries):be->conn_retries, s->logs.srv_queue_size, s->logs.prx_queue_size, tmpline); s->logs.logwait = 0; } /* * Capture headers from message starting at according to header list * , and fill the structure appropriately. */ void capture_headers(char *som, struct hdr_idx *idx, char **cap, struct cap_hdr *cap_hdr) { char *eol, *sol, *col, *sov; int cur_idx; struct cap_hdr *h; int len; sol = som + hdr_idx_first_pos(idx); cur_idx = hdr_idx_first_idx(idx); while (cur_idx) { eol = sol + idx->v[cur_idx].len; col = sol; while (col < eol && *col != ':') col++; sov = col + 1; while (sov < eol && http_is_lws[(unsigned char)*sov]) sov++; for (h = cap_hdr; h; h = h->next) { if ((h->namelen == col - sol) && (strncasecmp(sol, h->name, h->namelen) == 0)) { if (cap[h->index] == NULL) cap[h->index] = pool_alloc2(h->pool); if (cap[h->index] == NULL) { Alert("HTTP capture : out of memory.\n"); continue; } len = eol - sov; if (len > h->len) len = h->len; memcpy(cap[h->index], sov, len); cap[h->index][len]=0; } } sol = eol + idx->v[cur_idx].cr + 1; cur_idx = idx->v[cur_idx].next; } } /* either we find an LF at or we jump to . */ #define EXPECT_LF_HERE(ptr, bad) do { if (unlikely(*(ptr) != '\n')) goto bad; } while (0) /* plays with variables , and . Jumps to if OK, * otherwise to with set to . */ #define EAT_AND_JUMP_OR_RETURN(good, st) do { \ ptr++; \ if (likely(ptr < end)) \ goto good; \ else { \ state = (st); \ goto http_msg_ood; \ } \ } while (0) /* * This function parses a status line between and , starting with * parser state . Only states HTTP_MSG_RPVER, HTTP_MSG_RPVER_SP, * HTTP_MSG_RPCODE, HTTP_MSG_RPCODE_SP and HTTP_MSG_RPREASON are handled. Others * will give undefined results. * Note that it is upon the caller's responsibility to ensure that ptr < end, * and that msg->sol points to the beginning of the response. * If a complete line is found (which implies that at least one CR or LF is * found before , the updated is returned, otherwise NULL is * returned indicating an incomplete line (which does not mean that parts have * not been updated). In the incomplete case, if or are * non-NULL, they are fed with the new and values to be passed * upon next call. * * This function was intentionally designed to be called from * http_msg_analyzer() with the lowest overhead. It should integrate perfectly * within its state machine and use the same macros, hence the need for same * labels and variable names. Note that msg->sol is left unchanged. */ const char *http_parse_stsline(struct http_msg *msg, const char *msg_buf, unsigned int state, const char *ptr, const char *end, char **ret_ptr, unsigned int *ret_state) { switch (state) { http_msg_rpver: case HTTP_MSG_RPVER: if (likely(HTTP_IS_VER_TOKEN(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rpver, HTTP_MSG_RPVER); if (likely(HTTP_IS_SPHT(*ptr))) { msg->sl.st.v_l = (ptr - msg_buf) - msg->som; EAT_AND_JUMP_OR_RETURN(http_msg_rpver_sp, HTTP_MSG_RPVER_SP); } state = HTTP_MSG_ERROR; break; http_msg_rpver_sp: case HTTP_MSG_RPVER_SP: if (likely(!HTTP_IS_LWS(*ptr))) { msg->sl.st.c = ptr - msg_buf; goto http_msg_rpcode; } if (likely(HTTP_IS_SPHT(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rpver_sp, HTTP_MSG_RPVER_SP); /* so it's a CR/LF, this is invalid */ state = HTTP_MSG_ERROR; break; http_msg_rpcode: case HTTP_MSG_RPCODE: if (likely(!HTTP_IS_LWS(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rpcode, HTTP_MSG_RPCODE); if (likely(HTTP_IS_SPHT(*ptr))) { msg->sl.st.c_l = (ptr - msg_buf) - msg->sl.st.c; EAT_AND_JUMP_OR_RETURN(http_msg_rpcode_sp, HTTP_MSG_RPCODE_SP); } /* so it's a CR/LF, so there is no reason phrase */ msg->sl.st.c_l = (ptr - msg_buf) - msg->sl.st.c; http_msg_rsp_reason: /* FIXME: should we support HTTP responses without any reason phrase ? */ msg->sl.st.r = ptr - msg_buf; msg->sl.st.r_l = 0; goto http_msg_rpline_eol; http_msg_rpcode_sp: case HTTP_MSG_RPCODE_SP: if (likely(!HTTP_IS_LWS(*ptr))) { msg->sl.st.r = ptr - msg_buf; goto http_msg_rpreason; } if (likely(HTTP_IS_SPHT(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rpcode_sp, HTTP_MSG_RPCODE_SP); /* so it's a CR/LF, so there is no reason phrase */ goto http_msg_rsp_reason; http_msg_rpreason: case HTTP_MSG_RPREASON: if (likely(!HTTP_IS_CRLF(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rpreason, HTTP_MSG_RPREASON); msg->sl.st.r_l = (ptr - msg_buf) - msg->sl.st.r; http_msg_rpline_eol: /* We have seen the end of line. Note that we do not * necessarily have the \n yet, but at least we know that we * have EITHER \r OR \n, otherwise the response would not be * complete. We can then record the response length and return * to the caller which will be able to register it. */ msg->sl.st.l = ptr - msg->sol; return ptr; #ifdef DEBUG_FULL default: fprintf(stderr, "FIXME !!!! impossible state at %s:%d = %d\n", __FILE__, __LINE__, state); exit(1); #endif } http_msg_ood: /* out of valid data */ if (ret_state) *ret_state = state; if (ret_ptr) *ret_ptr = (char *)ptr; return NULL; } /* * This function parses a request line between and , starting with * parser state . Only states HTTP_MSG_RQMETH, HTTP_MSG_RQMETH_SP, * HTTP_MSG_RQURI, HTTP_MSG_RQURI_SP and HTTP_MSG_RQVER are handled. Others * will give undefined results. * Note that it is upon the caller's responsibility to ensure that ptr < end, * and that msg->sol points to the beginning of the request. * If a complete line is found (which implies that at least one CR or LF is * found before , the updated is returned, otherwise NULL is * returned indicating an incomplete line (which does not mean that parts have * not been updated). In the incomplete case, if or are * non-NULL, they are fed with the new and values to be passed * upon next call. * * This function was intentionally designed to be called from * http_msg_analyzer() with the lowest overhead. It should integrate perfectly * within its state machine and use the same macros, hence the need for same * labels and variable names. Note that msg->sol is left unchanged. */ const char *http_parse_reqline(struct http_msg *msg, const char *msg_buf, unsigned int state, const char *ptr, const char *end, char **ret_ptr, unsigned int *ret_state) { switch (state) { http_msg_rqmeth: case HTTP_MSG_RQMETH: if (likely(HTTP_IS_TOKEN(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rqmeth, HTTP_MSG_RQMETH); if (likely(HTTP_IS_SPHT(*ptr))) { msg->sl.rq.m_l = (ptr - msg_buf) - msg->som; EAT_AND_JUMP_OR_RETURN(http_msg_rqmeth_sp, HTTP_MSG_RQMETH_SP); } if (likely(HTTP_IS_CRLF(*ptr))) { /* HTTP 0.9 request */ msg->sl.rq.m_l = (ptr - msg_buf) - msg->som; http_msg_req09_uri: msg->sl.rq.u = ptr - msg_buf; http_msg_req09_uri_e: msg->sl.rq.u_l = (ptr - msg_buf) - msg->sl.rq.u; http_msg_req09_ver: msg->sl.rq.v = ptr - msg_buf; msg->sl.rq.v_l = 0; goto http_msg_rqline_eol; } state = HTTP_MSG_ERROR; break; http_msg_rqmeth_sp: case HTTP_MSG_RQMETH_SP: if (likely(!HTTP_IS_LWS(*ptr))) { msg->sl.rq.u = ptr - msg_buf; goto http_msg_rquri; } if (likely(HTTP_IS_SPHT(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rqmeth_sp, HTTP_MSG_RQMETH_SP); /* so it's a CR/LF, meaning an HTTP 0.9 request */ goto http_msg_req09_uri; http_msg_rquri: case HTTP_MSG_RQURI: if (likely(!HTTP_IS_LWS(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rquri, HTTP_MSG_RQURI); if (likely(HTTP_IS_SPHT(*ptr))) { msg->sl.rq.u_l = (ptr - msg_buf) - msg->sl.rq.u; EAT_AND_JUMP_OR_RETURN(http_msg_rquri_sp, HTTP_MSG_RQURI_SP); } /* so it's a CR/LF, meaning an HTTP 0.9 request */ goto http_msg_req09_uri_e; http_msg_rquri_sp: case HTTP_MSG_RQURI_SP: if (likely(!HTTP_IS_LWS(*ptr))) { msg->sl.rq.v = ptr - msg_buf; goto http_msg_rqver; } if (likely(HTTP_IS_SPHT(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rquri_sp, HTTP_MSG_RQURI_SP); /* so it's a CR/LF, meaning an HTTP 0.9 request */ goto http_msg_req09_ver; http_msg_rqver: case HTTP_MSG_RQVER: if (likely(HTTP_IS_VER_TOKEN(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rqver, HTTP_MSG_RQVER); if (likely(HTTP_IS_CRLF(*ptr))) { msg->sl.rq.v_l = (ptr - msg_buf) - msg->sl.rq.v; http_msg_rqline_eol: /* We have seen the end of line. Note that we do not * necessarily have the \n yet, but at least we know that we * have EITHER \r OR \n, otherwise the request would not be * complete. We can then record the request length and return * to the caller which will be able to register it. */ msg->sl.rq.l = ptr - msg->sol; return ptr; } /* neither an HTTP_VER token nor a CRLF */ state = HTTP_MSG_ERROR; break; #ifdef DEBUG_FULL default: fprintf(stderr, "FIXME !!!! impossible state at %s:%d = %d\n", __FILE__, __LINE__, state); exit(1); #endif } http_msg_ood: /* out of valid data */ if (ret_state) *ret_state = state; if (ret_ptr) *ret_ptr = (char *)ptr; return NULL; } /* * This function parses an HTTP message, either a request or a response, * depending on the initial msg->msg_state. It can be preempted everywhere * when data are missing and recalled at the exact same location with no * information loss. The header index is re-initialized when switching from * MSG_R[PQ]BEFORE to MSG_RPVER|MSG_RQMETH. It modifies msg->sol among other * fields. Note that msg->som and msg->sol will be initialized after completing * the first state, so that none of the msg pointers has to be initialized * prior to the first call. */ void http_msg_analyzer(struct buffer *buf, struct http_msg *msg, struct hdr_idx *idx) { unsigned int state; /* updated only when leaving the FSM */ register char *ptr, *end; /* request pointers, to avoid dereferences */ state = msg->msg_state; ptr = buf->lr; end = buf->r; if (unlikely(ptr >= end)) goto http_msg_ood; switch (state) { /* * First, states that are specific to the response only. * We check them first so that request and headers are * closer to each other (accessed more often). */ http_msg_rpbefore: case HTTP_MSG_RPBEFORE: if (likely(HTTP_IS_TOKEN(*ptr))) { /* we have a start of message, but we have to check * first if we need to remove some CRLF. We can only * do this when send_max=0. */ char *beg = buf->w + buf->send_max; if (beg >= buf->data + buf->size) beg -= buf->size; if (unlikely(ptr != beg)) { if (buf->send_max) goto http_msg_ood; /* Remove empty leading lines, as recommended by RFC2616. */ buffer_ignore(buf, ptr - beg); } msg->som = ptr - buf->data; msg->sol = ptr; hdr_idx_init(idx); state = HTTP_MSG_RPVER; goto http_msg_rpver; } if (unlikely(!HTTP_IS_CRLF(*ptr))) goto http_msg_invalid; if (unlikely(*ptr == '\n')) EAT_AND_JUMP_OR_RETURN(http_msg_rpbefore, HTTP_MSG_RPBEFORE); EAT_AND_JUMP_OR_RETURN(http_msg_rpbefore_cr, HTTP_MSG_RPBEFORE_CR); /* stop here */ http_msg_rpbefore_cr: case HTTP_MSG_RPBEFORE_CR: EXPECT_LF_HERE(ptr, http_msg_invalid); EAT_AND_JUMP_OR_RETURN(http_msg_rpbefore, HTTP_MSG_RPBEFORE); /* stop here */ http_msg_rpver: case HTTP_MSG_RPVER: case HTTP_MSG_RPVER_SP: case HTTP_MSG_RPCODE: case HTTP_MSG_RPCODE_SP: case HTTP_MSG_RPREASON: ptr = (char *)http_parse_stsline(msg, buf->data, state, ptr, end, &buf->lr, &msg->msg_state); if (unlikely(!ptr)) return; /* we have a full response and we know that we have either a CR * or an LF at . */ //fprintf(stderr,"som=%d rq.l=%d *ptr=0x%02x\n", msg->som, msg->sl.st.l, *ptr); hdr_idx_set_start(idx, msg->sl.st.l, *ptr == '\r'); msg->sol = ptr; if (likely(*ptr == '\r')) EAT_AND_JUMP_OR_RETURN(http_msg_rpline_end, HTTP_MSG_RPLINE_END); goto http_msg_rpline_end; http_msg_rpline_end: case HTTP_MSG_RPLINE_END: /* msg->sol must point to the first of CR or LF. */ EXPECT_LF_HERE(ptr, http_msg_invalid); EAT_AND_JUMP_OR_RETURN(http_msg_hdr_first, HTTP_MSG_HDR_FIRST); /* stop here */ /* * Second, states that are specific to the request only */ http_msg_rqbefore: case HTTP_MSG_RQBEFORE: if (likely(HTTP_IS_TOKEN(*ptr))) { /* we have a start of message, but we have to check * first if we need to remove some CRLF. We can only * do this when send_max=0. */ char *beg = buf->w + buf->send_max; if (beg >= buf->data + buf->size) beg -= buf->size; if (likely(ptr != beg)) { if (buf->send_max) goto http_msg_ood; /* Remove empty leading lines, as recommended by RFC2616. */ buffer_ignore(buf, ptr - beg); } msg->som = ptr - buf->data; msg->sol = ptr; /* we will need this when keep-alive will be supported hdr_idx_init(idx); */ state = HTTP_MSG_RQMETH; goto http_msg_rqmeth; } if (unlikely(!HTTP_IS_CRLF(*ptr))) goto http_msg_invalid; if (unlikely(*ptr == '\n')) EAT_AND_JUMP_OR_RETURN(http_msg_rqbefore, HTTP_MSG_RQBEFORE); EAT_AND_JUMP_OR_RETURN(http_msg_rqbefore_cr, HTTP_MSG_RQBEFORE_CR); /* stop here */ http_msg_rqbefore_cr: case HTTP_MSG_RQBEFORE_CR: EXPECT_LF_HERE(ptr, http_msg_invalid); EAT_AND_JUMP_OR_RETURN(http_msg_rqbefore, HTTP_MSG_RQBEFORE); /* stop here */ http_msg_rqmeth: case HTTP_MSG_RQMETH: case HTTP_MSG_RQMETH_SP: case HTTP_MSG_RQURI: case HTTP_MSG_RQURI_SP: case HTTP_MSG_RQVER: ptr = (char *)http_parse_reqline(msg, buf->data, state, ptr, end, &buf->lr, &msg->msg_state); if (unlikely(!ptr)) return; /* we have a full request and we know that we have either a CR * or an LF at . */ //fprintf(stderr,"som=%d rq.l=%d *ptr=0x%02x\n", msg->som, msg->sl.rq.l, *ptr); hdr_idx_set_start(idx, msg->sl.rq.l, *ptr == '\r'); msg->sol = ptr; if (likely(*ptr == '\r')) EAT_AND_JUMP_OR_RETURN(http_msg_rqline_end, HTTP_MSG_RQLINE_END); goto http_msg_rqline_end; http_msg_rqline_end: case HTTP_MSG_RQLINE_END: /* check for HTTP/0.9 request : no version information available. * msg->sol must point to the first of CR or LF. */ if (unlikely(msg->sl.rq.v_l == 0)) goto http_msg_last_lf; EXPECT_LF_HERE(ptr, http_msg_invalid); EAT_AND_JUMP_OR_RETURN(http_msg_hdr_first, HTTP_MSG_HDR_FIRST); /* stop here */ /* * Common states below */ http_msg_hdr_first: case HTTP_MSG_HDR_FIRST: msg->sol = ptr; if (likely(!HTTP_IS_CRLF(*ptr))) { goto http_msg_hdr_name; } if (likely(*ptr == '\r')) EAT_AND_JUMP_OR_RETURN(http_msg_last_lf, HTTP_MSG_LAST_LF); goto http_msg_last_lf; http_msg_hdr_name: case HTTP_MSG_HDR_NAME: /* assumes msg->sol points to the first char */ if (likely(HTTP_IS_TOKEN(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_hdr_name, HTTP_MSG_HDR_NAME); if (likely(*ptr == ':')) { msg->col = ptr - buf->data; EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l1_sp, HTTP_MSG_HDR_L1_SP); } if (likely(msg->err_pos < -1) || *ptr == '\n') goto http_msg_invalid; if (msg->err_pos == -1) /* capture error pointer */ msg->err_pos = ptr - buf->data; /* >= 0 now */ /* and we still accept this non-token character */ EAT_AND_JUMP_OR_RETURN(http_msg_hdr_name, HTTP_MSG_HDR_NAME); http_msg_hdr_l1_sp: case HTTP_MSG_HDR_L1_SP: /* assumes msg->sol points to the first char and msg->col to the colon */ if (likely(HTTP_IS_SPHT(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l1_sp, HTTP_MSG_HDR_L1_SP); /* header value can be basically anything except CR/LF */ msg->sov = ptr - buf->data; if (likely(!HTTP_IS_CRLF(*ptr))) { goto http_msg_hdr_val; } if (likely(*ptr == '\r')) EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l1_lf, HTTP_MSG_HDR_L1_LF); goto http_msg_hdr_l1_lf; http_msg_hdr_l1_lf: case HTTP_MSG_HDR_L1_LF: EXPECT_LF_HERE(ptr, http_msg_invalid); EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l1_lws, HTTP_MSG_HDR_L1_LWS); http_msg_hdr_l1_lws: case HTTP_MSG_HDR_L1_LWS: if (likely(HTTP_IS_SPHT(*ptr))) { /* replace HT,CR,LF with spaces */ for (; buf->data+msg->sov < ptr; msg->sov++) buf->data[msg->sov] = ' '; goto http_msg_hdr_l1_sp; } /* we had a header consisting only in spaces ! */ msg->eol = buf->data + msg->sov; goto http_msg_complete_header; http_msg_hdr_val: case HTTP_MSG_HDR_VAL: /* assumes msg->sol points to the first char, msg->col to the * colon, and msg->sov points to the first character of the * value. */ if (likely(!HTTP_IS_CRLF(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_hdr_val, HTTP_MSG_HDR_VAL); msg->eol = ptr; /* Note: we could also copy eol into ->eoh so that we have the * real header end in case it ends with lots of LWS, but is this * really needed ? */ if (likely(*ptr == '\r')) EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l2_lf, HTTP_MSG_HDR_L2_LF); goto http_msg_hdr_l2_lf; http_msg_hdr_l2_lf: case HTTP_MSG_HDR_L2_LF: EXPECT_LF_HERE(ptr, http_msg_invalid); EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l2_lws, HTTP_MSG_HDR_L2_LWS); http_msg_hdr_l2_lws: case HTTP_MSG_HDR_L2_LWS: if (unlikely(HTTP_IS_SPHT(*ptr))) { /* LWS: replace HT,CR,LF with spaces */ for (; msg->eol < ptr; msg->eol++) *msg->eol = ' '; goto http_msg_hdr_val; } http_msg_complete_header: /* * It was a new header, so the last one is finished. * Assumes msg->sol points to the first char, msg->col to the * colon, msg->sov points to the first character of the value * and msg->eol to the first CR or LF so we know how the line * ends. We insert last header into the index. */ /* fprintf(stderr,"registering %-2d bytes : ", msg->eol - msg->sol); write(2, msg->sol, msg->eol-msg->sol); fprintf(stderr,"\n"); */ if (unlikely(hdr_idx_add(msg->eol - msg->sol, *msg->eol == '\r', idx, idx->tail) < 0)) goto http_msg_invalid; msg->sol = ptr; if (likely(!HTTP_IS_CRLF(*ptr))) { goto http_msg_hdr_name; } if (likely(*ptr == '\r')) EAT_AND_JUMP_OR_RETURN(http_msg_last_lf, HTTP_MSG_LAST_LF); goto http_msg_last_lf; http_msg_last_lf: case HTTP_MSG_LAST_LF: /* Assumes msg->sol points to the first of either CR or LF */ EXPECT_LF_HERE(ptr, http_msg_invalid); ptr++; buf->lr = ptr; msg->col = msg->sov = buf->lr - buf->data; msg->eoh = msg->sol - buf->data; msg->msg_state = HTTP_MSG_BODY; return; #ifdef DEBUG_FULL default: fprintf(stderr, "FIXME !!!! impossible state at %s:%d = %d\n", __FILE__, __LINE__, state); exit(1); #endif } http_msg_ood: /* out of data */ msg->msg_state = state; buf->lr = ptr; return; http_msg_invalid: /* invalid message */ msg->msg_state = HTTP_MSG_ERROR; buf->lr = ptr; return; } /* convert an HTTP/0.9 request into an HTTP/1.0 request. Returns 1 if the * conversion succeeded, 0 in case of error. If the request was already 1.X, * nothing is done and 1 is returned. */ static int http_upgrade_v09_to_v10(struct buffer *req, struct http_msg *msg, struct http_txn *txn) { int delta; char *cur_end; if (msg->sl.rq.v_l != 0) return 1; msg->sol = req->data + msg->som; cur_end = msg->sol + msg->sl.rq.l; delta = 0; if (msg->sl.rq.u_l == 0) { /* if no URI was set, add "/" */ delta = buffer_replace2(req, cur_end, cur_end, " /", 2); cur_end += delta; http_msg_move_end(msg, delta); } /* add HTTP version */ delta = buffer_replace2(req, cur_end, cur_end, " HTTP/1.0\r\n", 11); http_msg_move_end(msg, delta); cur_end += delta; cur_end = (char *)http_parse_reqline(msg, req->data, HTTP_MSG_RQMETH, msg->sol, cur_end + 1, NULL, NULL); if (unlikely(!cur_end)) return 0; /* we have a full HTTP/1.0 request now and we know that * we have either a CR or an LF at . */ hdr_idx_set_start(&txn->hdr_idx, msg->sl.rq.l, *cur_end == '\r'); return 1; } /* Parse the Connection: headaer of an HTTP request, and set the transaction * flag TX_REQ_CONN_CLO if a "close" mode is expected. The TX_CON_HDR_PARS flag * is also set so that we don't parse a second time. If some dangerous values * are encountered, we leave the status to indicate that the request might be * interpreted as keep-alive, but we also set the connection flags to indicate * that we WANT it to be a close, so that the header will be fixed. This * function should only be called when we know we're interested in checking * the request (not a CONNECT, and FE or BE mangles the header). */ void http_req_parse_connection_header(struct http_txn *txn) { struct http_msg *msg = &txn->req; struct hdr_ctx ctx; int conn_cl, conn_ka; if (txn->flags & TX_CON_HDR_PARS) return; conn_cl = 0; conn_ka = 0; ctx.idx = 0; while (http_find_header2("Connection", 10, msg->sol, &txn->hdr_idx, &ctx)) { if (ctx.vlen == 5 && strncasecmp(ctx.line + ctx.val, "close", 5) == 0) conn_cl = 1; else if (ctx.vlen == 10 && strncasecmp(ctx.line + ctx.val, "keep-alive", 10) == 0) conn_ka = 1; } /* Determine if the client wishes keep-alive or close. * RFC2616 #8.1.2 and #14.10 state that HTTP/1.1 and above connections * are persistent unless "Connection: close" is explicitly specified. * RFC2616 #19.6.2 refers to RFC2068 for HTTP/1.0 persistent connections. * RFC2068 #19.7.1 states that HTTP/1.0 clients are not persistent unless * they explicitly specify "Connection: Keep-Alive", regardless of any * optional "Keep-Alive" header. * Note that if we find a request with both "Connection: close" and * "Connection: Keep-Alive", we indicate we want a close but don't have * it, so that it can be enforced later. */ if (txn->flags & TX_REQ_VER_11) { /* HTTP/1.1 */ if (conn_cl) { txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_CLO; if (!conn_ka) txn->flags |= TX_REQ_CONN_CLO; } } else { /* HTTP/1.0 */ if (!conn_ka) txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_CLO | TX_REQ_CONN_CLO; else if (conn_cl) txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_CLO; } txn->flags |= TX_CON_HDR_PARS; } /* Parse the chunk size at buf->lr. Once done, it adjusts ->lr to point to the * first byte of body, and increments msg->sov by the number of bytes parsed, * so that we know we can forward between ->som and ->sov. Note that due to * possible wrapping at the end of the buffer, it is possible that msg->sov is * lower than msg->som. * Return >0 on success, 0 when some data is missing, <0 on error. * Note: this function is designed to parse wrapped CRLF at the end of the buffer. */ int http_parse_chunk_size(struct buffer *buf, struct http_msg *msg) { char *ptr = buf->lr; char *end = buf->data + buf->size; unsigned int chunk = 0; /* The chunk size is in the following form, though we are only * interested in the size and CRLF : * 1*HEXDIGIT *WSP *[ ';' extensions ] CRLF */ while (1) { int c; if (ptr == buf->r) return 0; c = hex2i(*ptr); if (c < 0) /* not a hex digit anymore */ break; if (++ptr >= end) ptr = buf->data; if (chunk & 0xF000000) /* overflow will occur */ return -1; chunk = (chunk << 4) + c; } /* empty size not allowed */ if (ptr == buf->lr) return -1; while (http_is_spht[(unsigned char)*ptr]) { if (++ptr >= end) ptr = buf->data; if (ptr == buf->r) return 0; } /* Up to there, we know that at least one byte is present at *ptr. Check * for the end of chunk size. */ while (1) { if (likely(HTTP_IS_CRLF(*ptr))) { /* we now have a CR or an LF at ptr */ if (likely(*ptr == '\r')) { if (++ptr >= end) ptr = buf->data; if (ptr == buf->r) return 0; } if (*ptr != '\n') return -1; if (++ptr >= end) ptr = buf->data; /* done */ break; } else if (*ptr == ';') { /* chunk extension, ends at next CRLF */ if (++ptr >= end) ptr = buf->data; if (ptr == buf->r) return 0; while (!HTTP_IS_CRLF(*ptr)) { if (++ptr >= end) ptr = buf->data; if (ptr == buf->r) return 0; } /* we have a CRLF now, loop above */ continue; } else return -1; } /* OK we found our CRLF and now points to the next byte, * which may or may not be present. We save that into ->lr and * ->sov. */ msg->sov += ptr - buf->lr; buf->lr = ptr; msg->hdr_content_len = chunk; msg->msg_state = chunk ? HTTP_MSG_DATA : HTTP_MSG_TRAILERS; return 1; } /* This function skips trailers in the buffer associated with HTTP * message . The first visited position is buf->lr. If the end of * the trailers is found, it is automatically scheduled to be forwarded, * msg->msg_state switches to HTTP_MSG_DONE, and the function returns >0. * If not enough data are available, the function does not change anything * except maybe buf->lr and msg->sov if it could parse some lines, and returns * zero. If a parse error is encountered, the function returns < 0 and does not * change anything except maybe buf->lr and msg->sov. Note that the message * must already be in HTTP_MSG_TRAILERS state before calling this function, * which implies that all non-trailers data have already been scheduled for * forwarding, and that the difference between msg->som and msg->sov exactly * matches the length of trailers already parsed and not forwarded. It is also * important to note that this function is designed to be able to parse wrapped * headers at end of buffer. */ int http_forward_trailers(struct buffer *buf, struct http_msg *msg) { /* we have buf->lr which points to next line. Look for CRLF. */ while (1) { char *p1 = NULL, *p2 = NULL; char *ptr = buf->lr; int bytes; /* scan current line and stop at LF or CRLF */ while (1) { if (ptr == buf->r) return 0; if (*ptr == '\n') { if (!p1) p1 = ptr; p2 = ptr; break; } if (*ptr == '\r') { if (p1) return -1; p1 = ptr; } ptr++; if (ptr >= buf->data + buf->size) ptr = buf->data; } /* after LF; point to beginning of next line */ p2++; if (p2 >= buf->data + buf->size) p2 = buf->data; bytes = p2 - buf->lr; if (bytes < 0) bytes += buf->size; /* schedule this line for forwarding */ msg->sov += bytes; if (msg->sov >= buf->size) msg->sov -= buf->size; if (p1 == buf->lr) { /* LF/CRLF at beginning of line => end of trailers at p2. * Everything was scheduled for forwarding, there's nothing * left from this message. */ buf->lr = p2; msg->msg_state = HTTP_MSG_DONE; return 1; } /* OK, next line then */ buf->lr = p2; } } /* This function may be called only in HTTP_MSG_DATA_CRLF. It reads the CRLF or * a possible LF alone at the end of a chunk. It automatically adjusts msg->sov, * ->som, buf->lr in order to include this part into the next forwarding phase. * It also sets msg_state to HTTP_MSG_CHUNK_SIZE and returns >0 on success. If * not enough data are available, the function does not change anything and * returns zero. If a parse error is encountered, the function returns < 0 and * does not change anything. Note: this function is designed to parse wrapped * CRLF at the end of the buffer. */ int http_skip_chunk_crlf(struct buffer *buf, struct http_msg *msg) { char *ptr; int bytes; /* NB: we'll check data availabilty at the end. It's not a * problem because whatever we match first will be checked * against the correct length. */ bytes = 1; ptr = buf->lr; if (*ptr == '\r') { bytes++; ptr++; if (ptr >= buf->data + buf->size) ptr = buf->data; } if (buf->l < bytes) return 0; if (*ptr != '\n') return -1; ptr++; if (ptr >= buf->data + buf->size) ptr = buf->data; buf->lr = ptr; /* prepare the CRLF to be forwarded. msg->som may be before data but we don't care */ msg->sov = ptr - buf->data; msg->som = msg->sov - bytes; msg->msg_state = HTTP_MSG_CHUNK_SIZE; return 1; } void http_buffer_heavy_realign(struct buffer *buf, struct http_msg *msg) { char *end = buf->data + buf->size; int off = buf->data + buf->size - buf->w; /* two possible cases : * - the buffer is in one contiguous block, we move it in-place * - the buffer is in two blocks, we move it via the trash */ if (buf->l) { int block1 = buf->l; int block2 = 0; if (buf->r <= buf->w) { /* non-contiguous block */ block1 = buf->data + buf->size - buf->w; block2 = buf->r - buf->data; } if (block2) memcpy(trash, buf->data, block2); memmove(buf->data, buf->w, block1); if (block2) memcpy(buf->data + block1, trash, block2); } /* adjust all known pointers */ buf->w = buf->data; buf->lr += off; if (buf->lr >= end) buf->lr -= buf->size; buf->r += off; if (buf->r >= end) buf->r -= buf->size; msg->sol += off; if (msg->sol >= end) msg->sol -= buf->size; msg->eol += off; if (msg->eol >= end) msg->eol -= buf->size; /* adjust relative pointers */ msg->som = 0; msg->eoh += off; if (msg->eoh >= buf->size) msg->eoh -= buf->size; msg->col += off; if (msg->col >= buf->size) msg->col -= buf->size; msg->sov += off; if (msg->sov >= buf->size) msg->sov -= buf->size; msg->sl.rq.u += off; if (msg->sl.rq.u >= buf->size) msg->sl.rq.u -= buf->size; msg->sl.rq.v += off; if (msg->sl.rq.v >= buf->size) msg->sl.rq.v -= buf->size; if (msg->err_pos >= 0) { msg->err_pos += off; if (msg->err_pos >= buf->size) msg->err_pos -= buf->size; } buf->flags &= ~BF_FULL; if (buf->l >= buffer_max_len(buf)) buf->flags |= BF_FULL; } /* This stream analyser waits for a complete HTTP request. It returns 1 if the * processing can continue on next analysers, or zero if it either needs more * data or wants to immediately abort the request (eg: timeout, error, ...). It * is tied to AN_REQ_WAIT_HTTP and may may remove itself from s->req->analysers * when it has nothing left to do, and may remove any analyser when it wants to * abort. */ int http_wait_for_request(struct session *s, struct buffer *req, int an_bit) { /* * We will parse the partial (or complete) lines. * We will check the request syntax, and also join multi-line * headers. An index of all the lines will be elaborated while * parsing. * * For the parsing, we use a 28 states FSM. * * Here is the information we currently have : * req->data + msg->som = beginning of request * req->data + msg->eoh = end of processed headers / start of current one * msg->eol = end of current header or line (LF or CRLF) * req->lr = first non-visited byte * req->r = end of data * * At end of parsing, we may perform a capture of the error (if any), and * we will set a few fields (msg->sol, txn->meth, sn->flags/SN_REDIRECTABLE). * We also check for monitor-uri, logging, HTTP/0.9 to 1.0 conversion, and * finally headers capture. */ int cur_idx; int use_close_only; struct http_txn *txn = &s->txn; struct http_msg *msg = &txn->req; struct hdr_ctx ctx; DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bl=%d analysers=%02x\n", now_ms, __FUNCTION__, s, req, req->rex, req->wex, req->flags, req->l, req->analysers); /* we're speaking HTTP here, so let's speak HTTP to the client */ s->srv_error = http_return_srv_error; /* There's a protected area at the end of the buffer for rewriting * purposes. We don't want to start to parse the request if the * protected area is affected, because we may have to move processed * data later, which is much more complicated. */ if (req->l && msg->msg_state < HTTP_MSG_ERROR) { if (unlikely((req->flags & BF_FULL) || req->r < req->lr || req->r > req->data + req->size - global.tune.maxrewrite)) { if (req->send_max) { /* some data has still not left the buffer, wake us once that's done */ buffer_dont_connect(req); req->flags |= BF_READ_DONTWAIT; /* try to get back here ASAP */ return 0; } if (req->l <= req->size - global.tune.maxrewrite) http_buffer_heavy_realign(req, msg); } if (likely(req->lr < req->r)) http_msg_analyzer(req, msg, &txn->hdr_idx); } /* 1: we might have to print this header in debug mode */ if (unlikely((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)) && (msg->msg_state >= HTTP_MSG_BODY || msg->msg_state == HTTP_MSG_ERROR))) { char *eol, *sol; sol = req->data + msg->som; eol = sol + msg->sl.rq.l; debug_hdr("clireq", s, sol, eol); sol += hdr_idx_first_pos(&txn->hdr_idx); cur_idx = hdr_idx_first_idx(&txn->hdr_idx); while (cur_idx) { eol = sol + txn->hdr_idx.v[cur_idx].len; debug_hdr("clihdr", s, sol, eol); sol = eol + txn->hdr_idx.v[cur_idx].cr + 1; cur_idx = txn->hdr_idx.v[cur_idx].next; } } /* * Now we quickly check if we have found a full valid request. * If not so, we check the FD and buffer states before leaving. * A full request is indicated by the fact that we have seen * the double LF/CRLF, so the state is >= HTTP_MSG_BODY. Invalid * requests are checked first. * */ if (unlikely(msg->msg_state < HTTP_MSG_BODY)) { /* * First, let's catch bad requests. */ if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) goto return_bad_req; /* 1: Since we are in header mode, if there's no space * left for headers, we won't be able to free more * later, so the session will never terminate. We * must terminate it now. */ if (unlikely(req->flags & BF_FULL)) { /* FIXME: check if URI is set and return Status * 414 Request URI too long instead. */ goto return_bad_req; } /* 2: have we encountered a read error ? */ else if (req->flags & BF_READ_ERROR) { if (txn->flags & TX_NOT_FIRST) goto failed_keep_alive; /* we cannot return any message on error */ if (msg->err_pos >= 0) http_capture_bad_message(&s->fe->invalid_req, s, req, msg, s->fe); msg->msg_state = HTTP_MSG_ERROR; req->analysers = 0; s->fe->counters.failed_req++; if (s->listener->counters) s->listener->counters->failed_req++; if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_CLICL; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_R; return 0; } /* 3: has the read timeout expired ? */ else if (req->flags & BF_READ_TIMEOUT || tick_is_expired(req->analyse_exp, now_ms)) { if (txn->flags & TX_NOT_FIRST) goto failed_keep_alive; /* read timeout : give up with an error message. */ if (msg->err_pos >= 0) http_capture_bad_message(&s->fe->invalid_req, s, req, msg, s->fe); txn->status = 408; stream_int_retnclose(req->prod, error_message(s, HTTP_ERR_408)); msg->msg_state = HTTP_MSG_ERROR; req->analysers = 0; s->fe->counters.failed_req++; if (s->listener->counters) s->listener->counters->failed_req++; if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_CLITO; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_R; return 0; } /* 4: have we encountered a close ? */ else if (req->flags & BF_SHUTR) { if (txn->flags & TX_NOT_FIRST) goto failed_keep_alive; if (msg->err_pos >= 0) http_capture_bad_message(&s->fe->invalid_req, s, req, msg, s->fe); txn->status = 400; stream_int_retnclose(req->prod, error_message(s, HTTP_ERR_400)); msg->msg_state = HTTP_MSG_ERROR; req->analysers = 0; s->fe->counters.failed_req++; if (s->listener->counters) s->listener->counters->failed_req++; if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_CLICL; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_R; return 0; } buffer_dont_connect(req); req->flags |= BF_READ_DONTWAIT; /* try to get back here ASAP */ req->flags &= ~BF_DONT_READ; /* just set the request timeout once at the beginning of the request */ if (!tick_isset(req->analyse_exp)) req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.httpreq); /* we're not ready yet */ return 0; failed_keep_alive: /* Here we process low-level errors for keep-alive requests. In * short, if the request is not the first one and it experiences * a timeout, read error or shutdown, we just silently close so * that the client can try again. */ txn->status = 0; msg->msg_state = HTTP_MSG_RQBEFORE; req->analysers = 0; s->logs.logwait = 0; stream_int_cond_close(req->prod, NULL); return 0; } /* OK now we have a complete HTTP request with indexed headers. Let's * complete the request parsing by setting a few fields we will need * later. At this point, we have the last CRLF at req->data + msg->eoh. * If the request is in HTTP/0.9 form, the rule is still true, and eoh * points to the CRLF of the request line. req->lr points to the first * byte after the last LF. msg->col and msg->sov point to the first * byte of data. msg->eol cannot be trusted because it may have been * left uninitialized (for instance in the absence of headers). */ /* Maybe we found in invalid header name while we were configured not * to block on that, so we have to capture it now. */ if (unlikely(msg->err_pos >= 0)) http_capture_bad_message(&s->fe->invalid_req, s, req, msg, s->fe); /* ensure we keep this pointer to the beginning of the message */ msg->sol = req->data + msg->som; /* * 1: identify the method */ txn->meth = find_http_meth(&req->data[msg->som], msg->sl.rq.m_l); /* we can make use of server redirect on GET and HEAD */ if (txn->meth == HTTP_METH_GET || txn->meth == HTTP_METH_HEAD) s->flags |= SN_REDIRECTABLE; /* * 2: check if the URI matches the monitor_uri. * We have to do this for every request which gets in, because * the monitor-uri is defined by the frontend. */ if (unlikely((s->fe->monitor_uri_len != 0) && (s->fe->monitor_uri_len == msg->sl.rq.u_l) && !memcmp(&req->data[msg->sl.rq.u], s->fe->monitor_uri, s->fe->monitor_uri_len))) { /* * We have found the monitor URI */ struct acl_cond *cond; s->flags |= SN_MONITOR; /* Check if we want to fail this monitor request or not */ list_for_each_entry(cond, &s->fe->mon_fail_cond, list) { int ret = acl_exec_cond(cond, s->fe, s, txn, ACL_DIR_REQ); ret = acl_pass(ret); if (cond->pol == ACL_COND_UNLESS) ret = !ret; if (ret) { /* we fail this request, let's return 503 service unavail */ txn->status = 503; stream_int_retnclose(req->prod, error_message(s, HTTP_ERR_503)); goto return_prx_cond; } } /* nothing to fail, let's reply normaly */ txn->status = 200; stream_int_retnclose(req->prod, &http_200_chunk); goto return_prx_cond; } /* * 3: Maybe we have to copy the original REQURI for the logs ? * Note: we cannot log anymore if the request has been * classified as invalid. */ if (unlikely(s->logs.logwait & LW_REQ)) { /* we have a complete HTTP request that we must log */ if ((txn->uri = pool_alloc2(pool2_requri)) != NULL) { int urilen = msg->sl.rq.l; if (urilen >= REQURI_LEN) urilen = REQURI_LEN - 1; memcpy(txn->uri, &req->data[msg->som], urilen); txn->uri[urilen] = 0; if (!(s->logs.logwait &= ~LW_REQ)) s->do_log(s); } else { Alert("HTTP logging : out of memory.\n"); } } /* 4. We may have to convert HTTP/0.9 requests to HTTP/1.0 */ if (unlikely(msg->sl.rq.v_l == 0) && !http_upgrade_v09_to_v10(req, msg, txn)) goto return_bad_req; /* ... and check if the request is HTTP/1.1 or above */ if ((msg->sl.rq.v_l == 8) && ((req->data[msg->sl.rq.v + 5] > '1') || ((req->data[msg->sl.rq.v + 5] == '1') && (req->data[msg->sl.rq.v + 7] >= '1')))) txn->flags |= TX_REQ_VER_11; /* "connection" has not been parsed yet */ txn->flags &= ~TX_CON_HDR_PARS; /* transfer length unknown*/ txn->flags &= ~TX_REQ_XFER_LEN; /* 5: we may need to capture headers */ if (unlikely((s->logs.logwait & LW_REQHDR) && s->fe->req_cap)) capture_headers(req->data + msg->som, &txn->hdr_idx, txn->req.cap, s->fe->req_cap); /* 6: determine the transfer-length. * According to RFC2616 #4.4, amended by the HTTPbis working group, * the presence of a message-body in a REQUEST and its transfer length * must be determined that way (in order of precedence) : * 1. The presence of a message-body in a request is signaled by the * inclusion of a Content-Length or Transfer-Encoding header field * in the request's header fields. When a request message contains * both a message-body of non-zero length and a method that does * not define any semantics for that request message-body, then an * origin server SHOULD either ignore the message-body or respond * with an appropriate error message (e.g., 413). A proxy or * gateway, when presented the same request, SHOULD either forward * the request inbound with the message- body or ignore the * message-body when determining a response. * * 2. If a Transfer-Encoding header field (Section 9.7) is present * and the "chunked" transfer-coding (Section 6.2) is used, the * transfer-length is defined by the use of this transfer-coding. * If a Transfer-Encoding header field is present and the "chunked" * transfer-coding is not present, the transfer-length is defined * by the sender closing the connection. * * 3. If a Content-Length header field is present, its decimal value in * OCTETs represents both the entity-length and the transfer-length. * If a message is received with both a Transfer-Encoding header * field and a Content-Length header field, the latter MUST be ignored. * * 4. By the server closing the connection. (Closing the connection * cannot be used to indicate the end of a request body, since that * would leave no possibility for the server to send back a response.) * * Whenever a transfer-coding is applied to a message-body, the set of * transfer-codings MUST include "chunked", unless the message indicates * it is terminated by closing the connection. When the "chunked" * transfer-coding is used, it MUST be the last transfer-coding applied * to the message-body. */ /* CONNECT sets a tunnel and ignores everything else */ if (txn->meth == HTTP_METH_CONNECT) goto skip_xfer_len; use_close_only = 0; ctx.idx = 0; /* set TE_CHNK and XFER_LEN only if "chunked" is seen last */ while ((txn->flags & TX_REQ_VER_11) && http_find_header2("Transfer-Encoding", 17, msg->sol, &txn->hdr_idx, &ctx)) { if (ctx.vlen == 7 && strncasecmp(ctx.line + ctx.val, "chunked", 7) == 0) txn->flags |= (TX_REQ_TE_CHNK | TX_REQ_XFER_LEN); else if (txn->flags & TX_REQ_TE_CHNK) { /* bad transfer-encoding (chunked followed by something else) */ use_close_only = 1; txn->flags &= ~(TX_REQ_TE_CHNK | TX_REQ_XFER_LEN); break; } } ctx.idx = 0; while (!(txn->flags & TX_REQ_TE_CHNK) && !use_close_only && http_find_header2("Content-Length", 14, msg->sol, &txn->hdr_idx, &ctx)) { signed long long cl; if (!ctx.vlen) goto return_bad_req; if (strl2llrc(ctx.line + ctx.val, ctx.vlen, &cl)) goto return_bad_req; /* parse failure */ if (cl < 0) goto return_bad_req; if ((txn->flags & TX_REQ_CNT_LEN) && (msg->hdr_content_len != cl)) goto return_bad_req; /* already specified, was different */ txn->flags |= TX_REQ_CNT_LEN | TX_REQ_XFER_LEN; msg->hdr_content_len = cl; } /* bodyless requests have a known length */ if (!use_close_only) txn->flags |= TX_REQ_XFER_LEN; skip_xfer_len: /* end of job, return OK */ req->analysers &= ~an_bit; req->analyse_exp = TICK_ETERNITY; return 1; return_bad_req: /* We centralize bad requests processing here */ if (unlikely(msg->msg_state == HTTP_MSG_ERROR) || msg->err_pos >= 0) { /* we detected a parsing error. We want to archive this request * in the dedicated proxy area for later troubleshooting. */ http_capture_bad_message(&s->fe->invalid_req, s, req, msg, s->fe); } txn->req.msg_state = HTTP_MSG_ERROR; txn->status = 400; stream_int_retnclose(req->prod, error_message(s, HTTP_ERR_400)); s->fe->counters.failed_req++; if (s->listener->counters) s->listener->counters->failed_req++; return_prx_cond: if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_PRXCOND; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_R; req->analysers = 0; req->analyse_exp = TICK_ETERNITY; return 0; } /* This stream analyser runs all HTTP request processing which is common to * frontends and backends, which means blocking ACLs, filters, connection-close, * reqadd, stats and redirects. This is performed for the designated proxy. * It returns 1 if the processing can continue on next analysers, or zero if it * either needs more data or wants to immediately abort the request (eg: deny, * error, ...). */ int http_process_req_common(struct session *s, struct buffer *req, int an_bit, struct proxy *px) { struct http_txn *txn = &s->txn; struct http_msg *msg = &txn->req; struct acl_cond *cond; struct redirect_rule *rule; int cur_idx; if (unlikely(msg->msg_state < HTTP_MSG_BODY)) { /* we need more data */ buffer_dont_connect(req); return 0; } req->analysers &= ~an_bit; req->analyse_exp = TICK_ETERNITY; DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bl=%d analysers=%02x\n", now_ms, __FUNCTION__, s, req, req->rex, req->wex, req->flags, req->l, req->analysers); /* first check whether we have some ACLs set to block this request */ list_for_each_entry(cond, &px->block_cond, list) { int ret = acl_exec_cond(cond, px, s, txn, ACL_DIR_REQ); ret = acl_pass(ret); if (cond->pol == ACL_COND_UNLESS) ret = !ret; if (ret) { txn->status = 403; /* let's log the request time */ s->logs.tv_request = now; stream_int_retnclose(req->prod, error_message(s, HTTP_ERR_403)); goto return_prx_cond; } } /* try headers filters */ if (px->req_exp != NULL) { if (apply_filters_to_request(s, req, px->req_exp) < 0) goto return_bad_req; /* has the request been denied ? */ if (txn->flags & TX_CLDENY) { /* no need to go further */ txn->status = 403; /* let's log the request time */ s->logs.tv_request = now; stream_int_retnclose(req->prod, error_message(s, HTTP_ERR_403)); goto return_prx_cond; } /* When a connection is tarpitted, we use the tarpit timeout, * which may be the same as the connect timeout if unspecified. * If unset, then set it to zero because we really want it to * eventually expire. We build the tarpit as an analyser. */ if (txn->flags & TX_CLTARPIT) { buffer_erase(s->req); /* wipe the request out so that we can drop the connection early * if the client closes first. */ buffer_dont_connect(req); req->analysers = 0; /* remove switching rules etc... */ req->analysers |= AN_REQ_HTTP_TARPIT; req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.tarpit); if (!req->analyse_exp) req->analyse_exp = tick_add(now_ms, 0); return 1; } } /* Until set to anything else, the connection mode is set as TUNNEL. It will * only change if both the request and the config reference something else. */ if ((txn->meth != HTTP_METH_CONNECT) && ((s->fe->options|s->be->options) & (PR_O_KEEPALIVE|PR_O_SERVER_CLO|PR_O_HTTP_CLOSE|PR_O_FORCE_CLO))) { int tmp = TX_CON_WANT_TUN; if ((s->fe->options|s->be->options) & PR_O_KEEPALIVE) tmp = TX_CON_WANT_KAL; if ((s->fe->options|s->be->options) & PR_O_SERVER_CLO) tmp = TX_CON_WANT_SCL; if ((s->fe->options|s->be->options) & (PR_O_HTTP_CLOSE|PR_O_FORCE_CLO)) tmp = TX_CON_WANT_CLO; if (!(txn->flags & TX_REQ_XFER_LEN)) tmp = TX_CON_WANT_CLO; if (!(txn->flags & TX_CON_HDR_PARS)) http_req_parse_connection_header(txn); if ((txn->flags & TX_CON_WANT_MSK) < tmp) txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | tmp; } /* We're really certain of the connection mode (tunnel, close, keep-alive) * once we know the backend, because the tunnel mode can be implied by the * lack of any close/keepalive options in both the FE and the BE. Since * this information can evolve with time, we proceed by trying to make the * header status match the desired status. For this, we'll have to adjust * the "Connection" header. The test for persistent connections has already * been performed, so we only enter here if there is a risk the connection * is considered as persistent and we want it to be closed on the server * side. It would be nice if we could enter this place only when a * Connection header exists. Note that a CONNECT method will not enter * here. */ if (!(txn->flags & TX_REQ_CONN_CLO) && ((txn->flags & TX_CON_WANT_MSK) >= TX_CON_WANT_SCL)) { char *cur_ptr, *cur_end, *cur_next; int old_idx, delta, val; int must_delete; struct hdr_idx_elem *cur_hdr; must_delete = !(txn->flags & TX_REQ_VER_11); cur_next = req->data + txn->req.som + hdr_idx_first_pos(&txn->hdr_idx); for (old_idx = 0; (cur_idx = txn->hdr_idx.v[old_idx].next); old_idx = cur_idx) { cur_hdr = &txn->hdr_idx.v[cur_idx]; cur_ptr = cur_next; cur_end = cur_ptr + cur_hdr->len; cur_next = cur_end + cur_hdr->cr + 1; val = http_header_match2(cur_ptr, cur_end, "Connection", 10); if (!val) continue; /* 3 possibilities : * - we have already set "Connection: close" or we're in * HTTP/1.0, so we remove this line. * - we have not yet set "Connection: close", but this line * indicates close. We leave it untouched and set the flag. * - we have not yet set "Connection: close", and this line * indicates non-close. We replace it and set the flag. */ if (must_delete) { delta = buffer_replace2(req, cur_ptr, cur_next, NULL, 0); http_msg_move_end(&txn->req, delta); cur_next += delta; txn->hdr_idx.v[old_idx].next = cur_hdr->next; txn->hdr_idx.used--; cur_hdr->len = 0; txn->flags |= TX_REQ_CONN_CLO; } else { if (cur_end - cur_ptr - val != 5 || strncasecmp(cur_ptr + val, "close", 5) != 0) { delta = buffer_replace2(req, cur_ptr + val, cur_end, "close", 5); cur_next += delta; cur_hdr->len += delta; http_msg_move_end(&txn->req, delta); } txn->flags |= TX_REQ_CONN_CLO; must_delete = 1; } } /* for loop */ } /* if must close keep-alive */ /* add request headers from the rule sets in the same order */ for (cur_idx = 0; cur_idx < px->nb_reqadd; cur_idx++) { if (unlikely(http_header_add_tail(req, &txn->req, &txn->hdr_idx, px->req_add[cur_idx]) < 0)) goto return_bad_req; } /* check if stats URI was requested, and if an auth is needed */ if (px->uri_auth != NULL && (txn->meth == HTTP_METH_GET || txn->meth == HTTP_METH_HEAD)) { /* we have to check the URI and auth for this request. * FIXME!!! that one is rather dangerous, we want to * make it follow standard rules (eg: clear req->analysers). */ if (stats_check_uri_auth(s, px)) { req->analysers = 0; return 0; } } /* check whether we have some ACLs set to redirect this request */ list_for_each_entry(rule, &px->redirect_rules, list) { int ret = acl_exec_cond(rule->cond, px, s, txn, ACL_DIR_REQ); ret = acl_pass(ret); if (rule->cond->pol == ACL_COND_UNLESS) ret = !ret; if (ret) { struct chunk rdr = { .str = trash, .size = sizeof(trash), .len = 0 }; const char *msg_fmt; /* build redirect message */ switch(rule->code) { case 303: msg_fmt = HTTP_303; break; case 301: msg_fmt = HTTP_301; break; case 302: default: msg_fmt = HTTP_302; break; } if (unlikely(!chunk_strcpy(&rdr, msg_fmt))) goto return_bad_req; switch(rule->type) { case REDIRECT_TYPE_PREFIX: { const char *path; int pathlen; path = http_get_path(txn); /* build message using path */ if (path) { pathlen = txn->req.sl.rq.u_l + (txn->req.sol-txn->req.som+txn->req.sl.rq.u) - path; if (rule->flags & REDIRECT_FLAG_DROP_QS) { int qs = 0; while (qs < pathlen) { if (path[qs] == '?') { pathlen = qs; break; } qs++; } } } else { path = "/"; pathlen = 1; } if (rdr.len + rule->rdr_len + pathlen > rdr.size - 4) goto return_bad_req; /* add prefix. Note that if prefix == "/", we don't want to * add anything, otherwise it makes it hard for the user to * configure a self-redirection. */ if (rule->rdr_len != 1 || *rule->rdr_str != '/') { memcpy(rdr.str + rdr.len, rule->rdr_str, rule->rdr_len); rdr.len += rule->rdr_len; } /* add path */ memcpy(rdr.str + rdr.len, path, pathlen); rdr.len += pathlen; break; } case REDIRECT_TYPE_LOCATION: default: if (rdr.len + rule->rdr_len > rdr.size - 4) goto return_bad_req; /* add location */ memcpy(rdr.str + rdr.len, rule->rdr_str, rule->rdr_len); rdr.len += rule->rdr_len; break; } if (rule->cookie_len) { memcpy(rdr.str + rdr.len, "\r\nSet-Cookie: ", 14); rdr.len += 14; memcpy(rdr.str + rdr.len, rule->cookie_str, rule->cookie_len); rdr.len += rule->cookie_len; memcpy(rdr.str + rdr.len, "\r\n", 2); rdr.len += 2; } /* add end of headers */ memcpy(rdr.str + rdr.len, "\r\n\r\n", 4); rdr.len += 4; txn->status = rule->code; /* let's log the request time */ s->logs.tv_request = now; stream_int_retnclose(req->prod, &rdr); goto return_prx_cond; } } /* We can shut read side if we know how we won't transfer any more data && !abort_on_close */ if ((txn->flags & TX_REQ_XFER_LEN) && !(txn->flags & TX_REQ_TE_CHNK) && !txn->req.hdr_content_len && (req->cons->state == SI_ST_EST || !(s->be->options & PR_O_ABRT_CLOSE))) req->flags |= BF_DONT_READ; else req->flags &= ~BF_DONT_READ; /* that's OK for us now, let's move on to next analysers */ return 1; return_bad_req: /* We centralize bad requests processing here */ if (unlikely(msg->msg_state == HTTP_MSG_ERROR) || msg->err_pos >= 0) { /* we detected a parsing error. We want to archive this request * in the dedicated proxy area for later troubleshooting. */ http_capture_bad_message(&s->fe->invalid_req, s, req, msg, s->fe); } txn->req.msg_state = HTTP_MSG_ERROR; txn->status = 400; stream_int_retnclose(req->prod, error_message(s, HTTP_ERR_400)); s->fe->counters.failed_req++; if (s->listener->counters) s->listener->counters->failed_req++; return_prx_cond: if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_PRXCOND; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_R; req->analysers = 0; req->analyse_exp = TICK_ETERNITY; return 0; } /* This function performs all the processing enabled for the current request. * It returns 1 if the processing can continue on next analysers, or zero if it * needs more data, encounters an error, or wants to immediately abort the * request. It relies on buffers flags, and updates s->req->analysers. */ int http_process_request(struct session *s, struct buffer *req, int an_bit) { struct http_txn *txn = &s->txn; struct http_msg *msg = &txn->req; if (unlikely(msg->msg_state < HTTP_MSG_BODY)) { /* we need more data */ buffer_dont_connect(req); return 0; } DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bl=%d analysers=%02x\n", now_ms, __FUNCTION__, s, req, req->rex, req->wex, req->flags, req->l, req->analysers); /* * Right now, we know that we have processed the entire headers * and that unwanted requests have been filtered out. We can do * whatever we want with the remaining request. Also, now we * may have separate values for ->fe, ->be. */ /* * If HTTP PROXY is set we simply get remote server address * parsing incoming request. */ if ((s->be->options & PR_O_HTTP_PROXY) && !(s->flags & SN_ADDR_SET)) { url2sa(req->data + msg->sl.rq.u, msg->sl.rq.u_l, &s->srv_addr); } /* * 7: Now we can work with the cookies. * Note that doing so might move headers in the request, but * the fields will stay coherent and the URI will not move. * This should only be performed in the backend. */ if ((s->be->cookie_name || s->be->appsession_name || s->fe->capture_name) && !(txn->flags & (TX_CLDENY|TX_CLTARPIT))) manage_client_side_cookies(s, req); /* * 8: the appsession cookie was looked up very early in 1.2, * so let's do the same now. */ /* It needs to look into the URI */ if ((s->sessid == NULL) && s->be->appsession_name) { get_srv_from_appsession(s, &req->data[msg->sl.rq.u], msg->sl.rq.u_l); } /* * 9: add X-Forwarded-For if either the frontend or the backend * asks for it. */ if ((s->fe->options | s->be->options) & PR_O_FWDFOR) { if (s->cli_addr.ss_family == AF_INET) { /* Add an X-Forwarded-For header unless the source IP is * in the 'except' network range. */ if ((!s->fe->except_mask.s_addr || (((struct sockaddr_in *)&s->cli_addr)->sin_addr.s_addr & s->fe->except_mask.s_addr) != s->fe->except_net.s_addr) && (!s->be->except_mask.s_addr || (((struct sockaddr_in *)&s->cli_addr)->sin_addr.s_addr & s->be->except_mask.s_addr) != s->be->except_net.s_addr)) { int len; unsigned char *pn; pn = (unsigned char *)&((struct sockaddr_in *)&s->cli_addr)->sin_addr; /* Note: we rely on the backend to get the header name to be used for * x-forwarded-for, because the header is really meant for the backends. * However, if the backend did not specify any option, we have to rely * on the frontend's header name. */ if (s->be->fwdfor_hdr_len) { len = s->be->fwdfor_hdr_len; memcpy(trash, s->be->fwdfor_hdr_name, len); } else { len = s->fe->fwdfor_hdr_len; memcpy(trash, s->fe->fwdfor_hdr_name, len); } len += sprintf(trash + len, ": %d.%d.%d.%d", pn[0], pn[1], pn[2], pn[3]); if (unlikely(http_header_add_tail2(req, &txn->req, &txn->hdr_idx, trash, len) < 0)) goto return_bad_req; } } else if (s->cli_addr.ss_family == AF_INET6) { /* FIXME: for the sake of completeness, we should also support * 'except' here, although it is mostly useless in this case. */ int len; char pn[INET6_ADDRSTRLEN]; inet_ntop(AF_INET6, (const void *)&((struct sockaddr_in6 *)(&s->cli_addr))->sin6_addr, pn, sizeof(pn)); /* Note: we rely on the backend to get the header name to be used for * x-forwarded-for, because the header is really meant for the backends. * However, if the backend did not specify any option, we have to rely * on the frontend's header name. */ if (s->be->fwdfor_hdr_len) { len = s->be->fwdfor_hdr_len; memcpy(trash, s->be->fwdfor_hdr_name, len); } else { len = s->fe->fwdfor_hdr_len; memcpy(trash, s->fe->fwdfor_hdr_name, len); } len += sprintf(trash + len, ": %s", pn); if (unlikely(http_header_add_tail2(req, &txn->req, &txn->hdr_idx, trash, len) < 0)) goto return_bad_req; } } /* * 10: add X-Original-To if either the frontend or the backend * asks for it. */ if ((s->fe->options | s->be->options) & PR_O_ORGTO) { /* FIXME: don't know if IPv6 can handle that case too. */ if (s->cli_addr.ss_family == AF_INET) { /* Add an X-Original-To header unless the destination IP is * in the 'except' network range. */ if (!(s->flags & SN_FRT_ADDR_SET)) get_frt_addr(s); if ((!s->fe->except_mask_to.s_addr || (((struct sockaddr_in *)&s->frt_addr)->sin_addr.s_addr & s->fe->except_mask_to.s_addr) != s->fe->except_to.s_addr) && (!s->be->except_mask_to.s_addr || (((struct sockaddr_in *)&s->frt_addr)->sin_addr.s_addr & s->be->except_mask_to.s_addr) != s->be->except_to.s_addr)) { int len; unsigned char *pn; pn = (unsigned char *)&((struct sockaddr_in *)&s->frt_addr)->sin_addr; /* Note: we rely on the backend to get the header name to be used for * x-original-to, because the header is really meant for the backends. * However, if the backend did not specify any option, we have to rely * on the frontend's header name. */ if (s->be->orgto_hdr_len) { len = s->be->orgto_hdr_len; memcpy(trash, s->be->orgto_hdr_name, len); } else { len = s->fe->orgto_hdr_len; memcpy(trash, s->fe->orgto_hdr_name, len); } len += sprintf(trash + len, ": %d.%d.%d.%d", pn[0], pn[1], pn[2], pn[3]); if (unlikely(http_header_add_tail2(req, &txn->req, &txn->hdr_idx, trash, len) < 0)) goto return_bad_req; } } } /* 11: add "Connection: close" if needed and not yet set. */ if (!(txn->flags & TX_REQ_CONN_CLO) && ((txn->flags & TX_CON_WANT_MSK) >= TX_CON_WANT_SCL)) { if (unlikely(http_header_add_tail2(req, &txn->req, &txn->hdr_idx, "Connection: close", 17) < 0)) goto return_bad_req; txn->flags |= TX_REQ_CONN_CLO; } /* If we have no server assigned yet and we're balancing on url_param * with a POST request, we may be interested in checking the body for * that parameter. This will be done in another analyser. */ if (!(s->flags & (SN_ASSIGNED|SN_DIRECT)) && s->txn.meth == HTTP_METH_POST && s->be->url_param_name != NULL && s->be->url_param_post_limit != 0 && (txn->flags & (TX_REQ_CNT_LEN|TX_REQ_TE_CHNK)) && memchr(req->data + msg->sl.rq.u, '?', msg->sl.rq.u_l) == NULL) { buffer_dont_connect(req); req->analysers |= AN_REQ_HTTP_BODY; } if (txn->flags & TX_REQ_XFER_LEN) req->analysers |= AN_REQ_HTTP_XFER_BODY; /************************************************************* * OK, that's finished for the headers. We have done what we * * could. Let's switch to the DATA state. * ************************************************************/ req->analyse_exp = TICK_ETERNITY; req->analysers &= ~an_bit; s->logs.tv_request = now; /* OK let's go on with the BODY now */ return 1; return_bad_req: /* let's centralize all bad requests */ if (unlikely(msg->msg_state == HTTP_MSG_ERROR) || msg->err_pos >= 0) { /* we detected a parsing error. We want to archive this request * in the dedicated proxy area for later troubleshooting. */ http_capture_bad_message(&s->fe->invalid_req, s, req, msg, s->fe); } txn->req.msg_state = HTTP_MSG_ERROR; txn->status = 400; req->analysers = 0; stream_int_retnclose(req->prod, error_message(s, HTTP_ERR_400)); s->fe->counters.failed_req++; if (s->listener->counters) s->listener->counters->failed_req++; if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_PRXCOND; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_R; return 0; } /* This function is an analyser which processes the HTTP tarpit. It always * returns zero, at the beginning because it prevents any other processing * from occurring, and at the end because it terminates the request. */ int http_process_tarpit(struct session *s, struct buffer *req, int an_bit) { struct http_txn *txn = &s->txn; /* This connection is being tarpitted. The CLIENT side has * already set the connect expiration date to the right * timeout. We just have to check that the client is still * there and that the timeout has not expired. */ buffer_dont_connect(req); if ((req->flags & (BF_SHUTR|BF_READ_ERROR)) == 0 && !tick_is_expired(req->analyse_exp, now_ms)) return 0; /* We will set the queue timer to the time spent, just for * logging purposes. We fake a 500 server error, so that the * attacker will not suspect his connection has been tarpitted. * It will not cause trouble to the logs because we can exclude * the tarpitted connections by filtering on the 'PT' status flags. */ s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); txn->status = 500; if (req->flags != BF_READ_ERROR) stream_int_retnclose(req->prod, error_message(s, HTTP_ERR_500)); req->analysers = 0; req->analyse_exp = TICK_ETERNITY; s->fe->counters.failed_req++; if (s->listener->counters) s->listener->counters->failed_req++; if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_PRXCOND; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_T; return 0; } /* This function is an analyser which processes the HTTP request body. It looks * for parameters to be used for the load balancing algorithm (url_param). It * must only be called after the standard HTTP request processing has occurred, * because it expects the request to be parsed. It returns zero if it needs to * read more data, or 1 once it has completed its analysis. */ int http_process_request_body(struct session *s, struct buffer *req, int an_bit) { struct http_txn *txn = &s->txn; struct http_msg *msg = &s->txn.req; long long limit = s->be->url_param_post_limit; /* We have to parse the HTTP request body to find any required data. * "balance url_param check_post" should have been the only way to get * into this. We were brought here after HTTP header analysis, so all * related structures are ready. */ if (unlikely(msg->msg_state < HTTP_MSG_BODY)) goto missing_data; if (msg->msg_state < HTTP_MSG_100_SENT) { /* If we have HTTP/1.1 and Expect: 100-continue, then we must * send an HTTP/1.1 100 Continue intermediate response. */ if (txn->flags & TX_REQ_VER_11) { struct hdr_ctx ctx; ctx.idx = 0; /* Expect is allowed in 1.1, look for it */ if (http_find_header2("Expect", 6, msg->sol, &txn->hdr_idx, &ctx) && unlikely(ctx.vlen == 12 && strncasecmp(ctx.line+ctx.val, "100-continue", 12) == 0)) { buffer_write(s->rep, http_100_chunk.str, http_100_chunk.len); } } msg->msg_state = HTTP_MSG_100_SENT; } if (msg->msg_state < HTTP_MSG_CHUNK_SIZE) { /* we have msg->col and msg->sov which both point to the first * byte of message body. msg->som still points to the beginning * of the message. We must save the body in req->lr because it * survives buffer re-alignments. */ req->lr = req->data + msg->sov; if (txn->flags & TX_REQ_TE_CHNK) msg->msg_state = HTTP_MSG_CHUNK_SIZE; else msg->msg_state = HTTP_MSG_DATA; } if (msg->msg_state == HTTP_MSG_CHUNK_SIZE) { /* read the chunk size and assign it to ->hdr_content_len, then * set ->sov and ->lr to point to the body and switch to DATA or * TRAILERS state. */ int ret = http_parse_chunk_size(req, msg); if (!ret) goto missing_data; else if (ret < 0) goto return_bad_req; } /* Now we're in HTTP_MSG_DATA or HTTP_MSG_TRAILERS state. * We have the first non-header byte in msg->col, which is either the * beginning of the chunk size or of the data. The first data byte is in * msg->sov, which is equal to msg->col when not using transfer-encoding. * We're waiting for at least bytes after msg->sov. */ if (msg->hdr_content_len < limit) limit = msg->hdr_content_len; if (req->l - (msg->sov - msg->som) >= limit) /* we have enough bytes now */ goto http_end; missing_data: /* we get here if we need to wait for more data */ if (req->flags & BF_FULL) goto return_bad_req; if ((req->flags & BF_READ_TIMEOUT) || tick_is_expired(req->analyse_exp, now_ms)) { txn->status = 408; stream_int_retnclose(req->prod, error_message(s, HTTP_ERR_408)); goto return_err_msg; } /* we get here if we need to wait for more data */ if (!(req->flags & (BF_FULL | BF_READ_ERROR | BF_SHUTR))) { /* Not enough data. We'll re-use the http-request * timeout here. Ideally, we should set the timeout * relative to the accept() date. We just set the * request timeout once at the beginning of the * request. */ buffer_dont_connect(req); if (!tick_isset(req->analyse_exp)) req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.httpreq); return 0; } http_end: /* The situation will not evolve, so let's give up on the analysis. */ s->logs.tv_request = now; /* update the request timer to reflect full request */ req->analysers &= ~an_bit; req->analyse_exp = TICK_ETERNITY; return 1; return_bad_req: /* let's centralize all bad requests */ txn->req.msg_state = HTTP_MSG_ERROR; txn->status = 400; stream_int_retnclose(req->prod, error_message(s, HTTP_ERR_400)); return_err_msg: req->analysers = 0; s->fe->counters.failed_req++; if (s->listener->counters) s->listener->counters->failed_req++; if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_PRXCOND; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_R; return 0; } /* This function is an analyser which forwards request body (including chunk * sizes if any). It is called as soon as we must forward, even if we forward * zero byte. The only situation where it must not be called is when we're in * tunnel mode and we want to forward till the close. It's used both to forward * remaining data and to resync after end of body. It expects the msg_state to * be between MSG_BODY and MSG_DONE (inclusive). It returns zero if it needs to * read more data, or 1 once we can go on with next request or end the session. * When in MSG_DATA or MSG_TRAILERS, it will automatically forward hdr_content_len * bytes of pending data + the headers if not already done (between som and sov). * It eventually adjusts som to match sov after the data in between have been sent. */ int http_request_forward_body(struct session *s, struct buffer *req, int an_bit) { struct http_txn *txn = &s->txn; struct http_msg *msg = &s->txn.req; if ((req->flags & (BF_READ_ERROR|BF_READ_TIMEOUT|BF_WRITE_ERROR|BF_WRITE_TIMEOUT)) || ((req->flags & BF_SHUTW) && (req->to_forward || req->send_max))) { /* Output closed while we were sending data. We must abort. */ buffer_ignore(req, req->l - req->send_max); req->analysers &= ~an_bit; return 1; } if (unlikely(msg->msg_state < HTTP_MSG_BODY)) return 0; /* Note that we don't have to send 100-continue back because we don't * need the data to complete our job, and it's up to the server to * decide whether to return 100, 417 or anything else in return of * an "Expect: 100-continue" header. */ if (msg->msg_state < HTTP_MSG_CHUNK_SIZE) { /* we have msg->col and msg->sov which both point to the first * byte of message body. msg->som still points to the beginning * of the message. We must save the body in req->lr because it * survives buffer re-alignments. */ req->lr = req->data + msg->sov; if (txn->flags & TX_REQ_TE_CHNK) msg->msg_state = HTTP_MSG_CHUNK_SIZE; else { msg->msg_state = HTTP_MSG_DATA; } } while (1) { /* we may have some data pending */ if (msg->hdr_content_len || msg->som != msg->sov) { int bytes = msg->sov - msg->som; if (bytes < 0) /* sov may have wrapped at the end */ bytes += req->size; buffer_forward(req, bytes + msg->hdr_content_len); msg->hdr_content_len = 0; /* don't forward that again */ msg->som = msg->sov; } if (msg->msg_state == HTTP_MSG_CHUNK_SIZE) { /* read the chunk size and assign it to ->hdr_content_len, then * set ->sov and ->lr to point to the body and switch to DATA or * TRAILERS state. */ int ret = http_parse_chunk_size(req, msg); if (!ret) goto missing_data; else if (ret < 0) goto return_bad_req; /* otherwise we're in HTTP_MSG_DATA or HTTP_MSG_TRAILERS state */ } else if (msg->msg_state == HTTP_MSG_DATA) { /* must still forward */ if (req->to_forward) return 0; /* we're sending the last bits of request, the server's response * is expected in a short time. Most often the first read is enough * to bring all the headers, so we're preparing the response buffer * to read the response now. Note that we should probably move that * to a more appropriate place. */ if (txn->rsp.msg_state == HTTP_MSG_RPBEFORE) { s->rep->flags &= ~BF_DONT_READ; s->rep->flags |= BF_READ_DONTWAIT; } /* nothing left to forward */ if (txn->flags & TX_REQ_TE_CHNK) msg->msg_state = HTTP_MSG_DATA_CRLF; else { msg->msg_state = HTTP_MSG_DONE; } } else if (msg->msg_state == HTTP_MSG_DATA_CRLF) { /* we want the CRLF after the data */ int ret; if (!(req->flags & BF_OUT_EMPTY)) return 0; /* The output pointer does not move anymore, next unsent data * are available at ->w. Let's save that. */ req->lr = req->w; ret = http_skip_chunk_crlf(req, msg); if (ret == 0) goto missing_data; else if (ret < 0) goto return_bad_req; /* we're in MSG_CHUNK_SIZE now */ } else if (msg->msg_state == HTTP_MSG_TRAILERS) { int ret = http_forward_trailers(req, msg); if (ret == 0) goto missing_data; else if (ret < 0) goto return_bad_req; /* we're in HTTP_MSG_DONE now */ } else if (msg->msg_state == HTTP_MSG_DONE) { /* No need to read anymore, the request was completely parsed */ req->flags |= BF_DONT_READ; if (txn->rsp.msg_state < HTTP_MSG_DONE && txn->rsp.msg_state != HTTP_MSG_ERROR) { /* The server has not finished to respond, so we * don't want to move in order not to upset it. */ return 0; } /* when we support keep-alive or server-close modes, we'll have * to reset the transaction here. */ if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) { /* initiate a connection close to the server */ req->cons->flags |= SI_FL_NOLINGER; buffer_shutw_now(req); } else if ((s->fe->options | s->be->options) & PR_O_FORCE_CLO) { /* Option forceclose is set, let's enforce it now * that the transfer is complete. We can safely speed * up the close because we know the server has received * everything we wanted it to receive. */ req->cons->flags |= SI_FL_NOLINGER; buffer_abort(req); } if (req->flags & (BF_SHUTW|BF_SHUTW_NOW)) { if (req->flags & BF_OUT_EMPTY) msg->msg_state = HTTP_MSG_CLOSED; else msg->msg_state = HTTP_MSG_CLOSING; } else { /* for other modes, we let further requests pass for now */ req->flags &= ~BF_DONT_READ; /* FIXME: we're still forced to do that here */ s->rep->flags &= ~BF_DONT_READ; break; } } else if (msg->msg_state == HTTP_MSG_CLOSING) { /* nothing else to forward, just waiting for the buffer to be empty */ if (!(req->flags & BF_OUT_EMPTY)) return 0; msg->msg_state = HTTP_MSG_CLOSED; } else if (msg->msg_state == HTTP_MSG_CLOSED) { req->flags &= ~BF_DONT_READ; if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) { /* FIXME : this part is 1) awful, 2) tricky, 3) duplicated * ... but it works. * We need a better way to force a connection close without * any risk of propagation to the other side. We need a more * portable way of releasing a backend's and a server's * connections. We need a safer way to reinitialize buffer * flags. We also need a more accurate method for computing * per-request data. */ s->req->cons->flags |= SI_FL_NOLINGER; s->req->cons->shutr(s->req->cons); s->req->cons->shutw(s->req->cons); if (s->flags & SN_BE_ASSIGNED) s->be->beconn--; s->logs.t_close = tv_ms_elapsed(&s->logs.tv_accept, &now); session_process_counters(s); if (s->txn.status) { int n; n = s->txn.status / 100; if (n < 1 || n > 5) n = 0; if (s->fe->mode == PR_MODE_HTTP) s->fe->counters.p.http.rsp[n]++; if ((s->flags & SN_BE_ASSIGNED) && (s->fe != s->be) && (s->be->mode == PR_MODE_HTTP)) s->be->counters.p.http.rsp[n]++; } /* don't count other requests' data */ s->logs.bytes_in -= s->req->l - s->req->send_max; s->logs.bytes_out -= s->rep->l - s->rep->send_max; /* let's do a final log if we need it */ if (s->logs.logwait && !(s->flags & SN_MONITOR) && (!(s->fe->options & PR_O_NULLNOLOG) || s->req->total)) { s->do_log(s); } s->logs.accept_date = date; /* user-visible date for logging */ s->logs.tv_accept = now; /* corrected date for internal use */ tv_zero(&s->logs.tv_request); s->logs.t_queue = -1; s->logs.t_connect = -1; s->logs.t_data = -1; s->logs.t_close = 0; s->logs.prx_queue_size = 0; /* we get the number of pending conns before us */ s->logs.srv_queue_size = 0; /* we will get this number soon */ s->logs.bytes_in = s->req->total = s->req->l - s->req->send_max; s->logs.bytes_out = s->rep->total = s->rep->l - s->rep->send_max; if (s->pend_pos) pendconn_free(s->pend_pos); if (s->srv) { if (s->flags & SN_CURR_SESS) { s->flags &= ~SN_CURR_SESS; s->srv->cur_sess--; } if (may_dequeue_tasks(s->srv, s->be)) process_srv_queue(s->srv); } if (unlikely(s->srv_conn)) sess_change_server(s, NULL); s->srv = NULL; s->req->cons->state = s->req->cons->prev_state = SI_ST_INI; s->req->cons->fd = -1; /* just to help with debugging */ s->req->cons->err_type = SI_ET_NONE; s->req->cons->err_loc = NULL; s->req->cons->exp = TICK_ETERNITY; s->req->cons->flags = SI_FL_NONE; s->req->flags &= ~(BF_SHUTW|BF_SHUTW_NOW|BF_AUTO_CONNECT|BF_WRITE_ERROR|BF_STREAMER|BF_STREAMER_FAST|BF_AUTO_CLOSE); s->rep->flags &= ~(BF_SHUTR|BF_SHUTR_NOW|BF_READ_ATTACHED|BF_READ_ERROR|BF_READ_NOEXP|BF_STREAMER|BF_STREAMER_FAST|BF_AUTO_CLOSE|BF_WRITE_PARTIAL); s->flags &= ~(SN_DIRECT|SN_ASSIGNED|SN_ADDR_SET|SN_BE_ASSIGNED); s->flags &= ~(SN_CURR_SESS|SN_REDIRECTABLE); s->txn.meth = 0; http_reset_txn(s); txn->flags |= TX_NOT_FIRST; if (s->be->options2 & PR_O2_INDEPSTR) s->req->cons->flags |= SI_FL_INDEP_STR; /* if the request buffer is not empty, it means we're * about to process another request, so send pending * data with MSG_MORE to merge TCP packets when possible. * Also, let's not start reading a small request packet, * we may prefer to read a larger one later. */ if (s->req->l > s->req->send_max) { s->rep->flags |= BF_EXPECT_MORE; s->req->flags |= BF_DONT_READ; } /* make ->lr point to the first non-forwarded byte */ s->req->lr = s->req->w + s->req->send_max; if (s->req->lr >= s->req->data + s->req->size) s->req->lr -= s->req->size; s->rep->lr = s->rep->w + s->rep->send_max; if (s->rep->lr >= s->rep->data + s->rep->size) s->rep->lr -= s->req->size; s->req->analysers |= s->fe->fe_req_ana; s->rep->analysers = 0; } /* FIXME: we're still forced to do that here */ s->rep->flags &= ~BF_DONT_READ; break; } } /* OK we're done with the data phase */ req->analysers &= ~an_bit; return 1; missing_data: /* forward the chunk size as well as any pending data */ if (msg->hdr_content_len || msg->som != msg->sov) { buffer_forward(req, msg->sov - msg->som + msg->hdr_content_len); msg->hdr_content_len = 0; /* don't forward that again */ msg->som = msg->sov; } if (req->flags & BF_FULL) goto return_bad_req; /* the session handler will take care of timeouts and errors */ return 0; return_bad_req: /* let's centralize all bad requests */ txn->req.msg_state = HTTP_MSG_ERROR; txn->status = 400; /* Note: we don't send any error if some data were already sent */ stream_int_cond_close(req->prod, (txn->rsp.msg_state < HTTP_MSG_BODY) ? error_message(s, HTTP_ERR_400) : NULL); req->analysers = 0; s->fe->counters.failed_req++; if (s->listener->counters) s->listener->counters->failed_req++; if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_PRXCOND; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_R; return 0; } /* This stream analyser waits for a complete HTTP response. It returns 1 if the * processing can continue on next analysers, or zero if it either needs more * data or wants to immediately abort the response (eg: timeout, error, ...). It * is tied to AN_RES_WAIT_HTTP and may may remove itself from s->rep->analysers * when it has nothing left to do, and may remove any analyser when it wants to * abort. */ int http_wait_for_response(struct session *s, struct buffer *rep, int an_bit) { struct http_txn *txn = &s->txn; struct http_msg *msg = &txn->rsp; struct hdr_ctx ctx; int use_close_only; int cur_idx; int n; DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bl=%d analysers=%02x\n", now_ms, __FUNCTION__, s, rep, rep->rex, rep->wex, rep->flags, rep->l, rep->analysers); /* * Now parse the partial (or complete) lines. * We will check the response syntax, and also join multi-line * headers. An index of all the lines will be elaborated while * parsing. * * For the parsing, we use a 28 states FSM. * * Here is the information we currently have : * rep->data + msg->som = beginning of response * rep->data + msg->eoh = end of processed headers / start of current one * msg->eol = end of current header or line (LF or CRLF) * rep->lr = first non-visited byte * rep->r = end of data */ /* There's a protected area at the end of the buffer for rewriting * purposes. We don't want to start to parse the request if the * protected area is affected, because we may have to move processed * data later, which is much more complicated. */ if (rep->l && msg->msg_state < HTTP_MSG_ERROR) { if (unlikely((rep->flags & BF_FULL) || rep->r < rep->lr || rep->r > rep->data + rep->size - global.tune.maxrewrite)) { if (rep->send_max) { /* some data has still not left the buffer, wake us once that's done */ buffer_dont_close(rep); rep->flags |= BF_READ_DONTWAIT; /* try to get back here ASAP */ return 0; } if (rep->l <= rep->size - global.tune.maxrewrite) http_buffer_heavy_realign(rep, msg); } if (likely(rep->lr < rep->r)) http_msg_analyzer(rep, msg, &txn->hdr_idx); } /* 1: we might have to print this header in debug mode */ if (unlikely((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)) && (msg->msg_state >= HTTP_MSG_BODY || msg->msg_state == HTTP_MSG_ERROR))) { char *eol, *sol; sol = rep->data + msg->som; eol = sol + msg->sl.rq.l; debug_hdr("srvrep", s, sol, eol); sol += hdr_idx_first_pos(&txn->hdr_idx); cur_idx = hdr_idx_first_idx(&txn->hdr_idx); while (cur_idx) { eol = sol + txn->hdr_idx.v[cur_idx].len; debug_hdr("srvhdr", s, sol, eol); sol = eol + txn->hdr_idx.v[cur_idx].cr + 1; cur_idx = txn->hdr_idx.v[cur_idx].next; } } /* * Now we quickly check if we have found a full valid response. * If not so, we check the FD and buffer states before leaving. * A full response is indicated by the fact that we have seen * the double LF/CRLF, so the state is >= HTTP_MSG_BODY. Invalid * responses are checked first. * * Depending on whether the client is still there or not, we * may send an error response back or not. Note that normally * we should only check for HTTP status there, and check I/O * errors somewhere else. */ if (unlikely(msg->msg_state < HTTP_MSG_BODY)) { /* Invalid response */ if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) { /* we detected a parsing error. We want to archive this response * in the dedicated proxy area for later troubleshooting. */ hdr_response_bad: if (msg->msg_state == HTTP_MSG_ERROR || msg->err_pos >= 0) http_capture_bad_message(&s->be->invalid_rep, s, rep, msg, s->fe); s->be->counters.failed_resp++; if (s->srv) { s->srv->counters.failed_resp++; health_adjust(s->srv, HANA_STATUS_HTTP_HDRRSP); } rep->analysers = 0; txn->status = 502; rep->prod->flags |= SI_FL_NOLINGER; stream_int_retnclose(rep->cons, error_message(s, HTTP_ERR_502)); if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_PRXCOND; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_H; return 0; } /* too large response does not fit in buffer. */ else if (rep->flags & BF_FULL) { goto hdr_response_bad; } /* read error */ else if (rep->flags & BF_READ_ERROR) { if (msg->err_pos >= 0) http_capture_bad_message(&s->be->invalid_rep, s, rep, msg, s->fe); s->be->counters.failed_resp++; if (s->srv) { s->srv->counters.failed_resp++; health_adjust(s->srv, HANA_STATUS_HTTP_READ_ERROR); } rep->analysers = 0; txn->status = 502; rep->prod->flags |= SI_FL_NOLINGER; stream_int_retnclose(rep->cons, error_message(s, HTTP_ERR_502)); if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_SRVCL; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_H; return 0; } /* read timeout : return a 504 to the client. */ else if (rep->flags & BF_READ_TIMEOUT) { if (msg->err_pos >= 0) http_capture_bad_message(&s->be->invalid_rep, s, rep, msg, s->fe); s->be->counters.failed_resp++; if (s->srv) { s->srv->counters.failed_resp++; health_adjust(s->srv, HANA_STATUS_HTTP_READ_TIMEOUT); } rep->analysers = 0; txn->status = 504; rep->prod->flags |= SI_FL_NOLINGER; stream_int_retnclose(rep->cons, error_message(s, HTTP_ERR_504)); if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_SRVTO; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_H; return 0; } /* close from server */ else if (rep->flags & BF_SHUTR) { if (msg->err_pos >= 0) http_capture_bad_message(&s->be->invalid_rep, s, rep, msg, s->fe); s->be->counters.failed_resp++; if (s->srv) { s->srv->counters.failed_resp++; health_adjust(s->srv, HANA_STATUS_HTTP_BROKEN_PIPE); } rep->analysers = 0; txn->status = 502; rep->prod->flags |= SI_FL_NOLINGER; stream_int_retnclose(rep->cons, error_message(s, HTTP_ERR_502)); if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_SRVCL; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_H; return 0; } /* write error to client (we don't send any message then) */ else if (rep->flags & BF_WRITE_ERROR) { if (msg->err_pos >= 0) http_capture_bad_message(&s->be->invalid_rep, s, rep, msg, s->fe); s->be->counters.failed_resp++; rep->analysers = 0; if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_CLICL; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_H; /* process_session() will take care of the error */ return 0; } buffer_dont_close(rep); return 0; } /* More interesting part now : we know that we have a complete * response which at least looks like HTTP. We have an indicator * of each header's length, so we can parse them quickly. */ if (unlikely(msg->err_pos >= 0)) http_capture_bad_message(&s->be->invalid_rep, s, rep, msg, s->fe); /* ensure we keep this pointer to the beginning of the message */ msg->sol = rep->data + msg->som; /* * 1: get the status code */ n = rep->data[msg->sl.st.c] - '0'; if (n < 1 || n > 5) n = 0; s->srv->counters.p.http.rsp[n]++; /* check if the response is HTTP/1.1 or above */ if ((msg->sl.st.v_l == 8) && ((rep->data[msg->som + 5] > '1') || ((rep->data[msg->som + 5] == '1') && (rep->data[msg->som + 7] >= '1')))) txn->flags |= TX_RES_VER_11; /* "connection" has not been parsed yet */ txn->flags &= ~TX_CON_HDR_PARS; /* transfer length unknown*/ txn->flags &= ~TX_RES_XFER_LEN; txn->status = strl2ui(rep->data + msg->sl.st.c, msg->sl.st.c_l); if (txn->status >= 100 && txn->status < 500) health_adjust(s->srv, HANA_STATUS_HTTP_OK); else health_adjust(s->srv, HANA_STATUS_HTTP_STS); /* * 2: check for cacheability. */ switch (txn->status) { case 200: case 203: case 206: case 300: case 301: case 410: /* RFC2616 @13.4: * "A response received with a status code of * 200, 203, 206, 300, 301 or 410 MAY be stored * by a cache (...) unless a cache-control * directive prohibits caching." * * RFC2616 @9.5: POST method : * "Responses to this method are not cacheable, * unless the response includes appropriate * Cache-Control or Expires header fields." */ if (likely(txn->meth != HTTP_METH_POST) && (s->be->options & (PR_O_CHK_CACHE|PR_O_COOK_NOC))) txn->flags |= TX_CACHEABLE | TX_CACHE_COOK; break; default: break; } /* * 3: we may need to capture headers */ s->logs.logwait &= ~LW_RESP; if (unlikely((s->logs.logwait & LW_RSPHDR) && s->fe->rsp_cap)) capture_headers(rep->data + msg->som, &txn->hdr_idx, txn->rsp.cap, s->fe->rsp_cap); /* 4: determine the transfer-length. * According to RFC2616 #4.4, amended by the HTTPbis working group, * the presence of a message-body in a RESPONSE and its transfer length * must be determined that way : * * All responses to the HEAD request method MUST NOT include a * message-body, even though the presence of entity-header fields * might lead one to believe they do. All 1xx (informational), 204 * (No Content), and 304 (Not Modified) responses MUST NOT include a * message-body. All other responses do include a message-body, * although it MAY be of zero length. * * 1. Any response which "MUST NOT" include a message-body (such as the * 1xx, 204 and 304 responses and any response to a HEAD request) is * always terminated by the first empty line after the header fields, * regardless of the entity-header fields present in the message. * * 2. If a Transfer-Encoding header field (Section 9.7) is present and * the "chunked" transfer-coding (Section 6.2) is used, the * transfer-length is defined by the use of this transfer-coding. * If a Transfer-Encoding header field is present and the "chunked" * transfer-coding is not present, the transfer-length is defined by * the sender closing the connection. * * 3. If a Content-Length header field is present, its decimal value in * OCTETs represents both the entity-length and the transfer-length. * If a message is received with both a Transfer-Encoding header * field and a Content-Length header field, the latter MUST be ignored. * * 4. If the message uses the media type "multipart/byteranges", and * the transfer-length is not otherwise specified, then this self- * delimiting media type defines the transfer-length. This media * type MUST NOT be used unless the sender knows that the recipient * can parse it; the presence in a request of a Range header with * multiple byte-range specifiers from a 1.1 client implies that the * client can parse multipart/byteranges responses. * * 5. By the server closing the connection. */ /* Skip parsing if no content length is possible. The response flags * remain 0 as well as the hdr_content_len, which may or may not mirror * the real header value, and we note that we know the response's length. * FIXME: should we parse anyway and return an error on chunked encoding ? */ if (txn->meth == HTTP_METH_HEAD || (txn->status >= 100 && txn->status < 200) || txn->status == 204 || txn->status == 304) { txn->flags |= TX_RES_XFER_LEN; goto skip_content_length; } if (txn->meth == HTTP_METH_CONNECT) goto skip_content_length; use_close_only = 0; ctx.idx = 0; while ((txn->flags & TX_RES_VER_11) && http_find_header2("Transfer-Encoding", 17, msg->sol, &txn->hdr_idx, &ctx)) { if (ctx.vlen == 7 && strncasecmp(ctx.line + ctx.val, "chunked", 7) == 0) txn->flags |= (TX_RES_TE_CHNK | TX_RES_XFER_LEN); else if (txn->flags & TX_RES_TE_CHNK) { /* bad transfer-encoding (chunked followed by something else) */ use_close_only = 1; txn->flags &= ~(TX_RES_TE_CHNK | TX_RES_XFER_LEN); break; } } /* FIXME: below we should remove the content-length header(s) in case of chunked encoding */ ctx.idx = 0; while (!(txn->flags & TX_RES_TE_CHNK) && !use_close_only && http_find_header2("Content-Length", 14, msg->sol, &txn->hdr_idx, &ctx)) { signed long long cl; if (!ctx.vlen) goto hdr_response_bad; if (strl2llrc(ctx.line + ctx.val, ctx.vlen, &cl)) goto hdr_response_bad; /* parse failure */ if (cl < 0) goto hdr_response_bad; if ((txn->flags & TX_RES_CNT_LEN) && (msg->hdr_content_len != cl)) goto hdr_response_bad; /* already specified, was different */ txn->flags |= TX_RES_CNT_LEN | TX_RES_XFER_LEN; msg->hdr_content_len = cl; } /* FIXME: we should also implement the multipart/byterange method. * For now on, we resort to close mode in this case (unknown length). */ skip_content_length: /* end of job, return OK */ rep->analysers &= ~an_bit; rep->analyse_exp = TICK_ETERNITY; return 1; } /* This function performs all the processing enabled for the current response. * It normally returns zero, but may return 1 if it absolutely needs to be * called again after other functions. It relies on buffers flags, and updates * t->rep->analysers. It might make sense to explode it into several other * functions. It works like process_request (see indications above). */ int http_process_res_common(struct session *t, struct buffer *rep, int an_bit, struct proxy *px) { struct http_txn *txn = &t->txn; struct http_msg *msg = &txn->rsp; struct proxy *cur_proxy; int cur_idx; int conn_ka = 0, conn_cl = 0; int must_close = 0; int must_del_close = 0, must_keep = 0; DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bl=%d analysers=%02x\n", now_ms, __FUNCTION__, t, rep, rep->rex, rep->wex, rep->flags, rep->l, rep->analysers); if (unlikely(msg->msg_state < HTTP_MSG_BODY)) /* we need more data */ return 0; rep->analysers &= ~an_bit; rep->analyse_exp = TICK_ETERNITY; /* Now we have to check if we need to modify the Connection header. * This is more difficult on the response than it is on the request, * because we can have two different HTTP versions and we don't know * how the client will interprete a response. For instance, let's say * that the client sends a keep-alive request in HTTP/1.0 and gets an * HTTP/1.1 response without any header. Maybe it will bound itself to * HTTP/1.0 because it only knows about it, and will consider the lack * of header as a close, or maybe it knows HTTP/1.1 and can consider * the lack of header as a keep-alive. Thus we will use two flags * indicating how a request MAY be understood by the client. In case * of multiple possibilities, we'll fix the header to be explicit. If * ambiguous cases such as both close and keepalive are seen, then we * will fall back to explicit close. Note that we won't take risks with * HTTP/1.0 clients which may not necessarily understand keep-alive. */ if ((txn->meth != HTTP_METH_CONNECT) && (txn->status >= 200) && (txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN && !(txn->flags & TX_CON_HDR_PARS)) { int may_keep = 0, may_close = 0; /* how it may be understood */ struct hdr_ctx ctx; ctx.idx = 0; while (http_find_header2("Connection", 10, msg->sol, &txn->hdr_idx, &ctx)) { if (ctx.vlen == 5 && strncasecmp(ctx.line + ctx.val, "close", 5) == 0) conn_cl = 1; else if (ctx.vlen == 10 && strncasecmp(ctx.line + ctx.val, "keep-alive", 10) == 0) conn_ka = 1; } if (conn_cl) { /* close header present */ may_close = 1; if (conn_ka) /* we have both close and keep-alive */ may_keep = 1; } else if (conn_ka) { /* keep-alive alone */ may_keep = 1; } else { /* no close nor keep-alive header */ if (txn->flags & TX_RES_VER_11) may_keep = 1; else may_close = 1; if (txn->flags & TX_REQ_VER_11) may_keep = 1; else may_close = 1; } /* let's update the transaction status to reflect any close. * Note that ambiguous cases with keep & close will also be * handled. We also explicitly state that we will close in * case of an ambiguous response having no content-length. */ if ((may_close && (may_keep || ((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_SCL))) || !(txn->flags & TX_RES_XFER_LEN)) txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_CLO; /* Now we must adjust the response header : * - set "close" if may_keep and WANT_CLO * - remove "close" if WANT_SCL and REQ_1.1 and may_close and (content-length or TE_CHNK) * - add "keep-alive" if WANT_SCL and REQ_1.0 and may_close and content-length * * Until we support the server-close mode, we'll only support the set "close". */ if (may_keep && (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_CLO) must_close = 1; else if (((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) && may_close && (txn->flags & TX_RES_XFER_LEN)) { must_del_close = 1; if (!(txn->flags & TX_REQ_VER_11)) must_keep = 1; } txn->flags |= TX_CON_HDR_PARS; } /* We might have to check for "Connection:" if the server * returns a connection status that is not compatible with * the client's or with the config. */ if ((txn->status >= 200) && (must_del_close|must_close) && (conn_cl|conn_ka)) { char *cur_ptr, *cur_end, *cur_next; int cur_idx, old_idx, delta, val; int must_delete; struct hdr_idx_elem *cur_hdr; /* we just have to remove the headers if both sides are 1.0 */ must_delete = !(txn->flags & TX_REQ_VER_11) && !(txn->flags & TX_RES_VER_11); /* same if we want to re-enable keep-alive on 1.1 */ must_delete |= must_del_close; cur_next = rep->data + txn->rsp.som + hdr_idx_first_pos(&txn->hdr_idx); for (old_idx = 0; (cur_idx = txn->hdr_idx.v[old_idx].next); old_idx = cur_idx) { cur_hdr = &txn->hdr_idx.v[cur_idx]; cur_ptr = cur_next; cur_end = cur_ptr + cur_hdr->len; cur_next = cur_end + cur_hdr->cr + 1; val = http_header_match2(cur_ptr, cur_end, "Connection", 10); if (!val) continue; /* 3 possibilities : * - we have already set "Connection: close" or we're in * HTTP/1.0, so we remove this line. * - we have not yet set "Connection: close", but this line * indicates close. We leave it untouched and set the flag. * - we have not yet set "Connection: close", and this line * indicates non-close. We replace it and set the flag. */ if (must_delete) { delta = buffer_replace2(rep, cur_ptr, cur_next, NULL, 0); http_msg_move_end(&txn->rsp, delta); cur_next += delta; txn->hdr_idx.v[old_idx].next = cur_hdr->next; txn->hdr_idx.used--; cur_hdr->len = 0; must_close = 0; must_del_close = 0; } else { if (cur_end - cur_ptr - val != 5 || strncasecmp(cur_ptr + val, "close", 5) != 0) { delta = buffer_replace2(rep, cur_ptr + val, cur_end, "close", 5); cur_next += delta; cur_hdr->len += delta; http_msg_move_end(&txn->rsp, delta); } must_delete = 1; must_close = 0; } } /* for loop */ } /* if must close keep-alive */ if (1) { /* * 3: we will have to evaluate the filters. * As opposed to version 1.2, now they will be evaluated in the * filters order and not in the header order. This means that * each filter has to be validated among all headers. * * Filters are tried with ->be first, then with ->fe if it is * different from ->be. */ cur_proxy = t->be; while (1) { struct proxy *rule_set = cur_proxy; /* try headers filters */ if (rule_set->rsp_exp != NULL) { if (apply_filters_to_response(t, rep, rule_set->rsp_exp) < 0) { return_bad_resp: if (t->srv) { t->srv->counters.failed_resp++; health_adjust(t->srv, HANA_STATUS_HTTP_RSP); } cur_proxy->counters.failed_resp++; return_srv_prx_502: rep->analysers = 0; txn->status = 502; rep->prod->flags |= SI_FL_NOLINGER; stream_int_retnclose(rep->cons, error_message(t, HTTP_ERR_502)); if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_PRXCOND; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_H; return 0; } } /* has the response been denied ? */ if (txn->flags & TX_SVDENY) { if (t->srv) t->srv->counters.failed_secu++; cur_proxy->counters.denied_resp++; if (t->listener->counters) t->listener->counters->denied_resp++; goto return_srv_prx_502; } /* add response headers from the rule sets in the same order */ for (cur_idx = 0; cur_idx < rule_set->nb_rspadd; cur_idx++) { if (txn->status < 200) break; if (unlikely(http_header_add_tail(rep, &txn->rsp, &txn->hdr_idx, rule_set->rsp_add[cur_idx]) < 0)) goto return_bad_resp; } /* check whether we're already working on the frontend */ if (cur_proxy == t->fe) break; cur_proxy = t->fe; } /* * We may be facing a 1xx response (100 continue, 101 switching protocols), * in which case this is not the right response, and we're waiting for the * next one. Let's allow this response to go to the client and wait for the * next one. */ if (txn->status < 200) { hdr_idx_init(&txn->hdr_idx); buffer_forward(rep, rep->lr - (rep->data + msg->som)); msg->msg_state = HTTP_MSG_RPBEFORE; txn->status = 0; rep->analysers |= AN_RES_WAIT_HTTP | an_bit; return 1; } /* we don't have any 1xx status code now */ /* * 4: check for server cookie. */ if (t->be->cookie_name || t->be->appsession_name || t->fe->capture_name || (t->be->options & PR_O_CHK_CACHE)) manage_server_side_cookies(t, rep); /* * 5: check for cache-control or pragma headers if required. */ if ((t->be->options & (PR_O_COOK_NOC | PR_O_CHK_CACHE)) != 0) check_response_for_cacheability(t, rep); /* * 6: add server cookie in the response if needed */ if ((t->srv) && !(t->flags & SN_DIRECT) && (t->be->options & PR_O_COOK_INS) && (!(t->be->options & PR_O_COOK_POST) || (txn->meth == HTTP_METH_POST))) { int len; /* the server is known, it's not the one the client requested, we have to * insert a set-cookie here, except if we want to insert only on POST * requests and this one isn't. Note that servers which don't have cookies * (eg: some backup servers) will return a full cookie removal request. */ len = sprintf(trash, "Set-Cookie: %s=%s; path=/", t->be->cookie_name, t->srv->cookie ? t->srv->cookie : "; Expires=Thu, 01-Jan-1970 00:00:01 GMT"); if (t->be->cookie_domain) len += sprintf(trash+len, "; domain=%s", t->be->cookie_domain); if (unlikely(http_header_add_tail2(rep, &txn->rsp, &txn->hdr_idx, trash, len) < 0)) goto return_bad_resp; txn->flags |= TX_SCK_INSERTED; /* Here, we will tell an eventual cache on the client side that we don't * want it to cache this reply because HTTP/1.0 caches also cache cookies ! * Some caches understand the correct form: 'no-cache="set-cookie"', but * others don't (eg: apache <= 1.3.26). So we use 'private' instead. */ if ((t->be->options & PR_O_COOK_NOC) && (txn->flags & TX_CACHEABLE)) { txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; if (unlikely(http_header_add_tail2(rep, &txn->rsp, &txn->hdr_idx, "Cache-control: private", 22) < 0)) goto return_bad_resp; } } /* * 7: check if result will be cacheable with a cookie. * We'll block the response if security checks have caught * nasty things such as a cacheable cookie. */ if (((txn->flags & (TX_CACHEABLE | TX_CACHE_COOK | TX_SCK_ANY)) == (TX_CACHEABLE | TX_CACHE_COOK | TX_SCK_ANY)) && (t->be->options & PR_O_CHK_CACHE)) { /* we're in presence of a cacheable response containing * a set-cookie header. We'll block it as requested by * the 'checkcache' option, and send an alert. */ if (t->srv) t->srv->counters.failed_secu++; cur_proxy->counters.denied_resp++; if (t->listener->counters) t->listener->counters->denied_resp++; Alert("Blocking cacheable cookie in response from instance %s, server %s.\n", t->be->id, t->srv?t->srv->id:""); send_log(t->be, LOG_ALERT, "Blocking cacheable cookie in response from instance %s, server %s.\n", t->be->id, t->srv?t->srv->id:""); goto return_srv_prx_502; } /* * 8: add "Connection: close" if needed and not yet set. This is * only needed for 1.1 responses since we know there is no other * Connection header. */ if (must_close && (txn->flags & TX_RES_VER_11)) { if (unlikely(http_header_add_tail2(rep, &txn->rsp, &txn->hdr_idx, "Connection: close", 17) < 0)) goto return_bad_resp; must_close = 0; } else if (must_keep && !(txn->flags & TX_REQ_VER_11)) { if (unlikely(http_header_add_tail2(rep, &txn->rsp, &txn->hdr_idx, "Connection: keep-alive", 22) < 0)) goto return_bad_resp; must_keep = 0; } if (txn->flags & TX_RES_XFER_LEN) rep->analysers |= AN_RES_HTTP_XFER_BODY; /************************************************************* * OK, that's finished for the headers. We have done what we * * could. Let's switch to the DATA state. * ************************************************************/ t->logs.t_data = tv_ms_elapsed(&t->logs.tv_accept, &now); /* if the user wants to log as soon as possible, without counting * bytes from the server, then this is the right moment. We have * to temporarily assign bytes_out to log what we currently have. */ if (t->fe->to_log && !(t->logs.logwait & LW_BYTES)) { t->logs.t_close = t->logs.t_data; /* to get a valid end date */ t->logs.bytes_out = txn->rsp.eoh; t->do_log(t); t->logs.bytes_out = 0; } /* Note: we must not try to cheat by jumping directly to DATA, * otherwise we would not let the client side wake up. */ return 0; } return 0; } /* This function is an analyser which forwards response body (including chunk * sizes if any). It is called as soon as we must forward, even if we forward * zero byte. The only situation where it must not be called is when we're in * tunnel mode and we want to forward till the close. It's used both to forward * remaining data and to resync after end of body. It expects the msg_state to * be between MSG_BODY and MSG_DONE (inclusive). It returns zero if it needs to * read more data, or 1 once we can go on with next request or end the session. * When in MSG_DATA or MSG_TRAILERS, it will automatically forward hdr_content_len * bytes of pending data + the headers if not already done (between som and sov). * It eventually adjusts som to match sov after the data in between have been sent. */ int http_response_forward_body(struct session *s, struct buffer *res, int an_bit) { struct http_txn *txn = &s->txn; struct http_msg *msg = &s->txn.rsp; if ((res->flags & (BF_READ_ERROR|BF_READ_TIMEOUT|BF_WRITE_ERROR|BF_WRITE_TIMEOUT)) || !s->req->analysers) { /* in case of error or if the other analyser went away, we can't analyse HTTP anymore */ buffer_ignore(res, res->l - res->send_max); buffer_auto_close(res); res->analysers &= ~an_bit; return 1; } if (unlikely(msg->msg_state < HTTP_MSG_BODY)) return 0; /* note: in server-close mode, we don't want to automatically close the * output when the input is closed. */ if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) buffer_dont_close(res); if (msg->msg_state < HTTP_MSG_CHUNK_SIZE) { /* we have msg->col and msg->sov which both point to the first * byte of message body. msg->som still points to the beginning * of the message. We must save the body in req->lr because it * survives buffer re-alignments. */ res->lr = res->data + msg->sov; if (txn->flags & TX_RES_TE_CHNK) msg->msg_state = HTTP_MSG_CHUNK_SIZE; else { msg->msg_state = HTTP_MSG_DATA; } } while (1) { /* we may have some data pending */ if (msg->hdr_content_len || msg->som != msg->sov) { int bytes = msg->sov - msg->som; if (bytes < 0) /* sov may have wrapped at the end */ bytes += res->size; buffer_forward(res, bytes + msg->hdr_content_len); msg->hdr_content_len = 0; /* don't forward that again */ msg->som = msg->sov; } if (msg->msg_state == HTTP_MSG_CHUNK_SIZE) { /* read the chunk size and assign it to ->hdr_content_len, then * set ->sov to point to the body and switch to DATA or TRAILERS state. */ int ret = http_parse_chunk_size(res, msg); if (!ret) goto missing_data; else if (ret < 0) goto return_bad_res; /* otherwise we're in HTTP_MSG_DATA or HTTP_MSG_TRAILERS state */ } else if (msg->msg_state == HTTP_MSG_DATA) { /* must still forward */ if (res->to_forward) return 0; /* nothing left to forward */ if (txn->flags & TX_RES_TE_CHNK) msg->msg_state = HTTP_MSG_DATA_CRLF; else { msg->msg_state = HTTP_MSG_DONE; } } else if (msg->msg_state == HTTP_MSG_DATA_CRLF) { /* we want the CRLF after the data */ int ret; if (!(res->flags & BF_OUT_EMPTY)) return 0; /* The output pointer does not move anymore, next unsent data * are available at ->w. Let's save that. */ res->lr = res->w; ret = http_skip_chunk_crlf(res, msg); if (!ret) goto missing_data; else if (ret < 0) goto return_bad_res; /* we're in MSG_CHUNK_SIZE now */ } else if (msg->msg_state == HTTP_MSG_TRAILERS) { int ret = http_forward_trailers(res, msg); if (ret == 0) goto missing_data; else if (ret < 0) goto return_bad_res; /* we're in HTTP_MSG_DONE now */ } else if (msg->msg_state == HTTP_MSG_DONE) { /* In theory, we don't need to read anymore, but we must * still monitor the server connection for a possible close, * so we don't set the BF_DONT_READ flag here. */ if (txn->req.msg_state < HTTP_MSG_DONE && txn->req.msg_state != HTTP_MSG_ERROR) { /* The client seems to still be sending data, probably * because we got an error response during an upload. * We have the choice of either breaking the connection * or letting it pass through. Let's do the later. */ return 0; } /* when we support keep-alive or server-close modes, we'll have * to reset the transaction here. */ if ((s->fe->options | s->be->options) & PR_O_FORCE_CLO) { /* option forceclose is set, let's enforce it now that the transfer is complete. */ buffer_abort(res); } else if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) { /* server close is handled entirely on the req analyser */ s->req->cons->flags |= SI_FL_NOLINGER; buffer_shutw_now(s->req); } if (res->flags & (BF_SHUTW|BF_SHUTW_NOW)) { if (res->flags & BF_OUT_EMPTY) msg->msg_state = HTTP_MSG_CLOSED; else msg->msg_state = HTTP_MSG_CLOSING; } else { /* for other modes, we let further responses pass for now */ res->flags &= ~BF_DONT_READ; /* FIXME: we're still forced to do that here */ s->req->flags &= ~BF_DONT_READ; break; } } else if (msg->msg_state == HTTP_MSG_CLOSING) { /* nothing else to forward, just waiting for the buffer to be empty */ if (!(res->flags & BF_OUT_EMPTY)) return 0; msg->msg_state = HTTP_MSG_CLOSED; } else if (msg->msg_state == HTTP_MSG_CLOSED) { res->flags &= ~BF_DONT_READ; /* FIXME: we're still forced to do that here */ s->req->flags &= ~BF_DONT_READ; break; } } buffer_ignore(res, res->l - res->send_max); buffer_auto_close(res); res->analysers &= ~an_bit; return 1; missing_data: /* forward the chunk size as well as any pending data */ if (msg->hdr_content_len || msg->som != msg->sov) { buffer_forward(res, msg->sov - msg->som + msg->hdr_content_len); msg->hdr_content_len = 0; /* don't forward that again */ msg->som = msg->sov; } if (res->flags & BF_FULL) goto return_bad_res; /* the session handler will take care of timeouts and errors */ return 0; return_bad_res: /* let's centralize all bad resuests */ txn->rsp.msg_state = HTTP_MSG_ERROR; txn->status = 502; stream_int_cond_close(res->cons, NULL); res->analysers = 0; s->be->counters.failed_resp++; if (s->srv) { s->srv->counters.failed_resp++; health_adjust(s->srv, HANA_STATUS_HTTP_HDRRSP); } if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_PRXCOND; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_R; return 0; } /* Iterate the same filter through all request headers. * Returns 1 if this filter can be stopped upon return, otherwise 0. * Since it can manage the switch to another backend, it updates the per-proxy * DENY stats. */ int apply_filter_to_req_headers(struct session *t, struct buffer *req, struct hdr_exp *exp) { char term; char *cur_ptr, *cur_end, *cur_next; int cur_idx, old_idx, last_hdr; struct http_txn *txn = &t->txn; struct hdr_idx_elem *cur_hdr; int len, delta; last_hdr = 0; cur_next = req->data + txn->req.som + hdr_idx_first_pos(&txn->hdr_idx); old_idx = 0; while (!last_hdr) { if (unlikely(txn->flags & (TX_CLDENY | TX_CLTARPIT))) return 1; else if (unlikely(txn->flags & TX_CLALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY || exp->action == ACT_TARPIT)) return 0; cur_idx = txn->hdr_idx.v[old_idx].next; if (!cur_idx) break; cur_hdr = &txn->hdr_idx.v[cur_idx]; cur_ptr = cur_next; cur_end = cur_ptr + cur_hdr->len; cur_next = cur_end + cur_hdr->cr + 1; /* Now we have one header between cur_ptr and cur_end, * and the next header starts at cur_next. */ /* The annoying part is that pattern matching needs * that we modify the contents to null-terminate all * strings before testing them. */ term = *cur_end; *cur_end = '\0'; if (regexec(exp->preg, cur_ptr, MAX_MATCH, pmatch, 0) == 0) { switch (exp->action) { case ACT_SETBE: /* It is not possible to jump a second time. * FIXME: should we return an HTTP/500 here so that * the admin knows there's a problem ? */ if (t->be != t->fe) break; /* Swithing Proxy */ session_set_backend(t, (struct proxy *)exp->replace); last_hdr = 1; break; case ACT_ALLOW: txn->flags |= TX_CLALLOW; last_hdr = 1; break; case ACT_DENY: txn->flags |= TX_CLDENY; last_hdr = 1; t->be->counters.denied_req++; if (t->listener->counters) t->listener->counters->denied_resp++; break; case ACT_TARPIT: txn->flags |= TX_CLTARPIT; last_hdr = 1; t->be->counters.denied_req++; if (t->listener->counters) t->listener->counters->denied_resp++; break; case ACT_REPLACE: len = exp_replace(trash, cur_ptr, exp->replace, pmatch); delta = buffer_replace2(req, cur_ptr, cur_end, trash, len); /* FIXME: if the user adds a newline in the replacement, the * index will not be recalculated for now, and the new line * will not be counted as a new header. */ cur_end += delta; cur_next += delta; cur_hdr->len += delta; http_msg_move_end(&txn->req, delta); break; case ACT_REMOVE: delta = buffer_replace2(req, cur_ptr, cur_next, NULL, 0); cur_next += delta; http_msg_move_end(&txn->req, delta); txn->hdr_idx.v[old_idx].next = cur_hdr->next; txn->hdr_idx.used--; cur_hdr->len = 0; cur_end = NULL; /* null-term has been rewritten */ break; } } if (cur_end) *cur_end = term; /* restore the string terminator */ /* keep the link from this header to next one in case of later * removal of next header. */ old_idx = cur_idx; } return 0; } /* Apply the filter to the request line. * Returns 0 if nothing has been done, 1 if the filter has been applied, * or -1 if a replacement resulted in an invalid request line. * Since it can manage the switch to another backend, it updates the per-proxy * DENY stats. */ int apply_filter_to_req_line(struct session *t, struct buffer *req, struct hdr_exp *exp) { char term; char *cur_ptr, *cur_end; int done; struct http_txn *txn = &t->txn; int len, delta; if (unlikely(txn->flags & (TX_CLDENY | TX_CLTARPIT))) return 1; else if (unlikely(txn->flags & TX_CLALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY || exp->action == ACT_TARPIT)) return 0; else if (exp->action == ACT_REMOVE) return 0; done = 0; cur_ptr = req->data + txn->req.som; /* should be equal to txn->sol */ cur_end = cur_ptr + txn->req.sl.rq.l; /* Now we have the request line between cur_ptr and cur_end */ /* The annoying part is that pattern matching needs * that we modify the contents to null-terminate all * strings before testing them. */ term = *cur_end; *cur_end = '\0'; if (regexec(exp->preg, cur_ptr, MAX_MATCH, pmatch, 0) == 0) { switch (exp->action) { case ACT_SETBE: /* It is not possible to jump a second time. * FIXME: should we return an HTTP/500 here so that * the admin knows there's a problem ? */ if (t->be != t->fe) break; /* Swithing Proxy */ session_set_backend(t, (struct proxy *)exp->replace); done = 1; break; case ACT_ALLOW: txn->flags |= TX_CLALLOW; done = 1; break; case ACT_DENY: txn->flags |= TX_CLDENY; t->be->counters.denied_req++; if (t->listener->counters) t->listener->counters->denied_resp++; done = 1; break; case ACT_TARPIT: txn->flags |= TX_CLTARPIT; t->be->counters.denied_req++; if (t->listener->counters) t->listener->counters->denied_resp++; done = 1; break; case ACT_REPLACE: *cur_end = term; /* restore the string terminator */ len = exp_replace(trash, cur_ptr, exp->replace, pmatch); delta = buffer_replace2(req, cur_ptr, cur_end, trash, len); /* FIXME: if the user adds a newline in the replacement, the * index will not be recalculated for now, and the new line * will not be counted as a new header. */ http_msg_move_end(&txn->req, delta); cur_end += delta; txn->req.sol = req->data + txn->req.som; /* should be equal to txn->sol */ cur_end = (char *)http_parse_reqline(&txn->req, req->data, HTTP_MSG_RQMETH, cur_ptr, cur_end + 1, NULL, NULL); if (unlikely(!cur_end)) return -1; /* we have a full request and we know that we have either a CR * or an LF at . */ txn->meth = find_http_meth(cur_ptr, txn->req.sl.rq.m_l); hdr_idx_set_start(&txn->hdr_idx, txn->req.sl.rq.l, *cur_end == '\r'); /* there is no point trying this regex on headers */ return 1; } } *cur_end = term; /* restore the string terminator */ return done; } /* * Apply all the req filters to all headers in buffer of session . * Returns 0 if everything is alright, or -1 in case a replacement lead to an * unparsable request. Since it can manage the switch to another backend, it * updates the per-proxy DENY stats. */ int apply_filters_to_request(struct session *t, struct buffer *req, struct hdr_exp *exp) { struct http_txn *txn = &t->txn; /* iterate through the filters in the outer loop */ while (exp && !(txn->flags & (TX_CLDENY|TX_CLTARPIT))) { int ret; /* * The interleaving of transformations and verdicts * makes it difficult to decide to continue or stop * the evaluation. */ if ((txn->flags & TX_CLALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY || exp->action == ACT_TARPIT || exp->action == ACT_PASS)) { exp = exp->next; continue; } /* Apply the filter to the request line. */ ret = apply_filter_to_req_line(t, req, exp); if (unlikely(ret < 0)) return -1; if (likely(ret == 0)) { /* The filter did not match the request, it can be * iterated through all headers. */ apply_filter_to_req_headers(t, req, exp); } exp = exp->next; } return 0; } /* * Try to retrieve the server associated to the appsession. * If the server is found, it's assigned to the session. */ void manage_client_side_appsession(struct session *t, const char *buf, int len) { struct http_txn *txn = &t->txn; appsess *asession = NULL; char *sessid_temp = NULL; if (len > t->be->appsession_len) { len = t->be->appsession_len; } if (t->be->options2 & PR_O2_AS_REQL) { /* request-learn option is enabled : store the sessid in the session for future use */ if (t->sessid != NULL) { /* free previously allocated memory as we don't need the session id found in the URL anymore */ pool_free2(apools.sessid, t->sessid); } if ((t->sessid = pool_alloc2(apools.sessid)) == NULL) { Alert("Not enough memory process_cli():asession->sessid:malloc().\n"); send_log(t->be, LOG_ALERT, "Not enough memory process_cli():asession->sessid:malloc().\n"); return; } memcpy(t->sessid, buf, len); t->sessid[len] = 0; } if ((sessid_temp = pool_alloc2(apools.sessid)) == NULL) { Alert("Not enough memory process_cli():asession->sessid:malloc().\n"); send_log(t->be, LOG_ALERT, "Not enough memory process_cli():asession->sessid:malloc().\n"); return; } memcpy(sessid_temp, buf, len); sessid_temp[len] = 0; asession = appsession_hash_lookup(&(t->be->htbl_proxy), sessid_temp); /* free previously allocated memory */ pool_free2(apools.sessid, sessid_temp); if (asession != NULL) { asession->expire = tick_add_ifset(now_ms, t->be->timeout.appsession); if (!(t->be->options2 & PR_O2_AS_REQL)) asession->request_count++; if (asession->serverid != NULL) { struct server *srv = t->be->srv; while (srv) { if (strcmp(srv->id, asession->serverid) == 0) { if (srv->state & SRV_RUNNING || t->be->options & PR_O_PERSIST) { /* we found the server and it's usable */ txn->flags &= ~TX_CK_MASK; txn->flags |= TX_CK_VALID; t->flags |= SN_DIRECT | SN_ASSIGNED; t->srv = srv; break; } else { txn->flags &= ~TX_CK_MASK; txn->flags |= TX_CK_DOWN; } } srv = srv->next; } } } } /* * Manage client-side cookie. It can impact performance by about 2% so it is * desirable to call it only when needed. */ void manage_client_side_cookies(struct session *t, struct buffer *req) { struct http_txn *txn = &t->txn; char *p1, *p2, *p3, *p4; char *del_colon, *del_cookie, *colon; int app_cookies; char *cur_ptr, *cur_end, *cur_next; int cur_idx, old_idx; /* Iterate through the headers. * we start with the start line. */ old_idx = 0; cur_next = req->data + txn->req.som + hdr_idx_first_pos(&txn->hdr_idx); while ((cur_idx = txn->hdr_idx.v[old_idx].next)) { struct hdr_idx_elem *cur_hdr; int val; cur_hdr = &txn->hdr_idx.v[cur_idx]; cur_ptr = cur_next; cur_end = cur_ptr + cur_hdr->len; cur_next = cur_end + cur_hdr->cr + 1; /* We have one full header between cur_ptr and cur_end, and the * next header starts at cur_next. We're only interested in * "Cookie:" headers. */ val = http_header_match2(cur_ptr, cur_end, "Cookie", 6); if (!val) { old_idx = cur_idx; continue; } /* Now look for cookies. Conforming to RFC2109, we have to support * attributes whose name begin with a '$', and associate them with * the right cookie, if we want to delete this cookie. * So there are 3 cases for each cookie read : * 1) it's a special attribute, beginning with a '$' : ignore it. * 2) it's a server id cookie that we *MAY* want to delete : save * some pointers on it (last semi-colon, beginning of cookie...) * 3) it's an application cookie : we *MAY* have to delete a previous * "special" cookie. * At the end of loop, if a "special" cookie remains, we may have to * remove it. If no application cookie persists in the header, we * *MUST* delete it */ colon = p1 = cur_ptr + val; /* first non-space char after 'Cookie:' */ /* del_cookie == NULL => nothing to be deleted */ del_colon = del_cookie = NULL; app_cookies = 0; while (p1 < cur_end) { /* skip spaces and colons, but keep an eye on these ones */ while (p1 < cur_end) { if (*p1 == ';' || *p1 == ',') colon = p1; else if (!isspace((unsigned char)*p1)) break; p1++; } if (p1 == cur_end) break; /* p1 is at the beginning of the cookie name */ p2 = p1; while (p2 < cur_end && *p2 != '=') p2++; if (p2 == cur_end) break; p3 = p2 + 1; /* skips the '=' sign */ if (p3 == cur_end) break; p4 = p3; while (p4 < cur_end && !isspace((unsigned char)*p4) && *p4 != ';' && *p4 != ',') p4++; /* here, we have the cookie name between p1 and p2, * and its value between p3 and p4. * we can process it : * * Cookie: NAME=VALUE; * | || || | * | || || +--> p4 * | || |+-------> p3 * | || +--------> p2 * | |+------------> p1 * | +-------------> colon * +--------------------> cur_ptr */ if (*p1 == '$') { /* skip this one */ } else { /* first, let's see if we want to capture it */ if (t->fe->capture_name != NULL && txn->cli_cookie == NULL && (p4 - p1 >= t->fe->capture_namelen) && memcmp(p1, t->fe->capture_name, t->fe->capture_namelen) == 0) { int log_len = p4 - p1; if ((txn->cli_cookie = pool_alloc2(pool2_capture)) == NULL) { Alert("HTTP logging : out of memory.\n"); } else { if (log_len > t->fe->capture_len) log_len = t->fe->capture_len; memcpy(txn->cli_cookie, p1, log_len); txn->cli_cookie[log_len] = 0; } } if ((p2 - p1 == t->be->cookie_len) && (t->be->cookie_name != NULL) && (memcmp(p1, t->be->cookie_name, p2 - p1) == 0)) { /* Cool... it's the right one */ struct server *srv = t->be->srv; char *delim; /* if we're in cookie prefix mode, we'll search the delimitor so that we * have the server ID betweek p3 and delim, and the original cookie between * delim+1 and p4. Otherwise, delim==p4 : * * Cookie: NAME=SRV~VALUE; * | || || | | * | || || | +--> p4 * | || || +--------> delim * | || |+-----------> p3 * | || +------------> p2 * | |+----------------> p1 * | +-----------------> colon * +------------------------> cur_ptr */ if (t->be->options & PR_O_COOK_PFX) { for (delim = p3; delim < p4; delim++) if (*delim == COOKIE_DELIM) break; } else delim = p4; /* Here, we'll look for the first running server which supports the cookie. * This allows to share a same cookie between several servers, for example * to dedicate backup servers to specific servers only. * However, to prevent clients from sticking to cookie-less backup server * when they have incidentely learned an empty cookie, we simply ignore * empty cookies and mark them as invalid. */ if (delim == p3) srv = NULL; while (srv) { if (srv->cookie && (srv->cklen == delim - p3) && !memcmp(p3, srv->cookie, delim - p3)) { if (srv->state & SRV_RUNNING || t->be->options & PR_O_PERSIST) { /* we found the server and it's usable */ txn->flags &= ~TX_CK_MASK; txn->flags |= TX_CK_VALID; t->flags |= SN_DIRECT | SN_ASSIGNED; t->srv = srv; break; } else { /* we found a server, but it's down */ txn->flags &= ~TX_CK_MASK; txn->flags |= TX_CK_DOWN; } } srv = srv->next; } if (!srv && !(txn->flags & TX_CK_DOWN)) { /* no server matched this cookie */ txn->flags &= ~TX_CK_MASK; txn->flags |= TX_CK_INVALID; } /* depending on the cookie mode, we may have to either : * - delete the complete cookie if we're in insert+indirect mode, so that * the server never sees it ; * - remove the server id from the cookie value, and tag the cookie as an * application cookie so that it does not get accidentely removed later, * if we're in cookie prefix mode */ if ((t->be->options & PR_O_COOK_PFX) && (delim != p4)) { int delta; /* negative */ delta = buffer_replace2(req, p3, delim + 1, NULL, 0); p4 += delta; cur_end += delta; cur_next += delta; cur_hdr->len += delta; http_msg_move_end(&txn->req, delta); del_cookie = del_colon = NULL; app_cookies++; /* protect the header from deletion */ } else if (del_cookie == NULL && (t->be->options & (PR_O_COOK_INS | PR_O_COOK_IND)) == (PR_O_COOK_INS | PR_O_COOK_IND)) { del_cookie = p1; del_colon = colon; } } else { /* now we know that we must keep this cookie since it's * not ours. But if we wanted to delete our cookie * earlier, we cannot remove the complete header, but we * can remove the previous block itself. */ app_cookies++; if (del_cookie != NULL) { int delta; /* negative */ delta = buffer_replace2(req, del_cookie, p1, NULL, 0); p4 += delta; cur_end += delta; cur_next += delta; cur_hdr->len += delta; http_msg_move_end(&txn->req, delta); del_cookie = del_colon = NULL; } } if (t->be->appsession_name != NULL) { int cmp_len, value_len; char *value_begin; if (t->be->options2 & PR_O2_AS_PFX) { cmp_len = MIN(p4 - p1, t->be->appsession_name_len); value_begin = p1 + t->be->appsession_name_len; value_len = p4 - p1 - t->be->appsession_name_len; } else { cmp_len = p2 - p1; value_begin = p3; value_len = p4 - p3; } /* let's see if the cookie is our appcookie */ if (memcmp(p1, t->be->appsession_name, cmp_len) == 0) { /* Cool... it's the right one */ manage_client_side_appsession(t, value_begin, value_len); } #if defined(DEBUG_HASH) Alert("manage_client_side_cookies\n"); appsession_hash_dump(&(t->be->htbl_proxy)); #endif }/* end if ((t->proxy->appsession_name != NULL) ... */ } /* we'll have to look for another cookie ... */ p1 = p4; } /* while (p1 < cur_end) */ /* There's no more cookie on this line. * We may have marked the last one(s) for deletion. * We must do this now in two ways : * - if there is no app cookie, we simply delete the header ; * - if there are app cookies, we must delete the end of the * string properly, including the colon/semi-colon before * the cookie name. */ if (del_cookie != NULL) { int delta; if (app_cookies) { delta = buffer_replace2(req, del_colon, cur_end, NULL, 0); cur_end = del_colon; cur_hdr->len += delta; } else { delta = buffer_replace2(req, cur_ptr, cur_next, NULL, 0); /* FIXME: this should be a separate function */ txn->hdr_idx.v[old_idx].next = cur_hdr->next; txn->hdr_idx.used--; cur_hdr->len = 0; } cur_next += delta; http_msg_move_end(&txn->req, delta); } /* keep the link from this header to next one */ old_idx = cur_idx; } /* end of cookie processing on this header */ } /* Iterate the same filter through all response headers contained in . * Returns 1 if this filter can be stopped upon return, otherwise 0. */ int apply_filter_to_resp_headers(struct session *t, struct buffer *rtr, struct hdr_exp *exp) { char term; char *cur_ptr, *cur_end, *cur_next; int cur_idx, old_idx, last_hdr; struct http_txn *txn = &t->txn; struct hdr_idx_elem *cur_hdr; int len, delta; last_hdr = 0; cur_next = rtr->data + txn->rsp.som + hdr_idx_first_pos(&txn->hdr_idx); old_idx = 0; while (!last_hdr) { if (unlikely(txn->flags & TX_SVDENY)) return 1; else if (unlikely(txn->flags & TX_SVALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY)) return 0; cur_idx = txn->hdr_idx.v[old_idx].next; if (!cur_idx) break; cur_hdr = &txn->hdr_idx.v[cur_idx]; cur_ptr = cur_next; cur_end = cur_ptr + cur_hdr->len; cur_next = cur_end + cur_hdr->cr + 1; /* Now we have one header between cur_ptr and cur_end, * and the next header starts at cur_next. */ /* The annoying part is that pattern matching needs * that we modify the contents to null-terminate all * strings before testing them. */ term = *cur_end; *cur_end = '\0'; if (regexec(exp->preg, cur_ptr, MAX_MATCH, pmatch, 0) == 0) { switch (exp->action) { case ACT_ALLOW: txn->flags |= TX_SVALLOW; last_hdr = 1; break; case ACT_DENY: txn->flags |= TX_SVDENY; last_hdr = 1; break; case ACT_REPLACE: len = exp_replace(trash, cur_ptr, exp->replace, pmatch); delta = buffer_replace2(rtr, cur_ptr, cur_end, trash, len); /* FIXME: if the user adds a newline in the replacement, the * index will not be recalculated for now, and the new line * will not be counted as a new header. */ cur_end += delta; cur_next += delta; cur_hdr->len += delta; http_msg_move_end(&txn->rsp, delta); break; case ACT_REMOVE: delta = buffer_replace2(rtr, cur_ptr, cur_next, NULL, 0); cur_next += delta; http_msg_move_end(&txn->rsp, delta); txn->hdr_idx.v[old_idx].next = cur_hdr->next; txn->hdr_idx.used--; cur_hdr->len = 0; cur_end = NULL; /* null-term has been rewritten */ break; } } if (cur_end) *cur_end = term; /* restore the string terminator */ /* keep the link from this header to next one in case of later * removal of next header. */ old_idx = cur_idx; } return 0; } /* Apply the filter to the status line in the response buffer . * Returns 0 if nothing has been done, 1 if the filter has been applied, * or -1 if a replacement resulted in an invalid status line. */ int apply_filter_to_sts_line(struct session *t, struct buffer *rtr, struct hdr_exp *exp) { char term; char *cur_ptr, *cur_end; int done; struct http_txn *txn = &t->txn; int len, delta; if (unlikely(txn->flags & TX_SVDENY)) return 1; else if (unlikely(txn->flags & TX_SVALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY)) return 0; else if (exp->action == ACT_REMOVE) return 0; done = 0; cur_ptr = rtr->data + txn->rsp.som; /* should be equal to txn->sol */ cur_end = cur_ptr + txn->rsp.sl.rq.l; /* Now we have the status line between cur_ptr and cur_end */ /* The annoying part is that pattern matching needs * that we modify the contents to null-terminate all * strings before testing them. */ term = *cur_end; *cur_end = '\0'; if (regexec(exp->preg, cur_ptr, MAX_MATCH, pmatch, 0) == 0) { switch (exp->action) { case ACT_ALLOW: txn->flags |= TX_SVALLOW; done = 1; break; case ACT_DENY: txn->flags |= TX_SVDENY; done = 1; break; case ACT_REPLACE: *cur_end = term; /* restore the string terminator */ len = exp_replace(trash, cur_ptr, exp->replace, pmatch); delta = buffer_replace2(rtr, cur_ptr, cur_end, trash, len); /* FIXME: if the user adds a newline in the replacement, the * index will not be recalculated for now, and the new line * will not be counted as a new header. */ http_msg_move_end(&txn->rsp, delta); cur_end += delta; txn->rsp.sol = rtr->data + txn->rsp.som; /* should be equal to txn->sol */ cur_end = (char *)http_parse_stsline(&txn->rsp, rtr->data, HTTP_MSG_RPVER, cur_ptr, cur_end + 1, NULL, NULL); if (unlikely(!cur_end)) return -1; /* we have a full respnse and we know that we have either a CR * or an LF at . */ txn->status = strl2ui(rtr->data + txn->rsp.sl.st.c, txn->rsp.sl.st.c_l); hdr_idx_set_start(&txn->hdr_idx, txn->rsp.sl.rq.l, *cur_end == '\r'); /* there is no point trying this regex on headers */ return 1; } } *cur_end = term; /* restore the string terminator */ return done; } /* * Apply all the resp filters to all headers in buffer of session . * Returns 0 if everything is alright, or -1 in case a replacement lead to an * unparsable response. */ int apply_filters_to_response(struct session *t, struct buffer *rtr, struct hdr_exp *exp) { struct http_txn *txn = &t->txn; /* iterate through the filters in the outer loop */ while (exp && !(txn->flags & TX_SVDENY)) { int ret; /* * The interleaving of transformations and verdicts * makes it difficult to decide to continue or stop * the evaluation. */ if ((txn->flags & TX_SVALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY || exp->action == ACT_PASS)) { exp = exp->next; continue; } /* Apply the filter to the status line. */ ret = apply_filter_to_sts_line(t, rtr, exp); if (unlikely(ret < 0)) return -1; if (likely(ret == 0)) { /* The filter did not match the response, it can be * iterated through all headers. */ apply_filter_to_resp_headers(t, rtr, exp); } exp = exp->next; } return 0; } /* * Manage server-side cookies. It can impact performance by about 2% so it is * desirable to call it only when needed. */ void manage_server_side_cookies(struct session *t, struct buffer *rtr) { struct http_txn *txn = &t->txn; char *p1, *p2, *p3, *p4; char *cur_ptr, *cur_end, *cur_next; int cur_idx, old_idx, delta; /* Iterate through the headers. * we start with the start line. */ old_idx = 0; cur_next = rtr->data + txn->rsp.som + hdr_idx_first_pos(&txn->hdr_idx); while ((cur_idx = txn->hdr_idx.v[old_idx].next)) { struct hdr_idx_elem *cur_hdr; int val; cur_hdr = &txn->hdr_idx.v[cur_idx]; cur_ptr = cur_next; cur_end = cur_ptr + cur_hdr->len; cur_next = cur_end + cur_hdr->cr + 1; /* We have one full header between cur_ptr and cur_end, and the * next header starts at cur_next. We're only interested in * "Cookie:" headers. */ val = http_header_match2(cur_ptr, cur_end, "Set-Cookie", 10); if (!val) { old_idx = cur_idx; continue; } /* OK, right now we know we have a set-cookie at cur_ptr */ txn->flags |= TX_SCK_ANY; /* maybe we only wanted to see if there was a set-cookie. Note that * the cookie capture is declared in the fronend. */ if (t->be->cookie_name == NULL && t->be->appsession_name == NULL && t->fe->capture_name == NULL) return; p1 = cur_ptr + val; /* first non-space char after 'Set-Cookie:' */ while (p1 < cur_end) { /* in fact, we'll break after the first cookie */ if (p1 == cur_end || *p1 == ';') /* end of cookie */ break; /* p1 is at the beginning of the cookie name */ p2 = p1; while (p2 < cur_end && *p2 != '=' && *p2 != ';') p2++; if (p2 == cur_end || *p2 == ';') /* next cookie */ break; p3 = p2 + 1; /* skip the '=' sign */ if (p3 == cur_end) break; p4 = p3; while (p4 < cur_end && !isspace((unsigned char)*p4) && *p4 != ';') p4++; /* here, we have the cookie name between p1 and p2, * and its value between p3 and p4. * we can process it. */ /* first, let's see if we want to capture it */ if (t->fe->capture_name != NULL && txn->srv_cookie == NULL && (p4 - p1 >= t->fe->capture_namelen) && memcmp(p1, t->fe->capture_name, t->fe->capture_namelen) == 0) { int log_len = p4 - p1; if ((txn->srv_cookie = pool_alloc2(pool2_capture)) == NULL) { Alert("HTTP logging : out of memory.\n"); } if (log_len > t->fe->capture_len) log_len = t->fe->capture_len; memcpy(txn->srv_cookie, p1, log_len); txn->srv_cookie[log_len] = 0; } /* now check if we need to process it for persistence */ if ((p2 - p1 == t->be->cookie_len) && (t->be->cookie_name != NULL) && (memcmp(p1, t->be->cookie_name, p2 - p1) == 0)) { /* Cool... it's the right one */ txn->flags |= TX_SCK_SEEN; /* If the cookie is in insert mode on a known server, we'll delete * this occurrence because we'll insert another one later. * We'll delete it too if the "indirect" option is set and we're in * a direct access. */ if (((t->srv) && (t->be->options & PR_O_COOK_INS)) || ((t->flags & SN_DIRECT) && (t->be->options & PR_O_COOK_IND))) { /* this header must be deleted */ delta = buffer_replace2(rtr, cur_ptr, cur_next, NULL, 0); txn->hdr_idx.v[old_idx].next = cur_hdr->next; txn->hdr_idx.used--; cur_hdr->len = 0; cur_next += delta; http_msg_move_end(&txn->rsp, delta); txn->flags |= TX_SCK_DELETED; } else if ((t->srv) && (t->srv->cookie) && (t->be->options & PR_O_COOK_RW)) { /* replace bytes p3->p4 with the cookie name associated * with this server since we know it. */ delta = buffer_replace2(rtr, p3, p4, t->srv->cookie, t->srv->cklen); cur_hdr->len += delta; cur_next += delta; http_msg_move_end(&txn->rsp, delta); txn->flags |= TX_SCK_INSERTED | TX_SCK_DELETED; } else if ((t->srv) && (t->srv->cookie) && (t->be->options & PR_O_COOK_PFX)) { /* insert the cookie name associated with this server * before existing cookie, and insert a delimitor between them.. */ delta = buffer_replace2(rtr, p3, p3, t->srv->cookie, t->srv->cklen + 1); cur_hdr->len += delta; cur_next += delta; http_msg_move_end(&txn->rsp, delta); p3[t->srv->cklen] = COOKIE_DELIM; txn->flags |= TX_SCK_INSERTED | TX_SCK_DELETED; } } /* next, let's see if the cookie is our appcookie */ else if (t->be->appsession_name != NULL) { int cmp_len, value_len; char *value_begin; if (t->be->options2 & PR_O2_AS_PFX) { cmp_len = MIN(p4 - p1, t->be->appsession_name_len); value_begin = p1 + t->be->appsession_name_len; value_len = MIN(t->be->appsession_len, p4 - p1 - t->be->appsession_name_len); } else { cmp_len = p2 - p1; value_begin = p3; value_len = MIN(t->be->appsession_len, p4 - p3); } if (memcmp(p1, t->be->appsession_name, cmp_len) == 0) { /* Cool... it's the right one */ if (t->sessid != NULL) { /* free previously allocated memory as we don't need it anymore */ pool_free2(apools.sessid, t->sessid); } /* Store the sessid in the session for future use */ if ((t->sessid = pool_alloc2(apools.sessid)) == NULL) { Alert("Not enough Memory process_srv():asession->sessid:malloc().\n"); send_log(t->be, LOG_ALERT, "Not enough Memory process_srv():asession->sessid:malloc().\n"); return; } memcpy(t->sessid, value_begin, value_len); t->sessid[value_len] = 0; } } /* end if ((t->be->appsession_name != NULL) ... */ break; /* we don't want to loop again since there cannot be another cookie on the same line */ } /* we're now at the end of the cookie value */ /* keep the link from this header to next one */ old_idx = cur_idx; } /* end of cookie processing on this header */ if (t->sessid != NULL) { appsess *asession = NULL; /* only do insert, if lookup fails */ asession = appsession_hash_lookup(&(t->be->htbl_proxy), t->sessid); if (asession == NULL) { if ((asession = pool_alloc2(pool2_appsess)) == NULL) { Alert("Not enough Memory process_srv():asession:calloc().\n"); send_log(t->be, LOG_ALERT, "Not enough Memory process_srv():asession:calloc().\n"); return; } if ((asession->sessid = pool_alloc2(apools.sessid)) == NULL) { Alert("Not enough Memory process_srv():asession->sessid:malloc().\n"); send_log(t->be, LOG_ALERT, "Not enough Memory process_srv():asession->sessid:malloc().\n"); return; } memcpy(asession->sessid, t->sessid, t->be->appsession_len); asession->sessid[t->be->appsession_len] = 0; size_t server_id_len = strlen(t->srv->id) + 1; if ((asession->serverid = pool_alloc2(apools.serverid)) == NULL) { Alert("Not enough Memory process_srv():asession->sessid:malloc().\n"); send_log(t->be, LOG_ALERT, "Not enough Memory process_srv():asession->sessid:malloc().\n"); return; } asession->serverid[0] = '\0'; memcpy(asession->serverid, t->srv->id, server_id_len); asession->request_count = 0; appsession_hash_insert(&(t->be->htbl_proxy), asession); } asession->expire = tick_add_ifset(now_ms, t->be->timeout.appsession); asession->request_count++; } #if defined(DEBUG_HASH) Alert("manage_server_side_cookies\n"); appsession_hash_dump(&(t->be->htbl_proxy)); #endif } /* * Check if response is cacheable or not. Updates t->flags. */ void check_response_for_cacheability(struct session *t, struct buffer *rtr) { struct http_txn *txn = &t->txn; char *p1, *p2; char *cur_ptr, *cur_end, *cur_next; int cur_idx; if (!(txn->flags & TX_CACHEABLE)) return; /* Iterate through the headers. * we start with the start line. */ cur_idx = 0; cur_next = rtr->data + txn->rsp.som + hdr_idx_first_pos(&txn->hdr_idx); while ((cur_idx = txn->hdr_idx.v[cur_idx].next)) { struct hdr_idx_elem *cur_hdr; int val; cur_hdr = &txn->hdr_idx.v[cur_idx]; cur_ptr = cur_next; cur_end = cur_ptr + cur_hdr->len; cur_next = cur_end + cur_hdr->cr + 1; /* We have one full header between cur_ptr and cur_end, and the * next header starts at cur_next. We're only interested in * "Cookie:" headers. */ val = http_header_match2(cur_ptr, cur_end, "Pragma", 6); if (val) { if ((cur_end - (cur_ptr + val) >= 8) && strncasecmp(cur_ptr + val, "no-cache", 8) == 0) { txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; return; } } val = http_header_match2(cur_ptr, cur_end, "Cache-control", 13); if (!val) continue; /* OK, right now we know we have a cache-control header at cur_ptr */ p1 = cur_ptr + val; /* first non-space char after 'cache-control:' */ if (p1 >= cur_end) /* no more info */ continue; /* p1 is at the beginning of the value */ p2 = p1; while (p2 < cur_end && *p2 != '=' && *p2 != ',' && !isspace((unsigned char)*p2)) p2++; /* we have a complete value between p1 and p2 */ if (p2 < cur_end && *p2 == '=') { /* we have something of the form no-cache="set-cookie" */ if ((cur_end - p1 >= 21) && strncasecmp(p1, "no-cache=\"set-cookie", 20) == 0 && (p1[20] == '"' || p1[20] == ',')) txn->flags &= ~TX_CACHE_COOK; continue; } /* OK, so we know that either p2 points to the end of string or to a comma */ if (((p2 - p1 == 7) && strncasecmp(p1, "private", 7) == 0) || ((p2 - p1 == 8) && strncasecmp(p1, "no-store", 8) == 0) || ((p2 - p1 == 9) && strncasecmp(p1, "max-age=0", 9) == 0) || ((p2 - p1 == 10) && strncasecmp(p1, "s-maxage=0", 10) == 0)) { txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; return; } if ((p2 - p1 == 6) && strncasecmp(p1, "public", 6) == 0) { txn->flags |= TX_CACHEABLE | TX_CACHE_COOK; continue; } } } /* * Try to retrieve a known appsession in the URI, then the associated server. * If the server is found, it's assigned to the session. */ void get_srv_from_appsession(struct session *t, const char *begin, int len) { char *end_params, *first_param, *cur_param, *next_param; char separator; int value_len; int mode = t->be->options2 & PR_O2_AS_M_ANY; if (t->be->appsession_name == NULL || (t->txn.meth != HTTP_METH_GET && t->txn.meth != HTTP_METH_POST)) { return; } first_param = NULL; switch (mode) { case PR_O2_AS_M_PP: first_param = memchr(begin, ';', len); break; case PR_O2_AS_M_QS: first_param = memchr(begin, '?', len); break; } if (first_param == NULL) { return; } switch (mode) { case PR_O2_AS_M_PP: if ((end_params = memchr(first_param, '?', len - (begin - first_param))) == NULL) { end_params = (char *) begin + len; } separator = ';'; break; case PR_O2_AS_M_QS: end_params = (char *) begin + len; separator = '&'; break; default: /* unknown mode, shouldn't happen */ return; } cur_param = next_param = end_params; while (cur_param > first_param) { cur_param--; if ((cur_param[0] == separator) || (cur_param == first_param)) { /* let's see if this is the appsession parameter */ if ((cur_param + t->be->appsession_name_len + 1 < next_param) && ((t->be->options2 & PR_O2_AS_PFX) || cur_param[t->be->appsession_name_len + 1] == '=') && (strncasecmp(cur_param + 1, t->be->appsession_name, t->be->appsession_name_len) == 0)) { /* Cool... it's the right one */ cur_param += t->be->appsession_name_len + (t->be->options2 & PR_O2_AS_PFX ? 1 : 2); value_len = MIN(t->be->appsession_len, next_param - cur_param); if (value_len > 0) { manage_client_side_appsession(t, cur_param, value_len); } break; } next_param = cur_param; } } #if defined(DEBUG_HASH) Alert("get_srv_from_appsession\n"); appsession_hash_dump(&(t->be->htbl_proxy)); #endif } /* * In a GET or HEAD request, check if the requested URI matches the stats uri * for the current backend, and if an authorization has been passed and is valid. * * It is assumed that the request is either a HEAD or GET and that the * t->be->uri_auth field is valid. An HTTP/401 response may be sent, or * the stats I/O handler will be registered to start sending data. * * Returns 1 if the session's state changes, otherwise 0. */ int stats_check_uri_auth(struct session *t, struct proxy *backend) { struct http_txn *txn = &t->txn; struct uri_auth *uri_auth = backend->uri_auth; struct user_auth *user; int authenticated, cur_idx; char *h; memset(&t->data_ctx.stats, 0, sizeof(t->data_ctx.stats)); /* check URI size */ if (uri_auth->uri_len > txn->req.sl.rq.u_l) return 0; h = t->req->data + txn->req.sl.rq.u; /* the URI is in h */ if (memcmp(h, uri_auth->uri_prefix, uri_auth->uri_len) != 0) return 0; h += uri_auth->uri_len; while (h <= t->req->data + txn->req.sl.rq.u + txn->req.sl.rq.u_l - 3) { if (memcmp(h, ";up", 3) == 0) { t->data_ctx.stats.flags |= STAT_HIDE_DOWN; break; } h++; } if (uri_auth->refresh) { h = t->req->data + txn->req.sl.rq.u + uri_auth->uri_len; while (h <= t->req->data + txn->req.sl.rq.u + txn->req.sl.rq.u_l - 10) { if (memcmp(h, ";norefresh", 10) == 0) { t->data_ctx.stats.flags |= STAT_NO_REFRESH; break; } h++; } } h = t->req->data + txn->req.sl.rq.u + uri_auth->uri_len; while (h <= t->req->data + txn->req.sl.rq.u + txn->req.sl.rq.u_l - 4) { if (memcmp(h, ";csv", 4) == 0) { t->data_ctx.stats.flags |= STAT_FMT_CSV; break; } h++; } t->data_ctx.stats.flags |= STAT_SHOW_STAT | STAT_SHOW_INFO; /* we are in front of a interceptable URI. Let's check * if there's an authentication and if it's valid. */ user = uri_auth->users; if (!user) { /* no user auth required, it's OK */ authenticated = 1; } else { authenticated = 0; /* a user list is defined, we have to check. * skip 21 chars for "Authorization: Basic ". */ /* FIXME: this should move to an earlier place */ cur_idx = 0; h = t->req->data + txn->req.som + hdr_idx_first_pos(&txn->hdr_idx); while ((cur_idx = txn->hdr_idx.v[cur_idx].next)) { int len = txn->hdr_idx.v[cur_idx].len; if (len > 14 && !strncasecmp("Authorization:", h, 14)) { chunk_initlen(&txn->auth_hdr, h, 0, len); break; } h += len + txn->hdr_idx.v[cur_idx].cr + 1; } if (txn->auth_hdr.len < 21 || memcmp(txn->auth_hdr.str + 14, " Basic ", 7)) user = NULL; while (user) { if ((txn->auth_hdr.len == user->user_len + 14 + 7) && !memcmp(txn->auth_hdr.str + 14 + 7, user->user_pwd, user->user_len)) { authenticated = 1; break; } user = user->next; } } if (!authenticated) { struct chunk msg; /* no need to go further */ sprintf(trash, HTTP_401_fmt, uri_auth->auth_realm); chunk_initlen(&msg, trash, sizeof(trash), strlen(trash)); txn->status = 401; stream_int_retnclose(t->req->prod, &msg); t->req->analysers = 0; if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_PRXCOND; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_R; return 1; } /* The request is valid, the user is authenticated. Let's start sending * data. */ t->logs.tv_request = now; t->data_source = DATA_SRC_STATS; t->data_state = DATA_ST_INIT; t->task->nice = -32; /* small boost for HTTP statistics */ stream_int_register_handler(t->rep->prod, http_stats_io_handler); t->rep->prod->private = t; t->rep->prod->st0 = t->rep->prod->st1 = 0; return 1; } /* * Capture a bad request or response and archive it in the proxy's structure. */ void http_capture_bad_message(struct error_snapshot *es, struct session *s, struct buffer *buf, struct http_msg *msg, struct proxy *other_end) { es->len = buf->r - (buf->data + msg->som); memcpy(es->buf, buf->data + msg->som, MIN(es->len, sizeof(es->buf))); if (msg->err_pos >= 0) es->pos = msg->err_pos - msg->som; else es->pos = buf->lr - (buf->data + msg->som); es->when = date; // user-visible date es->sid = s->uniq_id; es->srv = s->srv; es->oe = other_end; es->src = s->cli_addr; } /* * Print a debug line with a header */ void debug_hdr(const char *dir, struct session *t, const char *start, const char *end) { int len, max; len = sprintf(trash, "%08x:%s.%s[%04x:%04x]: ", t->uniq_id, t->be->id, dir, (unsigned short)t->req->prod->fd, (unsigned short)t->req->cons->fd); max = end - start; UBOUND(max, sizeof(trash) - len - 1); len += strlcpy2(trash + len, start, max + 1); trash[len++] = '\n'; write(1, trash, len); } /* * Initialize a new HTTP transaction for session . It is assumed that all * the required fields are properly allocated and that we only need to (re)init * them. This should be used before processing any new request. */ void http_init_txn(struct session *s) { struct http_txn *txn = &s->txn; struct proxy *fe = s->fe; txn->flags = 0; txn->status = -1; txn->req.sol = txn->req.eol = NULL; txn->req.som = txn->req.eoh = 0; /* relative to the buffer */ txn->rsp.sol = txn->rsp.eol = NULL; txn->rsp.som = txn->rsp.eoh = 0; /* relative to the buffer */ txn->req.hdr_content_len = 0LL; txn->rsp.hdr_content_len = 0LL; txn->req.msg_state = HTTP_MSG_RQBEFORE; /* at the very beginning of the request */ txn->rsp.msg_state = HTTP_MSG_RPBEFORE; /* at the very beginning of the response */ chunk_reset(&txn->auth_hdr); txn->req.err_pos = txn->rsp.err_pos = -2; /* block buggy requests/responses */ if (fe->options2 & PR_O2_REQBUG_OK) txn->req.err_pos = -1; /* let buggy requests pass */ if (txn->req.cap) memset(txn->req.cap, 0, fe->nb_req_cap * sizeof(void *)); if (txn->rsp.cap) memset(txn->rsp.cap, 0, fe->nb_rsp_cap * sizeof(void *)); if (txn->hdr_idx.v) hdr_idx_init(&txn->hdr_idx); } /* to be used at the end of a transaction */ void http_end_txn(struct session *s) { struct http_txn *txn = &s->txn; /* these ones will have been dynamically allocated */ pool_free2(pool2_requri, txn->uri); pool_free2(pool2_capture, txn->cli_cookie); pool_free2(pool2_capture, txn->srv_cookie); txn->uri = NULL; txn->srv_cookie = NULL; txn->cli_cookie = NULL; } /* to be used at the end of a transaction to prepare a new one */ void http_reset_txn(struct session *s) { http_end_txn(s); http_init_txn(s); s->be = s->fe; s->req->analysers = s->listener->analysers; s->logs.logwait = s->fe->to_log; s->srv = s->prev_srv = s->srv_conn = NULL; s->pend_pos = NULL; s->conn_retries = s->be->conn_retries; s->req->flags |= BF_READ_DONTWAIT; /* one read is usually enough */ s->req->rto = s->fe->timeout.client; s->req->wto = s->be->timeout.server; s->req->cto = s->be->timeout.connect; s->rep->rto = s->be->timeout.server; s->rep->wto = s->fe->timeout.client; s->rep->cto = TICK_ETERNITY; s->req->rex = TICK_ETERNITY; s->req->wex = TICK_ETERNITY; s->req->analyse_exp = TICK_ETERNITY; s->rep->rex = TICK_ETERNITY; s->rep->wex = TICK_ETERNITY; s->rep->analyse_exp = TICK_ETERNITY; } /************************************************************************/ /* The code below is dedicated to ACL parsing and matching */ /************************************************************************/ /* 1. Check on METHOD * We use the pre-parsed method if it is known, and store its number as an * integer. If it is unknown, we use the pointer and the length. */ static int acl_parse_meth(const char **text, struct acl_pattern *pattern, int *opaque) { int len, meth; len = strlen(*text); meth = find_http_meth(*text, len); pattern->val.i = meth; if (meth == HTTP_METH_OTHER) { pattern->ptr.str = strdup(*text); if (!pattern->ptr.str) return 0; pattern->len = len; } return 1; } static int acl_fetch_meth(struct proxy *px, struct session *l4, void *l7, int dir, struct acl_expr *expr, struct acl_test *test) { int meth; struct http_txn *txn = l7; if (!txn) return 0; if (txn->req.msg_state < HTTP_MSG_BODY) return 0; meth = txn->meth; test->i = meth; if (meth == HTTP_METH_OTHER) { if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE) /* ensure the indexes are not affected */ return 0; test->len = txn->req.sl.rq.m_l; test->ptr = txn->req.sol; } test->flags = ACL_TEST_F_READ_ONLY | ACL_TEST_F_VOL_1ST; return 1; } static int acl_match_meth(struct acl_test *test, struct acl_pattern *pattern) { int icase; if (test->i != pattern->val.i) return ACL_PAT_FAIL; if (test->i != HTTP_METH_OTHER) return ACL_PAT_PASS; /* Other method, we must compare the strings */ if (pattern->len != test->len) return ACL_PAT_FAIL; icase = pattern->flags & ACL_PAT_F_IGNORE_CASE; if ((icase && strncasecmp(pattern->ptr.str, test->ptr, test->len) != 0) || (!icase && strncmp(pattern->ptr.str, test->ptr, test->len) != 0)) return ACL_PAT_FAIL; return ACL_PAT_PASS; } /* 2. Check on Request/Status Version * We simply compare strings here. */ static int acl_parse_ver(const char **text, struct acl_pattern *pattern, int *opaque) { pattern->ptr.str = strdup(*text); if (!pattern->ptr.str) return 0; pattern->len = strlen(*text); return 1; } static int acl_fetch_rqver(struct proxy *px, struct session *l4, void *l7, int dir, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; char *ptr; int len; if (!txn) return 0; if (txn->req.msg_state < HTTP_MSG_BODY) return 0; len = txn->req.sl.rq.v_l; ptr = txn->req.sol + txn->req.sl.rq.v - txn->req.som; while ((len-- > 0) && (*ptr++ != '/')); if (len <= 0) return 0; test->ptr = ptr; test->len = len; test->flags = ACL_TEST_F_READ_ONLY | ACL_TEST_F_VOL_1ST; return 1; } static int acl_fetch_stver(struct proxy *px, struct session *l4, void *l7, int dir, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; char *ptr; int len; if (!txn) return 0; if (txn->rsp.msg_state < HTTP_MSG_BODY) return 0; len = txn->rsp.sl.st.v_l; ptr = txn->rsp.sol; while ((len-- > 0) && (*ptr++ != '/')); if (len <= 0) return 0; test->ptr = ptr; test->len = len; test->flags = ACL_TEST_F_READ_ONLY | ACL_TEST_F_VOL_1ST; return 1; } /* 3. Check on Status Code. We manipulate integers here. */ static int acl_fetch_stcode(struct proxy *px, struct session *l4, void *l7, int dir, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; char *ptr; int len; if (!txn) return 0; if (txn->rsp.msg_state < HTTP_MSG_BODY) return 0; len = txn->rsp.sl.st.c_l; ptr = txn->rsp.sol + txn->rsp.sl.st.c - txn->rsp.som; test->i = __strl2ui(ptr, len); test->flags = ACL_TEST_F_VOL_1ST; return 1; } /* 4. Check on URL/URI. A pointer to the URI is stored. */ static int acl_fetch_url(struct proxy *px, struct session *l4, void *l7, int dir, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; if (!txn) return 0; if (txn->req.msg_state < HTTP_MSG_BODY) return 0; if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE) /* ensure the indexes are not affected */ return 0; test->len = txn->req.sl.rq.u_l; test->ptr = txn->req.sol - txn->req.som + txn->req.sl.rq.u; /* we do not need to set READ_ONLY because the data is in a buffer */ test->flags = ACL_TEST_F_VOL_1ST; return 1; } static int acl_fetch_url_ip(struct proxy *px, struct session *l4, void *l7, int dir, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; if (!txn) return 0; if (txn->req.msg_state < HTTP_MSG_BODY) return 0; if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE) /* ensure the indexes are not affected */ return 0; /* Parse HTTP request */ url2sa(txn->req.sol - txn->req.som + txn->req.sl.rq.u, txn->req.sl.rq.u_l, &l4->srv_addr); test->ptr = (void *)&((struct sockaddr_in *)&l4->srv_addr)->sin_addr; test->i = AF_INET; /* * If we are parsing url in frontend space, we prepare backend stage * to not parse again the same url ! optimization lazyness... */ if (px->options & PR_O_HTTP_PROXY) l4->flags |= SN_ADDR_SET; test->flags = ACL_TEST_F_READ_ONLY; return 1; } static int acl_fetch_url_port(struct proxy *px, struct session *l4, void *l7, int dir, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; if (!txn) return 0; if (txn->req.msg_state < HTTP_MSG_BODY) return 0; if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE) /* ensure the indexes are not affected */ return 0; /* Same optimization as url_ip */ url2sa(txn->req.sol - txn->req.som + txn->req.sl.rq.u, txn->req.sl.rq.u_l, &l4->srv_addr); test->i = ntohs(((struct sockaddr_in *)&l4->srv_addr)->sin_port); if (px->options & PR_O_HTTP_PROXY) l4->flags |= SN_ADDR_SET; test->flags = ACL_TEST_F_READ_ONLY; return 1; } /* 5. Check on HTTP header. A pointer to the beginning of the value is returned. * This generic function is used by both acl_fetch_chdr() and acl_fetch_shdr(). */ static int acl_fetch_hdr(struct proxy *px, struct session *l4, void *l7, char *sol, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; struct hdr_idx *idx = &txn->hdr_idx; struct hdr_ctx *ctx = (struct hdr_ctx *)test->ctx.a; if (!txn) return 0; if (!(test->flags & ACL_TEST_F_FETCH_MORE)) /* search for header from the beginning */ ctx->idx = 0; if (http_find_header2(expr->arg.str, expr->arg_len, sol, idx, ctx)) { test->flags |= ACL_TEST_F_FETCH_MORE; test->flags |= ACL_TEST_F_VOL_HDR; test->len = ctx->vlen; test->ptr = (char *)ctx->line + ctx->val; return 1; } test->flags &= ~ACL_TEST_F_FETCH_MORE; test->flags |= ACL_TEST_F_VOL_HDR; return 0; } static int acl_fetch_chdr(struct proxy *px, struct session *l4, void *l7, int dir, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; if (!txn) return 0; if (txn->req.msg_state < HTTP_MSG_BODY) return 0; if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE) /* ensure the indexes are not affected */ return 0; return acl_fetch_hdr(px, l4, txn, txn->req.sol, expr, test); } static int acl_fetch_shdr(struct proxy *px, struct session *l4, void *l7, int dir, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; if (!txn) return 0; if (txn->rsp.msg_state < HTTP_MSG_BODY) return 0; return acl_fetch_hdr(px, l4, txn, txn->rsp.sol, expr, test); } /* 6. Check on HTTP header count. The number of occurrences is returned. * This generic function is used by both acl_fetch_chdr* and acl_fetch_shdr*. */ static int acl_fetch_hdr_cnt(struct proxy *px, struct session *l4, void *l7, char *sol, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; struct hdr_idx *idx = &txn->hdr_idx; struct hdr_ctx ctx; int cnt; if (!txn) return 0; ctx.idx = 0; cnt = 0; while (http_find_header2(expr->arg.str, expr->arg_len, sol, idx, &ctx)) cnt++; test->i = cnt; test->flags = ACL_TEST_F_VOL_HDR; return 1; } static int acl_fetch_chdr_cnt(struct proxy *px, struct session *l4, void *l7, int dir, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; if (!txn) return 0; if (txn->req.msg_state < HTTP_MSG_BODY) return 0; if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE) /* ensure the indexes are not affected */ return 0; return acl_fetch_hdr_cnt(px, l4, txn, txn->req.sol, expr, test); } static int acl_fetch_shdr_cnt(struct proxy *px, struct session *l4, void *l7, int dir, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; if (!txn) return 0; if (txn->rsp.msg_state < HTTP_MSG_BODY) return 0; return acl_fetch_hdr_cnt(px, l4, txn, txn->rsp.sol, expr, test); } /* 7. Check on HTTP header's integer value. The integer value is returned. * FIXME: the type is 'int', it may not be appropriate for everything. * This generic function is used by both acl_fetch_chdr* and acl_fetch_shdr*. */ static int acl_fetch_hdr_val(struct proxy *px, struct session *l4, void *l7, char *sol, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; struct hdr_idx *idx = &txn->hdr_idx; struct hdr_ctx *ctx = (struct hdr_ctx *)test->ctx.a; if (!txn) return 0; if (!(test->flags & ACL_TEST_F_FETCH_MORE)) /* search for header from the beginning */ ctx->idx = 0; if (http_find_header2(expr->arg.str, expr->arg_len, sol, idx, ctx)) { test->flags |= ACL_TEST_F_FETCH_MORE; test->flags |= ACL_TEST_F_VOL_HDR; test->i = strl2ic((char *)ctx->line + ctx->val, ctx->vlen); return 1; } test->flags &= ~ACL_TEST_F_FETCH_MORE; test->flags |= ACL_TEST_F_VOL_HDR; return 0; } static int acl_fetch_chdr_val(struct proxy *px, struct session *l4, void *l7, int dir, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; if (!txn) return 0; if (txn->req.msg_state < HTTP_MSG_BODY) return 0; if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE) /* ensure the indexes are not affected */ return 0; return acl_fetch_hdr_val(px, l4, txn, txn->req.sol, expr, test); } static int acl_fetch_shdr_val(struct proxy *px, struct session *l4, void *l7, int dir, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; if (!txn) return 0; if (txn->rsp.msg_state < HTTP_MSG_BODY) return 0; return acl_fetch_hdr_val(px, l4, txn, txn->rsp.sol, expr, test); } /* 7. Check on HTTP header's IPv4 address value. The IPv4 address is returned. * This generic function is used by both acl_fetch_chdr* and acl_fetch_shdr*. */ static int acl_fetch_hdr_ip(struct proxy *px, struct session *l4, void *l7, char *sol, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; struct hdr_idx *idx = &txn->hdr_idx; struct hdr_ctx *ctx = (struct hdr_ctx *)test->ctx.a; if (!txn) return 0; if (!(test->flags & ACL_TEST_F_FETCH_MORE)) /* search for header from the beginning */ ctx->idx = 0; if (http_find_header2(expr->arg.str, expr->arg_len, sol, idx, ctx)) { test->flags |= ACL_TEST_F_FETCH_MORE; test->flags |= ACL_TEST_F_VOL_HDR; /* Same optimization as url_ip */ memset(&l4->srv_addr.sin_addr, 0, sizeof(l4->srv_addr.sin_addr)); url2ip((char *)ctx->line + ctx->val, &l4->srv_addr.sin_addr); test->ptr = (void *)&l4->srv_addr.sin_addr; test->i = AF_INET; return 1; } test->flags &= ~ACL_TEST_F_FETCH_MORE; test->flags |= ACL_TEST_F_VOL_HDR; return 0; } static int acl_fetch_chdr_ip(struct proxy *px, struct session *l4, void *l7, int dir, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; if (!txn) return 0; if (txn->req.msg_state < HTTP_MSG_BODY) return 0; if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE) /* ensure the indexes are not affected */ return 0; return acl_fetch_hdr_ip(px, l4, txn, txn->req.sol, expr, test); } static int acl_fetch_shdr_ip(struct proxy *px, struct session *l4, void *l7, int dir, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; if (!txn) return 0; if (txn->rsp.msg_state < HTTP_MSG_BODY) return 0; return acl_fetch_hdr_ip(px, l4, txn, txn->rsp.sol, expr, test); } /* 8. Check on URI PATH. A pointer to the PATH is stored. The path starts at * the first '/' after the possible hostname, and ends before the possible '?'. */ static int acl_fetch_path(struct proxy *px, struct session *l4, void *l7, int dir, struct acl_expr *expr, struct acl_test *test) { struct http_txn *txn = l7; char *ptr, *end; if (!txn) return 0; if (txn->req.msg_state < HTTP_MSG_BODY) return 0; if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE) /* ensure the indexes are not affected */ return 0; end = txn->req.sol - txn->req.som + txn->req.sl.rq.u + txn->req.sl.rq.u_l; ptr = http_get_path(txn); if (!ptr) return 0; /* OK, we got the '/' ! */ test->ptr = ptr; while (ptr < end && *ptr != '?') ptr++; test->len = ptr - test->ptr; /* we do not need to set READ_ONLY because the data is in a buffer */ test->flags = ACL_TEST_F_VOL_1ST; return 1; } static int acl_fetch_proto_http(struct proxy *px, struct session *s, void *l7, int dir, struct acl_expr *expr, struct acl_test *test) { struct buffer *req = s->req; struct http_txn *txn = &s->txn; struct http_msg *msg = &txn->req; /* Note: hdr_idx.v cannot be NULL in this ACL because the ACL is tagged * as a layer7 ACL, which involves automatic allocation of hdr_idx. */ if (!s || !req) return 0; if (unlikely(msg->msg_state >= HTTP_MSG_BODY)) { /* Already decoded as OK */ test->flags |= ACL_TEST_F_SET_RES_PASS; return 1; } /* Try to decode HTTP request */ if (likely(req->lr < req->r)) http_msg_analyzer(req, msg, &txn->hdr_idx); if (unlikely(msg->msg_state < HTTP_MSG_BODY)) { if ((msg->msg_state == HTTP_MSG_ERROR) || (req->flags & BF_FULL)) { test->flags |= ACL_TEST_F_SET_RES_FAIL; return 1; } /* wait for final state */ test->flags |= ACL_TEST_F_MAY_CHANGE; return 0; } /* OK we got a valid HTTP request. We have some minor preparation to * perform so that further checks can rely on HTTP tests. */ msg->sol = req->data + msg->som; txn->meth = find_http_meth(&req->data[msg->som], msg->sl.rq.m_l); if (txn->meth == HTTP_METH_GET || txn->meth == HTTP_METH_HEAD) s->flags |= SN_REDIRECTABLE; if (unlikely(msg->sl.rq.v_l == 0) && !http_upgrade_v09_to_v10(req, msg, txn)) { test->flags |= ACL_TEST_F_SET_RES_FAIL; return 1; } test->flags |= ACL_TEST_F_SET_RES_PASS; return 1; } /************************************************************************/ /* All supported keywords must be declared here. */ /************************************************************************/ /* Note: must not be declared as its list will be overwritten */ static struct acl_kw_list acl_kws = {{ },{ { "req_proto_http", acl_parse_nothing, acl_fetch_proto_http, acl_match_nothing, ACL_USE_L7REQ_PERMANENT }, { "method", acl_parse_meth, acl_fetch_meth, acl_match_meth, ACL_USE_L7REQ_PERMANENT }, { "req_ver", acl_parse_ver, acl_fetch_rqver, acl_match_str, ACL_USE_L7REQ_VOLATILE }, { "resp_ver", acl_parse_ver, acl_fetch_stver, acl_match_str, ACL_USE_L7RTR_VOLATILE }, { "status", acl_parse_int, acl_fetch_stcode, acl_match_int, ACL_USE_L7RTR_PERMANENT }, { "url", acl_parse_str, acl_fetch_url, acl_match_str, ACL_USE_L7REQ_VOLATILE }, { "url_beg", acl_parse_str, acl_fetch_url, acl_match_beg, ACL_USE_L7REQ_VOLATILE }, { "url_end", acl_parse_str, acl_fetch_url, acl_match_end, ACL_USE_L7REQ_VOLATILE }, { "url_sub", acl_parse_str, acl_fetch_url, acl_match_sub, ACL_USE_L7REQ_VOLATILE }, { "url_dir", acl_parse_str, acl_fetch_url, acl_match_dir, ACL_USE_L7REQ_VOLATILE }, { "url_dom", acl_parse_str, acl_fetch_url, acl_match_dom, ACL_USE_L7REQ_VOLATILE }, { "url_reg", acl_parse_reg, acl_fetch_url, acl_match_reg, ACL_USE_L7REQ_VOLATILE }, { "url_ip", acl_parse_ip, acl_fetch_url_ip, acl_match_ip, ACL_USE_L7REQ_VOLATILE }, { "url_port", acl_parse_int, acl_fetch_url_port, acl_match_int, ACL_USE_L7REQ_VOLATILE }, /* note: we should set hdr* to use ACL_USE_HDR_VOLATILE, and chdr* to use L7REQ_VOLATILE */ { "hdr", acl_parse_str, acl_fetch_chdr, acl_match_str, ACL_USE_L7REQ_VOLATILE }, { "hdr_reg", acl_parse_reg, acl_fetch_chdr, acl_match_reg, ACL_USE_L7REQ_VOLATILE }, { "hdr_beg", acl_parse_str, acl_fetch_chdr, acl_match_beg, ACL_USE_L7REQ_VOLATILE }, { "hdr_end", acl_parse_str, acl_fetch_chdr, acl_match_end, ACL_USE_L7REQ_VOLATILE }, { "hdr_sub", acl_parse_str, acl_fetch_chdr, acl_match_sub, ACL_USE_L7REQ_VOLATILE }, { "hdr_dir", acl_parse_str, acl_fetch_chdr, acl_match_dir, ACL_USE_L7REQ_VOLATILE }, { "hdr_dom", acl_parse_str, acl_fetch_chdr, acl_match_dom, ACL_USE_L7REQ_VOLATILE }, { "hdr_cnt", acl_parse_int, acl_fetch_chdr_cnt,acl_match_int, ACL_USE_L7REQ_VOLATILE }, { "hdr_val", acl_parse_int, acl_fetch_chdr_val,acl_match_int, ACL_USE_L7REQ_VOLATILE }, { "hdr_ip", acl_parse_ip, acl_fetch_chdr_ip, acl_match_ip, ACL_USE_L7REQ_VOLATILE }, { "shdr", acl_parse_str, acl_fetch_shdr, acl_match_str, ACL_USE_L7RTR_VOLATILE }, { "shdr_reg", acl_parse_reg, acl_fetch_shdr, acl_match_reg, ACL_USE_L7RTR_VOLATILE }, { "shdr_beg", acl_parse_str, acl_fetch_shdr, acl_match_beg, ACL_USE_L7RTR_VOLATILE }, { "shdr_end", acl_parse_str, acl_fetch_shdr, acl_match_end, ACL_USE_L7RTR_VOLATILE }, { "shdr_sub", acl_parse_str, acl_fetch_shdr, acl_match_sub, ACL_USE_L7RTR_VOLATILE }, { "shdr_dir", acl_parse_str, acl_fetch_shdr, acl_match_dir, ACL_USE_L7RTR_VOLATILE }, { "shdr_dom", acl_parse_str, acl_fetch_shdr, acl_match_dom, ACL_USE_L7RTR_VOLATILE }, { "shdr_cnt", acl_parse_int, acl_fetch_shdr_cnt,acl_match_int, ACL_USE_L7RTR_VOLATILE }, { "shdr_val", acl_parse_int, acl_fetch_shdr_val,acl_match_int, ACL_USE_L7RTR_VOLATILE }, { "shdr_ip", acl_parse_ip, acl_fetch_shdr_ip, acl_match_ip, ACL_USE_L7RTR_VOLATILE }, { "path", acl_parse_str, acl_fetch_path, acl_match_str, ACL_USE_L7REQ_VOLATILE }, { "path_reg", acl_parse_reg, acl_fetch_path, acl_match_reg, ACL_USE_L7REQ_VOLATILE }, { "path_beg", acl_parse_str, acl_fetch_path, acl_match_beg, ACL_USE_L7REQ_VOLATILE }, { "path_end", acl_parse_str, acl_fetch_path, acl_match_end, ACL_USE_L7REQ_VOLATILE }, { "path_sub", acl_parse_str, acl_fetch_path, acl_match_sub, ACL_USE_L7REQ_VOLATILE }, { "path_dir", acl_parse_str, acl_fetch_path, acl_match_dir, ACL_USE_L7REQ_VOLATILE }, { "path_dom", acl_parse_str, acl_fetch_path, acl_match_dom, ACL_USE_L7REQ_VOLATILE }, { NULL, NULL, NULL, NULL }, #if 0 { "line", acl_parse_str, acl_fetch_line, acl_match_str }, { "line_reg", acl_parse_reg, acl_fetch_line, acl_match_reg }, { "line_beg", acl_parse_str, acl_fetch_line, acl_match_beg }, { "line_end", acl_parse_str, acl_fetch_line, acl_match_end }, { "line_sub", acl_parse_str, acl_fetch_line, acl_match_sub }, { "line_dir", acl_parse_str, acl_fetch_line, acl_match_dir }, { "line_dom", acl_parse_str, acl_fetch_line, acl_match_dom }, { "cook", acl_parse_str, acl_fetch_cook, acl_match_str }, { "cook_reg", acl_parse_reg, acl_fetch_cook, acl_match_reg }, { "cook_beg", acl_parse_str, acl_fetch_cook, acl_match_beg }, { "cook_end", acl_parse_str, acl_fetch_cook, acl_match_end }, { "cook_sub", acl_parse_str, acl_fetch_cook, acl_match_sub }, { "cook_dir", acl_parse_str, acl_fetch_cook, acl_match_dir }, { "cook_dom", acl_parse_str, acl_fetch_cook, acl_match_dom }, { "cook_pst", acl_parse_none, acl_fetch_cook, acl_match_pst }, { "auth_user", acl_parse_str, acl_fetch_user, acl_match_str }, { "auth_regex", acl_parse_reg, acl_fetch_user, acl_match_reg }, { "auth_clear", acl_parse_str, acl_fetch_auth, acl_match_str }, { "auth_md5", acl_parse_str, acl_fetch_auth, acl_match_md5 }, { NULL, NULL, NULL, NULL }, #endif }}; __attribute__((constructor)) static void __http_protocol_init(void) { acl_register_keywords(&acl_kws); } /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */