/* * SSL/TLS transport layer over SOCK_STREAM sockets * * Copyright (C) 2012 EXCELIANCE, Emeric Brun * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Acknowledgement: * We'd like to specially thank the Stud project authors for a very clean * and well documented code which helped us understand how the OpenSSL API * ought to be used in non-blocking mode. This is one difficult part which * is not easy to get from the OpenSSL doc, and reading the Stud code made * it much more obvious than the examples in the OpenSSL package. Keep up * the good works, guys ! * * Stud is an extremely efficient and scalable SSL/TLS proxy which combines * particularly well with haproxy. For more info about this project, visit : * https://github.com/bumptech/stud * */ /* Note: do NOT include openssl/xxx.h here, do it in openssl-compat.h */ #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* ***** READ THIS before adding code here! ***** * * Due to API incompatibilities between multiple OpenSSL versions and their * derivatives, it's often tempting to add macros to (re-)define certain * symbols. Please do not do this here, and do it in common/openssl-compat.h * exclusively so that the whole code consistently uses the same macros. * * Whenever possible if a macro is missing in certain versions, it's better * to conditionally define it in openssl-compat.h than using lots of ifdefs. */ /* Warning, these are bits, not integers! */ #define SSL_SOCK_ST_FL_VERIFY_DONE 0x00000001 #define SSL_SOCK_ST_FL_16K_WBFSIZE 0x00000002 #define SSL_SOCK_SEND_UNLIMITED 0x00000004 #define SSL_SOCK_RECV_HEARTBEAT 0x00000008 /* bits 0xFFFF0000 are reserved to store verify errors */ /* Verify errors macros */ #define SSL_SOCK_CA_ERROR_TO_ST(e) (((e > 63) ? 63 : e) << (16)) #define SSL_SOCK_CAEDEPTH_TO_ST(d) (((d > 15) ? 15 : d) << (6+16)) #define SSL_SOCK_CRTERROR_TO_ST(e) (((e > 63) ? 63 : e) << (4+6+16)) #define SSL_SOCK_ST_TO_CA_ERROR(s) ((s >> (16)) & 63) #define SSL_SOCK_ST_TO_CAEDEPTH(s) ((s >> (6+16)) & 15) #define SSL_SOCK_ST_TO_CRTERROR(s) ((s >> (4+6+16)) & 63) /* ssl_methods flags for ssl options */ #define MC_SSL_O_ALL 0x0000 #define MC_SSL_O_NO_SSLV3 0x0001 /* disable SSLv3 */ #define MC_SSL_O_NO_TLSV10 0x0002 /* disable TLSv10 */ #define MC_SSL_O_NO_TLSV11 0x0004 /* disable TLSv11 */ #define MC_SSL_O_NO_TLSV12 0x0008 /* disable TLSv12 */ #define MC_SSL_O_NO_TLSV13 0x0010 /* disable TLSv13 */ /* file to guess during file loading */ #define SSL_GF_NONE 0x00000000 /* Don't guess any file, only open the files specified in the configuration files */ #define SSL_GF_BUNDLE 0x00000001 /* try to open the bundles */ #define SSL_GF_SCTL 0x00000002 /* try to open the .sctl file */ #define SSL_GF_OCSP 0x00000004 /* try to open the .ocsp file */ #define SSL_GF_OCSP_ISSUER 0x00000008 /* try to open the .issuer file if an OCSP file was loaded */ #define SSL_GF_KEY 0x00000010 /* try to open the .key file to load a private key */ #define SSL_GF_ALL (SSL_GF_BUNDLE|SSL_GF_SCTL|SSL_GF_OCSP|SSL_GF_OCSP_ISSUER|SSL_GF_KEY) /* ssl_methods versions */ enum { CONF_TLSV_NONE = 0, CONF_TLSV_MIN = 1, CONF_SSLV3 = 1, CONF_TLSV10 = 2, CONF_TLSV11 = 3, CONF_TLSV12 = 4, CONF_TLSV13 = 5, CONF_TLSV_MAX = 5, }; /* server and bind verify method, it uses a global value as default */ enum { SSL_SOCK_VERIFY_DEFAULT = 0, SSL_SOCK_VERIFY_REQUIRED = 1, SSL_SOCK_VERIFY_OPTIONAL = 2, SSL_SOCK_VERIFY_NONE = 3, }; int sslconns = 0; int totalsslconns = 0; static struct xprt_ops ssl_sock; int nb_engines = 0; static struct eb_root cert_issuer_tree = EB_ROOT; /* issuers tree from "issuers-chain-path" */ static struct issuer_chain* ssl_get0_issuer_chain(X509 *cert); static struct { char *crt_base; /* base directory path for certificates */ char *ca_base; /* base directory path for CAs and CRLs */ char *issuers_chain_path; /* from "issuers-chain-path" */ int skip_self_issued_ca; int async; /* whether we use ssl async mode */ char *listen_default_ciphers; char *connect_default_ciphers; #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) char *listen_default_ciphersuites; char *connect_default_ciphersuites; #endif #if ((HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL) || defined(LIBRESSL_VERSION_NUMBER)) char *listen_default_curves; #endif int listen_default_ssloptions; int connect_default_ssloptions; struct tls_version_filter listen_default_sslmethods; struct tls_version_filter connect_default_sslmethods; int private_cache; /* Force to use a private session cache even if nbproc > 1 */ unsigned int life_time; /* SSL session lifetime in seconds */ unsigned int max_record; /* SSL max record size */ unsigned int default_dh_param; /* SSL maximum DH parameter size */ int ctx_cache; /* max number of entries in the ssl_ctx cache. */ int capture_cipherlist; /* Size of the cipherlist buffer. */ int extra_files; /* which files not defined in the configuration file are we looking for */ } global_ssl = { #ifdef LISTEN_DEFAULT_CIPHERS .listen_default_ciphers = LISTEN_DEFAULT_CIPHERS, #endif #ifdef CONNECT_DEFAULT_CIPHERS .connect_default_ciphers = CONNECT_DEFAULT_CIPHERS, #endif #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) #ifdef LISTEN_DEFAULT_CIPHERSUITES .listen_default_ciphersuites = LISTEN_DEFAULT_CIPHERSUITES, #endif #ifdef CONNECT_DEFAULT_CIPHERSUITES .connect_default_ciphersuites = CONNECT_DEFAULT_CIPHERSUITES, #endif #endif .listen_default_ssloptions = BC_SSL_O_NONE, .connect_default_ssloptions = SRV_SSL_O_NONE, .listen_default_sslmethods.flags = MC_SSL_O_ALL, .listen_default_sslmethods.min = CONF_TLSV_NONE, .listen_default_sslmethods.max = CONF_TLSV_NONE, .connect_default_sslmethods.flags = MC_SSL_O_ALL, .connect_default_sslmethods.min = CONF_TLSV_NONE, .connect_default_sslmethods.max = CONF_TLSV_NONE, #ifdef DEFAULT_SSL_MAX_RECORD .max_record = DEFAULT_SSL_MAX_RECORD, #endif .default_dh_param = SSL_DEFAULT_DH_PARAM, .ctx_cache = DEFAULT_SSL_CTX_CACHE, .capture_cipherlist = 0, .extra_files = SSL_GF_ALL, }; static BIO_METHOD *ha_meth; struct ssl_sock_ctx { struct connection *conn; SSL *ssl; BIO *bio; const struct xprt_ops *xprt; void *xprt_ctx; struct wait_event wait_event; struct wait_event *subs; int xprt_st; /* transport layer state, initialized to zero */ struct buffer early_buf; /* buffer to store the early data received */ int sent_early_data; /* Amount of early data we sent so far */ }; DECLARE_STATIC_POOL(ssl_sock_ctx_pool, "ssl_sock_ctx_pool", sizeof(struct ssl_sock_ctx)); static struct task *ssl_sock_io_cb(struct task *, void *, unsigned short); static int ssl_sock_handshake(struct connection *conn, unsigned int flag); /* Methods to implement OpenSSL BIO */ static int ha_ssl_write(BIO *h, const char *buf, int num) { struct buffer tmpbuf; struct ssl_sock_ctx *ctx; int ret; ctx = BIO_get_data(h); tmpbuf.size = num; tmpbuf.area = (void *)(uintptr_t)buf; tmpbuf.data = num; tmpbuf.head = 0; ret = ctx->xprt->snd_buf(ctx->conn, ctx->xprt_ctx, &tmpbuf, num, 0); if (ret == 0 && !(ctx->conn->flags & (CO_FL_ERROR | CO_FL_SOCK_WR_SH))) { BIO_set_retry_write(h); ret = -1; } else if (ret == 0) BIO_clear_retry_flags(h); return ret; } static int ha_ssl_gets(BIO *h, char *buf, int size) { return 0; } static int ha_ssl_puts(BIO *h, const char *str) { return ha_ssl_write(h, str, strlen(str)); } static int ha_ssl_read(BIO *h, char *buf, int size) { struct buffer tmpbuf; struct ssl_sock_ctx *ctx; int ret; ctx = BIO_get_data(h); tmpbuf.size = size; tmpbuf.area = buf; tmpbuf.data = 0; tmpbuf.head = 0; ret = ctx->xprt->rcv_buf(ctx->conn, ctx->xprt_ctx, &tmpbuf, size, 0); if (ret == 0 && !(ctx->conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH))) { BIO_set_retry_read(h); ret = -1; } else if (ret == 0) BIO_clear_retry_flags(h); return ret; } static long ha_ssl_ctrl(BIO *h, int cmd, long arg1, void *arg2) { int ret = 0; switch (cmd) { case BIO_CTRL_DUP: case BIO_CTRL_FLUSH: ret = 1; break; } return ret; } static int ha_ssl_new(BIO *h) { BIO_set_init(h, 1); BIO_set_data(h, NULL); BIO_clear_flags(h, ~0); return 1; } static int ha_ssl_free(BIO *data) { return 1; } #if defined(USE_THREAD) && (HA_OPENSSL_VERSION_NUMBER < 0x10100000L) static HA_RWLOCK_T *ssl_rwlocks; unsigned long ssl_id_function(void) { return (unsigned long)tid; } void ssl_locking_function(int mode, int n, const char * file, int line) { if (mode & CRYPTO_LOCK) { if (mode & CRYPTO_READ) HA_RWLOCK_RDLOCK(SSL_LOCK, &ssl_rwlocks[n]); else HA_RWLOCK_WRLOCK(SSL_LOCK, &ssl_rwlocks[n]); } else { if (mode & CRYPTO_READ) HA_RWLOCK_RDUNLOCK(SSL_LOCK, &ssl_rwlocks[n]); else HA_RWLOCK_WRUNLOCK(SSL_LOCK, &ssl_rwlocks[n]); } } static int ssl_locking_init(void) { int i; ssl_rwlocks = malloc(sizeof(HA_RWLOCK_T)*CRYPTO_num_locks()); if (!ssl_rwlocks) return -1; for (i = 0 ; i < CRYPTO_num_locks() ; i++) HA_RWLOCK_INIT(&ssl_rwlocks[i]); CRYPTO_set_id_callback(ssl_id_function); CRYPTO_set_locking_callback(ssl_locking_function); return 0; } #endif __decl_hathreads(HA_SPINLOCK_T ckch_lock); /* Uncommitted CKCH transaction */ static struct { struct ckch_store *new_ckchs; struct ckch_store *old_ckchs; char *path; } ckchs_transaction; /* * deduplicate cafile (and crlfile) */ struct cafile_entry { X509_STORE *ca_store; STACK_OF(X509_NAME) *ca_list; struct ebmb_node node; char path[0]; }; static struct eb_root cafile_tree = EB_ROOT_UNIQUE; static X509_STORE* ssl_store_get0_locations_file(char *path) { struct ebmb_node *eb; eb = ebst_lookup(&cafile_tree, path); if (eb) { struct cafile_entry *ca_e; ca_e = ebmb_entry(eb, struct cafile_entry, node); return ca_e->ca_store; } return NULL; } static int ssl_store_load_locations_file(char *path) { if (ssl_store_get0_locations_file(path) == NULL) { struct cafile_entry *ca_e; X509_STORE *store = X509_STORE_new(); if (X509_STORE_load_locations(store, path, NULL)) { int pathlen; pathlen = strlen(path); ca_e = calloc(1, sizeof(*ca_e) + pathlen + 1); if (ca_e) { memcpy(ca_e->path, path, pathlen + 1); ca_e->ca_store = store; ebst_insert(&cafile_tree, &ca_e->node); return 1; } } X509_STORE_free(store); return 0; } return 1; } /* mimic what X509_STORE_load_locations do with store_ctx */ static int ssl_set_cert_crl_file(X509_STORE *store_ctx, char *path) { X509_STORE *store; store = ssl_store_get0_locations_file(path); if (store_ctx && store) { int i; X509_OBJECT *obj; STACK_OF(X509_OBJECT) *objs = X509_STORE_get0_objects(store); for (i = 0; i < sk_X509_OBJECT_num(objs); i++) { obj = sk_X509_OBJECT_value(objs, i); switch (X509_OBJECT_get_type(obj)) { case X509_LU_X509: X509_STORE_add_cert(store_ctx, X509_OBJECT_get0_X509(obj)); break; case X509_LU_CRL: X509_STORE_add_crl(store_ctx, X509_OBJECT_get0_X509_CRL(obj)); break; default: break; } } return 1; } return 0; } /* SSL_CTX_load_verify_locations substitute, internally call X509_STORE_load_locations */ static int ssl_set_verify_locations_file(SSL_CTX *ctx, char *path) { X509_STORE *store_ctx = SSL_CTX_get_cert_store(ctx); return ssl_set_cert_crl_file(store_ctx, path); } /* Extract CA_list from CA_file already in tree. Duplicate ca_name is tracking with ebtree. It's simplify openssl compatibility. Return a shared ca_list: SSL_dup_CA_list must be used before set it on SSL_CTX. */ static STACK_OF(X509_NAME)* ssl_get_client_ca_file(char *path) { struct ebmb_node *eb; struct cafile_entry *ca_e; eb = ebst_lookup(&cafile_tree, path); if (!eb) return NULL; ca_e = ebmb_entry(eb, struct cafile_entry, node); if (ca_e->ca_list == NULL) { int i; unsigned long key; struct eb_root ca_name_tree = EB_ROOT; struct eb64_node *node, *back; struct { struct eb64_node node; X509_NAME *xname; } *ca_name; STACK_OF(X509_OBJECT) *objs; STACK_OF(X509_NAME) *skn; X509 *x; X509_NAME *xn; skn = sk_X509_NAME_new_null(); /* take x509 from cafile_tree */ objs = X509_STORE_get0_objects(ca_e->ca_store); for (i = 0; i < sk_X509_OBJECT_num(objs); i++) { x = X509_OBJECT_get0_X509(sk_X509_OBJECT_value(objs, i)); if (!x) continue; xn = X509_get_subject_name(x); if (!xn) continue; /* Check for duplicates. */ key = X509_NAME_hash(xn); for (node = eb64_lookup(&ca_name_tree, key), ca_name = NULL; node && ca_name == NULL; node = eb64_next(node)) { ca_name = container_of(node, typeof(*ca_name), node); if (X509_NAME_cmp(xn, ca_name->xname) != 0) ca_name = NULL; } /* find a duplicate */ if (ca_name) continue; ca_name = calloc(1, sizeof *ca_name); xn = X509_NAME_dup(xn); if (!ca_name || !xn || !sk_X509_NAME_push(skn, xn)) { free(ca_name); X509_NAME_free(xn); sk_X509_NAME_pop_free(skn, X509_NAME_free); sk_X509_NAME_free(skn); skn = NULL; break; } ca_name->node.key = key; ca_name->xname = xn; eb64_insert(&ca_name_tree, &ca_name->node); } ca_e->ca_list = skn; /* remove temporary ca_name tree */ node = eb64_first(&ca_name_tree); while (node) { ca_name = container_of(node, typeof(*ca_name), node); back = eb64_next(node); eb64_delete(node); free(ca_name); node = back; } } return ca_e->ca_list; } /* This memory pool is used for capturing clienthello parameters. */ struct ssl_capture { unsigned long long int xxh64; unsigned char ciphersuite_len; char ciphersuite[0]; }; struct pool_head *pool_head_ssl_capture = NULL; static int ssl_capture_ptr_index = -1; static int ssl_app_data_index = -1; #if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0) struct list tlskeys_reference = LIST_HEAD_INIT(tlskeys_reference); #endif #ifndef OPENSSL_NO_ENGINE static unsigned int openssl_engines_initialized; struct list openssl_engines = LIST_HEAD_INIT(openssl_engines); struct ssl_engine_list { struct list list; ENGINE *e; }; #endif #ifndef OPENSSL_NO_DH static int ssl_dh_ptr_index = -1; static DH *global_dh = NULL; static DH *local_dh_1024 = NULL; static DH *local_dh_2048 = NULL; static DH *local_dh_4096 = NULL; static DH *ssl_get_tmp_dh(SSL *ssl, int export, int keylen); #endif /* OPENSSL_NO_DH */ #if (defined SSL_CTRL_SET_TLSEXT_HOSTNAME && !defined SSL_NO_GENERATE_CERTIFICATES) /* X509V3 Extensions that will be added on generated certificates */ #define X509V3_EXT_SIZE 5 static char *x509v3_ext_names[X509V3_EXT_SIZE] = { "basicConstraints", "nsComment", "subjectKeyIdentifier", "authorityKeyIdentifier", "keyUsage", }; static char *x509v3_ext_values[X509V3_EXT_SIZE] = { "CA:FALSE", "\"OpenSSL Generated Certificate\"", "hash", "keyid,issuer:always", "nonRepudiation,digitalSignature,keyEncipherment" }; /* LRU cache to store generated certificate */ static struct lru64_head *ssl_ctx_lru_tree = NULL; static unsigned int ssl_ctx_lru_seed = 0; static unsigned int ssl_ctx_serial; __decl_rwlock(ssl_ctx_lru_rwlock); #endif // SSL_CTRL_SET_TLSEXT_HOSTNAME static struct ssl_bind_kw ssl_bind_kws[]; #if HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL /* The order here matters for picking a default context, * keep the most common keytype at the bottom of the list */ const char *SSL_SOCK_KEYTYPE_NAMES[] = { "dsa", "ecdsa", "rsa" }; #define SSL_SOCK_NUM_KEYTYPES 3 #else #define SSL_SOCK_NUM_KEYTYPES 1 #endif static struct shared_context *ssl_shctx = NULL; /* ssl shared session cache */ static struct eb_root *sh_ssl_sess_tree; /* ssl shared session tree */ #define sh_ssl_sess_tree_delete(s) ebmb_delete(&(s)->key); #define sh_ssl_sess_tree_insert(s) (struct sh_ssl_sess_hdr *)ebmb_insert(sh_ssl_sess_tree, \ &(s)->key, SSL_MAX_SSL_SESSION_ID_LENGTH); #define sh_ssl_sess_tree_lookup(k) (struct sh_ssl_sess_hdr *)ebmb_lookup(sh_ssl_sess_tree, \ (k), SSL_MAX_SSL_SESSION_ID_LENGTH); /* * This function gives the detail of the SSL error. It is used only * if the debug mode and the verbose mode are activated. It dump all * the SSL error until the stack was empty. */ static forceinline void ssl_sock_dump_errors(struct connection *conn) { unsigned long ret; if (unlikely(global.mode & MODE_DEBUG)) { while(1) { ret = ERR_get_error(); if (ret == 0) return; fprintf(stderr, "fd[%04x] OpenSSL error[0x%lx] %s: %s\n", (unsigned short)conn->handle.fd, ret, ERR_func_error_string(ret), ERR_reason_error_string(ret)); } } } #ifndef OPENSSL_NO_ENGINE static int ssl_init_single_engine(const char *engine_id, const char *def_algorithms) { int err_code = ERR_ABORT; ENGINE *engine; struct ssl_engine_list *el; /* grab the structural reference to the engine */ engine = ENGINE_by_id(engine_id); if (engine == NULL) { ha_alert("ssl-engine %s: failed to get structural reference\n", engine_id); goto fail_get; } if (!ENGINE_init(engine)) { /* the engine couldn't initialise, release it */ ha_alert("ssl-engine %s: failed to initialize\n", engine_id); goto fail_init; } if (ENGINE_set_default_string(engine, def_algorithms) == 0) { ha_alert("ssl-engine %s: failed on ENGINE_set_default_string\n", engine_id); goto fail_set_method; } el = calloc(1, sizeof(*el)); el->e = engine; LIST_ADD(&openssl_engines, &el->list); nb_engines++; if (global_ssl.async) global.ssl_used_async_engines = nb_engines; return 0; fail_set_method: /* release the functional reference from ENGINE_init() */ ENGINE_finish(engine); fail_init: /* release the structural reference from ENGINE_by_id() */ ENGINE_free(engine); fail_get: return err_code; } #endif #if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) /* * openssl async fd handler */ void ssl_async_fd_handler(int fd) { struct ssl_sock_ctx *ctx = fdtab[fd].owner; /* fd is an async enfine fd, we must stop * to poll this fd until it is requested */ fd_stop_recv(fd); fd_cant_recv(fd); /* crypto engine is available, let's notify the associated * connection that it can pursue its processing. */ ssl_sock_io_cb(NULL, ctx, 0); } /* * openssl async delayed SSL_free handler */ void ssl_async_fd_free(int fd) { SSL *ssl = fdtab[fd].owner; OSSL_ASYNC_FD all_fd[32]; size_t num_all_fds = 0; int i; /* We suppose that the async job for a same SSL * * are serialized. So if we are awake it is * because the running job has just finished * and we can remove all async fds safely */ SSL_get_all_async_fds(ssl, NULL, &num_all_fds); if (num_all_fds > 32) { send_log(NULL, LOG_EMERG, "haproxy: openssl returns too many async fds. It seems a bug. Process may crash\n"); return; } SSL_get_all_async_fds(ssl, all_fd, &num_all_fds); for (i=0 ; i < num_all_fds ; i++) fd_remove(all_fd[i]); /* Now we can safely call SSL_free, no more pending job in engines */ SSL_free(ssl); _HA_ATOMIC_SUB(&sslconns, 1); _HA_ATOMIC_SUB(&jobs, 1); } /* * function used to manage a returned SSL_ERROR_WANT_ASYNC * and enable/disable polling for async fds */ static inline void ssl_async_process_fds(struct ssl_sock_ctx *ctx) { OSSL_ASYNC_FD add_fd[32]; OSSL_ASYNC_FD del_fd[32]; SSL *ssl = ctx->ssl; size_t num_add_fds = 0; size_t num_del_fds = 0; int i; SSL_get_changed_async_fds(ssl, NULL, &num_add_fds, NULL, &num_del_fds); if (num_add_fds > 32 || num_del_fds > 32) { send_log(NULL, LOG_EMERG, "haproxy: openssl returns too many async fds. It seems a bug. Process may crash\n"); return; } SSL_get_changed_async_fds(ssl, add_fd, &num_add_fds, del_fd, &num_del_fds); /* We remove unused fds from the fdtab */ for (i=0 ; i < num_del_fds ; i++) fd_remove(del_fd[i]); /* We add new fds to the fdtab */ for (i=0 ; i < num_add_fds ; i++) { fd_insert(add_fd[i], ctx, ssl_async_fd_handler, tid_bit); } num_add_fds = 0; SSL_get_all_async_fds(ssl, NULL, &num_add_fds); if (num_add_fds > 32) { send_log(NULL, LOG_EMERG, "haproxy: openssl returns too many async fds. It seems a bug. Process may crash\n"); return; } /* We activate the polling for all known async fds */ SSL_get_all_async_fds(ssl, add_fd, &num_add_fds); for (i=0 ; i < num_add_fds ; i++) { fd_want_recv(add_fd[i]); /* To ensure that the fd cache won't be used * We'll prefer to catch a real RD event * because handling an EAGAIN on this fd will * result in a context switch and also * some engines uses a fd in blocking mode. */ fd_cant_recv(add_fd[i]); } } #endif #if (defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP) /* * This function returns the number of seconds elapsed * since the Epoch, 1970-01-01 00:00:00 +0000 (UTC) and the * date presented un ASN1_GENERALIZEDTIME. * * In parsing error case, it returns -1. */ static long asn1_generalizedtime_to_epoch(ASN1_GENERALIZEDTIME *d) { long epoch; char *p, *end; const unsigned short month_offset[12] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; int year, month; if (!d || (d->type != V_ASN1_GENERALIZEDTIME)) return -1; p = (char *)d->data; end = p + d->length; if (end - p < 4) return -1; year = 1000 * (p[0] - '0') + 100 * (p[1] - '0') + 10 * (p[2] - '0') + p[3] - '0'; p += 4; if (end - p < 2) return -1; month = 10 * (p[0] - '0') + p[1] - '0'; if (month < 1 || month > 12) return -1; /* Compute the number of seconds since 1 jan 1970 and the beginning of current month We consider leap years and the current month ( '9') goto nosec; if (end - p < 2) return -1; /* Add the seconds of the current minute */ epoch += 10 * (p[0] - '0') + p[1] - '0'; p += 2; if (p == end) return -1; /* Ignore seconds float part if present */ if (p[0] == '.') { do { if (++p == end) return -1; } while (p[0] >= '0' && p[0] <= '9'); } nosec: if (p[0] == 'Z') { if (end - p != 1) return -1; return epoch; } else if (p[0] == '+') { if (end - p != 5) return -1; /* Apply timezone offset */ return epoch - ((10 * (p[1] - '0') + p[2] - '0') * 60 * 60 + (10 * (p[3] - '0') + p[4] - '0')) * 60; } else if (p[0] == '-') { if (end - p != 5) return -1; /* Apply timezone offset */ return epoch + ((10 * (p[1] - '0') + p[2] - '0') * 60 * 60 + (10 * (p[3] - '0') + p[4] - '0')) * 60; } return -1; } /* * struct alignment works here such that the key.key is the same as key_data * Do not change the placement of key_data */ struct certificate_ocsp { struct ebmb_node key; unsigned char key_data[OCSP_MAX_CERTID_ASN1_LENGTH]; struct buffer response; long expire; }; struct ocsp_cbk_arg { int is_single; int single_kt; union { struct certificate_ocsp *s_ocsp; /* * m_ocsp will have multiple entries dependent on key type * Entry 0 - DSA * Entry 1 - ECDSA * Entry 2 - RSA */ struct certificate_ocsp *m_ocsp[SSL_SOCK_NUM_KEYTYPES]; }; }; static struct eb_root cert_ocsp_tree = EB_ROOT_UNIQUE; /* This function starts to check if the OCSP response (in DER format) contained * in chunk 'ocsp_response' is valid (else exits on error). * If 'cid' is not NULL, it will be compared to the OCSP certificate ID * contained in the OCSP Response and exits on error if no match. * If it's a valid OCSP Response: * If 'ocsp' is not NULL, the chunk is copied in the OCSP response's container * pointed by 'ocsp'. * If 'ocsp' is NULL, the function looks up into the OCSP response's * containers tree (using as index the ASN1 form of the OCSP Certificate ID extracted * from the response) and exits on error if not found. Finally, If an OCSP response is * already present in the container, it will be overwritten. * * Note: OCSP response containing more than one OCSP Single response is not * considered valid. * * Returns 0 on success, 1 in error case. */ static int ssl_sock_load_ocsp_response(struct buffer *ocsp_response, struct certificate_ocsp *ocsp, OCSP_CERTID *cid, char **err) { OCSP_RESPONSE *resp; OCSP_BASICRESP *bs = NULL; OCSP_SINGLERESP *sr; OCSP_CERTID *id; unsigned char *p = (unsigned char *) ocsp_response->area; int rc , count_sr; ASN1_GENERALIZEDTIME *revtime, *thisupd, *nextupd = NULL; int reason; int ret = 1; resp = d2i_OCSP_RESPONSE(NULL, (const unsigned char **)&p, ocsp_response->data); if (!resp) { memprintf(err, "Unable to parse OCSP response"); goto out; } rc = OCSP_response_status(resp); if (rc != OCSP_RESPONSE_STATUS_SUCCESSFUL) { memprintf(err, "OCSP response status not successful"); goto out; } bs = OCSP_response_get1_basic(resp); if (!bs) { memprintf(err, "Failed to get basic response from OCSP Response"); goto out; } count_sr = OCSP_resp_count(bs); if (count_sr > 1) { memprintf(err, "OCSP response ignored because contains multiple single responses (%d)", count_sr); goto out; } sr = OCSP_resp_get0(bs, 0); if (!sr) { memprintf(err, "Failed to get OCSP single response"); goto out; } id = (OCSP_CERTID*)OCSP_SINGLERESP_get0_id(sr); rc = OCSP_single_get0_status(sr, &reason, &revtime, &thisupd, &nextupd); if (rc != V_OCSP_CERTSTATUS_GOOD && rc != V_OCSP_CERTSTATUS_REVOKED) { memprintf(err, "OCSP single response: certificate status is unknown"); goto out; } if (!nextupd) { memprintf(err, "OCSP single response: missing nextupdate"); goto out; } rc = OCSP_check_validity(thisupd, nextupd, OCSP_MAX_RESPONSE_TIME_SKEW, -1); if (!rc) { memprintf(err, "OCSP single response: no longer valid."); goto out; } if (cid) { if (OCSP_id_cmp(id, cid)) { memprintf(err, "OCSP single response: Certificate ID does not match certificate and issuer"); goto out; } } if (!ocsp) { unsigned char key[OCSP_MAX_CERTID_ASN1_LENGTH]; unsigned char *p; rc = i2d_OCSP_CERTID(id, NULL); if (!rc) { memprintf(err, "OCSP single response: Unable to encode Certificate ID"); goto out; } if (rc > OCSP_MAX_CERTID_ASN1_LENGTH) { memprintf(err, "OCSP single response: Certificate ID too long"); goto out; } p = key; memset(key, 0, OCSP_MAX_CERTID_ASN1_LENGTH); i2d_OCSP_CERTID(id, &p); ocsp = (struct certificate_ocsp *)ebmb_lookup(&cert_ocsp_tree, key, OCSP_MAX_CERTID_ASN1_LENGTH); if (!ocsp) { memprintf(err, "OCSP single response: Certificate ID does not match any certificate or issuer"); goto out; } } /* According to comments on "chunk_dup", the previous chunk buffer will be freed */ if (!chunk_dup(&ocsp->response, ocsp_response)) { memprintf(err, "OCSP response: Memory allocation error"); goto out; } ocsp->expire = asn1_generalizedtime_to_epoch(nextupd) - OCSP_MAX_RESPONSE_TIME_SKEW; ret = 0; out: ERR_clear_error(); if (bs) OCSP_BASICRESP_free(bs); if (resp) OCSP_RESPONSE_free(resp); return ret; } /* * External function use to update the OCSP response in the OCSP response's * containers tree. The chunk 'ocsp_response' must contain the OCSP response * to update in DER format. * * Returns 0 on success, 1 in error case. */ int ssl_sock_update_ocsp_response(struct buffer *ocsp_response, char **err) { return ssl_sock_load_ocsp_response(ocsp_response, NULL, NULL, err); } #endif #if ((defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP) || defined OPENSSL_IS_BORINGSSL) /* * This function load the OCSP Resonse in DER format contained in file at * path 'ocsp_path' or base64 in a buffer * * Returns 0 on success, 1 in error case. */ static int ssl_sock_load_ocsp_response_from_file(const char *ocsp_path, char *buf, struct cert_key_and_chain *ckch, char **err) { int fd = -1; int r = 0; int ret = 1; struct buffer *ocsp_response; struct buffer *src = NULL; if (buf) { int i, j; /* if it's from a buffer it will be base64 */ /* remove \r and \n from the payload */ for (i = 0, j = 0; buf[i]; i++) { if (buf[i] == '\r' || buf[i] == '\n') continue; buf[j++] = buf[i]; } buf[j] = 0; ret = base64dec(buf, j, trash.area, trash.size); if (ret < 0) { memprintf(err, "Error reading OCSP response in base64 format"); goto end; } trash.data = ret; src = &trash; } else { fd = open(ocsp_path, O_RDONLY); if (fd == -1) { memprintf(err, "Error opening OCSP response file"); goto end; } trash.data = 0; while (trash.data < trash.size) { r = read(fd, trash.area + trash.data, trash.size - trash.data); if (r < 0) { if (errno == EINTR) continue; memprintf(err, "Error reading OCSP response from file"); goto end; } else if (r == 0) { break; } trash.data += r; } close(fd); fd = -1; src = &trash; } ocsp_response = calloc(1, sizeof(*ocsp_response)); if (!chunk_dup(ocsp_response, src)) { free(ocsp_response); ocsp_response = NULL; goto end; } /* no error, fill ckch with new context, old context must be free */ if (ckch->ocsp_response) { free(ckch->ocsp_response->area); ckch->ocsp_response->area = NULL; free(ckch->ocsp_response); } ckch->ocsp_response = ocsp_response; ret = 0; end: if (fd != -1) close(fd); return ret; } #endif #if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0) static int ssl_tlsext_ticket_key_cb(SSL *s, unsigned char key_name[16], unsigned char *iv, EVP_CIPHER_CTX *ectx, HMAC_CTX *hctx, int enc) { struct tls_keys_ref *ref; union tls_sess_key *keys; struct connection *conn; int head; int i; int ret = -1; /* error by default */ conn = SSL_get_ex_data(s, ssl_app_data_index); ref = __objt_listener(conn->target)->bind_conf->keys_ref; HA_RWLOCK_RDLOCK(TLSKEYS_REF_LOCK, &ref->lock); keys = ref->tlskeys; head = ref->tls_ticket_enc_index; if (enc) { memcpy(key_name, keys[head].name, 16); if(!RAND_pseudo_bytes(iv, EVP_MAX_IV_LENGTH)) goto end; if (ref->key_size_bits == 128) { if(!EVP_EncryptInit_ex(ectx, EVP_aes_128_cbc(), NULL, keys[head].key_128.aes_key, iv)) goto end; HMAC_Init_ex(hctx, keys[head].key_128.hmac_key, 16, TLS_TICKET_HASH_FUNCT(), NULL); ret = 1; } else if (ref->key_size_bits == 256 ) { if(!EVP_EncryptInit_ex(ectx, EVP_aes_256_cbc(), NULL, keys[head].key_256.aes_key, iv)) goto end; HMAC_Init_ex(hctx, keys[head].key_256.hmac_key, 32, TLS_TICKET_HASH_FUNCT(), NULL); ret = 1; } } else { for (i = 0; i < TLS_TICKETS_NO; i++) { if (!memcmp(key_name, keys[(head + i) % TLS_TICKETS_NO].name, 16)) goto found; } ret = 0; goto end; found: if (ref->key_size_bits == 128) { HMAC_Init_ex(hctx, keys[(head + i) % TLS_TICKETS_NO].key_128.hmac_key, 16, TLS_TICKET_HASH_FUNCT(), NULL); if(!EVP_DecryptInit_ex(ectx, EVP_aes_128_cbc(), NULL, keys[(head + i) % TLS_TICKETS_NO].key_128.aes_key, iv)) goto end; /* 2 for key renewal, 1 if current key is still valid */ ret = i ? 2 : 1; } else if (ref->key_size_bits == 256) { HMAC_Init_ex(hctx, keys[(head + i) % TLS_TICKETS_NO].key_256.hmac_key, 32, TLS_TICKET_HASH_FUNCT(), NULL); if(!EVP_DecryptInit_ex(ectx, EVP_aes_256_cbc(), NULL, keys[(head + i) % TLS_TICKETS_NO].key_256.aes_key, iv)) goto end; /* 2 for key renewal, 1 if current key is still valid */ ret = i ? 2 : 1; } } end: HA_RWLOCK_RDUNLOCK(TLSKEYS_REF_LOCK, &ref->lock); return ret; } struct tls_keys_ref *tlskeys_ref_lookup(const char *filename) { struct tls_keys_ref *ref; list_for_each_entry(ref, &tlskeys_reference, list) if (ref->filename && strcmp(filename, ref->filename) == 0) return ref; return NULL; } struct tls_keys_ref *tlskeys_ref_lookupid(int unique_id) { struct tls_keys_ref *ref; list_for_each_entry(ref, &tlskeys_reference, list) if (ref->unique_id == unique_id) return ref; return NULL; } /* Update the key into ref: if keysize doesn't * match existing ones, this function returns -1 * else it returns 0 on success. */ int ssl_sock_update_tlskey_ref(struct tls_keys_ref *ref, struct buffer *tlskey) { if (ref->key_size_bits == 128) { if (tlskey->data != sizeof(struct tls_sess_key_128)) return -1; } else if (ref->key_size_bits == 256) { if (tlskey->data != sizeof(struct tls_sess_key_256)) return -1; } else return -1; HA_RWLOCK_WRLOCK(TLSKEYS_REF_LOCK, &ref->lock); memcpy((char *) (ref->tlskeys + ((ref->tls_ticket_enc_index + 2) % TLS_TICKETS_NO)), tlskey->area, tlskey->data); ref->tls_ticket_enc_index = (ref->tls_ticket_enc_index + 1) % TLS_TICKETS_NO; HA_RWLOCK_WRUNLOCK(TLSKEYS_REF_LOCK, &ref->lock); return 0; } int ssl_sock_update_tlskey(char *filename, struct buffer *tlskey, char **err) { struct tls_keys_ref *ref = tlskeys_ref_lookup(filename); if(!ref) { memprintf(err, "Unable to locate the referenced filename: %s", filename); return 1; } if (ssl_sock_update_tlskey_ref(ref, tlskey) < 0) { memprintf(err, "Invalid key size"); return 1; } return 0; } /* This function finalize the configuration parsing. Its set all the * automatic ids. It's called just after the basic checks. It returns * 0 on success otherwise ERR_*. */ static int tlskeys_finalize_config(void) { int i = 0; struct tls_keys_ref *ref, *ref2, *ref3; struct list tkr = LIST_HEAD_INIT(tkr); list_for_each_entry(ref, &tlskeys_reference, list) { if (ref->unique_id == -1) { /* Look for the first free id. */ while (1) { list_for_each_entry(ref2, &tlskeys_reference, list) { if (ref2->unique_id == i) { i++; break; } } if (&ref2->list == &tlskeys_reference) break; } /* Uses the unique id and increment it for the next entry. */ ref->unique_id = i; i++; } } /* This sort the reference list by id. */ list_for_each_entry_safe(ref, ref2, &tlskeys_reference, list) { LIST_DEL(&ref->list); list_for_each_entry(ref3, &tkr, list) { if (ref->unique_id < ref3->unique_id) { LIST_ADDQ(&ref3->list, &ref->list); break; } } if (&ref3->list == &tkr) LIST_ADDQ(&tkr, &ref->list); } /* swap root */ LIST_ADD(&tkr, &tlskeys_reference); LIST_DEL(&tkr); return 0; } #endif /* SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB */ #ifndef OPENSSL_NO_OCSP int ssl_sock_get_ocsp_arg_kt_index(int evp_keytype) { switch (evp_keytype) { case EVP_PKEY_RSA: return 2; case EVP_PKEY_DSA: return 0; case EVP_PKEY_EC: return 1; } return -1; } /* * Callback used to set OCSP status extension content in server hello. */ int ssl_sock_ocsp_stapling_cbk(SSL *ssl, void *arg) { struct certificate_ocsp *ocsp; struct ocsp_cbk_arg *ocsp_arg; char *ssl_buf; EVP_PKEY *ssl_pkey; int key_type; int index; ocsp_arg = arg; ssl_pkey = SSL_get_privatekey(ssl); if (!ssl_pkey) return SSL_TLSEXT_ERR_NOACK; key_type = EVP_PKEY_base_id(ssl_pkey); if (ocsp_arg->is_single && ocsp_arg->single_kt == key_type) ocsp = ocsp_arg->s_ocsp; else { /* For multiple certs per context, we have to find the correct OCSP response based on * the certificate type */ index = ssl_sock_get_ocsp_arg_kt_index(key_type); if (index < 0) return SSL_TLSEXT_ERR_NOACK; ocsp = ocsp_arg->m_ocsp[index]; } if (!ocsp || !ocsp->response.area || !ocsp->response.data || (ocsp->expire < now.tv_sec)) return SSL_TLSEXT_ERR_NOACK; ssl_buf = OPENSSL_malloc(ocsp->response.data); if (!ssl_buf) return SSL_TLSEXT_ERR_NOACK; memcpy(ssl_buf, ocsp->response.area, ocsp->response.data); SSL_set_tlsext_status_ocsp_resp(ssl, ssl_buf, ocsp->response.data); return SSL_TLSEXT_ERR_OK; } #endif #if ((defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP) || defined OPENSSL_IS_BORINGSSL) /* * This function enables the handling of OCSP status extension on 'ctx' if a * ocsp_response buffer was found in the cert_key_and_chain. To enable OCSP * status extension, the issuer's certificate is mandatory. It should be * present in ckch->ocsp_issuer. * * In addition, the ckch->ocsp_reponse buffer is loaded as a DER format of an * OCSP response. If file is empty or content is not a valid OCSP response, * OCSP status extension is enabled but OCSP response is ignored (a warning is * displayed). * * Returns 1 if no ".ocsp" file found, 0 if OCSP status extension is * successfully enabled, or -1 in other error case. */ #ifndef OPENSSL_IS_BORINGSSL static int ssl_sock_load_ocsp(SSL_CTX *ctx, const struct cert_key_and_chain *ckch, STACK_OF(X509) *chain) { X509 *x, *issuer; OCSP_CERTID *cid = NULL; int i, ret = -1; struct certificate_ocsp *ocsp = NULL, *iocsp; char *warn = NULL; unsigned char *p; void (*callback) (void); x = ckch->cert; if (!x) goto out; issuer = ckch->ocsp_issuer; /* take issuer from chain over ocsp_issuer, is what is done historicaly */ if (chain) { /* check if one of the certificate of the chain is the issuer */ for (i = 0; i < sk_X509_num(chain); i++) { X509 *ti = sk_X509_value(chain, i); if (X509_check_issued(ti, x) == X509_V_OK) { issuer = ti; break; } } } if (!issuer) goto out; cid = OCSP_cert_to_id(0, x, issuer); if (!cid) goto out; i = i2d_OCSP_CERTID(cid, NULL); if (!i || (i > OCSP_MAX_CERTID_ASN1_LENGTH)) goto out; ocsp = calloc(1, sizeof(*ocsp)); if (!ocsp) goto out; p = ocsp->key_data; i2d_OCSP_CERTID(cid, &p); iocsp = (struct certificate_ocsp *)ebmb_insert(&cert_ocsp_tree, &ocsp->key, OCSP_MAX_CERTID_ASN1_LENGTH); if (iocsp == ocsp) ocsp = NULL; #ifndef SSL_CTX_get_tlsext_status_cb # define SSL_CTX_get_tlsext_status_cb(ctx, cb) \ *cb = (void (*) (void))ctx->tlsext_status_cb; #endif SSL_CTX_get_tlsext_status_cb(ctx, &callback); if (!callback) { struct ocsp_cbk_arg *cb_arg = calloc(1, sizeof(*cb_arg)); EVP_PKEY *pkey; cb_arg->is_single = 1; cb_arg->s_ocsp = iocsp; pkey = X509_get_pubkey(x); cb_arg->single_kt = EVP_PKEY_base_id(pkey); EVP_PKEY_free(pkey); SSL_CTX_set_tlsext_status_cb(ctx, ssl_sock_ocsp_stapling_cbk); SSL_CTX_set_tlsext_status_arg(ctx, cb_arg); } else { /* * If the ctx has a status CB, then we have previously set an OCSP staple for this ctx * Update that cb_arg with the new cert's staple */ struct ocsp_cbk_arg *cb_arg; struct certificate_ocsp *tmp_ocsp; int index; int key_type; EVP_PKEY *pkey; #ifdef SSL_CTX_get_tlsext_status_arg SSL_CTX_ctrl(ctx, SSL_CTRL_GET_TLSEXT_STATUS_REQ_CB_ARG, 0, &cb_arg); #else cb_arg = ctx->tlsext_status_arg; #endif /* * The following few lines will convert cb_arg from a single ocsp to multi ocsp * the order of operations below matter, take care when changing it */ tmp_ocsp = cb_arg->s_ocsp; index = ssl_sock_get_ocsp_arg_kt_index(cb_arg->single_kt); cb_arg->s_ocsp = NULL; cb_arg->m_ocsp[index] = tmp_ocsp; cb_arg->is_single = 0; cb_arg->single_kt = 0; pkey = X509_get_pubkey(x); key_type = EVP_PKEY_base_id(pkey); EVP_PKEY_free(pkey); index = ssl_sock_get_ocsp_arg_kt_index(key_type); if (index >= 0 && !cb_arg->m_ocsp[index]) cb_arg->m_ocsp[index] = iocsp; } ret = 0; warn = NULL; if (ssl_sock_load_ocsp_response(ckch->ocsp_response, ocsp, cid, &warn)) { memprintf(&warn, "Loading: %s. Content will be ignored", warn ? warn : "failure"); ha_warning("%s.\n", warn); } out: if (cid) OCSP_CERTID_free(cid); if (ocsp) free(ocsp); if (warn) free(warn); return ret; } #else /* OPENSSL_IS_BORINGSSL */ static int ssl_sock_load_ocsp(SSL_CTX *ctx, const struct cert_key_and_chain *ckch, STACK_OF(X509) *chain) { return SSL_CTX_set_ocsp_response(ctx, (const uint8_t *)ckch->ocsp_response->area, ckch->ocsp_response->data); } #endif #endif #if (HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL && !defined OPENSSL_NO_TLSEXT && !defined OPENSSL_IS_BORINGSSL) #define CT_EXTENSION_TYPE 18 static int sctl_ex_index = -1; /* * Try to parse Signed Certificate Timestamp List structure. This function * makes only basic test if the data seems like SCTL. No signature validation * is performed. */ static int ssl_sock_parse_sctl(struct buffer *sctl) { int ret = 1; int len, pos, sct_len; unsigned char *data; if (sctl->data < 2) goto out; data = (unsigned char *) sctl->area; len = (data[0] << 8) | data[1]; if (len + 2 != sctl->data) goto out; data = data + 2; pos = 0; while (pos < len) { if (len - pos < 2) goto out; sct_len = (data[pos] << 8) | data[pos + 1]; if (pos + sct_len + 2 > len) goto out; pos += sct_len + 2; } ret = 0; out: return ret; } /* Try to load a sctl from a buffer if not NULL, or read the file * It fills the ckch->sctl buffer * return 0 on success or != 0 on failure */ static int ssl_sock_load_sctl_from_file(const char *sctl_path, char *buf, struct cert_key_and_chain *ckch, char **err) { int fd = -1; int r = 0; int ret = 1; struct buffer tmp; struct buffer *src; struct buffer *sctl; if (buf) { tmp.area = buf; tmp.data = strlen(buf); tmp.size = tmp.data + 1; src = &tmp; } else { fd = open(sctl_path, O_RDONLY); if (fd == -1) goto end; trash.data = 0; while (trash.data < trash.size) { r = read(fd, trash.area + trash.data, trash.size - trash.data); if (r < 0) { if (errno == EINTR) continue; goto end; } else if (r == 0) { break; } trash.data += r; } src = &trash; } ret = ssl_sock_parse_sctl(src); if (ret) goto end; sctl = calloc(1, sizeof(*sctl)); if (!chunk_dup(sctl, src)) { free(sctl); sctl = NULL; goto end; } /* no error, fill ckch with new context, old context must be free */ if (ckch->sctl) { free(ckch->sctl->area); ckch->sctl->area = NULL; free(ckch->sctl); } ckch->sctl = sctl; ret = 0; end: if (fd != -1) close(fd); return ret; } int ssl_sock_sctl_add_cbk(SSL *ssl, unsigned ext_type, const unsigned char **out, size_t *outlen, int *al, void *add_arg) { struct buffer *sctl = add_arg; *out = (unsigned char *) sctl->area; *outlen = sctl->data; return 1; } int ssl_sock_sctl_parse_cbk(SSL *s, unsigned int ext_type, const unsigned char *in, size_t inlen, int *al, void *parse_arg) { return 1; } static int ssl_sock_load_sctl(SSL_CTX *ctx, struct buffer *sctl) { int ret = -1; if (!SSL_CTX_add_server_custom_ext(ctx, CT_EXTENSION_TYPE, ssl_sock_sctl_add_cbk, NULL, sctl, ssl_sock_sctl_parse_cbk, NULL)) goto out; SSL_CTX_set_ex_data(ctx, sctl_ex_index, sctl); ret = 0; out: return ret; } #endif void ssl_sock_infocbk(const SSL *ssl, int where, int ret) { struct connection *conn = SSL_get_ex_data(ssl, ssl_app_data_index); struct ssl_sock_ctx *ctx = conn->xprt_ctx; BIO *write_bio; (void)ret; /* shut gcc stupid warning */ #ifndef SSL_OP_NO_RENEGOTIATION /* Please note that BoringSSL defines this macro to zero so don't * change this to #if and do not assign a default value to this macro! */ if (where & SSL_CB_HANDSHAKE_START) { /* Disable renegotiation (CVE-2009-3555) */ if ((conn->flags & (CO_FL_WAIT_L6_CONN | CO_FL_EARLY_SSL_HS | CO_FL_EARLY_DATA)) == 0) { conn->flags |= CO_FL_ERROR; conn->err_code = CO_ER_SSL_RENEG; } } #endif if ((where & SSL_CB_ACCEPT_LOOP) == SSL_CB_ACCEPT_LOOP) { if (!(ctx->xprt_st & SSL_SOCK_ST_FL_16K_WBFSIZE)) { /* Long certificate chains optimz If write and read bios are different, we consider that the buffering was activated, so we rise the output buffer size from 4k to 16k */ write_bio = SSL_get_wbio(ssl); if (write_bio != SSL_get_rbio(ssl)) { BIO_set_write_buffer_size(write_bio, 16384); ctx->xprt_st |= SSL_SOCK_ST_FL_16K_WBFSIZE; } } } } /* Callback is called for each certificate of the chain during a verify ok is set to 1 if preverify detect no error on current certificate. Returns 0 to break the handshake, 1 otherwise. */ int ssl_sock_bind_verifycbk(int ok, X509_STORE_CTX *x_store) { SSL *ssl; struct connection *conn; struct ssl_sock_ctx *ctx; int err, depth; ssl = X509_STORE_CTX_get_ex_data(x_store, SSL_get_ex_data_X509_STORE_CTX_idx()); conn = SSL_get_ex_data(ssl, ssl_app_data_index); ctx = conn->xprt_ctx; ctx->xprt_st |= SSL_SOCK_ST_FL_VERIFY_DONE; if (ok) /* no errors */ return ok; depth = X509_STORE_CTX_get_error_depth(x_store); err = X509_STORE_CTX_get_error(x_store); /* check if CA error needs to be ignored */ if (depth > 0) { if (!SSL_SOCK_ST_TO_CA_ERROR(ctx->xprt_st)) { ctx->xprt_st |= SSL_SOCK_CA_ERROR_TO_ST(err); ctx->xprt_st |= SSL_SOCK_CAEDEPTH_TO_ST(depth); } if (err < 64 && __objt_listener(conn->target)->bind_conf->ca_ignerr & (1ULL << err)) { ssl_sock_dump_errors(conn); ERR_clear_error(); return 1; } conn->err_code = CO_ER_SSL_CA_FAIL; return 0; } if (!SSL_SOCK_ST_TO_CRTERROR(ctx->xprt_st)) ctx->xprt_st |= SSL_SOCK_CRTERROR_TO_ST(err); /* check if certificate error needs to be ignored */ if (err < 64 && __objt_listener(conn->target)->bind_conf->crt_ignerr & (1ULL << err)) { ssl_sock_dump_errors(conn); ERR_clear_error(); return 1; } conn->err_code = CO_ER_SSL_CRT_FAIL; return 0; } static inline void ssl_sock_parse_clienthello(int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl) { struct ssl_capture *capture; unsigned char *msg; unsigned char *end; size_t rec_len; /* This function is called for "from client" and "to server" * connections. The combination of write_p == 0 and content_type == 22 * is only available during "from client" connection. */ /* "write_p" is set to 0 is the bytes are received messages, * otherwise it is set to 1. */ if (write_p != 0) return; /* content_type contains the type of message received or sent * according with the SSL/TLS protocol spec. This message is * encoded with one byte. The value 256 (two bytes) is used * for designing the SSL/TLS record layer. According with the * rfc6101, the expected message (other than 256) are: * - change_cipher_spec(20) * - alert(21) * - handshake(22) * - application_data(23) * - (255) * We are interessed by the handshake and specially the client * hello. */ if (content_type != 22) return; /* The message length is at least 4 bytes, containing the * message type and the message length. */ if (len < 4) return; /* First byte of the handshake message id the type of * message. The known types are: * - hello_request(0) * - client_hello(1) * - server_hello(2) * - certificate(11) * - server_key_exchange (12) * - certificate_request(13) * - server_hello_done(14) * We are interested by the client hello. */ msg = (unsigned char *)buf; if (msg[0] != 1) return; /* Next three bytes are the length of the message. The total length * must be this decoded length + 4. If the length given as argument * is not the same, we abort the protocol dissector. */ rec_len = (msg[1] << 16) + (msg[2] << 8) + msg[3]; if (len < rec_len + 4) return; msg += 4; end = msg + rec_len; if (end < msg) return; /* Expect 2 bytes for protocol version (1 byte for major and 1 byte * for minor, the random, composed by 4 bytes for the unix time and * 28 bytes for unix payload. So we jump 1 + 1 + 4 + 28. */ msg += 1 + 1 + 4 + 28; if (msg > end) return; /* Next, is session id: * if present, we have to jump by length + 1 for the size information * if not present, we have to jump by 1 only */ if (msg[0] > 0) msg += msg[0]; msg += 1; if (msg > end) return; /* Next two bytes are the ciphersuite length. */ if (msg + 2 > end) return; rec_len = (msg[0] << 8) + msg[1]; msg += 2; if (msg + rec_len > end || msg + rec_len < msg) return; capture = pool_alloc_dirty(pool_head_ssl_capture); if (!capture) return; /* Compute the xxh64 of the ciphersuite. */ capture->xxh64 = XXH64(msg, rec_len, 0); /* Capture the ciphersuite. */ capture->ciphersuite_len = (global_ssl.capture_cipherlist < rec_len) ? global_ssl.capture_cipherlist : rec_len; memcpy(capture->ciphersuite, msg, capture->ciphersuite_len); SSL_set_ex_data(ssl, ssl_capture_ptr_index, capture); } /* Callback is called for ssl protocol analyse */ void ssl_sock_msgcbk(int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg) { #ifdef TLS1_RT_HEARTBEAT /* test heartbeat received (write_p is set to 0 for a received record) */ if ((content_type == TLS1_RT_HEARTBEAT) && (write_p == 0)) { struct connection *conn = SSL_get_ex_data(ssl, ssl_app_data_index); struct ssl_sock_ctx *ctx = conn->xprt_ctx; const unsigned char *p = buf; unsigned int payload; ctx->xprt_st |= SSL_SOCK_RECV_HEARTBEAT; /* Check if this is a CVE-2014-0160 exploitation attempt. */ if (*p != TLS1_HB_REQUEST) return; if (len < 1 + 2 + 16) /* 1 type + 2 size + 0 payload + 16 padding */ goto kill_it; payload = (p[1] * 256) + p[2]; if (3 + payload + 16 <= len) return; /* OK no problem */ kill_it: /* We have a clear heartbleed attack (CVE-2014-0160), the * advertised payload is larger than the advertised packet * length, so we have garbage in the buffer between the * payload and the end of the buffer (p+len). We can't know * if the SSL stack is patched, and we don't know if we can * safely wipe out the area between p+3+len and payload. * So instead, we prevent the response from being sent by * setting the max_send_fragment to 0 and we report an SSL * error, which will kill this connection. It will be reported * above as SSL_ERROR_SSL while an other handshake failure with * a heartbeat message will be reported as SSL_ERROR_SYSCALL. */ ssl->max_send_fragment = 0; SSLerr(SSL_F_TLS1_HEARTBEAT, SSL_R_SSL_HANDSHAKE_FAILURE); return; } #endif if (global_ssl.capture_cipherlist > 0) ssl_sock_parse_clienthello(write_p, version, content_type, buf, len, ssl); } #if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG) static int ssl_sock_srv_select_protos(SSL *s, unsigned char **out, unsigned char *outlen, const unsigned char *in, unsigned int inlen, void *arg) { struct server *srv = arg; if (SSL_select_next_proto(out, outlen, in, inlen, (unsigned char *)srv->ssl_ctx.npn_str, srv->ssl_ctx.npn_len) == OPENSSL_NPN_NEGOTIATED) return SSL_TLSEXT_ERR_OK; return SSL_TLSEXT_ERR_NOACK; } #endif #if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG) /* This callback is used so that the server advertises the list of * negotiable protocols for NPN. */ static int ssl_sock_advertise_npn_protos(SSL *s, const unsigned char **data, unsigned int *len, void *arg) { struct ssl_bind_conf *conf = arg; *data = (const unsigned char *)conf->npn_str; *len = conf->npn_len; return SSL_TLSEXT_ERR_OK; } #endif #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation /* This callback is used so that the server advertises the list of * negotiable protocols for ALPN. */ static int ssl_sock_advertise_alpn_protos(SSL *s, const unsigned char **out, unsigned char *outlen, const unsigned char *server, unsigned int server_len, void *arg) { struct ssl_bind_conf *conf = arg; if (SSL_select_next_proto((unsigned char**) out, outlen, (const unsigned char *)conf->alpn_str, conf->alpn_len, server, server_len) != OPENSSL_NPN_NEGOTIATED) { return SSL_TLSEXT_ERR_NOACK; } return SSL_TLSEXT_ERR_OK; } #endif #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME #ifndef SSL_NO_GENERATE_CERTIFICATES /* Create a X509 certificate with the specified servername and serial. This * function returns a SSL_CTX object or NULL if an error occurs. */ static SSL_CTX * ssl_sock_do_create_cert(const char *servername, struct bind_conf *bind_conf, SSL *ssl) { X509 *cacert = bind_conf->ca_sign_cert; EVP_PKEY *capkey = bind_conf->ca_sign_pkey; SSL_CTX *ssl_ctx = NULL; X509 *newcrt = NULL; EVP_PKEY *pkey = NULL; SSL *tmp_ssl = NULL; CONF *ctmp = NULL; X509_NAME *name; const EVP_MD *digest; X509V3_CTX ctx; unsigned int i; int key_type; /* Get the private key of the default certificate and use it */ #if (HA_OPENSSL_VERSION_NUMBER >= 0x10002000L) pkey = SSL_CTX_get0_privatekey(bind_conf->default_ctx); #else tmp_ssl = SSL_new(bind_conf->default_ctx); if (tmp_ssl) pkey = SSL_get_privatekey(tmp_ssl); #endif if (!pkey) goto mkcert_error; /* Create the certificate */ if (!(newcrt = X509_new())) goto mkcert_error; /* Set version number for the certificate (X509v3) and the serial * number */ if (X509_set_version(newcrt, 2L) != 1) goto mkcert_error; ASN1_INTEGER_set(X509_get_serialNumber(newcrt), _HA_ATOMIC_ADD(&ssl_ctx_serial, 1)); /* Set duration for the certificate */ if (!X509_gmtime_adj(X509_getm_notBefore(newcrt), (long)-60*60*24) || !X509_gmtime_adj(X509_getm_notAfter(newcrt),(long)60*60*24*365)) goto mkcert_error; /* set public key in the certificate */ if (X509_set_pubkey(newcrt, pkey) != 1) goto mkcert_error; /* Set issuer name from the CA */ if (!(name = X509_get_subject_name(cacert))) goto mkcert_error; if (X509_set_issuer_name(newcrt, name) != 1) goto mkcert_error; /* Set the subject name using the same, but the CN */ name = X509_NAME_dup(name); if (X509_NAME_add_entry_by_txt(name, "CN", MBSTRING_ASC, (const unsigned char *)servername, -1, -1, 0) != 1) { X509_NAME_free(name); goto mkcert_error; } if (X509_set_subject_name(newcrt, name) != 1) { X509_NAME_free(name); goto mkcert_error; } X509_NAME_free(name); /* Add x509v3 extensions as specified */ ctmp = NCONF_new(NULL); X509V3_set_ctx(&ctx, cacert, newcrt, NULL, NULL, 0); for (i = 0; i < X509V3_EXT_SIZE; i++) { X509_EXTENSION *ext; if (!(ext = X509V3_EXT_nconf(ctmp, &ctx, x509v3_ext_names[i], x509v3_ext_values[i]))) goto mkcert_error; if (!X509_add_ext(newcrt, ext, -1)) { X509_EXTENSION_free(ext); goto mkcert_error; } X509_EXTENSION_free(ext); } /* Sign the certificate with the CA private key */ key_type = EVP_PKEY_base_id(capkey); if (key_type == EVP_PKEY_DSA) digest = EVP_sha1(); else if (key_type == EVP_PKEY_RSA) digest = EVP_sha256(); else if (key_type == EVP_PKEY_EC) digest = EVP_sha256(); else { #if (HA_OPENSSL_VERSION_NUMBER >= 0x1000000fL) && !defined(OPENSSL_IS_BORINGSSL) int nid; if (EVP_PKEY_get_default_digest_nid(capkey, &nid) <= 0) goto mkcert_error; if (!(digest = EVP_get_digestbynid(nid))) goto mkcert_error; #else goto mkcert_error; #endif } if (!(X509_sign(newcrt, capkey, digest))) goto mkcert_error; /* Create and set the new SSL_CTX */ if (!(ssl_ctx = SSL_CTX_new(SSLv23_server_method()))) goto mkcert_error; if (!SSL_CTX_use_PrivateKey(ssl_ctx, pkey)) goto mkcert_error; if (!SSL_CTX_use_certificate(ssl_ctx, newcrt)) goto mkcert_error; if (!SSL_CTX_check_private_key(ssl_ctx)) goto mkcert_error; if (newcrt) X509_free(newcrt); #ifndef OPENSSL_NO_DH SSL_CTX_set_tmp_dh_callback(ssl_ctx, ssl_get_tmp_dh); #endif #if defined(SSL_CTX_set_tmp_ecdh) && !defined(OPENSSL_NO_ECDH) { const char *ecdhe = (bind_conf->ssl_conf.ecdhe ? bind_conf->ssl_conf.ecdhe : ECDHE_DEFAULT_CURVE); EC_KEY *ecc; int nid; if ((nid = OBJ_sn2nid(ecdhe)) == NID_undef) goto end; if (!(ecc = EC_KEY_new_by_curve_name(nid))) goto end; SSL_CTX_set_tmp_ecdh(ssl_ctx, ecc); EC_KEY_free(ecc); } #endif end: return ssl_ctx; mkcert_error: if (ctmp) NCONF_free(ctmp); if (tmp_ssl) SSL_free(tmp_ssl); if (ssl_ctx) SSL_CTX_free(ssl_ctx); if (newcrt) X509_free(newcrt); return NULL; } SSL_CTX * ssl_sock_create_cert(struct connection *conn, const char *servername, unsigned int key) { struct bind_conf *bind_conf = __objt_listener(conn->target)->bind_conf; struct ssl_sock_ctx *ctx = conn->xprt_ctx; return ssl_sock_do_create_cert(servername, bind_conf, ctx->ssl); } /* Do a lookup for a certificate in the LRU cache used to store generated * certificates and immediately assign it to the SSL session if not null. */ SSL_CTX * ssl_sock_assign_generated_cert(unsigned int key, struct bind_conf *bind_conf, SSL *ssl) { struct lru64 *lru = NULL; if (ssl_ctx_lru_tree) { HA_RWLOCK_WRLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock); lru = lru64_lookup(key, ssl_ctx_lru_tree, bind_conf->ca_sign_cert, 0); if (lru && lru->domain) { if (ssl) SSL_set_SSL_CTX(ssl, (SSL_CTX *)lru->data); HA_RWLOCK_WRUNLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock); return (SSL_CTX *)lru->data; } HA_RWLOCK_WRUNLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock); } return NULL; } /* Same as but without SSL session. This * function is not thread-safe, it should only be used to check if a certificate * exists in the lru cache (with no warranty it will not be removed by another * thread). It is kept for backward compatibility. */ SSL_CTX * ssl_sock_get_generated_cert(unsigned int key, struct bind_conf *bind_conf) { return ssl_sock_assign_generated_cert(key, bind_conf, NULL); } /* Set a certificate int the LRU cache used to store generated * certificate. Return 0 on success, otherwise -1 */ int ssl_sock_set_generated_cert(SSL_CTX *ssl_ctx, unsigned int key, struct bind_conf *bind_conf) { struct lru64 *lru = NULL; if (ssl_ctx_lru_tree) { HA_RWLOCK_WRLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock); lru = lru64_get(key, ssl_ctx_lru_tree, bind_conf->ca_sign_cert, 0); if (!lru) { HA_RWLOCK_WRUNLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock); return -1; } if (lru->domain && lru->data) lru->free((SSL_CTX *)lru->data); lru64_commit(lru, ssl_ctx, bind_conf->ca_sign_cert, 0, (void (*)(void *))SSL_CTX_free); HA_RWLOCK_WRUNLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock); return 0; } return -1; } /* Compute the key of the certificate. */ unsigned int ssl_sock_generated_cert_key(const void *data, size_t len) { return XXH32(data, len, ssl_ctx_lru_seed); } /* Generate a cert and immediately assign it to the SSL session so that the cert's * refcount is maintained regardless of the cert's presence in the LRU cache. */ static int ssl_sock_generate_certificate(const char *servername, struct bind_conf *bind_conf, SSL *ssl) { X509 *cacert = bind_conf->ca_sign_cert; SSL_CTX *ssl_ctx = NULL; struct lru64 *lru = NULL; unsigned int key; key = ssl_sock_generated_cert_key(servername, strlen(servername)); if (ssl_ctx_lru_tree) { HA_RWLOCK_WRLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock); lru = lru64_get(key, ssl_ctx_lru_tree, cacert, 0); if (lru && lru->domain) ssl_ctx = (SSL_CTX *)lru->data; if (!ssl_ctx && lru) { ssl_ctx = ssl_sock_do_create_cert(servername, bind_conf, ssl); lru64_commit(lru, ssl_ctx, cacert, 0, (void (*)(void *))SSL_CTX_free); } SSL_set_SSL_CTX(ssl, ssl_ctx); HA_RWLOCK_WRUNLOCK(SSL_GEN_CERTS_LOCK, &ssl_ctx_lru_rwlock); return 1; } else { ssl_ctx = ssl_sock_do_create_cert(servername, bind_conf, ssl); SSL_set_SSL_CTX(ssl, ssl_ctx); /* No LRU cache, this CTX will be released as soon as the session dies */ SSL_CTX_free(ssl_ctx); return 1; } return 0; } static int ssl_sock_generate_certificate_from_conn(struct bind_conf *bind_conf, SSL *ssl) { unsigned int key; struct connection *conn = SSL_get_ex_data(ssl, ssl_app_data_index); if (conn_get_dst(conn)) { key = ssl_sock_generated_cert_key(conn->dst, get_addr_len(conn->dst)); if (ssl_sock_assign_generated_cert(key, bind_conf, ssl)) return 1; } return 0; } #endif /* !defined SSL_NO_GENERATE_CERTIFICATES */ #if (HA_OPENSSL_VERSION_NUMBER < 0x1010000fL) typedef enum { SET_CLIENT, SET_SERVER } set_context_func; static void ctx_set_SSLv3_func(SSL_CTX *ctx, set_context_func c) { #if SSL_OP_NO_SSLv3 c == SET_SERVER ? SSL_CTX_set_ssl_version(ctx, SSLv3_server_method()) : SSL_CTX_set_ssl_version(ctx, SSLv3_client_method()); #endif } static void ctx_set_TLSv10_func(SSL_CTX *ctx, set_context_func c) { c == SET_SERVER ? SSL_CTX_set_ssl_version(ctx, TLSv1_server_method()) : SSL_CTX_set_ssl_version(ctx, TLSv1_client_method()); } static void ctx_set_TLSv11_func(SSL_CTX *ctx, set_context_func c) { #if SSL_OP_NO_TLSv1_1 c == SET_SERVER ? SSL_CTX_set_ssl_version(ctx, TLSv1_1_server_method()) : SSL_CTX_set_ssl_version(ctx, TLSv1_1_client_method()); #endif } static void ctx_set_TLSv12_func(SSL_CTX *ctx, set_context_func c) { #if SSL_OP_NO_TLSv1_2 c == SET_SERVER ? SSL_CTX_set_ssl_version(ctx, TLSv1_2_server_method()) : SSL_CTX_set_ssl_version(ctx, TLSv1_2_client_method()); #endif } /* TLSv1.2 is the last supported version in this context. */ static void ctx_set_TLSv13_func(SSL_CTX *ctx, set_context_func c) {} /* Unusable in this context. */ static void ssl_set_SSLv3_func(SSL *ssl, set_context_func c) {} static void ssl_set_TLSv10_func(SSL *ssl, set_context_func c) {} static void ssl_set_TLSv11_func(SSL *ssl, set_context_func c) {} static void ssl_set_TLSv12_func(SSL *ssl, set_context_func c) {} static void ssl_set_TLSv13_func(SSL *ssl, set_context_func c) {} #else /* openssl >= 1.1.0 */ typedef enum { SET_MIN, SET_MAX } set_context_func; static void ctx_set_SSLv3_func(SSL_CTX *ctx, set_context_func c) { c == SET_MAX ? SSL_CTX_set_max_proto_version(ctx, SSL3_VERSION) : SSL_CTX_set_min_proto_version(ctx, SSL3_VERSION); } static void ssl_set_SSLv3_func(SSL *ssl, set_context_func c) { c == SET_MAX ? SSL_set_max_proto_version(ssl, SSL3_VERSION) : SSL_set_min_proto_version(ssl, SSL3_VERSION); } static void ctx_set_TLSv10_func(SSL_CTX *ctx, set_context_func c) { c == SET_MAX ? SSL_CTX_set_max_proto_version(ctx, TLS1_VERSION) : SSL_CTX_set_min_proto_version(ctx, TLS1_VERSION); } static void ssl_set_TLSv10_func(SSL *ssl, set_context_func c) { c == SET_MAX ? SSL_set_max_proto_version(ssl, TLS1_VERSION) : SSL_set_min_proto_version(ssl, TLS1_VERSION); } static void ctx_set_TLSv11_func(SSL_CTX *ctx, set_context_func c) { c == SET_MAX ? SSL_CTX_set_max_proto_version(ctx, TLS1_1_VERSION) : SSL_CTX_set_min_proto_version(ctx, TLS1_1_VERSION); } static void ssl_set_TLSv11_func(SSL *ssl, set_context_func c) { c == SET_MAX ? SSL_set_max_proto_version(ssl, TLS1_1_VERSION) : SSL_set_min_proto_version(ssl, TLS1_1_VERSION); } static void ctx_set_TLSv12_func(SSL_CTX *ctx, set_context_func c) { c == SET_MAX ? SSL_CTX_set_max_proto_version(ctx, TLS1_2_VERSION) : SSL_CTX_set_min_proto_version(ctx, TLS1_2_VERSION); } static void ssl_set_TLSv12_func(SSL *ssl, set_context_func c) { c == SET_MAX ? SSL_set_max_proto_version(ssl, TLS1_2_VERSION) : SSL_set_min_proto_version(ssl, TLS1_2_VERSION); } static void ctx_set_TLSv13_func(SSL_CTX *ctx, set_context_func c) { #if SSL_OP_NO_TLSv1_3 c == SET_MAX ? SSL_CTX_set_max_proto_version(ctx, TLS1_3_VERSION) : SSL_CTX_set_min_proto_version(ctx, TLS1_3_VERSION); #endif } static void ssl_set_TLSv13_func(SSL *ssl, set_context_func c) { #if SSL_OP_NO_TLSv1_3 c == SET_MAX ? SSL_set_max_proto_version(ssl, TLS1_3_VERSION) : SSL_set_min_proto_version(ssl, TLS1_3_VERSION); #endif } #endif static void ctx_set_None_func(SSL_CTX *ctx, set_context_func c) { } static void ssl_set_None_func(SSL *ssl, set_context_func c) { } static struct { int option; uint16_t flag; void (*ctx_set_version)(SSL_CTX *, set_context_func); void (*ssl_set_version)(SSL *, set_context_func); const char *name; } methodVersions[] = { {0, 0, ctx_set_None_func, ssl_set_None_func, "NONE"}, /* CONF_TLSV_NONE */ {SSL_OP_NO_SSLv3, MC_SSL_O_NO_SSLV3, ctx_set_SSLv3_func, ssl_set_SSLv3_func, "SSLv3"}, /* CONF_SSLV3 */ {SSL_OP_NO_TLSv1, MC_SSL_O_NO_TLSV10, ctx_set_TLSv10_func, ssl_set_TLSv10_func, "TLSv1.0"}, /* CONF_TLSV10 */ {SSL_OP_NO_TLSv1_1, MC_SSL_O_NO_TLSV11, ctx_set_TLSv11_func, ssl_set_TLSv11_func, "TLSv1.1"}, /* CONF_TLSV11 */ {SSL_OP_NO_TLSv1_2, MC_SSL_O_NO_TLSV12, ctx_set_TLSv12_func, ssl_set_TLSv12_func, "TLSv1.2"}, /* CONF_TLSV12 */ {SSL_OP_NO_TLSv1_3, MC_SSL_O_NO_TLSV13, ctx_set_TLSv13_func, ssl_set_TLSv13_func, "TLSv1.3"}, /* CONF_TLSV13 */ }; static void ssl_sock_switchctx_set(SSL *ssl, SSL_CTX *ctx) { SSL_set_verify(ssl, SSL_CTX_get_verify_mode(ctx), ssl_sock_bind_verifycbk); SSL_set_client_CA_list(ssl, SSL_dup_CA_list(SSL_CTX_get_client_CA_list(ctx))); SSL_set_SSL_CTX(ssl, ctx); } #if ((HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) || defined(OPENSSL_IS_BORINGSSL)) static int ssl_sock_switchctx_err_cbk(SSL *ssl, int *al, void *priv) { struct bind_conf *s = priv; (void)al; /* shut gcc stupid warning */ if (SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name) || s->generate_certs) return SSL_TLSEXT_ERR_OK; return SSL_TLSEXT_ERR_NOACK; } #ifdef OPENSSL_IS_BORINGSSL static int ssl_sock_switchctx_cbk(const struct ssl_early_callback_ctx *ctx) { SSL *ssl = ctx->ssl; #else static int ssl_sock_switchctx_cbk(SSL *ssl, int *al, void *arg) { #endif struct connection *conn; struct bind_conf *s; const uint8_t *extension_data; size_t extension_len; int has_rsa_sig = 0, has_ecdsa_sig = 0; char *wildp = NULL; const uint8_t *servername; size_t servername_len; struct ebmb_node *node, *n, *node_ecdsa = NULL, *node_rsa = NULL, *node_anonymous = NULL; int allow_early = 0; int i; conn = SSL_get_ex_data(ssl, ssl_app_data_index); s = __objt_listener(conn->target)->bind_conf; if (s->ssl_conf.early_data) allow_early = 1; #ifdef OPENSSL_IS_BORINGSSL if (SSL_early_callback_ctx_extension_get(ctx, TLSEXT_TYPE_server_name, &extension_data, &extension_len)) { #else if (SSL_client_hello_get0_ext(ssl, TLSEXT_TYPE_server_name, &extension_data, &extension_len)) { #endif /* * The server_name extension was given too much extensibility when it * was written, so parsing the normal case is a bit complex. */ size_t len; if (extension_len <= 2) goto abort; /* Extract the length of the supplied list of names. */ len = (*extension_data++) << 8; len |= *extension_data++; if (len + 2 != extension_len) goto abort; /* * The list in practice only has a single element, so we only consider * the first one. */ if (len == 0 || *extension_data++ != TLSEXT_NAMETYPE_host_name) goto abort; extension_len = len - 1; /* Now we can finally pull out the byte array with the actual hostname. */ if (extension_len <= 2) goto abort; len = (*extension_data++) << 8; len |= *extension_data++; if (len == 0 || len + 2 > extension_len || len > TLSEXT_MAXLEN_host_name || memchr(extension_data, 0, len) != NULL) goto abort; servername = extension_data; servername_len = len; } else { #if (!defined SSL_NO_GENERATE_CERTIFICATES) if (s->generate_certs && ssl_sock_generate_certificate_from_conn(s, ssl)) { goto allow_early; } #endif /* without SNI extension, is the default_ctx (need SSL_TLSEXT_ERR_NOACK) */ if (!s->strict_sni) { HA_RWLOCK_RDLOCK(SNI_LOCK, &s->sni_lock); ssl_sock_switchctx_set(ssl, s->default_ctx); HA_RWLOCK_RDUNLOCK(SNI_LOCK, &s->sni_lock); goto allow_early; } goto abort; } /* extract/check clientHello information */ #ifdef OPENSSL_IS_BORINGSSL if (SSL_early_callback_ctx_extension_get(ctx, TLSEXT_TYPE_signature_algorithms, &extension_data, &extension_len)) { #else if (SSL_client_hello_get0_ext(ssl, TLSEXT_TYPE_signature_algorithms, &extension_data, &extension_len)) { #endif uint8_t sign; size_t len; if (extension_len < 2) goto abort; len = (*extension_data++) << 8; len |= *extension_data++; if (len + 2 != extension_len) goto abort; if (len % 2 != 0) goto abort; for (; len > 0; len -= 2) { extension_data++; /* hash */ sign = *extension_data++; switch (sign) { case TLSEXT_signature_rsa: has_rsa_sig = 1; break; case TLSEXT_signature_ecdsa: has_ecdsa_sig = 1; break; default: continue; } if (has_ecdsa_sig && has_rsa_sig) break; } } else { /* without TLSEXT_TYPE_signature_algorithms extension (< TLSv1.2) */ has_rsa_sig = 1; } if (has_ecdsa_sig) { /* in very rare case: has ecdsa sign but not a ECDSA cipher */ const SSL_CIPHER *cipher; size_t len; const uint8_t *cipher_suites; has_ecdsa_sig = 0; #ifdef OPENSSL_IS_BORINGSSL len = ctx->cipher_suites_len; cipher_suites = ctx->cipher_suites; #else len = SSL_client_hello_get0_ciphers(ssl, &cipher_suites); #endif if (len % 2 != 0) goto abort; for (; len != 0; len -= 2, cipher_suites += 2) { #ifdef OPENSSL_IS_BORINGSSL uint16_t cipher_suite = (cipher_suites[0] << 8) | cipher_suites[1]; cipher = SSL_get_cipher_by_value(cipher_suite); #else cipher = SSL_CIPHER_find(ssl, cipher_suites); #endif if (cipher && SSL_CIPHER_get_auth_nid(cipher) == NID_auth_ecdsa) { has_ecdsa_sig = 1; break; } } } for (i = 0; i < trash.size && i < servername_len; i++) { trash.area[i] = tolower(servername[i]); if (!wildp && (trash.area[i] == '.')) wildp = &trash.area[i]; } trash.area[i] = 0; HA_RWLOCK_RDLOCK(SNI_LOCK, &s->sni_lock); for (i = 0; i < 2; i++) { if (i == 0) /* lookup in full qualified names */ node = ebst_lookup(&s->sni_ctx, trash.area); else if (i == 1 && wildp) /* lookup in wildcards names */ node = ebst_lookup(&s->sni_w_ctx, wildp); else break; for (n = node; n; n = ebmb_next_dup(n)) { /* lookup a not neg filter */ if (!container_of(n, struct sni_ctx, name)->neg) { switch(container_of(n, struct sni_ctx, name)->kinfo.sig) { case TLSEXT_signature_ecdsa: if (!node_ecdsa) node_ecdsa = n; break; case TLSEXT_signature_rsa: if (!node_rsa) node_rsa = n; break; default: /* TLSEXT_signature_anonymous|dsa */ if (!node_anonymous) node_anonymous = n; break; } } } /* select by key_signature priority order */ node = (has_ecdsa_sig && node_ecdsa) ? node_ecdsa : ((has_rsa_sig && node_rsa) ? node_rsa : (node_anonymous ? node_anonymous : (node_ecdsa ? node_ecdsa /* no ecdsa signature case (< TLSv1.2) */ : node_rsa /* no rsa signature case (far far away) */ ))); if (node) { /* switch ctx */ struct ssl_bind_conf *conf = container_of(node, struct sni_ctx, name)->conf; ssl_sock_switchctx_set(ssl, container_of(node, struct sni_ctx, name)->ctx); if (conf) { methodVersions[conf->ssl_methods.min].ssl_set_version(ssl, SET_MIN); methodVersions[conf->ssl_methods.max].ssl_set_version(ssl, SET_MAX); if (conf->early_data) allow_early = 1; } HA_RWLOCK_RDUNLOCK(SNI_LOCK, &s->sni_lock); goto allow_early; } } HA_RWLOCK_RDUNLOCK(SNI_LOCK, &s->sni_lock); #if (!defined SSL_NO_GENERATE_CERTIFICATES) if (s->generate_certs && ssl_sock_generate_certificate(trash.area, s, ssl)) { /* switch ctx done in ssl_sock_generate_certificate */ goto allow_early; } #endif if (!s->strict_sni) { /* no certificate match, is the default_ctx */ HA_RWLOCK_RDLOCK(SNI_LOCK, &s->sni_lock); ssl_sock_switchctx_set(ssl, s->default_ctx); HA_RWLOCK_RDUNLOCK(SNI_LOCK, &s->sni_lock); } allow_early: #ifdef OPENSSL_IS_BORINGSSL if (allow_early) SSL_set_early_data_enabled(ssl, 1); #else if (!allow_early) SSL_set_max_early_data(ssl, 0); #endif return 1; abort: /* abort handshake (was SSL_TLSEXT_ERR_ALERT_FATAL) */ conn->err_code = CO_ER_SSL_HANDSHAKE; #ifdef OPENSSL_IS_BORINGSSL return ssl_select_cert_error; #else *al = SSL_AD_UNRECOGNIZED_NAME; return 0; #endif } #else /* OPENSSL_IS_BORINGSSL */ /* Sets the SSL ctx of to match the advertised server name. Returns a * warning when no match is found, which implies the default (first) cert * will keep being used. */ static int ssl_sock_switchctx_cbk(SSL *ssl, int *al, void *priv) { const char *servername; const char *wildp = NULL; struct ebmb_node *node, *n; struct bind_conf *s = priv; int i; (void)al; /* shut gcc stupid warning */ servername = SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name); if (!servername) { #if (!defined SSL_NO_GENERATE_CERTIFICATES) if (s->generate_certs && ssl_sock_generate_certificate_from_conn(s, ssl)) return SSL_TLSEXT_ERR_OK; #endif if (s->strict_sni) return SSL_TLSEXT_ERR_ALERT_FATAL; HA_RWLOCK_RDLOCK(SNI_LOCK, &s->sni_lock); ssl_sock_switchctx_set(ssl, s->default_ctx); HA_RWLOCK_RDUNLOCK(SNI_LOCK, &s->sni_lock); return SSL_TLSEXT_ERR_NOACK; } for (i = 0; i < trash.size; i++) { if (!servername[i]) break; trash.area[i] = tolower(servername[i]); if (!wildp && (trash.area[i] == '.')) wildp = &trash.area[i]; } trash.area[i] = 0; HA_RWLOCK_RDLOCK(SNI_LOCK, &s->sni_lock); node = NULL; /* lookup in full qualified names */ for (n = ebst_lookup(&s->sni_ctx, trash.area); n; n = ebmb_next_dup(n)) { /* lookup a not neg filter */ if (!container_of(n, struct sni_ctx, name)->neg) { node = n; break; } } if (!node && wildp) { /* lookup in wildcards names */ for (n = ebst_lookup(&s->sni_w_ctx, wildp); n; n = ebmb_next_dup(n)) { /* lookup a not neg filter */ if (!container_of(n, struct sni_ctx, name)->neg) { node = n; break; } } } if (!node) { #if (!defined SSL_NO_GENERATE_CERTIFICATES) if (s->generate_certs && ssl_sock_generate_certificate(servername, s, ssl)) { /* switch ctx done in ssl_sock_generate_certificate */ HA_RWLOCK_RDUNLOCK(SNI_LOCK, &s->sni_lock); return SSL_TLSEXT_ERR_OK; } #endif if (s->strict_sni) { HA_RWLOCK_RDUNLOCK(SNI_LOCK, &s->sni_lock); return SSL_TLSEXT_ERR_ALERT_FATAL; } ssl_sock_switchctx_set(ssl, s->default_ctx); HA_RWLOCK_RDUNLOCK(SNI_LOCK, &s->sni_lock); return SSL_TLSEXT_ERR_OK; } /* switch ctx */ ssl_sock_switchctx_set(ssl, container_of(node, struct sni_ctx, name)->ctx); HA_RWLOCK_RDUNLOCK(SNI_LOCK, &s->sni_lock); return SSL_TLSEXT_ERR_OK; } #endif /* (!) OPENSSL_IS_BORINGSSL */ #endif /* SSL_CTRL_SET_TLSEXT_HOSTNAME */ #ifndef OPENSSL_NO_DH static DH * ssl_get_dh_1024(void) { static unsigned char dh1024_p[]={ 0xFA,0xF9,0x2A,0x22,0x2A,0xA7,0x7F,0xE1,0x67,0x4E,0x53,0xF7, 0x56,0x13,0xC3,0xB1,0xE3,0x29,0x6B,0x66,0x31,0x6A,0x7F,0xB3, 0xC2,0x68,0x6B,0xCB,0x1D,0x57,0x39,0x1D,0x1F,0xFF,0x1C,0xC9, 0xA6,0xA4,0x98,0x82,0x31,0x5D,0x25,0xFF,0x8A,0xE0,0x73,0x96, 0x81,0xC8,0x83,0x79,0xC1,0x5A,0x04,0xF8,0x37,0x0D,0xA8,0x3D, 0xAE,0x74,0xBC,0xDB,0xB6,0xA4,0x75,0xD9,0x71,0x8A,0xA0,0x17, 0x9E,0x2D,0xC8,0xA8,0xDF,0x2C,0x5F,0x82,0x95,0xF8,0x92,0x9B, 0xA7,0x33,0x5F,0x89,0x71,0xC8,0x2D,0x6B,0x18,0x86,0xC4,0x94, 0x22,0xA5,0x52,0x8D,0xF6,0xF6,0xD2,0x37,0x92,0x0F,0xA5,0xCC, 0xDB,0x7B,0x1D,0x3D,0xA1,0x31,0xB7,0x80,0x8F,0x0B,0x67,0x5E, 0x36,0xA5,0x60,0x0C,0xF1,0x95,0x33,0x8B, }; static unsigned char dh1024_g[]={ 0x02, }; BIGNUM *p; BIGNUM *g; DH *dh = DH_new(); if (dh) { p = BN_bin2bn(dh1024_p, sizeof dh1024_p, NULL); g = BN_bin2bn(dh1024_g, sizeof dh1024_g, NULL); if (!p || !g) { DH_free(dh); dh = NULL; } else { DH_set0_pqg(dh, p, NULL, g); } } return dh; } static DH *ssl_get_dh_2048(void) { static unsigned char dh2048_p[]={ 0xEC,0x86,0xF8,0x70,0xA0,0x33,0x16,0xEC,0x05,0x1A,0x73,0x59, 0xCD,0x1F,0x8B,0xF8,0x29,0xE4,0xD2,0xCF,0x52,0xDD,0xC2,0x24, 0x8D,0xB5,0x38,0x9A,0xFB,0x5C,0xA4,0xE4,0xB2,0xDA,0xCE,0x66, 0x50,0x74,0xA6,0x85,0x4D,0x4B,0x1D,0x30,0xB8,0x2B,0xF3,0x10, 0xE9,0xA7,0x2D,0x05,0x71,0xE7,0x81,0xDF,0x8B,0x59,0x52,0x3B, 0x5F,0x43,0x0B,0x68,0xF1,0xDB,0x07,0xBE,0x08,0x6B,0x1B,0x23, 0xEE,0x4D,0xCC,0x9E,0x0E,0x43,0xA0,0x1E,0xDF,0x43,0x8C,0xEC, 0xBE,0xBE,0x90,0xB4,0x51,0x54,0xB9,0x2F,0x7B,0x64,0x76,0x4E, 0x5D,0xD4,0x2E,0xAE,0xC2,0x9E,0xAE,0x51,0x43,0x59,0xC7,0x77, 0x9C,0x50,0x3C,0x0E,0xED,0x73,0x04,0x5F,0xF1,0x4C,0x76,0x2A, 0xD8,0xF8,0xCF,0xFC,0x34,0x40,0xD1,0xB4,0x42,0x61,0x84,0x66, 0x42,0x39,0x04,0xF8,0x68,0xB2,0x62,0xD7,0x55,0xED,0x1B,0x74, 0x75,0x91,0xE0,0xC5,0x69,0xC1,0x31,0x5C,0xDB,0x7B,0x44,0x2E, 0xCE,0x84,0x58,0x0D,0x1E,0x66,0x0C,0xC8,0x44,0x9E,0xFD,0x40, 0x08,0x67,0x5D,0xFB,0xA7,0x76,0x8F,0x00,0x11,0x87,0xE9,0x93, 0xF9,0x7D,0xC4,0xBC,0x74,0x55,0x20,0xD4,0x4A,0x41,0x2F,0x43, 0x42,0x1A,0xC1,0xF2,0x97,0x17,0x49,0x27,0x37,0x6B,0x2F,0x88, 0x7E,0x1C,0xA0,0xA1,0x89,0x92,0x27,0xD9,0x56,0x5A,0x71,0xC1, 0x56,0x37,0x7E,0x3A,0x9D,0x05,0xE7,0xEE,0x5D,0x8F,0x82,0x17, 0xBC,0xE9,0xC2,0x93,0x30,0x82,0xF9,0xF4,0xC9,0xAE,0x49,0xDB, 0xD0,0x54,0xB4,0xD9,0x75,0x4D,0xFA,0x06,0xB8,0xD6,0x38,0x41, 0xB7,0x1F,0x77,0xF3, }; static unsigned char dh2048_g[]={ 0x02, }; BIGNUM *p; BIGNUM *g; DH *dh = DH_new(); if (dh) { p = BN_bin2bn(dh2048_p, sizeof dh2048_p, NULL); g = BN_bin2bn(dh2048_g, sizeof dh2048_g, NULL); if (!p || !g) { DH_free(dh); dh = NULL; } else { DH_set0_pqg(dh, p, NULL, g); } } return dh; } static DH *ssl_get_dh_4096(void) { static unsigned char dh4096_p[]={ 0xDE,0x16,0x94,0xCD,0x99,0x58,0x07,0xF1,0xF7,0x32,0x96,0x11, 0x04,0x82,0xD4,0x84,0x72,0x80,0x99,0x06,0xCA,0xF0,0xA3,0x68, 0x07,0xCE,0x64,0x50,0xE7,0x74,0x45,0x20,0x80,0x5E,0x4D,0xAD, 0xA5,0xB6,0xED,0xFA,0x80,0x6C,0x3B,0x35,0xC4,0x9A,0x14,0x6B, 0x32,0xBB,0xFD,0x1F,0x17,0x8E,0xB7,0x1F,0xD6,0xFA,0x3F,0x7B, 0xEE,0x16,0xA5,0x62,0x33,0x0D,0xED,0xBC,0x4E,0x58,0xE5,0x47, 0x4D,0xE9,0xAB,0x8E,0x38,0xD3,0x6E,0x90,0x57,0xE3,0x22,0x15, 0x33,0xBD,0xF6,0x43,0x45,0xB5,0x10,0x0A,0xBE,0x2C,0xB4,0x35, 0xB8,0x53,0x8D,0xAD,0xFB,0xA7,0x1F,0x85,0x58,0x41,0x7A,0x79, 0x20,0x68,0xB3,0xE1,0x3D,0x08,0x76,0xBF,0x86,0x0D,0x49,0xE3, 0x82,0x71,0x8C,0xB4,0x8D,0x81,0x84,0xD4,0xE7,0xBE,0x91,0xDC, 0x26,0x39,0x48,0x0F,0x35,0xC4,0xCA,0x65,0xE3,0x40,0x93,0x52, 0x76,0x58,0x7D,0xDD,0x51,0x75,0xDC,0x69,0x61,0xBF,0x47,0x2C, 0x16,0x68,0x2D,0xC9,0x29,0xD3,0xE6,0xC0,0x99,0x48,0xA0,0x9A, 0xC8,0x78,0xC0,0x6D,0x81,0x67,0x12,0x61,0x3F,0x71,0xBA,0x41, 0x1F,0x6C,0x89,0x44,0x03,0xBA,0x3B,0x39,0x60,0xAA,0x28,0x55, 0x59,0xAE,0xB8,0xFA,0xCB,0x6F,0xA5,0x1A,0xF7,0x2B,0xDD,0x52, 0x8A,0x8B,0xE2,0x71,0xA6,0x5E,0x7E,0xD8,0x2E,0x18,0xE0,0x66, 0xDF,0xDD,0x22,0x21,0x99,0x52,0x73,0xA6,0x33,0x20,0x65,0x0E, 0x53,0xE7,0x6B,0x9B,0xC5,0xA3,0x2F,0x97,0x65,0x76,0xD3,0x47, 0x23,0x77,0x12,0xB6,0x11,0x7B,0x24,0xED,0xF1,0xEF,0xC0,0xE2, 0xA3,0x7E,0x67,0x05,0x3E,0x96,0x4D,0x45,0xC2,0x18,0xD1,0x73, 0x9E,0x07,0xF3,0x81,0x6E,0x52,0x63,0xF6,0x20,0x76,0xB9,0x13, 0xD2,0x65,0x30,0x18,0x16,0x09,0x16,0x9E,0x8F,0xF1,0xD2,0x10, 0x5A,0xD3,0xD4,0xAF,0x16,0x61,0xDA,0x55,0x2E,0x18,0x5E,0x14, 0x08,0x54,0x2E,0x2A,0x25,0xA2,0x1A,0x9B,0x8B,0x32,0xA9,0xFD, 0xC2,0x48,0x96,0xE1,0x80,0xCA,0xE9,0x22,0x17,0xBB,0xCE,0x3E, 0x9E,0xED,0xC7,0xF1,0x1F,0xEC,0x17,0x21,0xDC,0x7B,0x82,0x48, 0x8E,0xBB,0x4B,0x9D,0x5B,0x04,0x04,0xDA,0xDB,0x39,0xDF,0x01, 0x40,0xC3,0xAA,0x26,0x23,0x89,0x75,0xC6,0x0B,0xD0,0xA2,0x60, 0x6A,0xF1,0xCC,0x65,0x18,0x98,0x1B,0x52,0xD2,0x74,0x61,0xCC, 0xBD,0x60,0xAE,0xA3,0xA0,0x66,0x6A,0x16,0x34,0x92,0x3F,0x41, 0x40,0x31,0x29,0xC0,0x2C,0x63,0xB2,0x07,0x8D,0xEB,0x94,0xB8, 0xE8,0x47,0x92,0x52,0x93,0x6A,0x1B,0x7E,0x1A,0x61,0xB3,0x1B, 0xF0,0xD6,0x72,0x9B,0xF1,0xB0,0xAF,0xBF,0x3E,0x65,0xEF,0x23, 0x1D,0x6F,0xFF,0x70,0xCD,0x8A,0x4C,0x8A,0xA0,0x72,0x9D,0xBE, 0xD4,0xBB,0x24,0x47,0x4A,0x68,0xB5,0xF5,0xC6,0xD5,0x7A,0xCD, 0xCA,0x06,0x41,0x07,0xAD,0xC2,0x1E,0xE6,0x54,0xA7,0xAD,0x03, 0xD9,0x12,0xC1,0x9C,0x13,0xB1,0xC9,0x0A,0x43,0x8E,0x1E,0x08, 0xCE,0x50,0x82,0x73,0x5F,0xA7,0x55,0x1D,0xD9,0x59,0xAC,0xB5, 0xEA,0x02,0x7F,0x6C,0x5B,0x74,0x96,0x98,0x67,0x24,0xA3,0x0F, 0x15,0xFC,0xA9,0x7D,0x3E,0x67,0xD1,0x70,0xF8,0x97,0xF3,0x67, 0xC5,0x8C,0x88,0x44,0x08,0x02,0xC7,0x2B, }; static unsigned char dh4096_g[]={ 0x02, }; BIGNUM *p; BIGNUM *g; DH *dh = DH_new(); if (dh) { p = BN_bin2bn(dh4096_p, sizeof dh4096_p, NULL); g = BN_bin2bn(dh4096_g, sizeof dh4096_g, NULL); if (!p || !g) { DH_free(dh); dh = NULL; } else { DH_set0_pqg(dh, p, NULL, g); } } return dh; } /* Returns Diffie-Hellman parameters matching the private key length but not exceeding global_ssl.default_dh_param */ static DH *ssl_get_tmp_dh(SSL *ssl, int export, int keylen) { DH *dh = NULL; EVP_PKEY *pkey = SSL_get_privatekey(ssl); int type; type = pkey ? EVP_PKEY_base_id(pkey) : EVP_PKEY_NONE; /* The keylen supplied by OpenSSL can only be 512 or 1024. See ssl3_send_server_key_exchange() in ssl/s3_srvr.c */ if (type == EVP_PKEY_RSA || type == EVP_PKEY_DSA) { keylen = EVP_PKEY_bits(pkey); } if (keylen > global_ssl.default_dh_param) { keylen = global_ssl.default_dh_param; } if (keylen >= 4096) { dh = local_dh_4096; } else if (keylen >= 2048) { dh = local_dh_2048; } else { dh = local_dh_1024; } return dh; } static DH * ssl_sock_get_dh_from_file(const char *filename) { DH *dh = NULL; BIO *in = BIO_new(BIO_s_file()); if (in == NULL) goto end; if (BIO_read_filename(in, filename) <= 0) goto end; dh = PEM_read_bio_DHparams(in, NULL, NULL, NULL); end: if (in) BIO_free(in); ERR_clear_error(); return dh; } int ssl_sock_load_global_dh_param_from_file(const char *filename) { global_dh = ssl_sock_get_dh_from_file(filename); if (global_dh) { return 0; } return -1; } #endif /* release ssl bind conf */ void ssl_sock_free_ssl_conf(struct ssl_bind_conf *conf) { if (conf) { #if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG) free(conf->npn_str); conf->npn_str = NULL; #endif #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation free(conf->alpn_str); conf->alpn_str = NULL; #endif free(conf->ca_file); conf->ca_file = NULL; free(conf->ca_verify_file); conf->ca_verify_file = NULL; free(conf->crl_file); conf->crl_file = NULL; free(conf->ciphers); conf->ciphers = NULL; #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) free(conf->ciphersuites); conf->ciphersuites = NULL; #endif free(conf->curves); conf->curves = NULL; free(conf->ecdhe); conf->ecdhe = NULL; } } /* unlink a ckch_inst, free all SNIs, free the ckch_inst */ /* The caller must use the lock of the bind_conf if used with inserted SNIs */ static void ckch_inst_free(struct ckch_inst *inst) { struct sni_ctx *sni, *sni_s; if (inst == NULL) return; list_for_each_entry_safe(sni, sni_s, &inst->sni_ctx, by_ckch_inst) { SSL_CTX_free(sni->ctx); LIST_DEL(&sni->by_ckch_inst); ebmb_delete(&sni->name); free(sni); } LIST_DEL(&inst->by_ckchs); LIST_DEL(&inst->by_crtlist_entry); free(inst); } /* Alloc and init a ckch_inst */ static struct ckch_inst *ckch_inst_new() { struct ckch_inst *ckch_inst; ckch_inst = calloc(1, sizeof *ckch_inst); if (!ckch_inst) return NULL; LIST_INIT(&ckch_inst->sni_ctx); LIST_INIT(&ckch_inst->by_ckchs); LIST_INIT(&ckch_inst->by_crtlist_entry); return ckch_inst; } /* free sni filters */ static void crtlist_free_filters(char **args) { int i; if (!args) return; for (i = 0; args[i]; i++) free(args[i]); free(args); } /* Alloc and duplicate a char ** array */ static char **crtlist_dup_filters(char **args, int fcount) { char **dst; int i; if (fcount == 0) return NULL; dst = calloc(fcount + 1, sizeof(*dst)); if (!dst) return NULL; for (i = 0; i < fcount; i++) { dst[i] = strdup(args[i]); if (!dst[i]) goto error; } return dst; error: crtlist_free_filters(dst); return NULL; } /* * Detach and free a crtlist_entry. * Free the filters, the ssl_conf and call ckch_inst_free() for each ckch_inst */ static void crtlist_entry_free(struct crtlist_entry *entry) { struct ckch_inst *inst, *inst_s; if (entry == NULL) return; ebpt_delete(&entry->node); LIST_DEL(&entry->by_crtlist); LIST_DEL(&entry->by_ckch_store); crtlist_free_filters(entry->filters); ssl_sock_free_ssl_conf(entry->ssl_conf); free(entry->ssl_conf); list_for_each_entry_safe(inst, inst_s, &entry->ckch_inst, by_crtlist_entry) { ckch_inst_free(inst); } free(entry); } /* * Allocate and initialize a crtlist_entry */ static struct crtlist_entry *crtlist_entry_new() { struct crtlist_entry *entry; entry = calloc(1, sizeof(*entry)); if (entry == NULL) return NULL; LIST_INIT(&entry->ckch_inst); /* initialize the nodes so we can LIST_DEL in any cases */ LIST_INIT(&entry->by_crtlist); LIST_INIT(&entry->by_ckch_store); return entry; } /* Free a crtlist, from the crt_entry to the content of the ssl_conf */ static void crtlist_free(struct crtlist *crtlist) { struct crtlist_entry *entry, *s_entry; if (crtlist == NULL) return; list_for_each_entry_safe(entry, s_entry, &crtlist->ord_entries, by_crtlist) { crtlist_entry_free(entry); } ebmb_delete(&crtlist->node); free(crtlist); } /* Alloc and initialize a struct crtlist * is the key of the ebmb_node * initialize the list of entries to be unique (1) or not (0) */ static struct crtlist *crtlist_new(const char *filename, int unique) { struct crtlist *newlist; newlist = calloc(1, sizeof(*newlist) + strlen(filename) + 1); if (newlist == NULL) return NULL; memcpy(newlist->node.key, filename, strlen(filename) + 1); if (unique) newlist->entries = EB_ROOT_UNIQUE; else newlist->entries = EB_ROOT; LIST_INIT(&newlist->ord_entries); return newlist; } /* This function allocates a sni_ctx and adds it to the ckch_inst */ static int ckch_inst_add_cert_sni(SSL_CTX *ctx, struct ckch_inst *ckch_inst, struct bind_conf *s, struct ssl_bind_conf *conf, struct pkey_info kinfo, char *name, int order) { struct sni_ctx *sc; int wild = 0, neg = 0; if (*name == '!') { neg = 1; name++; } if (*name == '*') { wild = 1; name++; } /* !* filter is a nop */ if (neg && wild) return order; if (*name) { int j, len; len = strlen(name); for (j = 0; j < len && j < trash.size; j++) trash.area[j] = tolower(name[j]); if (j >= trash.size) return -1; trash.area[j] = 0; sc = malloc(sizeof(struct sni_ctx) + len + 1); if (!sc) return -1; memcpy(sc->name.key, trash.area, len + 1); SSL_CTX_up_ref(ctx); sc->ctx = ctx; sc->conf = conf; sc->kinfo = kinfo; sc->order = order++; sc->neg = neg; sc->wild = wild; sc->name.node.leaf_p = NULL; sc->ckch_inst = ckch_inst; LIST_ADDQ(&ckch_inst->sni_ctx, &sc->by_ckch_inst); } return order; } /* * Insert the sni_ctxs that are listed in the ckch_inst, in the bind_conf's sni_ctx tree * This function can't return an error. * * *CAUTION*: The caller must lock the sni tree if called in multithreading mode */ static void ssl_sock_load_cert_sni(struct ckch_inst *ckch_inst, struct bind_conf *bind_conf) { struct sni_ctx *sc0, *sc0b, *sc1; struct ebmb_node *node; int def = 0; list_for_each_entry_safe(sc0, sc0b, &ckch_inst->sni_ctx, by_ckch_inst) { /* ignore if sc0 was already inserted in a tree */ if (sc0->name.node.leaf_p) continue; /* Check for duplicates. */ if (sc0->wild) node = ebst_lookup(&bind_conf->sni_w_ctx, (char *)sc0->name.key); else node = ebst_lookup(&bind_conf->sni_ctx, (char *)sc0->name.key); for (; node; node = ebmb_next_dup(node)) { sc1 = ebmb_entry(node, struct sni_ctx, name); if (sc1->ctx == sc0->ctx && sc1->conf == sc0->conf && sc1->neg == sc0->neg && sc1->wild == sc0->wild) { /* it's a duplicate, we should remove and free it */ LIST_DEL(&sc0->by_ckch_inst); SSL_CTX_free(sc0->ctx); free(sc0); sc0 = NULL; break; } } /* if duplicate, ignore the insertion */ if (!sc0) continue; if (sc0->wild) ebst_insert(&bind_conf->sni_w_ctx, &sc0->name); else ebst_insert(&bind_conf->sni_ctx, &sc0->name); /* replace the default_ctx if required with the first ctx */ if (ckch_inst->is_default && !def) { SSL_CTX_free(bind_conf->default_ctx); SSL_CTX_up_ref(sc0->ctx); bind_conf->default_ctx = sc0->ctx; def = 1; } } } /* * tree used to store the ckchs ordered by filename/bundle name */ struct eb_root ckchs_tree = EB_ROOT_UNIQUE; /* tree of crtlist (crt-list/directory) */ static struct eb_root crtlists_tree = EB_ROOT_UNIQUE; /* Loads Diffie-Hellman parameter from a ckchs to an SSL_CTX. * If there is no DH parameter available in the ckchs, the global * DH parameter is loaded into the SSL_CTX and if there is no * DH parameter available in ckchs nor in global, the default * DH parameters are applied on the SSL_CTX. * Returns a bitfield containing the flags: * ERR_FATAL in any fatal error case * ERR_ALERT if a reason of the error is availabine in err * ERR_WARN if a warning is available into err * The value 0 means there is no error nor warning and * the operation succeed. */ #ifndef OPENSSL_NO_DH static int ssl_sock_load_dh_params(SSL_CTX *ctx, const struct cert_key_and_chain *ckch, const char *path, char **err) { int ret = 0; DH *dh = NULL; if (ckch && ckch->dh) { dh = ckch->dh; if (!SSL_CTX_set_tmp_dh(ctx, dh)) { memprintf(err, "%sunable to load the DH parameter specified in '%s'", err && *err ? *err : "", path); #if defined(SSL_CTX_set_dh_auto) SSL_CTX_set_dh_auto(ctx, 1); memprintf(err, "%s, SSL library will use an automatically generated DH parameter.\n", err && *err ? *err : ""); #else memprintf(err, "%s, DH ciphers won't be available.\n", err && *err ? *err : ""); #endif ret |= ERR_WARN; goto end; } if (ssl_dh_ptr_index >= 0) { /* store a pointer to the DH params to avoid complaining about ssl-default-dh-param not being set for this SSL_CTX */ SSL_CTX_set_ex_data(ctx, ssl_dh_ptr_index, dh); } } else if (global_dh) { if (!SSL_CTX_set_tmp_dh(ctx, global_dh)) { memprintf(err, "%sunable to use the global DH parameter for certificate '%s'", err && *err ? *err : "", path); #if defined(SSL_CTX_set_dh_auto) SSL_CTX_set_dh_auto(ctx, 1); memprintf(err, "%s, SSL library will use an automatically generated DH parameter.\n", err && *err ? *err : ""); #else memprintf(err, "%s, DH ciphers won't be available.\n", err && *err ? *err : ""); #endif ret |= ERR_WARN; goto end; } } else { /* Clear openssl global errors stack */ ERR_clear_error(); if (global_ssl.default_dh_param <= 1024) { /* we are limited to DH parameter of 1024 bits anyway */ if (local_dh_1024 == NULL) local_dh_1024 = ssl_get_dh_1024(); if (local_dh_1024 == NULL) { memprintf(err, "%sunable to load default 1024 bits DH parameter for certificate '%s'.\n", err && *err ? *err : "", path); ret |= ERR_ALERT | ERR_FATAL; goto end; } if (!SSL_CTX_set_tmp_dh(ctx, local_dh_1024)) { memprintf(err, "%sunable to load default 1024 bits DH parameter for certificate '%s'.\n", err && *err ? *err : "", path); #if defined(SSL_CTX_set_dh_auto) SSL_CTX_set_dh_auto(ctx, 1); memprintf(err, "%s, SSL library will use an automatically generated DH parameter.\n", err && *err ? *err : ""); #else memprintf(err, "%s, DH ciphers won't be available.\n", err && *err ? *err : ""); #endif ret |= ERR_WARN; goto end; } } else { SSL_CTX_set_tmp_dh_callback(ctx, ssl_get_tmp_dh); } } end: ERR_clear_error(); return ret; } #endif /* Frees the contents of a cert_key_and_chain */ static void ssl_sock_free_cert_key_and_chain_contents(struct cert_key_and_chain *ckch) { if (!ckch) return; /* Free the certificate and set pointer to NULL */ if (ckch->cert) X509_free(ckch->cert); ckch->cert = NULL; /* Free the key and set pointer to NULL */ if (ckch->key) EVP_PKEY_free(ckch->key); ckch->key = NULL; /* Free each certificate in the chain */ if (ckch->chain) sk_X509_pop_free(ckch->chain, X509_free); ckch->chain = NULL; if (ckch->dh) DH_free(ckch->dh); ckch->dh = NULL; if (ckch->sctl) { free(ckch->sctl->area); ckch->sctl->area = NULL; free(ckch->sctl); ckch->sctl = NULL; } if (ckch->ocsp_response) { free(ckch->ocsp_response->area); ckch->ocsp_response->area = NULL; free(ckch->ocsp_response); ckch->ocsp_response = NULL; } if (ckch->ocsp_issuer) X509_free(ckch->ocsp_issuer); ckch->ocsp_issuer = NULL; } /* * * This function copy a cert_key_and_chain in memory * * It's used to try to apply changes on a ckch before committing them, because * most of the time it's not possible to revert those changes * * Return a the dst or NULL */ static struct cert_key_and_chain *ssl_sock_copy_cert_key_and_chain(struct cert_key_and_chain *src, struct cert_key_and_chain *dst) { if (src->cert) { dst->cert = src->cert; X509_up_ref(src->cert); } if (src->key) { dst->key = src->key; EVP_PKEY_up_ref(src->key); } if (src->chain) { dst->chain = X509_chain_up_ref(src->chain); } if (src->dh) { DH_up_ref(src->dh); dst->dh = src->dh; } if (src->sctl) { struct buffer *sctl; sctl = calloc(1, sizeof(*sctl)); if (!chunk_dup(sctl, src->sctl)) { free(sctl); sctl = NULL; goto error; } dst->sctl = sctl; } if (src->ocsp_response) { struct buffer *ocsp_response; ocsp_response = calloc(1, sizeof(*ocsp_response)); if (!chunk_dup(ocsp_response, src->ocsp_response)) { free(ocsp_response); ocsp_response = NULL; goto error; } dst->ocsp_response = ocsp_response; } if (src->ocsp_issuer) { X509_up_ref(src->ocsp_issuer); dst->ocsp_issuer = src->ocsp_issuer; } return dst; error: /* free everything */ ssl_sock_free_cert_key_and_chain_contents(dst); return NULL; } /* checks if a key and cert exists in the ckch */ #if HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL static int ssl_sock_is_ckch_valid(struct cert_key_and_chain *ckch) { return (ckch->cert != NULL && ckch->key != NULL); } #endif /* * return 0 on success or != 0 on failure */ static int ssl_sock_load_issuer_file_into_ckch(const char *path, char *buf, struct cert_key_and_chain *ckch, char **err) { int ret = 1; BIO *in = NULL; X509 *issuer; if (buf) { /* reading from a buffer */ in = BIO_new_mem_buf(buf, -1); if (in == NULL) { memprintf(err, "%sCan't allocate memory\n", err && *err ? *err : ""); goto end; } } else { /* reading from a file */ in = BIO_new(BIO_s_file()); if (in == NULL) goto end; if (BIO_read_filename(in, path) <= 0) goto end; } issuer = PEM_read_bio_X509_AUX(in, NULL, NULL, NULL); if (!issuer) { memprintf(err, "%s'%s' cannot be read or parsed'.\n", err && *err ? *err : "", path); goto end; } /* no error, fill ckch with new context, old context must be free */ if (ckch->ocsp_issuer) X509_free(ckch->ocsp_issuer); ckch->ocsp_issuer = issuer; ret = 0; end: ERR_clear_error(); if (in) BIO_free(in); return ret; } /* * Try to load a PEM file from a or a buffer * The PEM must contain at least a Certificate, * It could contain a DH, a certificate chain and a PrivateKey. * * If it failed you should not attempt to use the ckch but free it. * * Return 0 on success or != 0 on failure */ static int ssl_sock_load_pem_into_ckch(const char *path, char *buf, struct cert_key_and_chain *ckch , char **err) { BIO *in = NULL; int ret = 1; X509 *ca; X509 *cert = NULL; EVP_PKEY *key = NULL; DH *dh = NULL; STACK_OF(X509) *chain = NULL; if (buf) { /* reading from a buffer */ in = BIO_new_mem_buf(buf, -1); if (in == NULL) { memprintf(err, "%sCan't allocate memory\n", err && *err ? *err : ""); goto end; } } else { /* reading from a file */ in = BIO_new(BIO_s_file()); if (in == NULL) { memprintf(err, "%sCan't allocate memory\n", err && *err ? *err : ""); goto end; } if (BIO_read_filename(in, path) <= 0) { memprintf(err, "%scannot open the file '%s'.\n", err && *err ? *err : "", path); goto end; } } /* Read Private Key */ key = PEM_read_bio_PrivateKey(in, NULL, NULL, NULL); /* no need to check for errors here, because the private key could be loaded later */ #ifndef OPENSSL_NO_DH /* Seek back to beginning of file */ if (BIO_reset(in) == -1) { memprintf(err, "%san error occurred while reading the file '%s'.\n", err && *err ? *err : "", path); goto end; } dh = PEM_read_bio_DHparams(in, NULL, NULL, NULL); /* no need to return an error there, dh is not mandatory */ #endif /* Seek back to beginning of file */ if (BIO_reset(in) == -1) { memprintf(err, "%san error occurred while reading the file '%s'.\n", err && *err ? *err : "", path); goto end; } /* Read Certificate */ cert = PEM_read_bio_X509_AUX(in, NULL, NULL, NULL); if (cert == NULL) { memprintf(err, "%sunable to load certificate from file '%s'.\n", err && *err ? *err : "", path); goto end; } /* Look for a Certificate Chain */ while ((ca = PEM_read_bio_X509(in, NULL, NULL, NULL))) { if (chain == NULL) chain = sk_X509_new_null(); if (!sk_X509_push(chain, ca)) { X509_free(ca); goto end; } } ret = ERR_get_error(); if (ret && (ERR_GET_LIB(ret) != ERR_LIB_PEM && ERR_GET_REASON(ret) != PEM_R_NO_START_LINE)) { memprintf(err, "%sunable to load certificate chain from file '%s'.\n", err && *err ? *err : "", path); goto end; } /* once it loaded the PEM, it should remove everything else in the ckch */ if (ckch->ocsp_response) { free(ckch->ocsp_response->area); ckch->ocsp_response->area = NULL; free(ckch->ocsp_response); ckch->ocsp_response = NULL; } if (ckch->sctl) { free(ckch->sctl->area); ckch->sctl->area = NULL; free(ckch->sctl); ckch->sctl = NULL; } if (ckch->ocsp_issuer) { X509_free(ckch->ocsp_issuer); ckch->ocsp_issuer = NULL; } /* no error, fill ckch with new context, old context will be free at end: */ SWAP(ckch->key, key); SWAP(ckch->dh, dh); SWAP(ckch->cert, cert); SWAP(ckch->chain, chain); ret = 0; end: ERR_clear_error(); if (in) BIO_free(in); if (key) EVP_PKEY_free(key); if (dh) DH_free(dh); if (cert) X509_free(cert); if (chain) sk_X509_pop_free(chain, X509_free); return ret; } /* * Try to load a private key file from a or a buffer * * If it failed you should not attempt to use the ckch but free it. * * Return 0 on success or != 0 on failure */ static int ssl_sock_load_key_into_ckch(const char *path, char *buf, struct cert_key_and_chain *ckch , char **err) { BIO *in = NULL; int ret = 1; EVP_PKEY *key = NULL; if (buf) { /* reading from a buffer */ in = BIO_new_mem_buf(buf, -1); if (in == NULL) { memprintf(err, "%sCan't allocate memory\n", err && *err ? *err : ""); goto end; } } else { /* reading from a file */ in = BIO_new(BIO_s_file()); if (in == NULL) goto end; if (BIO_read_filename(in, path) <= 0) goto end; } /* Read Private Key */ key = PEM_read_bio_PrivateKey(in, NULL, NULL, NULL); if (key == NULL) { memprintf(err, "%sunable to load private key from file '%s'.\n", err && *err ? *err : "", path); goto end; } ret = 0; SWAP(ckch->key, key); end: ERR_clear_error(); if (in) BIO_free(in); if (key) EVP_PKEY_free(key); return ret; } /* * Try to load in a ckch every files related to a ckch. * (PEM, sctl, ocsp, issuer etc.) * * This function is only used to load files during the configuration parsing, * it is not used with the CLI. * * This allows us to carry the contents of the file without having to read the * file multiple times. The caller must call * ssl_sock_free_cert_key_and_chain_contents. * * returns: * 0 on Success * 1 on SSL Failure */ static int ssl_sock_load_files_into_ckch(const char *path, struct cert_key_and_chain *ckch, char **err) { int ret = 1; /* try to load the PEM */ if (ssl_sock_load_pem_into_ckch(path, NULL, ckch , err) != 0) { goto end; } /* try to load an external private key if it wasn't in the PEM */ if ((ckch->key == NULL) && (global_ssl.extra_files & SSL_GF_KEY)) { char fp[MAXPATHLEN+1]; struct stat st; snprintf(fp, MAXPATHLEN+1, "%s.key", path); if (stat(fp, &st) == 0) { if (ssl_sock_load_key_into_ckch(fp, NULL, ckch, err)) { memprintf(err, "%s '%s' is present but cannot be read or parsed'.\n", err && *err ? *err : "", fp); goto end; } } } if (ckch->key == NULL) { memprintf(err, "%sNo Private Key found in '%s' or '%s.key'.\n", err && *err ? *err : "", path, path); goto end; } if (!X509_check_private_key(ckch->cert, ckch->key)) { memprintf(err, "%sinconsistencies between private key and certificate loaded '%s'.\n", err && *err ? *err : "", path); goto end; } #if (HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL && !defined OPENSSL_NO_TLSEXT && !defined OPENSSL_IS_BORINGSSL) /* try to load the sctl file */ if (global_ssl.extra_files & SSL_GF_SCTL) { char fp[MAXPATHLEN+1]; struct stat st; snprintf(fp, MAXPATHLEN+1, "%s.sctl", path); if (stat(fp, &st) == 0) { if (ssl_sock_load_sctl_from_file(fp, NULL, ckch, err)) { memprintf(err, "%s '%s.sctl' is present but cannot be read or parsed'.\n", err && *err ? *err : "", fp); ret = 1; goto end; } } } #endif /* try to load an ocsp response file */ if (global_ssl.extra_files & SSL_GF_OCSP) { char fp[MAXPATHLEN+1]; struct stat st; snprintf(fp, MAXPATHLEN+1, "%s.ocsp", path); if (stat(fp, &st) == 0) { if (ssl_sock_load_ocsp_response_from_file(fp, NULL, ckch, err)) { ret = 1; goto end; } } } #ifndef OPENSSL_IS_BORINGSSL /* Useless for BoringSSL */ if (ckch->ocsp_response && (global_ssl.extra_files & SSL_GF_OCSP_ISSUER)) { /* if no issuer was found, try to load an issuer from the .issuer */ if (!ckch->ocsp_issuer) { struct stat st; char fp[MAXPATHLEN+1]; snprintf(fp, MAXPATHLEN+1, "%s.issuer", path); if (stat(fp, &st) == 0) { if (ssl_sock_load_issuer_file_into_ckch(fp, NULL, ckch, err)) { ret = 1; goto end; } if (X509_check_issued(ckch->ocsp_issuer, ckch->cert) != X509_V_OK) { memprintf(err, "%s '%s' is not an issuer'.\n", err && *err ? *err : "", fp); ret = 1; goto end; } } } } #endif ret = 0; end: ERR_clear_error(); /* Something went wrong in one of the reads */ if (ret != 0) ssl_sock_free_cert_key_and_chain_contents(ckch); return ret; } /* Loads the info in ckch into ctx * Returns a bitfield containing the flags: * ERR_FATAL in any fatal error case * ERR_ALERT if the reason of the error is available in err * ERR_WARN if a warning is available into err * The value 0 means there is no error nor warning and * the operation succeed. */ static int ssl_sock_put_ckch_into_ctx(const char *path, const struct cert_key_and_chain *ckch, SSL_CTX *ctx, char **err) { int errcode = 0; STACK_OF(X509) *find_chain = NULL; if (SSL_CTX_use_PrivateKey(ctx, ckch->key) <= 0) { memprintf(err, "%sunable to load SSL private key into SSL Context '%s'.\n", err && *err ? *err : "", path); errcode |= ERR_ALERT | ERR_FATAL; return errcode; } if (!SSL_CTX_use_certificate(ctx, ckch->cert)) { memprintf(err, "%sunable to load SSL certificate into SSL Context '%s'.\n", err && *err ? *err : "", path); errcode |= ERR_ALERT | ERR_FATAL; goto end; } if (ckch->chain) { find_chain = ckch->chain; } else { /* Find Certificate Chain in global */ struct issuer_chain *issuer; issuer = ssl_get0_issuer_chain(ckch->cert); if (issuer) find_chain = issuer->chain; } /* Load all certs from chain, except Root, in the ssl_ctx */ if (find_chain) { int i; X509 *ca; for (i = 0; i < sk_X509_num(find_chain); i++) { ca = sk_X509_value(find_chain, i); /* skip self issued (Root CA) */ if (global_ssl.skip_self_issued_ca && !X509_NAME_cmp(X509_get_subject_name(ca), X509_get_issuer_name(ca))) continue; /* SSL_CTX_add1_chain_cert could be used with openssl >= 1.0.2 Used SSL_CTX_add_extra_chain_cert for compat (aka SSL_CTX_add0_chain_cert) */ X509_up_ref(ca); if (!SSL_CTX_add_extra_chain_cert(ctx, ca)) { X509_free(ca); memprintf(err, "%sunable to load chain certificate into SSL Context '%s'.\n", err && *err ? *err : "", path); errcode |= ERR_ALERT | ERR_FATAL; goto end; } } } #ifndef OPENSSL_NO_DH /* store a NULL pointer to indicate we have not yet loaded a custom DH param file */ if (ssl_dh_ptr_index >= 0) { SSL_CTX_set_ex_data(ctx, ssl_dh_ptr_index, NULL); } errcode |= ssl_sock_load_dh_params(ctx, ckch, path, err); if (errcode & ERR_CODE) { memprintf(err, "%sunable to load DH parameters from file '%s'.\n", err && *err ? *err : "", path); goto end; } #endif #if (HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL && !defined OPENSSL_NO_TLSEXT && !defined OPENSSL_IS_BORINGSSL) if (sctl_ex_index >= 0 && ckch->sctl) { if (ssl_sock_load_sctl(ctx, ckch->sctl) < 0) { memprintf(err, "%s '%s.sctl' is present but cannot be read or parsed'.\n", err && *err ? *err : "", path); errcode |= ERR_ALERT | ERR_FATAL; goto end; } } #endif #if ((defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP) || defined OPENSSL_IS_BORINGSSL) /* Load OCSP Info into context */ if (ckch->ocsp_response) { if (ssl_sock_load_ocsp(ctx, ckch, find_chain) < 0) { memprintf(err, "%s '%s.ocsp' is present and activates OCSP but it is impossible to compute the OCSP certificate ID (maybe the issuer could not be found)'.\n", err && *err ? *err : "", path); errcode |= ERR_ALERT | ERR_FATAL; goto end; } } #endif end: return errcode; } #if HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL static int ssl_sock_populate_sni_keytypes_hplr(const char *str, struct eb_root *sni_keytypes, int key_index) { struct sni_keytype *s_kt = NULL; struct ebmb_node *node; int i; for (i = 0; i < trash.size; i++) { if (!str[i]) break; trash.area[i] = tolower(str[i]); } trash.area[i] = 0; node = ebst_lookup(sni_keytypes, trash.area); if (!node) { /* CN not found in tree */ s_kt = malloc(sizeof(struct sni_keytype) + i + 1); /* Using memcpy here instead of strncpy. * strncpy will cause sig_abrt errors under certain versions of gcc with -O2 * See: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=60792 */ if (!s_kt) return -1; memcpy(s_kt->name.key, trash.area, i+1); s_kt->keytypes = 0; ebst_insert(sni_keytypes, &s_kt->name); } else { /* CN found in tree */ s_kt = container_of(node, struct sni_keytype, name); } /* Mark that this CN has the keytype of key_index via keytypes mask */ s_kt->keytypes |= 1<= 0x1000200L if (store->multi) { int n; for (n = 0; n < SSL_SOCK_NUM_KEYTYPES; n++) ssl_sock_free_cert_key_and_chain_contents(&store->ckch[n]); } else #endif { ssl_sock_free_cert_key_and_chain_contents(store->ckch); } free(store->ckch); store->ckch = NULL; list_for_each_entry_safe(inst, inst_s, &store->ckch_inst, by_ckchs) { ckch_inst_free(inst); } ebmb_delete(&store->node); free(store); } /* * create and initialize a ckch_store * is the key name * is the number of store->ckch objects to allocate * * Return a ckch_store or NULL upon failure. */ static struct ckch_store *ckch_store_new(const char *filename, int nmemb) { struct ckch_store *store; int pathlen; pathlen = strlen(filename); store = calloc(1, sizeof(*store) + pathlen + 1); if (!store) return NULL; if (nmemb > 1) store->multi = 1; else store->multi = 0; memcpy(store->path, filename, pathlen + 1); LIST_INIT(&store->ckch_inst); LIST_INIT(&store->crtlist_entry); store->ckch = calloc(nmemb, sizeof(*store->ckch)); if (!store->ckch) goto error; return store; error: ckch_store_free(store); return NULL; } /* allocate and duplicate a ckch_store * Return a new ckch_store or NULL */ static struct ckch_store *ckchs_dup(const struct ckch_store *src) { struct ckch_store *dst; dst = ckch_store_new(src->path, src->multi ? SSL_SOCK_NUM_KEYTYPES : 1); #if HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL if (src->multi) { int n; for (n = 0; n < SSL_SOCK_NUM_KEYTYPES; n++) { if (&src->ckch[n]) { if (!ssl_sock_copy_cert_key_and_chain(&src->ckch[n], &dst->ckch[n])) goto error; } } } else #endif { if (!ssl_sock_copy_cert_key_and_chain(src->ckch, dst->ckch)) goto error; } return dst; error: ckch_store_free(dst); return NULL; } /* * lookup a path into the ckchs tree. */ static inline struct ckch_store *ckchs_lookup(char *path) { struct ebmb_node *eb; eb = ebst_lookup(&ckchs_tree, path); if (!eb) return NULL; return ebmb_entry(eb, struct ckch_store, node); } /* * This function allocate a ckch_store and populate it with certificates from files. */ static struct ckch_store *ckchs_load_cert_file(char *path, int multi, char **err) { struct ckch_store *ckchs; ckchs = ckch_store_new(path, multi ? SSL_SOCK_NUM_KEYTYPES : 1); if (!ckchs) { memprintf(err, "%sunable to allocate memory.\n", err && *err ? *err : ""); goto end; } if (!multi) { if (ssl_sock_load_files_into_ckch(path, ckchs->ckch, err) == 1) goto end; /* insert into the ckchs tree */ memcpy(ckchs->path, path, strlen(path) + 1); ebst_insert(&ckchs_tree, &ckchs->node); } else { int found = 0; #if HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL char fp[MAXPATHLEN+1] = {0}; int n = 0; /* Load all possible certs and keys */ for (n = 0; n < SSL_SOCK_NUM_KEYTYPES; n++) { struct stat buf; snprintf(fp, sizeof(fp), "%s.%s", path, SSL_SOCK_KEYTYPE_NAMES[n]); if (stat(fp, &buf) == 0) { if (ssl_sock_load_files_into_ckch(fp, &ckchs->ckch[n], err) == 1) goto end; found = 1; ckchs->multi = 1; } } #endif if (!found) { memprintf(err, "%sDidn't find any certificate for bundle '%s'.\n", err && *err ? *err : "", path); goto end; } /* insert into the ckchs tree */ memcpy(ckchs->path, path, strlen(path) + 1); ebst_insert(&ckchs_tree, &ckchs->node); } return ckchs; end: ckch_store_free(ckchs); return NULL; } #if HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL /* * Take a ckch_store which contains a multi-certificate bundle. * Group these certificates into a set of SSL_CTX* * based on shared and unique CN and SAN entries. Add these SSL_CTX* to the SNI tree. * * This will allow the user to explicitly group multiple cert/keys for a single purpose * * Returns a bitfield containing the flags: * ERR_FATAL in any fatal error case * ERR_ALERT if the reason of the error is available in err * ERR_WARN if a warning is available into err * */ static int ckch_inst_new_load_multi_store(const char *path, struct ckch_store *ckchs, struct bind_conf *bind_conf, struct ssl_bind_conf *ssl_conf, char **sni_filter, int fcount, struct ckch_inst **ckchi, char **err) { int i = 0, n = 0; struct cert_key_and_chain *certs_and_keys; struct eb_root sni_keytypes_map = EB_ROOT; struct ebmb_node *node; struct ebmb_node *next; /* Array of SSL_CTX pointers corresponding to each possible combo * of keytypes */ struct key_combo_ctx key_combos[SSL_SOCK_POSSIBLE_KT_COMBOS] = { {0} }; int errcode = 0; X509_NAME *xname = NULL; char *str = NULL; #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME STACK_OF(GENERAL_NAME) *names = NULL; #endif struct ckch_inst *ckch_inst; *ckchi = NULL; if (!ckchs || !ckchs->ckch || !ckchs->multi) { memprintf(err, "%sunable to load SSL certificate file '%s' file does not exist.\n", err && *err ? *err : "", path); return ERR_ALERT | ERR_FATAL; } ckch_inst = ckch_inst_new(); if (!ckch_inst) { memprintf(err, "%sunable to allocate SSL context for cert '%s'.\n", err && *err ? *err : "", path); errcode |= ERR_ALERT | ERR_FATAL; goto end; } certs_and_keys = ckchs->ckch; /* Process each ckch and update keytypes for each CN/SAN * for example, if CN/SAN www.a.com is associated with * certs with keytype 0 and 2, then at the end of the loop, * www.a.com will have: * keyindex = 0 | 1 | 4 = 5 */ for (n = 0; n < SSL_SOCK_NUM_KEYTYPES; n++) { int ret; if (!ssl_sock_is_ckch_valid(&certs_and_keys[n])) continue; if (fcount) { for (i = 0; i < fcount; i++) { ret = ssl_sock_populate_sni_keytypes_hplr(sni_filter[i], &sni_keytypes_map, n); if (ret < 0) { memprintf(err, "%sunable to allocate SSL context.\n", err && *err ? *err : ""); errcode |= ERR_ALERT | ERR_FATAL; goto end; } } } else { /* A lot of the following code is OpenSSL boilerplate for processing CN's and SAN's, * so the line that contains logic is marked via comments */ xname = X509_get_subject_name(certs_and_keys[n].cert); i = -1; while ((i = X509_NAME_get_index_by_NID(xname, NID_commonName, i)) != -1) { X509_NAME_ENTRY *entry = X509_NAME_get_entry(xname, i); ASN1_STRING *value; value = X509_NAME_ENTRY_get_data(entry); if (ASN1_STRING_to_UTF8((unsigned char **)&str, value) >= 0) { /* Important line is here */ ret = ssl_sock_populate_sni_keytypes_hplr(str, &sni_keytypes_map, n); OPENSSL_free(str); str = NULL; if (ret < 0) { memprintf(err, "%sunable to allocate SSL context.\n", err && *err ? *err : ""); errcode |= ERR_ALERT | ERR_FATAL; goto end; } } } /* Do the above logic for each SAN */ #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME names = X509_get_ext_d2i(certs_and_keys[n].cert, NID_subject_alt_name, NULL, NULL); if (names) { for (i = 0; i < sk_GENERAL_NAME_num(names); i++) { GENERAL_NAME *name = sk_GENERAL_NAME_value(names, i); if (name->type == GEN_DNS) { if (ASN1_STRING_to_UTF8((unsigned char **)&str, name->d.dNSName) >= 0) { /* Important line is here */ ret = ssl_sock_populate_sni_keytypes_hplr(str, &sni_keytypes_map, n); OPENSSL_free(str); str = NULL; if (ret < 0) { memprintf(err, "%sunable to allocate SSL context.\n", err && *err ? *err : ""); errcode |= ERR_ALERT | ERR_FATAL; goto end; } } } } } } #endif /* SSL_CTRL_SET_TLSEXT_HOSTNAME */ } /* If no files found, return error */ if (eb_is_empty(&sni_keytypes_map)) { memprintf(err, "%sunable to load SSL certificate file '%s' file does not exist.\n", err && *err ? *err : "", path); errcode |= ERR_ALERT | ERR_FATAL; goto end; } /* We now have a map of CN/SAN to keytypes that are loaded in * Iterate through the map to create the SSL_CTX's (if needed) * and add each CTX to the SNI tree * * Some math here: * There are 2^n - 1 possible combinations, each unique * combination is denoted by the key in the map. Each key * has a value between 1 and 2^n - 1. Conveniently, the array * of SSL_CTX* is sized 2^n. So, we can simply use the i'th * entry in the array to correspond to the unique combo (key) * associated with i. This unique key combo (i) will be associated * with combos[i-1] */ node = ebmb_first(&sni_keytypes_map); while (node) { SSL_CTX *cur_ctx; char cur_file[MAXPATHLEN+1]; const struct pkey_info kinfo = { .sig = TLSEXT_signature_anonymous, .bits = 0 }; str = (char *)container_of(node, struct sni_keytype, name)->name.key; i = container_of(node, struct sni_keytype, name)->keytypes; cur_ctx = key_combos[i-1].ctx; if (cur_ctx == NULL) { /* need to create SSL_CTX */ cur_ctx = SSL_CTX_new(SSLv23_server_method()); if (cur_ctx == NULL) { memprintf(err, "%sunable to allocate SSL context.\n", err && *err ? *err : ""); errcode |= ERR_ALERT | ERR_FATAL; goto end; } /* Load all required certs/keys/chains/OCSPs info into SSL_CTX */ for (n = 0; n < SSL_SOCK_NUM_KEYTYPES; n++) { if (i & (1<default_ctx) { for (i = SSL_SOCK_POSSIBLE_KT_COMBOS - 1; i >= 0; i--) { if (key_combos[i].ctx) { bind_conf->default_ctx = key_combos[i].ctx; bind_conf->default_ssl_conf = ssl_conf; ckch_inst->is_default = 1; SSL_CTX_up_ref(bind_conf->default_ctx); break; } } } ckch_inst->bind_conf = bind_conf; ckch_inst->ssl_conf = ssl_conf; ckch_inst->ckch_store = ckchs; end: if (names) sk_GENERAL_NAME_pop_free(names, GENERAL_NAME_free); node = ebmb_first(&sni_keytypes_map); while (node) { next = ebmb_next(node); ebmb_delete(node); free(ebmb_entry(node, struct sni_keytype, name)); node = next; } /* we need to free the ctx since we incremented the refcount where it's used */ for (i = 0; i < SSL_SOCK_POSSIBLE_KT_COMBOS; i++) { if (key_combos[i].ctx) SSL_CTX_free(key_combos[i].ctx); } if (errcode & ERR_CODE && ckch_inst) { if (ckch_inst->is_default) { SSL_CTX_free(bind_conf->default_ctx); bind_conf->default_ctx = NULL; } ckch_inst_free(ckch_inst); ckch_inst = NULL; } *ckchi = ckch_inst; return errcode; } #else /* This is a dummy, that just logs an error and returns error */ static int ckch_inst_new_load_multi_store(const char *path, struct ckch_store *ckchs, struct bind_conf *bind_conf, struct ssl_bind_conf *ssl_conf, char **sni_filter, int fcount, struct ckch_inst **ckchi, char **err) { memprintf(err, "%sunable to stat SSL certificate from file '%s' : %s.\n", err && *err ? *err : "", path, strerror(errno)); return ERR_ALERT | ERR_FATAL; } #endif /* #if HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL: Support for loading multiple certs into a single SSL_CTX */ /* * This function allocate a ckch_inst and create its snis * * Returns a bitfield containing the flags: * ERR_FATAL in any fatal error case * ERR_ALERT if the reason of the error is available in err * ERR_WARN if a warning is available into err */ static int ckch_inst_new_load_store(const char *path, struct ckch_store *ckchs, struct bind_conf *bind_conf, struct ssl_bind_conf *ssl_conf, char **sni_filter, int fcount, struct ckch_inst **ckchi, char **err) { SSL_CTX *ctx; int i; int order = 0; X509_NAME *xname; char *str; EVP_PKEY *pkey; struct pkey_info kinfo = { .sig = TLSEXT_signature_anonymous, .bits = 0 }; #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME STACK_OF(GENERAL_NAME) *names; #endif struct cert_key_and_chain *ckch; struct ckch_inst *ckch_inst = NULL; int errcode = 0; *ckchi = NULL; if (!ckchs || !ckchs->ckch) return ERR_FATAL; ckch = ckchs->ckch; ctx = SSL_CTX_new(SSLv23_server_method()); if (!ctx) { memprintf(err, "%sunable to allocate SSL context for cert '%s'.\n", err && *err ? *err : "", path); errcode |= ERR_ALERT | ERR_FATAL; goto error; } errcode |= ssl_sock_put_ckch_into_ctx(path, ckch, ctx, err); if (errcode & ERR_CODE) goto error; ckch_inst = ckch_inst_new(); if (!ckch_inst) { memprintf(err, "%sunable to allocate SSL context for cert '%s'.\n", err && *err ? *err : "", path); errcode |= ERR_ALERT | ERR_FATAL; goto error; } pkey = X509_get_pubkey(ckch->cert); if (pkey) { kinfo.bits = EVP_PKEY_bits(pkey); switch(EVP_PKEY_base_id(pkey)) { case EVP_PKEY_RSA: kinfo.sig = TLSEXT_signature_rsa; break; case EVP_PKEY_EC: kinfo.sig = TLSEXT_signature_ecdsa; break; case EVP_PKEY_DSA: kinfo.sig = TLSEXT_signature_dsa; break; } EVP_PKEY_free(pkey); } if (fcount) { while (fcount--) { order = ckch_inst_add_cert_sni(ctx, ckch_inst, bind_conf, ssl_conf, kinfo, sni_filter[fcount], order); if (order < 0) { memprintf(err, "%sunable to create a sni context.\n", err && *err ? *err : ""); errcode |= ERR_ALERT | ERR_FATAL; goto error; } } } else { #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME names = X509_get_ext_d2i(ckch->cert, NID_subject_alt_name, NULL, NULL); if (names) { for (i = 0; i < sk_GENERAL_NAME_num(names); i++) { GENERAL_NAME *name = sk_GENERAL_NAME_value(names, i); if (name->type == GEN_DNS) { if (ASN1_STRING_to_UTF8((unsigned char **)&str, name->d.dNSName) >= 0) { order = ckch_inst_add_cert_sni(ctx, ckch_inst, bind_conf, ssl_conf, kinfo, str, order); OPENSSL_free(str); if (order < 0) { memprintf(err, "%sunable to create a sni context.\n", err && *err ? *err : ""); errcode |= ERR_ALERT | ERR_FATAL; goto error; } } } } sk_GENERAL_NAME_pop_free(names, GENERAL_NAME_free); } #endif /* SSL_CTRL_SET_TLSEXT_HOSTNAME */ xname = X509_get_subject_name(ckch->cert); i = -1; while ((i = X509_NAME_get_index_by_NID(xname, NID_commonName, i)) != -1) { X509_NAME_ENTRY *entry = X509_NAME_get_entry(xname, i); ASN1_STRING *value; value = X509_NAME_ENTRY_get_data(entry); if (ASN1_STRING_to_UTF8((unsigned char **)&str, value) >= 0) { order = ckch_inst_add_cert_sni(ctx, ckch_inst, bind_conf, ssl_conf, kinfo, str, order); OPENSSL_free(str); if (order < 0) { memprintf(err, "%sunable to create a sni context.\n", err && *err ? *err : ""); errcode |= ERR_ALERT | ERR_FATAL; goto error; } } } } /* we must not free the SSL_CTX anymore below, since it's already in * the tree, so it will be discovered and cleaned in time. */ #ifndef SSL_CTRL_SET_TLSEXT_HOSTNAME if (bind_conf->default_ctx) { memprintf(err, "%sthis version of openssl cannot load multiple SSL certificates.\n", err && *err ? *err : ""); errcode |= ERR_ALERT | ERR_FATAL; goto error; } #endif if (!bind_conf->default_ctx) { bind_conf->default_ctx = ctx; bind_conf->default_ssl_conf = ssl_conf; ckch_inst->is_default = 1; SSL_CTX_up_ref(ctx); } /* everything succeed, the ckch instance can be used */ ckch_inst->bind_conf = bind_conf; ckch_inst->ssl_conf = ssl_conf; ckch_inst->ckch_store = ckchs; SSL_CTX_free(ctx); /* we need to free the ctx since we incremented the refcount where it's used */ *ckchi = ckch_inst; return errcode; error: /* free the allocated sni_ctxs */ if (ckch_inst) { if (ckch_inst->is_default) SSL_CTX_free(ctx); ckch_inst_free(ckch_inst); ckch_inst = NULL; } SSL_CTX_free(ctx); return errcode; } /* Returns a set of ERR_* flags possibly with an error in . */ static int ssl_sock_load_ckchs(const char *path, struct ckch_store *ckchs, struct bind_conf *bind_conf, struct ssl_bind_conf *ssl_conf, char **sni_filter, int fcount, struct ckch_inst **ckch_inst, char **err) { int errcode = 0; /* we found the ckchs in the tree, we can use it directly */ if (ckchs->multi) errcode |= ckch_inst_new_load_multi_store(path, ckchs, bind_conf, ssl_conf, sni_filter, fcount, ckch_inst, err); else errcode |= ckch_inst_new_load_store(path, ckchs, bind_conf, ssl_conf, sni_filter, fcount, ckch_inst, err); if (errcode & ERR_CODE) return errcode; ssl_sock_load_cert_sni(*ckch_inst, bind_conf); /* succeed, add the instance to the ckch_store's list of instance */ LIST_ADDQ(&ckchs->ckch_inst, &((*ckch_inst)->by_ckchs)); return errcode; } /* Make sure openssl opens /dev/urandom before the chroot. The work is only * done once. Zero is returned if the operation fails. No error is returned * if the random is said as not implemented, because we expect that openssl * will use another method once needed. */ static int ssl_initialize_random() { unsigned char random; static int random_initialized = 0; if (!random_initialized && RAND_bytes(&random, 1) != 0) random_initialized = 1; return random_initialized; } /* This function reads a directory and stores it in a struct crtlist, each file is a crtlist_entry structure * Fill the argument with a pointer to a new crtlist struct * * This function tries to open and store certificate files. */ static int crtlist_load_cert_dir(char *path, struct bind_conf *bind_conf, struct crtlist **crtlist, char **err) { struct crtlist *dir; struct dirent **de_list; int i, n; struct stat buf; char *end; char fp[MAXPATHLEN+1]; int cfgerr = 0; struct ckch_store *ckchs; #if HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL int is_bundle; int j; #endif dir = crtlist_new(path, 1); if (dir == NULL) { memprintf(err, "not enough memory"); return ERR_ALERT | ERR_FATAL; } n = scandir(path, &de_list, 0, alphasort); if (n < 0) { memprintf(err, "%sunable to scan directory '%s' : %s.\n", err && *err ? *err : "", path, strerror(errno)); cfgerr |= ERR_ALERT | ERR_FATAL; } else { for (i = 0; i < n; i++) { struct crtlist_entry *entry; struct dirent *de = de_list[i]; end = strrchr(de->d_name, '.'); if (end && (!strcmp(end, ".issuer") || !strcmp(end, ".ocsp") || !strcmp(end, ".sctl") || !strcmp(end, ".key"))) goto ignore_entry; snprintf(fp, sizeof(fp), "%s/%s", path, de->d_name); if (stat(fp, &buf) != 0) { memprintf(err, "%sunable to stat SSL certificate from file '%s' : %s.\n", err && *err ? *err : "", fp, strerror(errno)); cfgerr |= ERR_ALERT | ERR_FATAL; goto ignore_entry; } if (!S_ISREG(buf.st_mode)) goto ignore_entry; entry = crtlist_entry_new(); if (entry == NULL) { memprintf(err, "not enough memory '%s'", fp); cfgerr |= ERR_ALERT | ERR_FATAL; goto ignore_entry; } #if HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL is_bundle = 0; /* Check if current entry in directory is part of a multi-cert bundle */ if ((global_ssl.extra_files & SSL_GF_BUNDLE) && end) { for (j = 0; j < SSL_SOCK_NUM_KEYTYPES; j++) { if (!strcmp(end + 1, SSL_SOCK_KEYTYPE_NAMES[j])) { is_bundle = 1; break; } } if (is_bundle) { int dp_len; dp_len = end - de->d_name; /* increment i and free de until we get to a non-bundle cert * Note here that we look at de_list[i + 1] before freeing de * this is important since ignore_entry will free de. This also * guarantees that de->d_name continues to hold the same prefix. */ while (i + 1 < n && !strncmp(de_list[i + 1]->d_name, de->d_name, dp_len)) { free(de); i++; de = de_list[i]; } snprintf(fp, sizeof(fp), "%s/%.*s", path, dp_len, de->d_name); ckchs = ckchs_lookup(fp); if (ckchs == NULL) ckchs = ckchs_load_cert_file(fp, 1, err); if (ckchs == NULL) { free(de); free(entry); cfgerr |= ERR_ALERT | ERR_FATAL; goto end; } entry->node.key = ckchs; entry->crtlist = dir; LIST_ADDQ(&ckchs->crtlist_entry, &entry->by_ckch_store); LIST_ADDQ(&dir->ord_entries, &entry->by_crtlist); ebpt_insert(&dir->entries, &entry->node); /* Successfully processed the bundle */ goto ignore_entry; } } #endif ckchs = ckchs_lookup(fp); if (ckchs == NULL) ckchs = ckchs_load_cert_file(fp, 0, err); if (ckchs == NULL) { free(de); free(entry); cfgerr |= ERR_ALERT | ERR_FATAL; goto end; } entry->node.key = ckchs; entry->crtlist = dir; LIST_ADDQ(&ckchs->crtlist_entry, &entry->by_ckch_store); LIST_ADDQ(&dir->ord_entries, &entry->by_crtlist); ebpt_insert(&dir->entries, &entry->node); ignore_entry: free(de); } end: free(de_list); } if (cfgerr & ERR_CODE) { /* free the dir and entries on error */ crtlist_free(dir); } else { *crtlist = dir; } return cfgerr; } /* * Read a single crt-list line. /!\ alter the string. * Fill and * must be alloc and free by the caller * ssl_conf> is alloc by the function * filters> is alloc by the function * is a ptr in * Return an error code */ static int crtlist_parse_line(char *line, char **crt_path, struct crtlist_entry *entry, const char *file, int linenum, char **err) { int cfgerr = 0; int arg, newarg, cur_arg, i, ssl_b = 0, ssl_e = 0; char *end; char *args[MAX_CRT_ARGS + 1]; struct ssl_bind_conf *ssl_conf = NULL; if (!line || !crt_path || !entry) return ERR_ALERT | ERR_FATAL; end = line + strlen(line); if (end-line >= CRT_LINESIZE-1 && *(end-1) != '\n') { /* Check if we reached the limit and the last char is not \n. * Watch out for the last line without the terminating '\n'! */ memprintf(err, "line %d too long in file '%s', limit is %d characters", linenum, file, CRT_LINESIZE-1); cfgerr |= ERR_ALERT | ERR_FATAL; goto error; } arg = 0; newarg = 1; while (*line) { if (isspace((unsigned char)*line)) { newarg = 1; *line = 0; } else if (*line == '[') { if (ssl_b) { memprintf(err, "too many '[' on line %d in file '%s'.", linenum, file); cfgerr |= ERR_ALERT | ERR_FATAL; goto error; } if (!arg) { memprintf(err, "file must start with a cert on line %d in file '%s'", linenum, file); cfgerr |= ERR_ALERT | ERR_FATAL; goto error; } ssl_b = arg; newarg = 1; *line = 0; } else if (*line == ']') { if (ssl_e) { memprintf(err, "too many ']' on line %d in file '%s'.", linenum, file); cfgerr |= ERR_ALERT | ERR_FATAL; goto error; } if (!ssl_b) { memprintf(err, "missing '[' in line %d in file '%s'.", linenum, file); cfgerr |= ERR_ALERT | ERR_FATAL; goto error; } ssl_e = arg; newarg = 1; *line = 0; } else if (newarg) { if (arg == MAX_CRT_ARGS) { memprintf(err, "too many args on line %d in file '%s'.", linenum, file); cfgerr |= ERR_ALERT | ERR_FATAL; goto error; } newarg = 0; args[arg++] = line; } line++; } args[arg++] = line; /* empty line */ if (!*args[0]) { cfgerr |= ERR_NONE; goto error; } *crt_path = args[0]; if (ssl_b) { ssl_conf = calloc(1, sizeof *ssl_conf); if (!ssl_conf) { memprintf(err, "not enough memory!"); cfgerr |= ERR_ALERT | ERR_FATAL; goto error; } } cur_arg = ssl_b ? ssl_b : 1; while (cur_arg < ssl_e) { newarg = 0; for (i = 0; ssl_bind_kws[i].kw != NULL; i++) { if (strcmp(ssl_bind_kws[i].kw, args[cur_arg]) == 0) { newarg = 1; cfgerr |= ssl_bind_kws[i].parse(args, cur_arg, NULL, ssl_conf, err); if (cur_arg + 1 + ssl_bind_kws[i].skip > ssl_e) { memprintf(err, "ssl args out of '[]' for %s on line %d in file '%s'", args[cur_arg], linenum, file); cfgerr |= ERR_ALERT | ERR_FATAL; goto error; } cur_arg += 1 + ssl_bind_kws[i].skip; break; } } if (!cfgerr && !newarg) { memprintf(err, "unknown ssl keyword %s on line %d in file '%s'.", args[cur_arg], linenum, file); cfgerr |= ERR_ALERT | ERR_FATAL; goto error; } } entry->linenum = linenum; entry->ssl_conf = ssl_conf; entry->filters = crtlist_dup_filters(&args[cur_arg], arg - cur_arg - 1); entry->fcount = arg - cur_arg - 1; return cfgerr; error: crtlist_free_filters(entry->filters); entry->filters = NULL; ssl_sock_free_ssl_conf(entry->ssl_conf); free(entry->ssl_conf); entry->ssl_conf = NULL; return cfgerr; } /* This function parse a crt-list file and store it in a struct crtlist, each line is a crtlist_entry structure * Fill the argument with a pointer to a new crtlist struct * * This function tries to open and store certificate files. */ static int crtlist_parse_file(char *file, struct bind_conf *bind_conf, struct proxy *curproxy, struct crtlist **crtlist, char **err) { struct crtlist *newlist; struct crtlist_entry *entry = NULL; char thisline[CRT_LINESIZE]; char path[MAXPATHLEN+1]; FILE *f; struct stat buf; int linenum = 0; int cfgerr = 0; if ((f = fopen(file, "r")) == NULL) { memprintf(err, "cannot open file '%s' : %s", file, strerror(errno)); return ERR_ALERT | ERR_FATAL; } newlist = crtlist_new(file, 0); if (newlist == NULL) { memprintf(err, "Not enough memory!"); cfgerr |= ERR_ALERT | ERR_FATAL; goto error; } while (fgets(thisline, sizeof(thisline), f) != NULL) { char *end; char *line = thisline; char *crt_path; struct ckch_store *ckchs; linenum++; end = line + strlen(line); if (end-line == sizeof(thisline)-1 && *(end-1) != '\n') { /* Check if we reached the limit and the last char is not \n. * Watch out for the last line without the terminating '\n'! */ memprintf(err, "line %d too long in file '%s', limit is %d characters", linenum, file, (int)sizeof(thisline)-1); cfgerr |= ERR_ALERT | ERR_FATAL; break; } if (*line == '#' || *line == '\n' || *line == '\r') continue; entry = crtlist_entry_new(); if (entry == NULL) { memprintf(err, "Not enough memory!"); cfgerr |= ERR_ALERT | ERR_FATAL; goto error; } *(end - 1) = '\0'; /* line parser mustn't receive any \n */ cfgerr |= crtlist_parse_line(thisline, &crt_path, entry, file, linenum, err); if (cfgerr) goto error; /* empty line */ if (!crt_path || !*crt_path) { crtlist_entry_free(entry); entry = NULL; continue; } if (*crt_path != '/' && global_ssl.crt_base) { if ((strlen(global_ssl.crt_base) + 1 + strlen(crt_path)) > MAXPATHLEN) { memprintf(err, "'%s' : path too long on line %d in file '%s'", crt_path, linenum, file); cfgerr |= ERR_ALERT | ERR_FATAL; goto error; } snprintf(path, sizeof(path), "%s/%s", global_ssl.crt_base, crt_path); crt_path = path; } /* Look for a ckch_store or create one */ ckchs = ckchs_lookup(crt_path); if (ckchs == NULL) { if (stat(crt_path, &buf) == 0) ckchs = ckchs_load_cert_file(crt_path, 0, err); else ckchs = ckchs_load_cert_file(crt_path, 1, err); } if (ckchs == NULL) cfgerr |= ERR_ALERT | ERR_FATAL; if (cfgerr & ERR_CODE) goto error; entry->node.key = ckchs; entry->crtlist = newlist; ebpt_insert(&newlist->entries, &entry->node); LIST_ADDQ(&newlist->ord_entries, &entry->by_crtlist); LIST_ADDQ(&ckchs->crtlist_entry, &entry->by_ckch_store); entry = NULL; } if (cfgerr & ERR_CODE) goto error; newlist->linecount = linenum; fclose(f); *crtlist = newlist; return cfgerr; error: crtlist_entry_free(entry); fclose(f); crtlist_free(newlist); return cfgerr; } /* Load a crt-list file, this is done in 2 parts: * - store the content of the file in a crtlist structure with crtlist_entry structures * - generate the instances by iterating on entries in the crtlist struct * * Nothing is locked there, this function is used in the configuration parser. * * Returns a set of ERR_* flags possibly with an error in . */ int ssl_sock_load_cert_list_file(char *file, int dir, struct bind_conf *bind_conf, struct proxy *curproxy, char **err) { struct crtlist *crtlist = NULL; struct ebmb_node *eb; struct crtlist_entry *entry = NULL; struct bind_conf_list *bind_conf_node = NULL; int cfgerr = 0; char *end; bind_conf_node = malloc(sizeof(*bind_conf_node)); if (!bind_conf_node) { memprintf(err, "%sCan't alloc memory!\n", err && *err ? *err : ""); cfgerr |= ERR_FATAL | ERR_ALERT; goto error; } bind_conf_node->next = NULL; bind_conf_node->bind_conf = bind_conf; /* strip trailing slashes, including first one */ for (end = file + strlen(file) - 1; end >= file && *end == '/'; end--) *end = 0; /* look for an existing crtlist or create one */ eb = ebst_lookup(&crtlists_tree, file); if (eb) { crtlist = ebmb_entry(eb, struct crtlist, node); } else { /* load a crt-list OR a directory */ if (dir) cfgerr |= crtlist_load_cert_dir(file, bind_conf, &crtlist, err); else cfgerr |= crtlist_parse_file(file, bind_conf, curproxy, &crtlist, err); if (!(cfgerr & ERR_CODE)) ebst_insert(&crtlists_tree, &crtlist->node); } if (cfgerr & ERR_CODE) { cfgerr |= ERR_FATAL | ERR_ALERT; goto error; } /* generates ckch instance from the crtlist_entry */ list_for_each_entry(entry, &crtlist->ord_entries, by_crtlist) { struct ckch_store *store; struct ckch_inst *ckch_inst = NULL; store = entry->node.key; cfgerr |= ssl_sock_load_ckchs(store->path, store, bind_conf, entry->ssl_conf, entry->filters, entry->fcount, &ckch_inst, err); if (cfgerr & ERR_CODE) { memprintf(err, "error processing line %d in file '%s' : %s", entry->linenum, file, *err); goto error; } LIST_ADDQ(&entry->ckch_inst, &ckch_inst->by_crtlist_entry); ckch_inst->crtlist_entry = entry; } /* add the bind_conf to the list */ bind_conf_node->next = crtlist->bind_conf; crtlist->bind_conf = bind_conf_node; return cfgerr; error: { struct crtlist_entry *lastentry; struct ckch_inst *inst, *s_inst; lastentry = entry; /* which entry we tried to generate last */ if (lastentry) { list_for_each_entry(entry, &crtlist->ord_entries, by_crtlist) { if (entry == lastentry) /* last entry we tried to generate, no need to go further */ break; list_for_each_entry_safe(inst, s_inst, &entry->ckch_inst, by_crtlist_entry) { /* this was not generated for this bind_conf, skip */ if (inst->bind_conf != bind_conf) continue; /* free the sni_ctx and instance */ ckch_inst_free(inst); } } } free(bind_conf_node); } return cfgerr; } /* Returns a set of ERR_* flags possibly with an error in . */ int ssl_sock_load_cert(char *path, struct bind_conf *bind_conf, char **err) { struct stat buf; char fp[MAXPATHLEN+1]; int cfgerr = 0; struct ckch_store *ckchs; struct ckch_inst *ckch_inst = NULL; if ((ckchs = ckchs_lookup(path))) { /* we found the ckchs in the tree, we can use it directly */ return ssl_sock_load_ckchs(path, ckchs, bind_conf, NULL, NULL, 0, &ckch_inst, err); } if (stat(path, &buf) == 0) { if (S_ISDIR(buf.st_mode) == 0) { ckchs = ckchs_load_cert_file(path, 0, err); if (!ckchs) return ERR_ALERT | ERR_FATAL; return ssl_sock_load_ckchs(path, ckchs, bind_conf, NULL, NULL, 0, &ckch_inst, err); } else { return ssl_sock_load_cert_list_file(path, 1, bind_conf, bind_conf->frontend, err); } } else { /* stat failed, could be a bundle */ if (global_ssl.extra_files & SSL_GF_BUNDLE) { /* try to load a bundle if it is permitted */ ckchs = ckchs_load_cert_file(path, 1, err); if (!ckchs) return ERR_ALERT | ERR_FATAL; cfgerr |= ssl_sock_load_ckchs(path, ckchs, bind_conf, NULL, NULL, 0, &ckch_inst, err); } else { memprintf(err, "%sunable to stat SSL certificate from file '%s' : %s.\n", err && *err ? *err : "", fp, strerror(errno)); cfgerr |= ERR_ALERT | ERR_FATAL; } } return cfgerr; } /* Create an initial CTX used to start the SSL connection before switchctx */ static int ssl_sock_initial_ctx(struct bind_conf *bind_conf) { SSL_CTX *ctx = NULL; long options = SSL_OP_ALL | /* all known workarounds for bugs */ SSL_OP_NO_SSLv2 | SSL_OP_NO_COMPRESSION | SSL_OP_SINGLE_DH_USE | SSL_OP_SINGLE_ECDH_USE | SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION | SSL_OP_PRIORITIZE_CHACHA | SSL_OP_CIPHER_SERVER_PREFERENCE; long mode = SSL_MODE_ENABLE_PARTIAL_WRITE | SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER | SSL_MODE_RELEASE_BUFFERS | SSL_MODE_SMALL_BUFFERS; struct tls_version_filter *conf_ssl_methods = &bind_conf->ssl_conf.ssl_methods; int i, min, max, hole; int flags = MC_SSL_O_ALL; int cfgerr = 0; ctx = SSL_CTX_new(SSLv23_server_method()); bind_conf->initial_ctx = ctx; if (conf_ssl_methods->flags && (conf_ssl_methods->min || conf_ssl_methods->max)) ha_warning("Proxy '%s': no-sslv3/no-tlsv1x are ignored for bind '%s' at [%s:%d]. " "Use only 'ssl-min-ver' and 'ssl-max-ver' to fix.\n", bind_conf->frontend->id, bind_conf->arg, bind_conf->file, bind_conf->line); else flags = conf_ssl_methods->flags; min = conf_ssl_methods->min; max = conf_ssl_methods->max; /* start with TLSv10 to remove SSLv3 per default */ if (!min && (!max || max >= CONF_TLSV10)) min = CONF_TLSV10; /* Real min and max should be determinate with configuration and openssl's capabilities */ if (min) flags |= (methodVersions[min].flag - 1); if (max) flags |= ~((methodVersions[max].flag << 1) - 1); /* find min, max and holes */ min = max = CONF_TLSV_NONE; hole = 0; for (i = CONF_TLSV_MIN; i <= CONF_TLSV_MAX; i++) /* version is in openssl && version not disable in configuration */ if (methodVersions[i].option && !(flags & methodVersions[i].flag)) { if (min) { if (hole) { ha_warning("Proxy '%s': SSL/TLS versions range not contiguous for bind '%s' at [%s:%d]. " "Hole find for %s. Use only 'ssl-min-ver' and 'ssl-max-ver' to fix.\n", bind_conf->frontend->id, bind_conf->arg, bind_conf->file, bind_conf->line, methodVersions[hole].name); hole = 0; } max = i; } else { min = max = i; } } else { if (min) hole = i; } if (!min) { ha_alert("Proxy '%s': all SSL/TLS versions are disabled for bind '%s' at [%s:%d].\n", bind_conf->frontend->id, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr += 1; } /* save real min/max in bind_conf */ conf_ssl_methods->min = min; conf_ssl_methods->max = max; #if (HA_OPENSSL_VERSION_NUMBER < 0x1010000fL) /* Keep force-xxx implementation as it is in older haproxy. It's a precautionary measure to avoid any surprise with older openssl version. */ if (min == max) methodVersions[min].ctx_set_version(ctx, SET_SERVER); else for (i = CONF_TLSV_MIN; i <= CONF_TLSV_MAX; i++) if (flags & methodVersions[i].flag) options |= methodVersions[i].option; #else /* openssl >= 1.1.0 */ /* set the max_version is required to cap TLS version or activate new TLS (v1.3) */ methodVersions[min].ctx_set_version(ctx, SET_MIN); methodVersions[max].ctx_set_version(ctx, SET_MAX); #endif if (bind_conf->ssl_options & BC_SSL_O_NO_TLS_TICKETS) options |= SSL_OP_NO_TICKET; if (bind_conf->ssl_options & BC_SSL_O_PREF_CLIE_CIPH) options &= ~SSL_OP_CIPHER_SERVER_PREFERENCE; #ifdef SSL_OP_NO_RENEGOTIATION options |= SSL_OP_NO_RENEGOTIATION; #endif SSL_CTX_set_options(ctx, options); #if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) if (global_ssl.async) mode |= SSL_MODE_ASYNC; #endif SSL_CTX_set_mode(ctx, mode); if (global_ssl.life_time) SSL_CTX_set_timeout(ctx, global_ssl.life_time); #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME #ifdef OPENSSL_IS_BORINGSSL SSL_CTX_set_select_certificate_cb(ctx, ssl_sock_switchctx_cbk); SSL_CTX_set_tlsext_servername_callback(ctx, ssl_sock_switchctx_err_cbk); #elif defined(SSL_OP_NO_ANTI_REPLAY) if (bind_conf->ssl_conf.early_data) SSL_CTX_set_options(ctx, SSL_OP_NO_ANTI_REPLAY); SSL_CTX_set_client_hello_cb(ctx, ssl_sock_switchctx_cbk, NULL); SSL_CTX_set_tlsext_servername_callback(ctx, ssl_sock_switchctx_err_cbk); #else SSL_CTX_set_tlsext_servername_callback(ctx, ssl_sock_switchctx_cbk); #endif SSL_CTX_set_tlsext_servername_arg(ctx, bind_conf); #endif return cfgerr; } static inline void sh_ssl_sess_free_blocks(struct shared_block *first, struct shared_block *block) { if (first == block) { struct sh_ssl_sess_hdr *sh_ssl_sess = (struct sh_ssl_sess_hdr *)first->data; if (first->len > 0) sh_ssl_sess_tree_delete(sh_ssl_sess); } } /* return first block from sh_ssl_sess */ static inline struct shared_block *sh_ssl_sess_first_block(struct sh_ssl_sess_hdr *sh_ssl_sess) { return (struct shared_block *)((unsigned char *)sh_ssl_sess - ((struct shared_block *)NULL)->data); } /* store a session into the cache * s_id : session id padded with zero to SSL_MAX_SSL_SESSION_ID_LENGTH * data: asn1 encoded session * data_len: asn1 encoded session length * Returns 1 id session was stored (else 0) */ static int sh_ssl_sess_store(unsigned char *s_id, unsigned char *data, int data_len) { struct shared_block *first; struct sh_ssl_sess_hdr *sh_ssl_sess, *oldsh_ssl_sess; first = shctx_row_reserve_hot(ssl_shctx, NULL, data_len + sizeof(struct sh_ssl_sess_hdr)); if (!first) { /* Could not retrieve enough free blocks to store that session */ return 0; } /* STORE the key in the first elem */ sh_ssl_sess = (struct sh_ssl_sess_hdr *)first->data; memcpy(sh_ssl_sess->key_data, s_id, SSL_MAX_SSL_SESSION_ID_LENGTH); first->len = sizeof(struct sh_ssl_sess_hdr); /* it returns the already existing node or current node if none, never returns null */ oldsh_ssl_sess = sh_ssl_sess_tree_insert(sh_ssl_sess); if (oldsh_ssl_sess != sh_ssl_sess) { /* NOTE: Row couldn't be in use because we lock read & write function */ /* release the reserved row */ shctx_row_dec_hot(ssl_shctx, first); /* replace the previous session already in the tree */ sh_ssl_sess = oldsh_ssl_sess; /* ignore the previous session data, only use the header */ first = sh_ssl_sess_first_block(sh_ssl_sess); shctx_row_inc_hot(ssl_shctx, first); first->len = sizeof(struct sh_ssl_sess_hdr); } if (shctx_row_data_append(ssl_shctx, first, NULL, data, data_len) < 0) { shctx_row_dec_hot(ssl_shctx, first); return 0; } shctx_row_dec_hot(ssl_shctx, first); return 1; } /* SSL callback used when a new session is created while connecting to a server */ static int ssl_sess_new_srv_cb(SSL *ssl, SSL_SESSION *sess) { struct connection *conn = SSL_get_ex_data(ssl, ssl_app_data_index); struct server *s; s = __objt_server(conn->target); if (!(s->ssl_ctx.options & SRV_SSL_O_NO_REUSE)) { int len; unsigned char *ptr; len = i2d_SSL_SESSION(sess, NULL); if (s->ssl_ctx.reused_sess[tid].ptr && s->ssl_ctx.reused_sess[tid].allocated_size >= len) { ptr = s->ssl_ctx.reused_sess[tid].ptr; } else { free(s->ssl_ctx.reused_sess[tid].ptr); ptr = s->ssl_ctx.reused_sess[tid].ptr = malloc(len); s->ssl_ctx.reused_sess[tid].allocated_size = len; } if (s->ssl_ctx.reused_sess[tid].ptr) { s->ssl_ctx.reused_sess[tid].size = i2d_SSL_SESSION(sess, &ptr); } } else { free(s->ssl_ctx.reused_sess[tid].ptr); s->ssl_ctx.reused_sess[tid].ptr = NULL; } return 0; } /* SSL callback used on new session creation */ int sh_ssl_sess_new_cb(SSL *ssl, SSL_SESSION *sess) { unsigned char encsess[SHSESS_MAX_DATA_LEN]; /* encoded session */ unsigned char encid[SSL_MAX_SSL_SESSION_ID_LENGTH]; /* encoded id */ unsigned char *p; int data_len; unsigned int sid_length; const unsigned char *sid_data; /* Session id is already stored in to key and session id is known * so we don't store it to keep size. * note: SSL_SESSION_set1_id is using * a memcpy so we need to use a different pointer * than sid_data or sid_ctx_data to avoid valgrind * complaining. */ sid_data = SSL_SESSION_get_id(sess, &sid_length); /* copy value in an other buffer */ memcpy(encid, sid_data, sid_length); /* pad with 0 */ if (sid_length < SSL_MAX_SSL_SESSION_ID_LENGTH) memset(encid + sid_length, 0, SSL_MAX_SSL_SESSION_ID_LENGTH-sid_length); /* force length to zero to avoid ASN1 encoding */ SSL_SESSION_set1_id(sess, encid, 0); /* force length to zero to avoid ASN1 encoding */ SSL_SESSION_set1_id_context(sess, (const unsigned char *)SHCTX_APPNAME, 0); /* check if buffer is large enough for the ASN1 encoded session */ data_len = i2d_SSL_SESSION(sess, NULL); if (data_len > SHSESS_MAX_DATA_LEN) goto err; p = encsess; /* process ASN1 session encoding before the lock */ i2d_SSL_SESSION(sess, &p); shctx_lock(ssl_shctx); /* store to cache */ sh_ssl_sess_store(encid, encsess, data_len); shctx_unlock(ssl_shctx); err: /* reset original length values */ SSL_SESSION_set1_id(sess, encid, sid_length); SSL_SESSION_set1_id_context(sess, (const unsigned char *)SHCTX_APPNAME, strlen(SHCTX_APPNAME)); return 0; /* do not increment session reference count */ } /* SSL callback used on lookup an existing session cause none found in internal cache */ SSL_SESSION *sh_ssl_sess_get_cb(SSL *ssl, __OPENSSL_110_CONST__ unsigned char *key, int key_len, int *do_copy) { struct sh_ssl_sess_hdr *sh_ssl_sess; unsigned char data[SHSESS_MAX_DATA_LEN], *p; unsigned char tmpkey[SSL_MAX_SSL_SESSION_ID_LENGTH]; SSL_SESSION *sess; struct shared_block *first; global.shctx_lookups++; /* allow the session to be freed automatically by openssl */ *do_copy = 0; /* tree key is zeros padded sessionid */ if (key_len < SSL_MAX_SSL_SESSION_ID_LENGTH) { memcpy(tmpkey, key, key_len); memset(tmpkey + key_len, 0, SSL_MAX_SSL_SESSION_ID_LENGTH - key_len); key = tmpkey; } /* lock cache */ shctx_lock(ssl_shctx); /* lookup for session */ sh_ssl_sess = sh_ssl_sess_tree_lookup(key); if (!sh_ssl_sess) { /* no session found: unlock cache and exit */ shctx_unlock(ssl_shctx); global.shctx_misses++; return NULL; } /* sh_ssl_sess (shared_block->data) is at the end of shared_block */ first = sh_ssl_sess_first_block(sh_ssl_sess); shctx_row_data_get(ssl_shctx, first, data, sizeof(struct sh_ssl_sess_hdr), first->len-sizeof(struct sh_ssl_sess_hdr)); shctx_unlock(ssl_shctx); /* decode ASN1 session */ p = data; sess = d2i_SSL_SESSION(NULL, (const unsigned char **)&p, first->len-sizeof(struct sh_ssl_sess_hdr)); /* Reset session id and session id contenxt */ if (sess) { SSL_SESSION_set1_id(sess, key, key_len); SSL_SESSION_set1_id_context(sess, (const unsigned char *)SHCTX_APPNAME, strlen(SHCTX_APPNAME)); } return sess; } /* SSL callback used to signal session is no more used in internal cache */ void sh_ssl_sess_remove_cb(SSL_CTX *ctx, SSL_SESSION *sess) { struct sh_ssl_sess_hdr *sh_ssl_sess; unsigned char tmpkey[SSL_MAX_SSL_SESSION_ID_LENGTH]; unsigned int sid_length; const unsigned char *sid_data; (void)ctx; sid_data = SSL_SESSION_get_id(sess, &sid_length); /* tree key is zeros padded sessionid */ if (sid_length < SSL_MAX_SSL_SESSION_ID_LENGTH) { memcpy(tmpkey, sid_data, sid_length); memset(tmpkey+sid_length, 0, SSL_MAX_SSL_SESSION_ID_LENGTH - sid_length); sid_data = tmpkey; } shctx_lock(ssl_shctx); /* lookup for session */ sh_ssl_sess = sh_ssl_sess_tree_lookup(sid_data); if (sh_ssl_sess) { /* free session */ sh_ssl_sess_tree_delete(sh_ssl_sess); } /* unlock cache */ shctx_unlock(ssl_shctx); } /* Set session cache mode to server and disable openssl internal cache. * Set shared cache callbacks on an ssl context. * Shared context MUST be firstly initialized */ void ssl_set_shctx(SSL_CTX *ctx) { SSL_CTX_set_session_id_context(ctx, (const unsigned char *)SHCTX_APPNAME, strlen(SHCTX_APPNAME)); if (!ssl_shctx) { SSL_CTX_set_session_cache_mode(ctx, SSL_SESS_CACHE_OFF); return; } SSL_CTX_set_session_cache_mode(ctx, SSL_SESS_CACHE_SERVER | SSL_SESS_CACHE_NO_INTERNAL | SSL_SESS_CACHE_NO_AUTO_CLEAR); /* Set callbacks */ SSL_CTX_sess_set_new_cb(ctx, sh_ssl_sess_new_cb); SSL_CTX_sess_set_get_cb(ctx, sh_ssl_sess_get_cb); SSL_CTX_sess_set_remove_cb(ctx, sh_ssl_sess_remove_cb); } /* * This function applies the SSL configuration on a SSL_CTX * It returns an error code and fills the buffer */ int ssl_sock_prepare_ctx(struct bind_conf *bind_conf, struct ssl_bind_conf *ssl_conf, SSL_CTX *ctx, char **err) { struct proxy *curproxy = bind_conf->frontend; int cfgerr = 0; int verify = SSL_VERIFY_NONE; struct ssl_bind_conf __maybe_unused *ssl_conf_cur; const char *conf_ciphers; #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) const char *conf_ciphersuites; #endif const char *conf_curves = NULL; if (ssl_conf) { struct tls_version_filter *conf_ssl_methods = &ssl_conf->ssl_methods; int i, min, max; int flags = MC_SSL_O_ALL; /* Real min and max should be determinate with configuration and openssl's capabilities */ min = conf_ssl_methods->min ? conf_ssl_methods->min : bind_conf->ssl_conf.ssl_methods.min; max = conf_ssl_methods->max ? conf_ssl_methods->max : bind_conf->ssl_conf.ssl_methods.max; if (min) flags |= (methodVersions[min].flag - 1); if (max) flags |= ~((methodVersions[max].flag << 1) - 1); min = max = CONF_TLSV_NONE; for (i = CONF_TLSV_MIN; i <= CONF_TLSV_MAX; i++) if (methodVersions[i].option && !(flags & methodVersions[i].flag)) { if (min) max = i; else min = max = i; } /* save real min/max */ conf_ssl_methods->min = min; conf_ssl_methods->max = max; if (!min) { memprintf(err, "%sProxy '%s': all SSL/TLS versions are disabled for bind '%s' at [%s:%d].\n", err && *err ? *err : "", bind_conf->frontend->id, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr |= ERR_ALERT | ERR_FATAL; } } switch ((ssl_conf && ssl_conf->verify) ? ssl_conf->verify : bind_conf->ssl_conf.verify) { case SSL_SOCK_VERIFY_NONE: verify = SSL_VERIFY_NONE; break; case SSL_SOCK_VERIFY_OPTIONAL: verify = SSL_VERIFY_PEER; break; case SSL_SOCK_VERIFY_REQUIRED: verify = SSL_VERIFY_PEER|SSL_VERIFY_FAIL_IF_NO_PEER_CERT; break; } SSL_CTX_set_verify(ctx, verify, ssl_sock_bind_verifycbk); if (verify & SSL_VERIFY_PEER) { char *ca_file = (ssl_conf && ssl_conf->ca_file) ? ssl_conf->ca_file : bind_conf->ssl_conf.ca_file; char *ca_verify_file = (ssl_conf && ssl_conf->ca_verify_file) ? ssl_conf->ca_verify_file : bind_conf->ssl_conf.ca_verify_file; char *crl_file = (ssl_conf && ssl_conf->crl_file) ? ssl_conf->crl_file : bind_conf->ssl_conf.crl_file; if (ca_file || ca_verify_file) { /* set CAfile to verify */ if (ca_file && !ssl_set_verify_locations_file(ctx, ca_file)) { memprintf(err, "%sProxy '%s': unable to set CA file '%s' for bind '%s' at [%s:%d].\n", err && *err ? *err : "", curproxy->id, ca_file, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr |= ERR_ALERT | ERR_FATAL; } if (ca_verify_file && !ssl_set_verify_locations_file(ctx, ca_verify_file)) { memprintf(err, "%sProxy '%s': unable to set CA-no-names file '%s' for bind '%s' at [%s:%d].\n", err && *err ? *err : "", curproxy->id, ca_verify_file, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr |= ERR_ALERT | ERR_FATAL; } if (ca_file && !((ssl_conf && ssl_conf->no_ca_names) || bind_conf->ssl_conf.no_ca_names)) { /* set CA names for client cert request, function returns void */ SSL_CTX_set_client_CA_list(ctx, SSL_dup_CA_list(ssl_get_client_ca_file(ca_file))); } } else { memprintf(err, "%sProxy '%s': verify is enabled but no CA file specified for bind '%s' at [%s:%d].\n", err && *err ? *err : "", curproxy->id, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr |= ERR_ALERT | ERR_FATAL; } #ifdef X509_V_FLAG_CRL_CHECK if (crl_file) { X509_STORE *store = SSL_CTX_get_cert_store(ctx); if (!ssl_set_cert_crl_file(store, crl_file)) { memprintf(err, "%sProxy '%s': unable to configure CRL file '%s' for bind '%s' at [%s:%d].\n", err && *err ? *err : "", curproxy->id, crl_file, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr |= ERR_ALERT | ERR_FATAL; } else { X509_STORE_set_flags(store, X509_V_FLAG_CRL_CHECK|X509_V_FLAG_CRL_CHECK_ALL); } } #endif ERR_clear_error(); } #if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0) if(bind_conf->keys_ref) { if (!SSL_CTX_set_tlsext_ticket_key_cb(ctx, ssl_tlsext_ticket_key_cb)) { memprintf(err, "%sProxy '%s': unable to set callback for TLS ticket validation for bind '%s' at [%s:%d].\n", err && *err ? *err : "", curproxy->id, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr |= ERR_ALERT | ERR_FATAL; } } #endif ssl_set_shctx(ctx); conf_ciphers = (ssl_conf && ssl_conf->ciphers) ? ssl_conf->ciphers : bind_conf->ssl_conf.ciphers; if (conf_ciphers && !SSL_CTX_set_cipher_list(ctx, conf_ciphers)) { memprintf(err, "%sProxy '%s': unable to set SSL cipher list to '%s' for bind '%s' at [%s:%d].\n", err && *err ? *err : "", curproxy->id, conf_ciphers, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr |= ERR_ALERT | ERR_FATAL; } #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) conf_ciphersuites = (ssl_conf && ssl_conf->ciphersuites) ? ssl_conf->ciphersuites : bind_conf->ssl_conf.ciphersuites; if (conf_ciphersuites && !SSL_CTX_set_ciphersuites(ctx, conf_ciphersuites)) { memprintf(err, "%sProxy '%s': unable to set TLS 1.3 cipher suites to '%s' for bind '%s' at [%s:%d].\n", err && *err ? *err : "", curproxy->id, conf_ciphersuites, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr |= ERR_ALERT | ERR_FATAL; } #endif #ifndef OPENSSL_NO_DH /* If tune.ssl.default-dh-param has not been set, neither has ssl-default-dh-file and no static DH params were in the certificate file. */ if (global_ssl.default_dh_param == 0 && global_dh == NULL && (ssl_dh_ptr_index == -1 || SSL_CTX_get_ex_data(ctx, ssl_dh_ptr_index) == NULL)) { STACK_OF(SSL_CIPHER) * ciphers = NULL; const SSL_CIPHER * cipher = NULL; char cipher_description[128]; /* The description of ciphers using an Ephemeral Diffie Hellman key exchange contains " Kx=DH " or " Kx=DH(". Beware of " Kx=DH/", which is not ephemeral DH. */ const char dhe_description[] = " Kx=DH "; const char dhe_export_description[] = " Kx=DH("; int idx = 0; int dhe_found = 0; SSL *ssl = NULL; ssl = SSL_new(ctx); if (ssl) { ciphers = SSL_get_ciphers(ssl); if (ciphers) { for (idx = 0; idx < sk_SSL_CIPHER_num(ciphers); idx++) { cipher = sk_SSL_CIPHER_value(ciphers, idx); if (SSL_CIPHER_description(cipher, cipher_description, sizeof (cipher_description)) == cipher_description) { if (strstr(cipher_description, dhe_description) != NULL || strstr(cipher_description, dhe_export_description) != NULL) { dhe_found = 1; break; } } } } SSL_free(ssl); ssl = NULL; } if (dhe_found) { memprintf(err, "%sSetting tune.ssl.default-dh-param to 1024 by default, if your workload permits it you should set it to at least 2048. Please set a value >= 1024 to make this warning disappear.\n", err && *err ? *err : ""); cfgerr |= ERR_WARN; } global_ssl.default_dh_param = 1024; } if (global_ssl.default_dh_param >= 1024) { if (local_dh_1024 == NULL) { local_dh_1024 = ssl_get_dh_1024(); } if (global_ssl.default_dh_param >= 2048) { if (local_dh_2048 == NULL) { local_dh_2048 = ssl_get_dh_2048(); } if (global_ssl.default_dh_param >= 4096) { if (local_dh_4096 == NULL) { local_dh_4096 = ssl_get_dh_4096(); } } } } #endif /* OPENSSL_NO_DH */ SSL_CTX_set_info_callback(ctx, ssl_sock_infocbk); #if HA_OPENSSL_VERSION_NUMBER >= 0x00907000L SSL_CTX_set_msg_callback(ctx, ssl_sock_msgcbk); #endif #if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG) ssl_conf_cur = NULL; if (ssl_conf && ssl_conf->npn_str) ssl_conf_cur = ssl_conf; else if (bind_conf->ssl_conf.npn_str) ssl_conf_cur = &bind_conf->ssl_conf; if (ssl_conf_cur) SSL_CTX_set_next_protos_advertised_cb(ctx, ssl_sock_advertise_npn_protos, ssl_conf_cur); #endif #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation ssl_conf_cur = NULL; if (ssl_conf && ssl_conf->alpn_str) ssl_conf_cur = ssl_conf; else if (bind_conf->ssl_conf.alpn_str) ssl_conf_cur = &bind_conf->ssl_conf; if (ssl_conf_cur) SSL_CTX_set_alpn_select_cb(ctx, ssl_sock_advertise_alpn_protos, ssl_conf_cur); #endif #if ((HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL) || defined(LIBRESSL_VERSION_NUMBER)) conf_curves = (ssl_conf && ssl_conf->curves) ? ssl_conf->curves : bind_conf->ssl_conf.curves; if (conf_curves) { if (!SSL_CTX_set1_curves_list(ctx, conf_curves)) { memprintf(err, "%sProxy '%s': unable to set SSL curves list to '%s' for bind '%s' at [%s:%d].\n", err && *err ? *err : "", curproxy->id, conf_curves, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr |= ERR_ALERT | ERR_FATAL; } (void)SSL_CTX_set_ecdh_auto(ctx, 1); } #endif #if defined(SSL_CTX_set_tmp_ecdh) && !defined(OPENSSL_NO_ECDH) if (!conf_curves) { int i; EC_KEY *ecdh; #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) const char *ecdhe = (ssl_conf && ssl_conf->ecdhe) ? ssl_conf->ecdhe : (bind_conf->ssl_conf.ecdhe ? bind_conf->ssl_conf.ecdhe : NULL); if (ecdhe == NULL) { (void)SSL_CTX_set_ecdh_auto(ctx, 1); return cfgerr; } #else const char *ecdhe = (ssl_conf && ssl_conf->ecdhe) ? ssl_conf->ecdhe : (bind_conf->ssl_conf.ecdhe ? bind_conf->ssl_conf.ecdhe : ECDHE_DEFAULT_CURVE); #endif i = OBJ_sn2nid(ecdhe); if (!i || ((ecdh = EC_KEY_new_by_curve_name(i)) == NULL)) { memprintf(err, "%sProxy '%s': unable to set elliptic named curve to '%s' for bind '%s' at [%s:%d].\n", err && *err ? *err : "", curproxy->id, ecdhe, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr |= ERR_ALERT | ERR_FATAL; } else { SSL_CTX_set_tmp_ecdh(ctx, ecdh); EC_KEY_free(ecdh); } } #endif return cfgerr; } static int ssl_sock_srv_hostcheck(const char *pattern, const char *hostname) { const char *pattern_wildcard, *pattern_left_label_end, *hostname_left_label_end; size_t prefixlen, suffixlen; /* Trivial case */ if (strcmp(pattern, hostname) == 0) return 1; /* The rest of this logic is based on RFC 6125, section 6.4.3 * (http://tools.ietf.org/html/rfc6125#section-6.4.3) */ pattern_wildcard = NULL; pattern_left_label_end = pattern; while (*pattern_left_label_end != '.') { switch (*pattern_left_label_end) { case 0: /* End of label not found */ return 0; case '*': /* If there is more than one wildcards */ if (pattern_wildcard) return 0; pattern_wildcard = pattern_left_label_end; break; } pattern_left_label_end++; } /* If it's not trivial and there is no wildcard, it can't * match */ if (!pattern_wildcard) return 0; /* Make sure all labels match except the leftmost */ hostname_left_label_end = strchr(hostname, '.'); if (!hostname_left_label_end || strcmp(pattern_left_label_end, hostname_left_label_end) != 0) return 0; /* Make sure the leftmost label of the hostname is long enough * that the wildcard can match */ if (hostname_left_label_end - hostname < (pattern_left_label_end - pattern) - 1) return 0; /* Finally compare the string on either side of the * wildcard */ prefixlen = pattern_wildcard - pattern; suffixlen = pattern_left_label_end - (pattern_wildcard + 1); if ((prefixlen && (memcmp(pattern, hostname, prefixlen) != 0)) || (suffixlen && (memcmp(pattern_wildcard + 1, hostname_left_label_end - suffixlen, suffixlen) != 0))) return 0; return 1; } static int ssl_sock_srv_verifycbk(int ok, X509_STORE_CTX *ctx) { SSL *ssl; struct connection *conn; struct ssl_sock_ctx *ssl_ctx; const char *servername; const char *sni; int depth; X509 *cert; STACK_OF(GENERAL_NAME) *alt_names; int i; X509_NAME *cert_subject; char *str; if (ok == 0) return ok; ssl = X509_STORE_CTX_get_ex_data(ctx, SSL_get_ex_data_X509_STORE_CTX_idx()); conn = SSL_get_ex_data(ssl, ssl_app_data_index); ssl_ctx = conn->xprt_ctx; /* We're checking if the provided hostnames match the desired one. The * desired hostname comes from the SNI we presented if any, or if not * provided then it may have been explicitly stated using a "verifyhost" * directive. If neither is set, we don't care about the name so the * verification is OK. */ servername = SSL_get_servername(ssl_ctx->ssl, TLSEXT_NAMETYPE_host_name); sni = servername; if (!servername) { servername = __objt_server(conn->target)->ssl_ctx.verify_host; if (!servername) return ok; } /* We only need to verify the CN on the actual server cert, * not the indirect CAs */ depth = X509_STORE_CTX_get_error_depth(ctx); if (depth != 0) return ok; /* At this point, the cert is *not* OK unless we can find a * hostname match */ ok = 0; cert = X509_STORE_CTX_get_current_cert(ctx); /* It seems like this might happen if verify peer isn't set */ if (!cert) return ok; alt_names = X509_get_ext_d2i(cert, NID_subject_alt_name, NULL, NULL); if (alt_names) { for (i = 0; !ok && i < sk_GENERAL_NAME_num(alt_names); i++) { GENERAL_NAME *name = sk_GENERAL_NAME_value(alt_names, i); if (name->type == GEN_DNS) { #if HA_OPENSSL_VERSION_NUMBER < 0x00907000L if (ASN1_STRING_to_UTF8((unsigned char **)&str, name->d.ia5) >= 0) { #else if (ASN1_STRING_to_UTF8((unsigned char **)&str, name->d.dNSName) >= 0) { #endif ok = ssl_sock_srv_hostcheck(str, servername); OPENSSL_free(str); } } } sk_GENERAL_NAME_pop_free(alt_names, GENERAL_NAME_free); } cert_subject = X509_get_subject_name(cert); i = -1; while (!ok && (i = X509_NAME_get_index_by_NID(cert_subject, NID_commonName, i)) != -1) { X509_NAME_ENTRY *entry = X509_NAME_get_entry(cert_subject, i); ASN1_STRING *value; value = X509_NAME_ENTRY_get_data(entry); if (ASN1_STRING_to_UTF8((unsigned char **)&str, value) >= 0) { ok = ssl_sock_srv_hostcheck(str, servername); OPENSSL_free(str); } } /* report the mismatch and indicate if SNI was used or not */ if (!ok && !conn->err_code) conn->err_code = sni ? CO_ER_SSL_MISMATCH_SNI : CO_ER_SSL_MISMATCH; return ok; } /* prepare ssl context from servers options. Returns an error count */ int ssl_sock_prepare_srv_ctx(struct server *srv) { struct proxy *curproxy = srv->proxy; int cfgerr = 0; long options = SSL_OP_ALL | /* all known workarounds for bugs */ SSL_OP_NO_SSLv2 | SSL_OP_NO_COMPRESSION; long mode = SSL_MODE_ENABLE_PARTIAL_WRITE | SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER | SSL_MODE_RELEASE_BUFFERS | SSL_MODE_SMALL_BUFFERS; int verify = SSL_VERIFY_NONE; SSL_CTX *ctx = NULL; struct tls_version_filter *conf_ssl_methods = &srv->ssl_ctx.methods; int i, min, max, hole; int flags = MC_SSL_O_ALL; /* Make sure openssl opens /dev/urandom before the chroot */ if (!ssl_initialize_random()) { ha_alert("OpenSSL random data generator initialization failed.\n"); cfgerr++; } /* Automatic memory computations need to know we use SSL there */ global.ssl_used_backend = 1; /* Initiate SSL context for current server */ if (!srv->ssl_ctx.reused_sess) { if ((srv->ssl_ctx.reused_sess = calloc(1, global.nbthread*sizeof(*srv->ssl_ctx.reused_sess))) == NULL) { ha_alert("Proxy '%s', server '%s' [%s:%d] out of memory.\n", curproxy->id, srv->id, srv->conf.file, srv->conf.line); cfgerr++; return cfgerr; } } if (srv->use_ssl == 1) srv->xprt = &ssl_sock; ctx = SSL_CTX_new(SSLv23_client_method()); if (!ctx) { ha_alert("config : %s '%s', server '%s': unable to allocate ssl context.\n", proxy_type_str(curproxy), curproxy->id, srv->id); cfgerr++; return cfgerr; } if (conf_ssl_methods->flags && (conf_ssl_methods->min || conf_ssl_methods->max)) ha_warning("config : %s '%s': no-sslv3/no-tlsv1x are ignored for server '%s'. " "Use only 'ssl-min-ver' and 'ssl-max-ver' to fix.\n", proxy_type_str(curproxy), curproxy->id, srv->id); else flags = conf_ssl_methods->flags; /* Real min and max should be determinate with configuration and openssl's capabilities */ if (conf_ssl_methods->min) flags |= (methodVersions[conf_ssl_methods->min].flag - 1); if (conf_ssl_methods->max) flags |= ~((methodVersions[conf_ssl_methods->max].flag << 1) - 1); /* find min, max and holes */ min = max = CONF_TLSV_NONE; hole = 0; for (i = CONF_TLSV_MIN; i <= CONF_TLSV_MAX; i++) /* version is in openssl && version not disable in configuration */ if (methodVersions[i].option && !(flags & methodVersions[i].flag)) { if (min) { if (hole) { ha_warning("config : %s '%s': SSL/TLS versions range not contiguous for server '%s'. " "Hole find for %s. Use only 'ssl-min-ver' and 'ssl-max-ver' to fix.\n", proxy_type_str(curproxy), curproxy->id, srv->id, methodVersions[hole].name); hole = 0; } max = i; } else { min = max = i; } } else { if (min) hole = i; } if (!min) { ha_alert("config : %s '%s': all SSL/TLS versions are disabled for server '%s'.\n", proxy_type_str(curproxy), curproxy->id, srv->id); cfgerr += 1; } #if (HA_OPENSSL_VERSION_NUMBER < 0x1010000fL) /* Keep force-xxx implementation as it is in older haproxy. It's a precautionary measure to avoid any surprise with older openssl version. */ if (min == max) methodVersions[min].ctx_set_version(ctx, SET_CLIENT); else for (i = CONF_TLSV_MIN; i <= CONF_TLSV_MAX; i++) if (flags & methodVersions[i].flag) options |= methodVersions[i].option; #else /* openssl >= 1.1.0 */ /* set the max_version is required to cap TLS version or activate new TLS (v1.3) */ methodVersions[min].ctx_set_version(ctx, SET_MIN); methodVersions[max].ctx_set_version(ctx, SET_MAX); #endif if (srv->ssl_ctx.options & SRV_SSL_O_NO_TLS_TICKETS) options |= SSL_OP_NO_TICKET; SSL_CTX_set_options(ctx, options); #if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) if (global_ssl.async) mode |= SSL_MODE_ASYNC; #endif SSL_CTX_set_mode(ctx, mode); srv->ssl_ctx.ctx = ctx; if (srv->ssl_ctx.client_crt) { if (SSL_CTX_use_PrivateKey_file(srv->ssl_ctx.ctx, srv->ssl_ctx.client_crt, SSL_FILETYPE_PEM) <= 0) { ha_alert("config : %s '%s', server '%s': unable to load SSL private key from PEM file '%s'.\n", proxy_type_str(curproxy), curproxy->id, srv->id, srv->ssl_ctx.client_crt); cfgerr++; } else if (SSL_CTX_use_certificate_chain_file(srv->ssl_ctx.ctx, srv->ssl_ctx.client_crt) <= 0) { ha_alert("config : %s '%s', server '%s': unable to load ssl certificate from PEM file '%s'.\n", proxy_type_str(curproxy), curproxy->id, srv->id, srv->ssl_ctx.client_crt); cfgerr++; } else if (SSL_CTX_check_private_key(srv->ssl_ctx.ctx) <= 0) { ha_alert("config : %s '%s', server '%s': inconsistencies between private key and certificate loaded from PEM file '%s'.\n", proxy_type_str(curproxy), curproxy->id, srv->id, srv->ssl_ctx.client_crt); cfgerr++; } } if (global.ssl_server_verify == SSL_SERVER_VERIFY_REQUIRED) verify = SSL_VERIFY_PEER; switch (srv->ssl_ctx.verify) { case SSL_SOCK_VERIFY_NONE: verify = SSL_VERIFY_NONE; break; case SSL_SOCK_VERIFY_REQUIRED: verify = SSL_VERIFY_PEER; break; } SSL_CTX_set_verify(srv->ssl_ctx.ctx, verify, (srv->ssl_ctx.verify_host || (verify & SSL_VERIFY_PEER)) ? ssl_sock_srv_verifycbk : NULL); if (verify & SSL_VERIFY_PEER) { if (srv->ssl_ctx.ca_file) { /* set CAfile to verify */ if (!ssl_set_verify_locations_file(srv->ssl_ctx.ctx, srv->ssl_ctx.ca_file)) { ha_alert("Proxy '%s', server '%s' [%s:%d] unable to set CA file '%s'.\n", curproxy->id, srv->id, srv->conf.file, srv->conf.line, srv->ssl_ctx.ca_file); cfgerr++; } } else { if (global.ssl_server_verify == SSL_SERVER_VERIFY_REQUIRED) ha_alert("Proxy '%s', server '%s' [%s:%d] verify is enabled by default but no CA file specified. If you're running on a LAN where you're certain to trust the server's certificate, please set an explicit 'verify none' statement on the 'server' line, or use 'ssl-server-verify none' in the global section to disable server-side verifications by default.\n", curproxy->id, srv->id, srv->conf.file, srv->conf.line); else ha_alert("Proxy '%s', server '%s' [%s:%d] verify is enabled but no CA file specified.\n", curproxy->id, srv->id, srv->conf.file, srv->conf.line); cfgerr++; } #ifdef X509_V_FLAG_CRL_CHECK if (srv->ssl_ctx.crl_file) { X509_STORE *store = SSL_CTX_get_cert_store(srv->ssl_ctx.ctx); if (!ssl_set_cert_crl_file(store, srv->ssl_ctx.crl_file)) { ha_alert("Proxy '%s', server '%s' [%s:%d] unable to configure CRL file '%s'.\n", curproxy->id, srv->id, srv->conf.file, srv->conf.line, srv->ssl_ctx.crl_file); cfgerr++; } else { X509_STORE_set_flags(store, X509_V_FLAG_CRL_CHECK|X509_V_FLAG_CRL_CHECK_ALL); } } #endif } SSL_CTX_set_session_cache_mode(srv->ssl_ctx.ctx, SSL_SESS_CACHE_CLIENT | SSL_SESS_CACHE_NO_INTERNAL_STORE); SSL_CTX_sess_set_new_cb(srv->ssl_ctx.ctx, ssl_sess_new_srv_cb); if (srv->ssl_ctx.ciphers && !SSL_CTX_set_cipher_list(srv->ssl_ctx.ctx, srv->ssl_ctx.ciphers)) { ha_alert("Proxy '%s', server '%s' [%s:%d] : unable to set SSL cipher list to '%s'.\n", curproxy->id, srv->id, srv->conf.file, srv->conf.line, srv->ssl_ctx.ciphers); cfgerr++; } #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) if (srv->ssl_ctx.ciphersuites && !SSL_CTX_set_ciphersuites(srv->ssl_ctx.ctx, srv->ssl_ctx.ciphersuites)) { ha_alert("Proxy '%s', server '%s' [%s:%d] : unable to set TLS 1.3 cipher suites to '%s'.\n", curproxy->id, srv->id, srv->conf.file, srv->conf.line, srv->ssl_ctx.ciphersuites); cfgerr++; } #endif #if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG) if (srv->ssl_ctx.npn_str) SSL_CTX_set_next_proto_select_cb(ctx, ssl_sock_srv_select_protos, srv); #endif #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation if (srv->ssl_ctx.alpn_str) SSL_CTX_set_alpn_protos(ctx, (unsigned char *)srv->ssl_ctx.alpn_str, srv->ssl_ctx.alpn_len); #endif return cfgerr; } /* Walks down the two trees in bind_conf and prepares all certs. The pointer may * be NULL, in which case nothing is done. Returns the number of errors * encountered. */ int ssl_sock_prepare_all_ctx(struct bind_conf *bind_conf) { struct ebmb_node *node; struct sni_ctx *sni; int err = 0; int errcode = 0; char *errmsg = NULL; /* Automatic memory computations need to know we use SSL there */ global.ssl_used_frontend = 1; /* Make sure openssl opens /dev/urandom before the chroot */ if (!ssl_initialize_random()) { ha_alert("OpenSSL random data generator initialization failed.\n"); err++; } /* Create initial_ctx used to start the ssl connection before do switchctx */ if (!bind_conf->initial_ctx) { err += ssl_sock_initial_ctx(bind_conf); /* It should not be necessary to call this function, but it's necessary first to check and move all initialisation related to initial_ctx in ssl_sock_initial_ctx. */ errcode |= ssl_sock_prepare_ctx(bind_conf, NULL, bind_conf->initial_ctx, &errmsg); } if (bind_conf->default_ctx) errcode |= ssl_sock_prepare_ctx(bind_conf, bind_conf->default_ssl_conf, bind_conf->default_ctx, &errmsg); node = ebmb_first(&bind_conf->sni_ctx); while (node) { sni = ebmb_entry(node, struct sni_ctx, name); if (!sni->order && sni->ctx != bind_conf->default_ctx) /* only initialize the CTX on its first occurrence and if it is not the default_ctx */ errcode |= ssl_sock_prepare_ctx(bind_conf, sni->conf, sni->ctx, &errmsg); node = ebmb_next(node); } node = ebmb_first(&bind_conf->sni_w_ctx); while (node) { sni = ebmb_entry(node, struct sni_ctx, name); if (!sni->order && sni->ctx != bind_conf->default_ctx) { /* only initialize the CTX on its first occurrence and if it is not the default_ctx */ errcode |= ssl_sock_prepare_ctx(bind_conf, sni->conf, sni->ctx, &errmsg); } node = ebmb_next(node); } if (errcode & ERR_WARN) { ha_warning("%s", errmsg); } else if (errcode & ERR_CODE) { ha_alert("%s", errmsg); err++; } free(errmsg); return err; } /* Prepares all the contexts for a bind_conf and allocates the shared SSL * context if needed. Returns < 0 on error, 0 on success. The warnings and * alerts are directly emitted since the rest of the stack does it below. */ int ssl_sock_prepare_bind_conf(struct bind_conf *bind_conf) { struct proxy *px = bind_conf->frontend; int alloc_ctx; int err; if (!bind_conf->is_ssl) { if (bind_conf->default_ctx) { ha_warning("Proxy '%s': A certificate was specified but SSL was not enabled on bind '%s' at [%s:%d] (use 'ssl').\n", px->id, bind_conf->arg, bind_conf->file, bind_conf->line); } return 0; } if (!bind_conf->default_ctx) { if (bind_conf->strict_sni && !bind_conf->generate_certs) { ha_warning("Proxy '%s': no SSL certificate specified for bind '%s' at [%s:%d], ssl connections will fail (use 'crt').\n", px->id, bind_conf->arg, bind_conf->file, bind_conf->line); } else { ha_alert("Proxy '%s': no SSL certificate specified for bind '%s' at [%s:%d] (use 'crt').\n", px->id, bind_conf->arg, bind_conf->file, bind_conf->line); return -1; } } if (!ssl_shctx && global.tune.sslcachesize) { alloc_ctx = shctx_init(&ssl_shctx, global.tune.sslcachesize, sizeof(struct sh_ssl_sess_hdr) + SHSESS_BLOCK_MIN_SIZE, -1, sizeof(*sh_ssl_sess_tree), ((global.nbthread > 1) || (!global_ssl.private_cache && (global.nbproc > 1))) ? 1 : 0); if (alloc_ctx <= 0) { if (alloc_ctx == SHCTX_E_INIT_LOCK) ha_alert("Unable to initialize the lock for the shared SSL session cache. You can retry using the global statement 'tune.ssl.force-private-cache' but it could increase CPU usage due to renegotiations if nbproc > 1.\n"); else ha_alert("Unable to allocate SSL session cache.\n"); return -1; } /* free block callback */ ssl_shctx->free_block = sh_ssl_sess_free_blocks; /* init the root tree within the extra space */ sh_ssl_sess_tree = (void *)ssl_shctx + sizeof(struct shared_context); *sh_ssl_sess_tree = EB_ROOT_UNIQUE; } err = 0; /* initialize all certificate contexts */ err += ssl_sock_prepare_all_ctx(bind_conf); /* initialize CA variables if the certificates generation is enabled */ err += ssl_sock_load_ca(bind_conf); return -err; } /* release ssl context allocated for servers. */ void ssl_sock_free_srv_ctx(struct server *srv) { #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation if (srv->ssl_ctx.alpn_str) free(srv->ssl_ctx.alpn_str); #endif #ifdef OPENSSL_NPN_NEGOTIATED if (srv->ssl_ctx.npn_str) free(srv->ssl_ctx.npn_str); #endif if (srv->ssl_ctx.ctx) SSL_CTX_free(srv->ssl_ctx.ctx); } /* Walks down the two trees in bind_conf and frees all the certs. The pointer may * be NULL, in which case nothing is done. The default_ctx is nullified too. */ void ssl_sock_free_all_ctx(struct bind_conf *bind_conf) { struct ebmb_node *node, *back; struct sni_ctx *sni; node = ebmb_first(&bind_conf->sni_ctx); while (node) { sni = ebmb_entry(node, struct sni_ctx, name); back = ebmb_next(node); ebmb_delete(node); SSL_CTX_free(sni->ctx); if (!sni->order) { /* only free the CTX conf on its first occurrence */ ssl_sock_free_ssl_conf(sni->conf); free(sni->conf); sni->conf = NULL; } free(sni); node = back; } node = ebmb_first(&bind_conf->sni_w_ctx); while (node) { sni = ebmb_entry(node, struct sni_ctx, name); back = ebmb_next(node); ebmb_delete(node); SSL_CTX_free(sni->ctx); if (!sni->order) { /* only free the SSL conf its first occurrence */ ssl_sock_free_ssl_conf(sni->conf); free(sni->conf); sni->conf = NULL; } free(sni); node = back; } SSL_CTX_free(bind_conf->initial_ctx); bind_conf->initial_ctx = NULL; SSL_CTX_free(bind_conf->default_ctx); bind_conf->default_ctx = NULL; bind_conf->default_ssl_conf = NULL; } /* Destroys all the contexts for a bind_conf. This is used during deinit(). */ void ssl_sock_destroy_bind_conf(struct bind_conf *bind_conf) { ssl_sock_free_ca(bind_conf); ssl_sock_free_all_ctx(bind_conf); ssl_sock_free_ssl_conf(&bind_conf->ssl_conf); free(bind_conf->ca_sign_file); free(bind_conf->ca_sign_pass); if (bind_conf->keys_ref && !--bind_conf->keys_ref->refcount) { free(bind_conf->keys_ref->filename); free(bind_conf->keys_ref->tlskeys); LIST_DEL(&bind_conf->keys_ref->list); free(bind_conf->keys_ref); } bind_conf->keys_ref = NULL; bind_conf->ca_sign_pass = NULL; bind_conf->ca_sign_file = NULL; } /* Load CA cert file and private key used to generate certificates */ int ssl_sock_load_ca(struct bind_conf *bind_conf) { struct proxy *px = bind_conf->frontend; FILE *fp; X509 *cacert = NULL; EVP_PKEY *capkey = NULL; int err = 0; if (!bind_conf->generate_certs) return err; #if (defined SSL_CTRL_SET_TLSEXT_HOSTNAME && !defined SSL_NO_GENERATE_CERTIFICATES) if (global_ssl.ctx_cache) { ssl_ctx_lru_tree = lru64_new(global_ssl.ctx_cache); } ssl_ctx_lru_seed = (unsigned int)time(NULL); ssl_ctx_serial = now_ms; #endif if (!bind_conf->ca_sign_file) { ha_alert("Proxy '%s': cannot enable certificate generation, " "no CA certificate File configured at [%s:%d].\n", px->id, bind_conf->file, bind_conf->line); goto load_error; } /* read in the CA certificate */ if (!(fp = fopen(bind_conf->ca_sign_file, "r"))) { ha_alert("Proxy '%s': Failed to read CA certificate file '%s' at [%s:%d].\n", px->id, bind_conf->ca_sign_file, bind_conf->file, bind_conf->line); goto load_error; } if (!(cacert = PEM_read_X509(fp, NULL, NULL, NULL))) { ha_alert("Proxy '%s': Failed to read CA certificate file '%s' at [%s:%d].\n", px->id, bind_conf->ca_sign_file, bind_conf->file, bind_conf->line); goto read_error; } rewind(fp); if (!(capkey = PEM_read_PrivateKey(fp, NULL, NULL, bind_conf->ca_sign_pass))) { ha_alert("Proxy '%s': Failed to read CA private key file '%s' at [%s:%d].\n", px->id, bind_conf->ca_sign_file, bind_conf->file, bind_conf->line); goto read_error; } fclose (fp); bind_conf->ca_sign_cert = cacert; bind_conf->ca_sign_pkey = capkey; return err; read_error: fclose (fp); if (capkey) EVP_PKEY_free(capkey); if (cacert) X509_free(cacert); load_error: bind_conf->generate_certs = 0; err++; return err; } /* Release CA cert and private key used to generate certificated */ void ssl_sock_free_ca(struct bind_conf *bind_conf) { if (bind_conf->ca_sign_pkey) EVP_PKEY_free(bind_conf->ca_sign_pkey); if (bind_conf->ca_sign_cert) X509_free(bind_conf->ca_sign_cert); bind_conf->ca_sign_pkey = NULL; bind_conf->ca_sign_cert = NULL; } /* * This function is called if SSL * context is not yet allocated. The function * is designed to be called before any other data-layer operation and sets the * handshake flag on the connection. It is safe to call it multiple times. * It returns 0 on success and -1 in error case. */ static int ssl_sock_init(struct connection *conn, void **xprt_ctx) { struct ssl_sock_ctx *ctx; /* already initialized */ if (*xprt_ctx) return 0; if (!conn_ctrl_ready(conn)) return 0; ctx = pool_alloc(ssl_sock_ctx_pool); if (!ctx) { conn->err_code = CO_ER_SSL_NO_MEM; return -1; } ctx->wait_event.tasklet = tasklet_new(); if (!ctx->wait_event.tasklet) { conn->err_code = CO_ER_SSL_NO_MEM; pool_free(ssl_sock_ctx_pool, ctx); return -1; } ctx->wait_event.tasklet->process = ssl_sock_io_cb; ctx->wait_event.tasklet->context = ctx; ctx->wait_event.events = 0; ctx->sent_early_data = 0; ctx->early_buf = BUF_NULL; ctx->conn = conn; ctx->subs = NULL; ctx->xprt_st = 0; ctx->xprt_ctx = NULL; /* Only work with sockets for now, this should be adapted when we'll * add QUIC support. */ ctx->xprt = xprt_get(XPRT_RAW); if (ctx->xprt->init) { if (ctx->xprt->init(conn, &ctx->xprt_ctx) != 0) goto err; } if (global.maxsslconn && sslconns >= global.maxsslconn) { conn->err_code = CO_ER_SSL_TOO_MANY; goto err; } /* If it is in client mode initiate SSL session in connect state otherwise accept state */ if (objt_server(conn->target)) { int may_retry = 1; retry_connect: /* Alloc a new SSL session ctx */ ctx->ssl = SSL_new(__objt_server(conn->target)->ssl_ctx.ctx); if (!ctx->ssl) { if (may_retry--) { pool_gc(NULL); goto retry_connect; } conn->err_code = CO_ER_SSL_NO_MEM; goto err; } ctx->bio = BIO_new(ha_meth); if (!ctx->bio) { SSL_free(ctx->ssl); ctx->ssl = NULL; if (may_retry--) { pool_gc(NULL); goto retry_connect; } conn->err_code = CO_ER_SSL_NO_MEM; goto err; } BIO_set_data(ctx->bio, ctx); SSL_set_bio(ctx->ssl, ctx->bio, ctx->bio); /* set connection pointer */ if (!SSL_set_ex_data(ctx->ssl, ssl_app_data_index, conn)) { SSL_free(ctx->ssl); ctx->ssl = NULL; conn->xprt_ctx = NULL; if (may_retry--) { pool_gc(NULL); goto retry_connect; } conn->err_code = CO_ER_SSL_NO_MEM; goto err; } SSL_set_connect_state(ctx->ssl); if (__objt_server(conn->target)->ssl_ctx.reused_sess[tid].ptr) { const unsigned char *ptr = __objt_server(conn->target)->ssl_ctx.reused_sess[tid].ptr; SSL_SESSION *sess = d2i_SSL_SESSION(NULL, &ptr, __objt_server(conn->target)->ssl_ctx.reused_sess[tid].size); if (sess && !SSL_set_session(ctx->ssl, sess)) { SSL_SESSION_free(sess); free(__objt_server(conn->target)->ssl_ctx.reused_sess[tid].ptr); __objt_server(conn->target)->ssl_ctx.reused_sess[tid].ptr = NULL; } else if (sess) { SSL_SESSION_free(sess); } } /* leave init state and start handshake */ conn->flags |= CO_FL_SSL_WAIT_HS | CO_FL_WAIT_L6_CONN; _HA_ATOMIC_ADD(&sslconns, 1); _HA_ATOMIC_ADD(&totalsslconns, 1); *xprt_ctx = ctx; /* Start the handshake */ tasklet_wakeup(ctx->wait_event.tasklet); return 0; } else if (objt_listener(conn->target)) { int may_retry = 1; retry_accept: /* Alloc a new SSL session ctx */ ctx->ssl = SSL_new(__objt_listener(conn->target)->bind_conf->initial_ctx); if (!ctx->ssl) { if (may_retry--) { pool_gc(NULL); goto retry_accept; } conn->err_code = CO_ER_SSL_NO_MEM; goto err; } ctx->bio = BIO_new(ha_meth); if (!ctx->bio) { SSL_free(ctx->ssl); ctx->ssl = NULL; if (may_retry--) { pool_gc(NULL); goto retry_accept; } conn->err_code = CO_ER_SSL_NO_MEM; goto err; } BIO_set_data(ctx->bio, ctx); SSL_set_bio(ctx->ssl, ctx->bio, ctx->bio); /* set connection pointer */ if (!SSL_set_ex_data(ctx->ssl, ssl_app_data_index, conn)) { SSL_free(ctx->ssl); ctx->ssl = NULL; if (may_retry--) { pool_gc(NULL); goto retry_accept; } conn->err_code = CO_ER_SSL_NO_MEM; goto err; } #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) if (__objt_listener(conn->target)->bind_conf->ssl_conf.early_data) { b_alloc(&ctx->early_buf); SSL_set_max_early_data(ctx->ssl, /* Only allow early data if we managed to allocate * a buffer. */ (!b_is_null(&ctx->early_buf)) ? global.tune.bufsize - global.tune.maxrewrite : 0); } #endif SSL_set_accept_state(ctx->ssl); /* leave init state and start handshake */ conn->flags |= CO_FL_SSL_WAIT_HS | CO_FL_WAIT_L6_CONN; #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) conn->flags |= CO_FL_EARLY_SSL_HS; #endif _HA_ATOMIC_ADD(&sslconns, 1); _HA_ATOMIC_ADD(&totalsslconns, 1); *xprt_ctx = ctx; /* Start the handshake */ tasklet_wakeup(ctx->wait_event.tasklet); return 0; } /* don't know how to handle such a target */ conn->err_code = CO_ER_SSL_NO_TARGET; err: if (ctx && ctx->wait_event.tasklet) tasklet_free(ctx->wait_event.tasklet); pool_free(ssl_sock_ctx_pool, ctx); return -1; } /* This is the callback which is used when an SSL handshake is pending. It * updates the FD status if it wants some polling before being called again. * It returns 0 if it fails in a fatal way or needs to poll to go further, * otherwise it returns non-zero and removes itself from the connection's * flags (the bit is provided in by the caller). */ static int ssl_sock_handshake(struct connection *conn, unsigned int flag) { struct ssl_sock_ctx *ctx = conn->xprt_ctx; int ret; if (!conn_ctrl_ready(conn)) return 0; if (!conn->xprt_ctx) goto out_error; #if HA_OPENSSL_VERSION_NUMBER >= 0x10101000L /* * Check if we have early data. If we do, we have to read them * before SSL_do_handshake() is called, And there's no way to * detect early data, except to try to read them */ if (conn->flags & CO_FL_EARLY_SSL_HS) { size_t read_data = 0; while (1) { ret = SSL_read_early_data(ctx->ssl, b_tail(&ctx->early_buf), b_room(&ctx->early_buf), &read_data); if (ret == SSL_READ_EARLY_DATA_ERROR) goto check_error; if (read_data > 0) { conn->flags |= CO_FL_EARLY_DATA; b_add(&ctx->early_buf, read_data); } if (ret == SSL_READ_EARLY_DATA_FINISH) { conn->flags &= ~CO_FL_EARLY_SSL_HS; if (!b_data(&ctx->early_buf)) b_free(&ctx->early_buf); break; } } } #endif /* If we use SSL_do_handshake to process a reneg initiated by * the remote peer, it sometimes returns SSL_ERROR_SSL. * Usually SSL_write and SSL_read are used and process implicitly * the reneg handshake. * Here we use SSL_peek as a workaround for reneg. */ if (!(conn->flags & CO_FL_WAIT_L6_CONN) && SSL_renegotiate_pending(ctx->ssl)) { char c; ret = SSL_peek(ctx->ssl, &c, 1); if (ret <= 0) { /* handshake may have not been completed, let's find why */ ret = SSL_get_error(ctx->ssl, ret); if (ret == SSL_ERROR_WANT_WRITE) { /* SSL handshake needs to write, L4 connection may not be ready */ if (!(ctx->wait_event.events & SUB_RETRY_SEND)) ctx->xprt->subscribe(conn, ctx->xprt_ctx, SUB_RETRY_SEND, &ctx->wait_event); return 0; } else if (ret == SSL_ERROR_WANT_READ) { /* handshake may have been completed but we have * no more data to read. */ if (!SSL_renegotiate_pending(ctx->ssl)) { ret = 1; goto reneg_ok; } /* SSL handshake needs to read, L4 connection is ready */ if (!(ctx->wait_event.events & SUB_RETRY_RECV)) ctx->xprt->subscribe(conn, ctx->xprt_ctx, SUB_RETRY_RECV, &ctx->wait_event); return 0; } #if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) else if (ret == SSL_ERROR_WANT_ASYNC) { ssl_async_process_fds(ctx); return 0; } #endif else if (ret == SSL_ERROR_SYSCALL) { /* if errno is null, then connection was successfully established */ if (!errno && conn->flags & CO_FL_WAIT_L4_CONN) conn->flags &= ~CO_FL_WAIT_L4_CONN; if (!conn->err_code) { #if defined(OPENSSL_IS_BORINGSSL) || defined(LIBRESSL_VERSION_NUMBER) /* do not handle empty handshakes in BoringSSL or LibreSSL */ conn->err_code = CO_ER_SSL_HANDSHAKE; #else int empty_handshake; #if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) /* use SSL_get_state() in OpenSSL >= 1.1.0; SSL_state() is broken */ OSSL_HANDSHAKE_STATE state = SSL_get_state((SSL *)ctx->ssl); empty_handshake = state == TLS_ST_BEFORE; #else /* access packet_length directly in OpenSSL <= 1.0.2; SSL_state() is broken */ empty_handshake = !ctx->ssl->packet_length; #endif if (empty_handshake) { if (!errno) { if (ctx->xprt_st & SSL_SOCK_RECV_HEARTBEAT) conn->err_code = CO_ER_SSL_HANDSHAKE_HB; else conn->err_code = CO_ER_SSL_EMPTY; } else { if (ctx->xprt_st & SSL_SOCK_RECV_HEARTBEAT) conn->err_code = CO_ER_SSL_HANDSHAKE_HB; else conn->err_code = CO_ER_SSL_ABORT; } } else { if (ctx->xprt_st & SSL_SOCK_RECV_HEARTBEAT) conn->err_code = CO_ER_SSL_HANDSHAKE_HB; else conn->err_code = CO_ER_SSL_HANDSHAKE; } #endif /* BoringSSL or LibreSSL */ } goto out_error; } else { /* Fail on all other handshake errors */ /* Note: OpenSSL may leave unread bytes in the socket's * buffer, causing an RST to be emitted upon close() on * TCP sockets. We first try to drain possibly pending * data to avoid this as much as possible. */ conn_sock_drain(conn); if (!conn->err_code) conn->err_code = (ctx->xprt_st & SSL_SOCK_RECV_HEARTBEAT) ? CO_ER_SSL_KILLED_HB : CO_ER_SSL_HANDSHAKE; goto out_error; } } /* read some data: consider handshake completed */ goto reneg_ok; } ret = SSL_do_handshake(ctx->ssl); check_error: if (ret != 1) { /* handshake did not complete, let's find why */ ret = SSL_get_error(ctx->ssl, ret); if (ret == SSL_ERROR_WANT_WRITE) { /* SSL handshake needs to write, L4 connection may not be ready */ if (!(ctx->wait_event.events & SUB_RETRY_SEND)) ctx->xprt->subscribe(conn, ctx->xprt_ctx, SUB_RETRY_SEND, &ctx->wait_event); return 0; } else if (ret == SSL_ERROR_WANT_READ) { /* SSL handshake needs to read, L4 connection is ready */ if (!(ctx->wait_event.events & SUB_RETRY_RECV)) ctx->xprt->subscribe(conn, ctx->xprt_ctx, SUB_RETRY_RECV, &ctx->wait_event); return 0; } #if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) else if (ret == SSL_ERROR_WANT_ASYNC) { ssl_async_process_fds(ctx); return 0; } #endif else if (ret == SSL_ERROR_SYSCALL) { /* if errno is null, then connection was successfully established */ if (!errno && conn->flags & CO_FL_WAIT_L4_CONN) conn->flags &= ~CO_FL_WAIT_L4_CONN; if (!conn->err_code) { #if defined(OPENSSL_IS_BORINGSSL) || defined(LIBRESSL_VERSION_NUMBER) /* do not handle empty handshakes in BoringSSL or LibreSSL */ conn->err_code = CO_ER_SSL_HANDSHAKE; #else int empty_handshake; #if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) /* use SSL_get_state() in OpenSSL >= 1.1.0; SSL_state() is broken */ OSSL_HANDSHAKE_STATE state = SSL_get_state(ctx->ssl); empty_handshake = state == TLS_ST_BEFORE; #else /* access packet_length directly in OpenSSL <= 1.0.2; SSL_state() is broken */ empty_handshake = !ctx->ssl->packet_length; #endif if (empty_handshake) { if (!errno) { if (ctx->xprt_st & SSL_SOCK_RECV_HEARTBEAT) conn->err_code = CO_ER_SSL_HANDSHAKE_HB; else conn->err_code = CO_ER_SSL_EMPTY; } else { if (ctx->xprt_st & SSL_SOCK_RECV_HEARTBEAT) conn->err_code = CO_ER_SSL_HANDSHAKE_HB; else conn->err_code = CO_ER_SSL_ABORT; } } else { if (ctx->xprt_st & SSL_SOCK_RECV_HEARTBEAT) conn->err_code = CO_ER_SSL_HANDSHAKE_HB; else conn->err_code = CO_ER_SSL_HANDSHAKE; } #endif /* BoringSSL or LibreSSL */ } goto out_error; } else { /* Fail on all other handshake errors */ /* Note: OpenSSL may leave unread bytes in the socket's * buffer, causing an RST to be emitted upon close() on * TCP sockets. We first try to drain possibly pending * data to avoid this as much as possible. */ conn_sock_drain(conn); if (!conn->err_code) conn->err_code = (ctx->xprt_st & SSL_SOCK_RECV_HEARTBEAT) ? CO_ER_SSL_KILLED_HB : CO_ER_SSL_HANDSHAKE; goto out_error; } } #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) else { /* * If the server refused the early data, we have to send a * 425 to the client, as we no longer have the data to sent * them again. */ if ((conn->flags & CO_FL_EARLY_DATA) && (objt_server(conn->target))) { if (SSL_get_early_data_status(ctx->ssl) == SSL_EARLY_DATA_REJECTED) { conn->err_code = CO_ER_SSL_EARLY_FAILED; goto out_error; } } } #endif reneg_ok: #if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) /* ASYNC engine API doesn't support moving read/write * buffers. So we disable ASYNC mode right after * the handshake to avoid buffer overflow. */ if (global_ssl.async) SSL_clear_mode(ctx->ssl, SSL_MODE_ASYNC); #endif /* Handshake succeeded */ if (!SSL_session_reused(ctx->ssl)) { if (objt_server(conn->target)) { update_freq_ctr(&global.ssl_be_keys_per_sec, 1); if (global.ssl_be_keys_per_sec.curr_ctr > global.ssl_be_keys_max) global.ssl_be_keys_max = global.ssl_be_keys_per_sec.curr_ctr; } else { update_freq_ctr(&global.ssl_fe_keys_per_sec, 1); if (global.ssl_fe_keys_per_sec.curr_ctr > global.ssl_fe_keys_max) global.ssl_fe_keys_max = global.ssl_fe_keys_per_sec.curr_ctr; } } /* The connection is now established at both layers, it's time to leave */ conn->flags &= ~(flag | CO_FL_WAIT_L4_CONN | CO_FL_WAIT_L6_CONN); return 1; out_error: /* Clear openssl global errors stack */ ssl_sock_dump_errors(conn); ERR_clear_error(); /* free resumed session if exists */ if (objt_server(conn->target) && __objt_server(conn->target)->ssl_ctx.reused_sess[tid].ptr) { free(__objt_server(conn->target)->ssl_ctx.reused_sess[tid].ptr); __objt_server(conn->target)->ssl_ctx.reused_sess[tid].ptr = NULL; } /* Fail on all other handshake errors */ conn->flags |= CO_FL_ERROR; if (!conn->err_code) conn->err_code = CO_ER_SSL_HANDSHAKE; return 0; } /* Called from the upper layer, to subscribe to events . The * event subscriber is not allowed to change from a previous call as long * as at least one event is still subscribed. The must only be a * combination of SUB_RETRY_RECV and SUB_RETRY_SEND. It always returns 0, * unless the transport layer was already released. */ static int ssl_subscribe(struct connection *conn, void *xprt_ctx, int event_type, struct wait_event *es) { struct ssl_sock_ctx *ctx = xprt_ctx; if (!ctx) return -1; BUG_ON(event_type & ~(SUB_RETRY_SEND|SUB_RETRY_RECV)); BUG_ON(ctx->subs && ctx->subs != es); ctx->subs = es; es->events |= event_type; /* we may have to subscribe to lower layers for new events */ event_type &= ~ctx->wait_event.events; if (event_type && !(conn->flags & CO_FL_SSL_WAIT_HS)) ctx->xprt->subscribe(conn, ctx->xprt_ctx, event_type, &ctx->wait_event); return 0; } /* Called from the upper layer, to unsubscribe from events . * The pointer is not allowed to differ from the one passed to the * subscribe() call. It always returns zero. */ static int ssl_unsubscribe(struct connection *conn, void *xprt_ctx, int event_type, struct wait_event *es) { struct ssl_sock_ctx *ctx = xprt_ctx; BUG_ON(event_type & ~(SUB_RETRY_SEND|SUB_RETRY_RECV)); BUG_ON(ctx->subs && ctx->subs != es); es->events &= ~event_type; if (!es->events) ctx->subs = NULL; /* If we subscribed, and we're not doing the handshake, * then we subscribed because the upper layer asked for it, * as the upper layer is no longer interested, we can * unsubscribe too. */ event_type &= ctx->wait_event.events; if (event_type && !(ctx->conn->flags & CO_FL_SSL_WAIT_HS)) conn_unsubscribe(conn, ctx->xprt_ctx, event_type, &ctx->wait_event); return 0; } /* Use the provided XPRT as an underlying XPRT, and provide the old one. * Returns 0 on success, and non-zero on failure. */ static int ssl_add_xprt(struct connection *conn, void *xprt_ctx, void *toadd_ctx, const struct xprt_ops *toadd_ops, void **oldxprt_ctx, const struct xprt_ops **oldxprt_ops) { struct ssl_sock_ctx *ctx = xprt_ctx; if (oldxprt_ops != NULL) *oldxprt_ops = ctx->xprt; if (oldxprt_ctx != NULL) *oldxprt_ctx = ctx->xprt_ctx; ctx->xprt = toadd_ops; ctx->xprt_ctx = toadd_ctx; return 0; } /* Remove the specified xprt. If if it our underlying XPRT, remove it and * return 0, otherwise just call the remove_xprt method from the underlying * XPRT. */ static int ssl_remove_xprt(struct connection *conn, void *xprt_ctx, void *toremove_ctx, const struct xprt_ops *newops, void *newctx) { struct ssl_sock_ctx *ctx = xprt_ctx; if (ctx->xprt_ctx == toremove_ctx) { ctx->xprt_ctx = newctx; ctx->xprt = newops; return 0; } return (ctx->xprt->remove_xprt(conn, ctx->xprt_ctx, toremove_ctx, newops, newctx)); } static struct task *ssl_sock_io_cb(struct task *t, void *context, unsigned short state) { struct ssl_sock_ctx *ctx = context; /* First if we're doing an handshake, try that */ if (ctx->conn->flags & CO_FL_SSL_WAIT_HS) ssl_sock_handshake(ctx->conn, CO_FL_SSL_WAIT_HS); /* If we had an error, or the handshake is done and I/O is available, * let the upper layer know. * If no mux was set up yet, then call conn_create_mux() * we can't be sure conn_fd_handler() will be called again. */ if ((ctx->conn->flags & CO_FL_ERROR) || !(ctx->conn->flags & CO_FL_SSL_WAIT_HS)) { int ret = 0; int woke = 0; /* On error, wake any waiter */ if (ctx->subs) { tasklet_wakeup(ctx->subs->tasklet); ctx->subs->events = 0; woke = 1; ctx->subs = NULL; } /* If we're the first xprt for the connection, let the * upper layers know. If we have no mux, create it, * and once we have a mux, call its wake method if we didn't * woke a tasklet already. */ if (ctx->conn->xprt_ctx == ctx) { if (!ctx->conn->mux) ret = conn_create_mux(ctx->conn); if (ret >= 0 && !woke && ctx->conn->mux && ctx->conn->mux->wake) ctx->conn->mux->wake(ctx->conn); return NULL; } } #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) /* If we have early data and somebody wants to receive, let them */ else if (b_data(&ctx->early_buf) && ctx->subs && ctx->subs->events & SUB_RETRY_RECV) { tasklet_wakeup(ctx->subs->tasklet); ctx->subs->events &= ~SUB_RETRY_RECV; if (!ctx->subs->events) ctx->subs = NULL; } #endif return NULL; } /* Receive up to bytes from connection 's socket and store them * into buffer . Only one call to recv() is performed, unless the * buffer wraps, in which case a second call may be performed. The connection's * flags are updated with whatever special event is detected (error, read0, * empty). The caller is responsible for taking care of those events and * avoiding the call if inappropriate. The function does not call the * connection's polling update function, so the caller is responsible for this. */ static size_t ssl_sock_to_buf(struct connection *conn, void *xprt_ctx, struct buffer *buf, size_t count, int flags) { struct ssl_sock_ctx *ctx = xprt_ctx; ssize_t ret; size_t try, done = 0; if (!ctx) goto out_error; #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) if (b_data(&ctx->early_buf)) { try = b_contig_space(buf); if (try > b_data(&ctx->early_buf)) try = b_data(&ctx->early_buf); memcpy(b_tail(buf), b_head(&ctx->early_buf), try); b_add(buf, try); b_del(&ctx->early_buf, try); if (b_data(&ctx->early_buf) == 0) b_free(&ctx->early_buf); return try; } #endif if (conn->flags & (CO_FL_WAIT_XPRT | CO_FL_SSL_WAIT_HS)) /* a handshake was requested */ return 0; /* read the largest possible block. For this, we perform only one call * to recv() unless the buffer wraps and we exactly fill the first hunk, * in which case we accept to do it once again. A new attempt is made on * EINTR too. */ while (count > 0) { try = b_contig_space(buf); if (!try) break; if (try > count) try = count; ret = SSL_read(ctx->ssl, b_tail(buf), try); if (conn->flags & CO_FL_ERROR) { /* CO_FL_ERROR may be set by ssl_sock_infocbk */ goto out_error; } if (ret > 0) { b_add(buf, ret); done += ret; count -= ret; } else { ret = SSL_get_error(ctx->ssl, ret); if (ret == SSL_ERROR_WANT_WRITE) { /* handshake is running, and it needs to enable write */ conn->flags |= CO_FL_SSL_WAIT_HS; ctx->xprt->subscribe(conn, ctx->xprt_ctx, SUB_RETRY_SEND, &ctx->wait_event); #if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) /* Async mode can be re-enabled, because we're leaving data state.*/ if (global_ssl.async) SSL_set_mode(ctx->ssl, SSL_MODE_ASYNC); #endif break; } else if (ret == SSL_ERROR_WANT_READ) { if (SSL_renegotiate_pending(ctx->ssl)) { ctx->xprt->subscribe(conn, ctx->xprt_ctx, SUB_RETRY_RECV, &ctx->wait_event); /* handshake is running, and it may need to re-enable read */ conn->flags |= CO_FL_SSL_WAIT_HS; #if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) /* Async mode can be re-enabled, because we're leaving data state.*/ if (global_ssl.async) SSL_set_mode(ctx->ssl, SSL_MODE_ASYNC); #endif break; } break; } else if (ret == SSL_ERROR_ZERO_RETURN) goto read0; /* For SSL_ERROR_SYSCALL, make sure to clear the error * stack before shutting down the connection for * reading. */ if (ret == SSL_ERROR_SYSCALL && (!errno || errno == EAGAIN)) goto clear_ssl_error; /* otherwise it's a real error */ goto out_error; } } leave: return done; clear_ssl_error: /* Clear openssl global errors stack */ ssl_sock_dump_errors(conn); ERR_clear_error(); read0: conn_sock_read0(conn); goto leave; out_error: conn->flags |= CO_FL_ERROR; /* Clear openssl global errors stack */ ssl_sock_dump_errors(conn); ERR_clear_error(); goto leave; } /* Send up to pending bytes from buffer to connection 's * socket. may contain some CO_SFL_* flags to hint the system about * other pending data for example, but this flag is ignored at the moment. * Only one call to send() is performed, unless the buffer wraps, in which case * a second call may be performed. The connection's flags are updated with * whatever special event is detected (error, empty). The caller is responsible * for taking care of those events and avoiding the call if inappropriate. The * function does not call the connection's polling update function, so the caller * is responsible for this. The buffer's output is not adjusted, it's up to the * caller to take care of this. It's up to the caller to update the buffer's * contents based on the return value. */ static size_t ssl_sock_from_buf(struct connection *conn, void *xprt_ctx, const struct buffer *buf, size_t count, int flags) { struct ssl_sock_ctx *ctx = xprt_ctx; ssize_t ret; size_t try, done; done = 0; if (!ctx) goto out_error; if (conn->flags & (CO_FL_WAIT_XPRT | CO_FL_SSL_WAIT_HS | CO_FL_EARLY_SSL_HS)) /* a handshake was requested */ return 0; /* send the largest possible block. For this we perform only one call * to send() unless the buffer wraps and we exactly fill the first hunk, * in which case we accept to do it once again. */ while (count) { #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) size_t written_data; #endif try = b_contig_data(buf, done); if (try > count) try = count; if (!(flags & CO_SFL_STREAMER) && !(ctx->xprt_st & SSL_SOCK_SEND_UNLIMITED) && global_ssl.max_record && try > global_ssl.max_record) { try = global_ssl.max_record; } else { /* we need to keep the information about the fact that * we're not limiting the upcoming send(), because if it * fails, we'll have to retry with at least as many data. */ ctx->xprt_st |= SSL_SOCK_SEND_UNLIMITED; } #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) if (!SSL_is_init_finished(ctx->ssl) && conn_is_back(conn)) { unsigned int max_early; if (objt_listener(conn->target)) max_early = SSL_get_max_early_data(ctx->ssl); else { if (SSL_get0_session(ctx->ssl)) max_early = SSL_SESSION_get_max_early_data(SSL_get0_session(ctx->ssl)); else max_early = 0; } if (try + ctx->sent_early_data > max_early) { try -= (try + ctx->sent_early_data) - max_early; if (try <= 0) { conn->flags |= CO_FL_SSL_WAIT_HS | CO_FL_WAIT_L6_CONN; tasklet_wakeup(ctx->wait_event.tasklet); break; } } ret = SSL_write_early_data(ctx->ssl, b_peek(buf, done), try, &written_data); if (ret == 1) { ret = written_data; ctx->sent_early_data += ret; if (objt_server(conn->target)) { conn->flags |= CO_FL_SSL_WAIT_HS | CO_FL_WAIT_L6_CONN | CO_FL_EARLY_DATA; /* Initiate the handshake, now */ tasklet_wakeup(ctx->wait_event.tasklet); } } } else #endif ret = SSL_write(ctx->ssl, b_peek(buf, done), try); if (conn->flags & CO_FL_ERROR) { /* CO_FL_ERROR may be set by ssl_sock_infocbk */ goto out_error; } if (ret > 0) { /* A send succeeded, so we can consider ourself connected */ conn->flags &= ~CO_FL_WAIT_L4L6; ctx->xprt_st &= ~SSL_SOCK_SEND_UNLIMITED; count -= ret; done += ret; } else { ret = SSL_get_error(ctx->ssl, ret); if (ret == SSL_ERROR_WANT_WRITE) { if (SSL_renegotiate_pending(ctx->ssl)) { /* handshake is running, and it may need to re-enable write */ conn->flags |= CO_FL_SSL_WAIT_HS; ctx->xprt->subscribe(conn, ctx->xprt_ctx, SUB_RETRY_SEND, &ctx->wait_event); #if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) /* Async mode can be re-enabled, because we're leaving data state.*/ if (global_ssl.async) SSL_set_mode(ctx->ssl, SSL_MODE_ASYNC); #endif break; } break; } else if (ret == SSL_ERROR_WANT_READ) { /* handshake is running, and it needs to enable read */ conn->flags |= CO_FL_SSL_WAIT_HS; ctx->xprt->subscribe(conn, ctx->xprt_ctx, SUB_RETRY_RECV, &ctx->wait_event); #if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) /* Async mode can be re-enabled, because we're leaving data state.*/ if (global_ssl.async) SSL_set_mode(ctx->ssl, SSL_MODE_ASYNC); #endif break; } goto out_error; } } leave: return done; out_error: /* Clear openssl global errors stack */ ssl_sock_dump_errors(conn); ERR_clear_error(); conn->flags |= CO_FL_ERROR; goto leave; } static void ssl_sock_close(struct connection *conn, void *xprt_ctx) { struct ssl_sock_ctx *ctx = xprt_ctx; if (ctx) { if (ctx->wait_event.events != 0) ctx->xprt->unsubscribe(ctx->conn, ctx->xprt_ctx, ctx->wait_event.events, &ctx->wait_event); if (ctx->subs) { ctx->subs->events = 0; tasklet_wakeup(ctx->subs->tasklet); } if (ctx->xprt->close) ctx->xprt->close(conn, ctx->xprt_ctx); #if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) if (global_ssl.async) { OSSL_ASYNC_FD all_fd[32], afd; size_t num_all_fds = 0; int i; SSL_get_all_async_fds(ctx->ssl, NULL, &num_all_fds); if (num_all_fds > 32) { send_log(NULL, LOG_EMERG, "haproxy: openssl returns too many async fds. It seems a bug. Process may crash\n"); return; } SSL_get_all_async_fds(ctx->ssl, all_fd, &num_all_fds); /* If an async job is pending, we must try to to catch the end using polling before calling SSL_free */ if (num_all_fds && SSL_waiting_for_async(ctx->ssl)) { for (i=0 ; i < num_all_fds ; i++) { /* switch on an handler designed to * handle the SSL_free */ afd = all_fd[i]; fdtab[afd].iocb = ssl_async_fd_free; fdtab[afd].owner = ctx->ssl; fd_want_recv(afd); /* To ensure that the fd cache won't be used * and we'll catch a real RD event. */ fd_cant_recv(afd); } tasklet_free(ctx->wait_event.tasklet); pool_free(ssl_sock_ctx_pool, ctx); _HA_ATOMIC_ADD(&jobs, 1); return; } /* Else we can remove the fds from the fdtab * and call SSL_free. * note: we do a fd_remove and not a delete * because the fd is owned by the engine. * the engine is responsible to close */ for (i=0 ; i < num_all_fds ; i++) fd_remove(all_fd[i]); } #endif SSL_free(ctx->ssl); b_free(&ctx->early_buf); tasklet_free(ctx->wait_event.tasklet); pool_free(ssl_sock_ctx_pool, ctx); _HA_ATOMIC_SUB(&sslconns, 1); } } /* This function tries to perform a clean shutdown on an SSL connection, and in * any case, flags the connection as reusable if no handshake was in progress. */ static void ssl_sock_shutw(struct connection *conn, void *xprt_ctx, int clean) { struct ssl_sock_ctx *ctx = xprt_ctx; if (conn->flags & (CO_FL_WAIT_XPRT | CO_FL_SSL_WAIT_HS)) return; if (!clean) /* don't sent notify on SSL_shutdown */ SSL_set_quiet_shutdown(ctx->ssl, 1); /* no handshake was in progress, try a clean ssl shutdown */ if (SSL_shutdown(ctx->ssl) <= 0) { /* Clear openssl global errors stack */ ssl_sock_dump_errors(conn); ERR_clear_error(); } } /* fill a buffer with the algorithm and size of a public key */ static int cert_get_pkey_algo(X509 *crt, struct buffer *out) { int bits = 0; int sig = TLSEXT_signature_anonymous; int len = -1; EVP_PKEY *pkey; pkey = X509_get_pubkey(crt); if (pkey) { bits = EVP_PKEY_bits(pkey); switch(EVP_PKEY_base_id(pkey)) { case EVP_PKEY_RSA: sig = TLSEXT_signature_rsa; break; case EVP_PKEY_EC: sig = TLSEXT_signature_ecdsa; break; case EVP_PKEY_DSA: sig = TLSEXT_signature_dsa; break; } EVP_PKEY_free(pkey); } switch(sig) { case TLSEXT_signature_rsa: len = chunk_printf(out, "RSA%d", bits); break; case TLSEXT_signature_ecdsa: len = chunk_printf(out, "EC%d", bits); break; case TLSEXT_signature_dsa: len = chunk_printf(out, "DSA%d", bits); break; default: return 0; } if (len < 0) return 0; return 1; } /* used for ppv2 pkey algo (can be used for logging) */ int ssl_sock_get_pkey_algo(struct connection *conn, struct buffer *out) { struct ssl_sock_ctx *ctx; X509 *crt; if (!ssl_sock_is_ssl(conn)) return 0; ctx = conn->xprt_ctx; crt = SSL_get_certificate(ctx->ssl); if (!crt) return 0; return cert_get_pkey_algo(crt, out); } /* used for ppv2 cert signature (can be used for logging) */ const char *ssl_sock_get_cert_sig(struct connection *conn) { struct ssl_sock_ctx *ctx; __OPENSSL_110_CONST__ ASN1_OBJECT *algorithm; X509 *crt; if (!ssl_sock_is_ssl(conn)) return NULL; ctx = conn->xprt_ctx; crt = SSL_get_certificate(ctx->ssl); if (!crt) return NULL; X509_ALGOR_get0(&algorithm, NULL, NULL, X509_get0_tbs_sigalg(crt)); return OBJ_nid2sn(OBJ_obj2nid(algorithm)); } /* used for ppv2 authority */ const char *ssl_sock_get_sni(struct connection *conn) { #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME struct ssl_sock_ctx *ctx; if (!ssl_sock_is_ssl(conn)) return NULL; ctx = conn->xprt_ctx; return SSL_get_servername(ctx->ssl, TLSEXT_NAMETYPE_host_name); #else return NULL; #endif } /* used for logging/ppv2, may be changed for a sample fetch later */ const char *ssl_sock_get_cipher_name(struct connection *conn) { struct ssl_sock_ctx *ctx; if (!ssl_sock_is_ssl(conn)) return NULL; ctx = conn->xprt_ctx; return SSL_get_cipher_name(ctx->ssl); } /* used for logging/ppv2, may be changed for a sample fetch later */ const char *ssl_sock_get_proto_version(struct connection *conn) { struct ssl_sock_ctx *ctx; if (!ssl_sock_is_ssl(conn)) return NULL; ctx = conn->xprt_ctx; return SSL_get_version(ctx->ssl); } /* Extract a serial from a cert, and copy it to a chunk. * Returns 1 if serial is found and copied, 0 if no serial found and * -1 if output is not large enough. */ static int ssl_sock_get_serial(X509 *crt, struct buffer *out) { ASN1_INTEGER *serial; serial = X509_get_serialNumber(crt); if (!serial) return 0; if (out->size < serial->length) return -1; memcpy(out->area, serial->data, serial->length); out->data = serial->length; return 1; } /* Extract a cert to der, and copy it to a chunk. * Returns 1 if the cert is found and copied, 0 on der conversion failure * and -1 if the output is not large enough. */ static int ssl_sock_crt2der(X509 *crt, struct buffer *out) { int len; unsigned char *p = (unsigned char *) out->area;; len =i2d_X509(crt, NULL); if (len <= 0) return 1; if (out->size < len) return -1; i2d_X509(crt,&p); out->data = len; return 1; } /* Copy Date in ASN1_UTCTIME format in struct buffer out. * Returns 1 if serial is found and copied, 0 if no valid time found * and -1 if output is not large enough. */ static int ssl_sock_get_time(ASN1_TIME *tm, struct buffer *out) { if (tm->type == V_ASN1_GENERALIZEDTIME) { ASN1_GENERALIZEDTIME *gentm = (ASN1_GENERALIZEDTIME *)tm; if (gentm->length < 12) return 0; if (gentm->data[0] != 0x32 || gentm->data[1] != 0x30) return 0; if (out->size < gentm->length-2) return -1; memcpy(out->area, gentm->data+2, gentm->length-2); out->data = gentm->length-2; return 1; } else if (tm->type == V_ASN1_UTCTIME) { ASN1_UTCTIME *utctm = (ASN1_UTCTIME *)tm; if (utctm->length < 10) return 0; if (utctm->data[0] >= 0x35) return 0; if (out->size < utctm->length) return -1; memcpy(out->area, utctm->data, utctm->length); out->data = utctm->length; return 1; } return 0; } /* Extract an entry from a X509_NAME and copy its value to an output chunk. * Returns 1 if entry found, 0 if entry not found, or -1 if output not large enough. */ static int ssl_sock_get_dn_entry(X509_NAME *a, const struct buffer *entry, int pos, struct buffer *out) { X509_NAME_ENTRY *ne; ASN1_OBJECT *obj; ASN1_STRING *data; const unsigned char *data_ptr; int data_len; int i, j, n; int cur = 0; const char *s; char tmp[128]; int name_count; name_count = X509_NAME_entry_count(a); out->data = 0; for (i = 0; i < name_count; i++) { if (pos < 0) j = (name_count-1) - i; else j = i; ne = X509_NAME_get_entry(a, j); obj = X509_NAME_ENTRY_get_object(ne); data = X509_NAME_ENTRY_get_data(ne); data_ptr = ASN1_STRING_get0_data(data); data_len = ASN1_STRING_length(data); n = OBJ_obj2nid(obj); if ((n == NID_undef) || ((s = OBJ_nid2sn(n)) == NULL)) { i2t_ASN1_OBJECT(tmp, sizeof(tmp), obj); s = tmp; } if (chunk_strcasecmp(entry, s) != 0) continue; if (pos < 0) cur--; else cur++; if (cur != pos) continue; if (data_len > out->size) return -1; memcpy(out->area, data_ptr, data_len); out->data = data_len; return 1; } return 0; } /* * Extract and format the DNS SAN extensions and copy result into a chuink * Return 0; */ #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME static int ssl_sock_get_san_oneline(X509 *cert, struct buffer *out) { int i; char *str; STACK_OF(GENERAL_NAME) *names = NULL; names = X509_get_ext_d2i(cert, NID_subject_alt_name, NULL, NULL); if (names) { for (i = 0; i < sk_GENERAL_NAME_num(names); i++) { GENERAL_NAME *name = sk_GENERAL_NAME_value(names, i); if (i > 0) chunk_appendf(out, ", "); if (name->type == GEN_DNS) { if (ASN1_STRING_to_UTF8((unsigned char **)&str, name->d.dNSName) >= 0) { chunk_appendf(out, "DNS:%s", str); OPENSSL_free(str); } } } sk_GENERAL_NAME_pop_free(names, GENERAL_NAME_free); } return 0; } #endif /* * Extract the DN in the specified format from the X509_NAME and copy result to a chunk. * Currently supports rfc2253 for returning LDAP V3 DNs. * Returns 1 if dn entries exist, 0 if no dn entry was found. */ static int ssl_sock_get_dn_formatted(X509_NAME *a, const struct buffer *format, struct buffer *out) { BIO *bio = NULL; int ret = 0; int data_len = 0; if (chunk_strcmp(format, "rfc2253") == 0) { bio = BIO_new(BIO_s_mem()); if (bio == NULL) goto out; if (X509_NAME_print_ex(bio, a, 0, XN_FLAG_RFC2253) < 0) goto out; if ((data_len = BIO_read(bio, out->area, out->size)) <= 0) goto out; out->data = data_len; ret = 1; } out: if (bio) BIO_free(bio); return ret; } /* Extract and format full DN from a X509_NAME and copy result into a chunk * Returns 1 if dn entries exits, 0 if no dn entry found or -1 if output is not large enough. */ static int ssl_sock_get_dn_oneline(X509_NAME *a, struct buffer *out) { X509_NAME_ENTRY *ne; ASN1_OBJECT *obj; ASN1_STRING *data; const unsigned char *data_ptr; int data_len; int i, n, ln; int l = 0; const char *s; char *p; char tmp[128]; int name_count; name_count = X509_NAME_entry_count(a); out->data = 0; p = out->area; for (i = 0; i < name_count; i++) { ne = X509_NAME_get_entry(a, i); obj = X509_NAME_ENTRY_get_object(ne); data = X509_NAME_ENTRY_get_data(ne); data_ptr = ASN1_STRING_get0_data(data); data_len = ASN1_STRING_length(data); n = OBJ_obj2nid(obj); if ((n == NID_undef) || ((s = OBJ_nid2sn(n)) == NULL)) { i2t_ASN1_OBJECT(tmp, sizeof(tmp), obj); s = tmp; } ln = strlen(s); l += 1 + ln + 1 + data_len; if (l > out->size) return -1; out->data = l; *(p++)='/'; memcpy(p, s, ln); p += ln; *(p++)='='; memcpy(p, data_ptr, data_len); p += data_len; } if (!out->data) return 0; return 1; } void ssl_sock_set_alpn(struct connection *conn, const unsigned char *alpn, int len) { #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation struct ssl_sock_ctx *ctx; if (!ssl_sock_is_ssl(conn)) return; ctx = conn->xprt_ctx; SSL_set_alpn_protos(ctx->ssl, alpn, len); #endif } /* Sets advertised SNI for outgoing connections. Please set to NULL * to disable SNI. */ void ssl_sock_set_servername(struct connection *conn, const char *hostname) { #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME struct ssl_sock_ctx *ctx; char *prev_name; if (!ssl_sock_is_ssl(conn)) return; ctx = conn->xprt_ctx; /* if the SNI changes, we must destroy the reusable context so that a * new connection will present a new SNI. As an optimization we could * later imagine having a small cache of ssl_ctx to hold a few SNI per * server. */ prev_name = (char *)SSL_get_servername(ctx->ssl, TLSEXT_NAMETYPE_host_name); if ((!prev_name && hostname) || (prev_name && (!hostname || strcmp(hostname, prev_name) != 0))) SSL_set_session(ctx->ssl, NULL); SSL_set_tlsext_host_name(ctx->ssl, hostname); #endif } /* Extract peer certificate's common name into the chunk dest * Returns * the len of the extracted common name * or 0 if no CN found in DN * or -1 on error case (i.e. no peer certificate) */ int ssl_sock_get_remote_common_name(struct connection *conn, struct buffer *dest) { struct ssl_sock_ctx *ctx; X509 *crt = NULL; X509_NAME *name; const char find_cn[] = "CN"; const struct buffer find_cn_chunk = { .area = (char *)&find_cn, .data = sizeof(find_cn)-1 }; int result = -1; if (!ssl_sock_is_ssl(conn)) goto out; ctx = conn->xprt_ctx; /* SSL_get_peer_certificate, it increase X509 * ref count */ crt = SSL_get_peer_certificate(ctx->ssl); if (!crt) goto out; name = X509_get_subject_name(crt); if (!name) goto out; result = ssl_sock_get_dn_entry(name, &find_cn_chunk, 1, dest); out: if (crt) X509_free(crt); return result; } /* returns 1 if client passed a certificate for this session, 0 if not */ int ssl_sock_get_cert_used_sess(struct connection *conn) { struct ssl_sock_ctx *ctx; X509 *crt = NULL; if (!ssl_sock_is_ssl(conn)) return 0; ctx = conn->xprt_ctx; /* SSL_get_peer_certificate, it increase X509 * ref count */ crt = SSL_get_peer_certificate(ctx->ssl); if (!crt) return 0; X509_free(crt); return 1; } /* returns 1 if client passed a certificate for this connection, 0 if not */ int ssl_sock_get_cert_used_conn(struct connection *conn) { struct ssl_sock_ctx *ctx; if (!ssl_sock_is_ssl(conn)) return 0; ctx = conn->xprt_ctx; return SSL_SOCK_ST_FL_VERIFY_DONE & ctx->xprt_st ? 1 : 0; } /* returns result from SSL verify */ unsigned int ssl_sock_get_verify_result(struct connection *conn) { struct ssl_sock_ctx *ctx; if (!ssl_sock_is_ssl(conn)) return (unsigned int)X509_V_ERR_APPLICATION_VERIFICATION; ctx = conn->xprt_ctx; return (unsigned int)SSL_get_verify_result(ctx->ssl); } /* Returns the application layer protocol name in and when known. * Zero is returned if the protocol name was not found, otherwise non-zero is * returned. The string is allocated in the SSL context and doesn't have to be * freed by the caller. NPN is also checked if available since older versions * of openssl (1.0.1) which are more common in field only support this one. */ static int ssl_sock_get_alpn(const struct connection *conn, void *xprt_ctx, const char **str, int *len) { #if defined(TLSEXT_TYPE_application_layer_protocol_negotiation) || \ defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG) struct ssl_sock_ctx *ctx = xprt_ctx; if (!ctx) return 0; *str = NULL; #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation SSL_get0_alpn_selected(ctx->ssl, (const unsigned char **)str, (unsigned *)len); if (*str) return 1; #endif #if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG) SSL_get0_next_proto_negotiated(ctx->ssl, (const unsigned char **)str, (unsigned *)len); if (*str) return 1; #endif #endif return 0; } /***** Below are some sample fetching functions for ACL/patterns *****/ static int smp_fetch_ssl_fc_has_early(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; smp->flags = 0; smp->data.type = SMP_T_BOOL; #ifdef OPENSSL_IS_BORINGSSL { struct ssl_sock_ctx *ctx = conn->xprt_ctx; smp->data.u.sint = (SSL_in_early_data(ctx->ssl) && SSL_early_data_accepted(ctx->ssl)); } #else smp->data.u.sint = ((conn->flags & CO_FL_EARLY_DATA) && (conn->flags & (CO_FL_EARLY_SSL_HS | CO_FL_SSL_WAIT_HS))) ? 1 : 0; #endif return 1; } /* boolean, returns true if client cert was present */ static int smp_fetch_ssl_fc_has_crt(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; struct ssl_sock_ctx *ctx; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; ctx = conn->xprt_ctx; if (conn->flags & CO_FL_WAIT_XPRT) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } smp->flags = 0; smp->data.type = SMP_T_BOOL; smp->data.u.sint = SSL_SOCK_ST_FL_VERIFY_DONE & ctx->xprt_st ? 1 : 0; return 1; } /* binary, returns a certificate in a binary chunk (der/raw). * The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate * should be use. */ static int smp_fetch_ssl_x_der(const struct arg *args, struct sample *smp, const char *kw, void *private) { int cert_peer = (kw[4] == 'c') ? 1 : 0; X509 *crt = NULL; int ret = 0; struct buffer *smp_trash; struct connection *conn; struct ssl_sock_ctx *ctx; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; ctx = conn->xprt_ctx; if (conn->flags & CO_FL_WAIT_XPRT) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } if (cert_peer) crt = SSL_get_peer_certificate(ctx->ssl); else crt = SSL_get_certificate(ctx->ssl); if (!crt) goto out; smp_trash = get_trash_chunk(); if (ssl_sock_crt2der(crt, smp_trash) <= 0) goto out; smp->data.u.str = *smp_trash; smp->data.type = SMP_T_BIN; ret = 1; out: /* SSL_get_peer_certificate, it increase X509 * ref count */ if (cert_peer && crt) X509_free(crt); return ret; } /* binary, returns serial of certificate in a binary chunk. * The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate * should be use. */ static int smp_fetch_ssl_x_serial(const struct arg *args, struct sample *smp, const char *kw, void *private) { int cert_peer = (kw[4] == 'c') ? 1 : 0; X509 *crt = NULL; int ret = 0; struct buffer *smp_trash; struct connection *conn; struct ssl_sock_ctx *ctx; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; ctx = conn->xprt_ctx; if (conn->flags & CO_FL_WAIT_XPRT) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } if (cert_peer) crt = SSL_get_peer_certificate(ctx->ssl); else crt = SSL_get_certificate(ctx->ssl); if (!crt) goto out; smp_trash = get_trash_chunk(); if (ssl_sock_get_serial(crt, smp_trash) <= 0) goto out; smp->data.u.str = *smp_trash; smp->data.type = SMP_T_BIN; ret = 1; out: /* SSL_get_peer_certificate, it increase X509 * ref count */ if (cert_peer && crt) X509_free(crt); return ret; } /* binary, returns the client certificate's SHA-1 fingerprint (SHA-1 hash of DER-encoded certificate) in a binary chunk. * The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate * should be use. */ static int smp_fetch_ssl_x_sha1(const struct arg *args, struct sample *smp, const char *kw, void *private) { int cert_peer = (kw[4] == 'c') ? 1 : 0; X509 *crt = NULL; const EVP_MD *digest; int ret = 0; unsigned int len = 0; struct buffer *smp_trash; struct connection *conn; struct ssl_sock_ctx *ctx; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; ctx = conn->xprt_ctx; if (conn->flags & CO_FL_WAIT_XPRT) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } if (cert_peer) crt = SSL_get_peer_certificate(ctx->ssl); else crt = SSL_get_certificate(ctx->ssl); if (!crt) goto out; smp_trash = get_trash_chunk(); digest = EVP_sha1(); X509_digest(crt, digest, (unsigned char *) smp_trash->area, &len); smp_trash->data = len; smp->data.u.str = *smp_trash; smp->data.type = SMP_T_BIN; ret = 1; out: /* SSL_get_peer_certificate, it increase X509 * ref count */ if (cert_peer && crt) X509_free(crt); return ret; } /* string, returns certificate's notafter date in ASN1_UTCTIME format. * The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate * should be use. */ static int smp_fetch_ssl_x_notafter(const struct arg *args, struct sample *smp, const char *kw, void *private) { int cert_peer = (kw[4] == 'c') ? 1 : 0; X509 *crt = NULL; int ret = 0; struct buffer *smp_trash; struct connection *conn; struct ssl_sock_ctx *ctx; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; ctx = conn->xprt_ctx; if (conn->flags & CO_FL_WAIT_XPRT) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } if (cert_peer) crt = SSL_get_peer_certificate(ctx->ssl); else crt = SSL_get_certificate(ctx->ssl); if (!crt) goto out; smp_trash = get_trash_chunk(); if (ssl_sock_get_time(X509_getm_notAfter(crt), smp_trash) <= 0) goto out; smp->data.u.str = *smp_trash; smp->data.type = SMP_T_STR; ret = 1; out: /* SSL_get_peer_certificate, it increase X509 * ref count */ if (cert_peer && crt) X509_free(crt); return ret; } /* string, returns a string of a formatted full dn \C=..\O=..\OU=.. \CN=.. of certificate's issuer * The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate * should be use. */ static int smp_fetch_ssl_x_i_dn(const struct arg *args, struct sample *smp, const char *kw, void *private) { int cert_peer = (kw[4] == 'c') ? 1 : 0; X509 *crt = NULL; X509_NAME *name; int ret = 0; struct buffer *smp_trash; struct connection *conn; struct ssl_sock_ctx *ctx; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; ctx = conn->xprt_ctx; if (conn->flags & CO_FL_WAIT_XPRT) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } if (cert_peer) crt = SSL_get_peer_certificate(ctx->ssl); else crt = SSL_get_certificate(ctx->ssl); if (!crt) goto out; name = X509_get_issuer_name(crt); if (!name) goto out; smp_trash = get_trash_chunk(); if (args && args[0].type == ARGT_STR && args[0].data.str.data > 0) { int pos = 1; if (args[1].type == ARGT_SINT) pos = args[1].data.sint; if (ssl_sock_get_dn_entry(name, &args[0].data.str, pos, smp_trash) <= 0) goto out; } else if (args && args[2].type == ARGT_STR && args[2].data.str.data > 0) { if (ssl_sock_get_dn_formatted(name, &args[2].data.str, smp_trash) <= 0) goto out; } else if (ssl_sock_get_dn_oneline(name, smp_trash) <= 0) goto out; smp->data.type = SMP_T_STR; smp->data.u.str = *smp_trash; ret = 1; out: /* SSL_get_peer_certificate, it increase X509 * ref count */ if (cert_peer && crt) X509_free(crt); return ret; } /* string, returns notbefore date in ASN1_UTCTIME format. * The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate * should be use. */ static int smp_fetch_ssl_x_notbefore(const struct arg *args, struct sample *smp, const char *kw, void *private) { int cert_peer = (kw[4] == 'c') ? 1 : 0; X509 *crt = NULL; int ret = 0; struct buffer *smp_trash; struct connection *conn; struct ssl_sock_ctx *ctx; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; ctx = conn->xprt_ctx; if (conn->flags & CO_FL_WAIT_XPRT) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } if (cert_peer) crt = SSL_get_peer_certificate(ctx->ssl); else crt = SSL_get_certificate(ctx->ssl); if (!crt) goto out; smp_trash = get_trash_chunk(); if (ssl_sock_get_time(X509_getm_notBefore(crt), smp_trash) <= 0) goto out; smp->data.u.str = *smp_trash; smp->data.type = SMP_T_STR; ret = 1; out: /* SSL_get_peer_certificate, it increase X509 * ref count */ if (cert_peer && crt) X509_free(crt); return ret; } /* string, returns a string of a formatted full dn \C=..\O=..\OU=.. \CN=.. of certificate's subject * The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate * should be use. */ static int smp_fetch_ssl_x_s_dn(const struct arg *args, struct sample *smp, const char *kw, void *private) { int cert_peer = (kw[4] == 'c') ? 1 : 0; X509 *crt = NULL; X509_NAME *name; int ret = 0; struct buffer *smp_trash; struct connection *conn; struct ssl_sock_ctx *ctx; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; ctx = conn->xprt_ctx; if (conn->flags & CO_FL_WAIT_XPRT) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } if (cert_peer) crt = SSL_get_peer_certificate(ctx->ssl); else crt = SSL_get_certificate(ctx->ssl); if (!crt) goto out; name = X509_get_subject_name(crt); if (!name) goto out; smp_trash = get_trash_chunk(); if (args && args[0].type == ARGT_STR && args[0].data.str.data > 0) { int pos = 1; if (args[1].type == ARGT_SINT) pos = args[1].data.sint; if (ssl_sock_get_dn_entry(name, &args[0].data.str, pos, smp_trash) <= 0) goto out; } else if (args && args[2].type == ARGT_STR && args[2].data.str.data > 0) { if (ssl_sock_get_dn_formatted(name, &args[2].data.str, smp_trash) <= 0) goto out; } else if (ssl_sock_get_dn_oneline(name, smp_trash) <= 0) goto out; smp->data.type = SMP_T_STR; smp->data.u.str = *smp_trash; ret = 1; out: /* SSL_get_peer_certificate, it increase X509 * ref count */ if (cert_peer && crt) X509_free(crt); return ret; } /* integer, returns true if current session use a client certificate */ static int smp_fetch_ssl_c_used(const struct arg *args, struct sample *smp, const char *kw, void *private) { X509 *crt; struct connection *conn; struct ssl_sock_ctx *ctx; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; ctx = conn->xprt_ctx; if (conn->flags & CO_FL_WAIT_XPRT) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } /* SSL_get_peer_certificate returns a ptr on allocated X509 struct */ crt = SSL_get_peer_certificate(ctx->ssl); if (crt) { X509_free(crt); } smp->data.type = SMP_T_BOOL; smp->data.u.sint = (crt != NULL); return 1; } /* integer, returns the certificate version * The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate * should be use. */ static int smp_fetch_ssl_x_version(const struct arg *args, struct sample *smp, const char *kw, void *private) { int cert_peer = (kw[4] == 'c') ? 1 : 0; X509 *crt; struct connection *conn; struct ssl_sock_ctx *ctx; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; ctx = conn->xprt_ctx; if (conn->flags & CO_FL_WAIT_XPRT) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } if (cert_peer) crt = SSL_get_peer_certificate(ctx->ssl); else crt = SSL_get_certificate(ctx->ssl); if (!crt) return 0; smp->data.u.sint = (unsigned int)(1 + X509_get_version(crt)); /* SSL_get_peer_certificate increase X509 * ref count */ if (cert_peer) X509_free(crt); smp->data.type = SMP_T_SINT; return 1; } /* string, returns the certificate's signature algorithm. * The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate * should be use. */ static int smp_fetch_ssl_x_sig_alg(const struct arg *args, struct sample *smp, const char *kw, void *private) { int cert_peer = (kw[4] == 'c') ? 1 : 0; X509 *crt; __OPENSSL_110_CONST__ ASN1_OBJECT *algorithm; int nid; struct connection *conn; struct ssl_sock_ctx *ctx; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; ctx = conn->xprt_ctx; if (conn->flags & CO_FL_WAIT_XPRT) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } if (cert_peer) crt = SSL_get_peer_certificate(ctx->ssl); else crt = SSL_get_certificate(ctx->ssl); if (!crt) return 0; X509_ALGOR_get0(&algorithm, NULL, NULL, X509_get0_tbs_sigalg(crt)); nid = OBJ_obj2nid(algorithm); smp->data.u.str.area = (char *)OBJ_nid2sn(nid); if (!smp->data.u.str.area) { /* SSL_get_peer_certificate increase X509 * ref count */ if (cert_peer) X509_free(crt); return 0; } smp->data.type = SMP_T_STR; smp->flags |= SMP_F_CONST; smp->data.u.str.data = strlen(smp->data.u.str.area); /* SSL_get_peer_certificate increase X509 * ref count */ if (cert_peer) X509_free(crt); return 1; } /* string, returns the certificate's key algorithm. * The 5th keyword char is used to know if SSL_get_certificate or SSL_get_peer_certificate * should be use. */ static int smp_fetch_ssl_x_key_alg(const struct arg *args, struct sample *smp, const char *kw, void *private) { int cert_peer = (kw[4] == 'c') ? 1 : 0; X509 *crt; ASN1_OBJECT *algorithm; int nid; struct connection *conn; struct ssl_sock_ctx *ctx; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; ctx = conn->xprt_ctx; if (conn->flags & CO_FL_WAIT_XPRT) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } if (cert_peer) crt = SSL_get_peer_certificate(ctx->ssl); else crt = SSL_get_certificate(ctx->ssl); if (!crt) return 0; X509_PUBKEY_get0_param(&algorithm, NULL, NULL, NULL, X509_get_X509_PUBKEY(crt)); nid = OBJ_obj2nid(algorithm); smp->data.u.str.area = (char *)OBJ_nid2sn(nid); if (!smp->data.u.str.area) { /* SSL_get_peer_certificate increase X509 * ref count */ if (cert_peer) X509_free(crt); return 0; } smp->data.type = SMP_T_STR; smp->flags |= SMP_F_CONST; smp->data.u.str.data = strlen(smp->data.u.str.area); if (cert_peer) X509_free(crt); return 1; } /* boolean, returns true if front conn. transport layer is SSL. * This function is also usable on backend conn if the fetch keyword 5th * char is 'b'. */ static int smp_fetch_ssl_fc(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? cs_conn(objt_cs(smp->strm->si[1].end)) : NULL; smp->data.type = SMP_T_BOOL; smp->data.u.sint = (conn && conn->xprt == &ssl_sock); return 1; } /* boolean, returns true if client present a SNI */ static int smp_fetch_ssl_fc_has_sni(const struct arg *args, struct sample *smp, const char *kw, void *private) { #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME struct connection *conn = objt_conn(smp->sess->origin); struct ssl_sock_ctx *ctx = conn ? conn->xprt_ctx : NULL; smp->data.type = SMP_T_BOOL; smp->data.u.sint = (conn && conn->xprt == &ssl_sock) && conn->xprt_ctx && SSL_get_servername(ctx->ssl, TLSEXT_NAMETYPE_host_name) != NULL; return 1; #else return 0; #endif } /* boolean, returns true if client session has been resumed. * This function is also usable on backend conn if the fetch keyword 5th * char is 'b'. */ static int smp_fetch_ssl_fc_is_resumed(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? cs_conn(objt_cs(smp->strm->si[1].end)) : NULL; struct ssl_sock_ctx *ctx = conn ? conn->xprt_ctx : NULL; smp->data.type = SMP_T_BOOL; smp->data.u.sint = (conn && conn->xprt == &ssl_sock) && conn->xprt_ctx && SSL_session_reused(ctx->ssl); return 1; } /* string, returns the used cipher if front conn. transport layer is SSL. * This function is also usable on backend conn if the fetch keyword 5th * char is 'b'. */ static int smp_fetch_ssl_fc_cipher(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? cs_conn(objt_cs(smp->strm->si[1].end)) : NULL; struct ssl_sock_ctx *ctx; smp->flags = 0; if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock) return 0; ctx = conn->xprt_ctx; smp->data.u.str.area = (char *)SSL_get_cipher_name(ctx->ssl); if (!smp->data.u.str.area) return 0; smp->data.type = SMP_T_STR; smp->flags |= SMP_F_CONST; smp->data.u.str.data = strlen(smp->data.u.str.area); return 1; } /* integer, returns the algoritm's keysize if front conn. transport layer * is SSL. * This function is also usable on backend conn if the fetch keyword 5th * char is 'b'. */ static int smp_fetch_ssl_fc_alg_keysize(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? cs_conn(objt_cs(smp->strm->si[1].end)) : NULL; struct ssl_sock_ctx *ctx; int sint; smp->flags = 0; if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock) return 0; ctx = conn->xprt_ctx; if (!SSL_get_cipher_bits(ctx->ssl, &sint)) return 0; smp->data.u.sint = sint; smp->data.type = SMP_T_SINT; return 1; } /* integer, returns the used keysize if front conn. transport layer is SSL. * This function is also usable on backend conn if the fetch keyword 5th * char is 'b'. */ static int smp_fetch_ssl_fc_use_keysize(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? cs_conn(objt_cs(smp->strm->si[1].end)) : NULL; struct ssl_sock_ctx *ctx; smp->flags = 0; if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock) return 0; ctx = conn->xprt_ctx; smp->data.u.sint = (unsigned int)SSL_get_cipher_bits(ctx->ssl, NULL); if (!smp->data.u.sint) return 0; smp->data.type = SMP_T_SINT; return 1; } #if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG) static int smp_fetch_ssl_fc_npn(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; struct ssl_sock_ctx *ctx; unsigned int len = 0; smp->flags = SMP_F_CONST; smp->data.type = SMP_T_STR; conn = (kw[4] != 'b' ) ? objt_conn(smp->sess->origin) : smp->strm ? cs_conn(objt_cs(smp->strm->si[1].end)) : NULL; if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock) return 0; ctx = conn->xprt_ctx; smp->data.u.str.area = NULL; SSL_get0_next_proto_negotiated(ctx->ssl, (const unsigned char **)&smp->data.u.str.area, &len); if (!smp->data.u.str.area) return 0; smp->data.u.str.data = len; return 1; } #endif #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation static int smp_fetch_ssl_fc_alpn(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; struct ssl_sock_ctx *ctx; unsigned int len = 0; smp->flags = SMP_F_CONST; smp->data.type = SMP_T_STR; conn = (kw[4] != 'b' ) ? objt_conn(smp->sess->origin) : smp->strm ? cs_conn(objt_cs(smp->strm->si[1].end)) : NULL; if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock) return 0; ctx = conn->xprt_ctx; smp->data.u.str.area = NULL; SSL_get0_alpn_selected(ctx->ssl, (const unsigned char **)&smp->data.u.str.area, &len); if (!smp->data.u.str.area) return 0; smp->data.u.str.data = len; return 1; } #endif /* string, returns the used protocol if front conn. transport layer is SSL. * This function is also usable on backend conn if the fetch keyword 5th * char is 'b'. */ static int smp_fetch_ssl_fc_protocol(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? cs_conn(objt_cs(smp->strm->si[1].end)) : NULL; struct ssl_sock_ctx *ctx; smp->flags = 0; if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock) return 0; ctx = conn->xprt_ctx; smp->data.u.str.area = (char *)SSL_get_version(ctx->ssl); if (!smp->data.u.str.area) return 0; smp->data.type = SMP_T_STR; smp->flags = SMP_F_CONST; smp->data.u.str.data = strlen(smp->data.u.str.area); return 1; } /* binary, returns the SSL stream id if front conn. transport layer is SSL. * This function is also usable on backend conn if the fetch keyword 5th * char is 'b'. */ #if HA_OPENSSL_VERSION_NUMBER > 0x0090800fL static int smp_fetch_ssl_fc_session_id(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? cs_conn(objt_cs(smp->strm->si[1].end)) : NULL; SSL_SESSION *ssl_sess; struct ssl_sock_ctx *ctx; unsigned int len = 0; smp->flags = SMP_F_CONST; smp->data.type = SMP_T_BIN; if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock) return 0; ctx = conn->xprt_ctx; ssl_sess = SSL_get_session(ctx->ssl); if (!ssl_sess) return 0; smp->data.u.str.area = (char *)SSL_SESSION_get_id(ssl_sess, &len); if (!smp->data.u.str.area || !smp->data.u.str.data) return 0; smp->data.u.str.data = len; return 1; } #endif #if HA_OPENSSL_VERSION_NUMBER >= 0x10100000L static int smp_fetch_ssl_fc_random(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? cs_conn(objt_cs(smp->strm->si[1].end)) : NULL; struct buffer *data; struct ssl_sock_ctx *ctx; if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock) return 0; ctx = conn->xprt_ctx; data = get_trash_chunk(); if (kw[7] == 'c') data->data = SSL_get_client_random(ctx->ssl, (unsigned char *) data->area, data->size); else data->data = SSL_get_server_random(ctx->ssl, (unsigned char *) data->area, data->size); if (!data->data) return 0; smp->flags = 0; smp->data.type = SMP_T_BIN; smp->data.u.str = *data; return 1; } static int smp_fetch_ssl_fc_session_key(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? cs_conn(objt_cs(smp->strm->si[1].end)) : NULL; SSL_SESSION *ssl_sess; struct buffer *data; struct ssl_sock_ctx *ctx; if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock) return 0; ctx = conn->xprt_ctx; ssl_sess = SSL_get_session(ctx->ssl); if (!ssl_sess) return 0; data = get_trash_chunk(); data->data = SSL_SESSION_get_master_key(ssl_sess, (unsigned char *) data->area, data->size); if (!data->data) return 0; smp->flags = 0; smp->data.type = SMP_T_BIN; smp->data.u.str = *data; return 1; } #endif #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME static int smp_fetch_ssl_fc_sni(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; struct ssl_sock_ctx *ctx; smp->flags = SMP_F_CONST; smp->data.type = SMP_T_STR; conn = objt_conn(smp->sess->origin); if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock) return 0; ctx = conn->xprt_ctx; smp->data.u.str.area = (char *)SSL_get_servername(ctx->ssl, TLSEXT_NAMETYPE_host_name); if (!smp->data.u.str.area) return 0; smp->data.u.str.data = strlen(smp->data.u.str.area); return 1; } #endif static int smp_fetch_ssl_fc_cl_bin(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; struct ssl_capture *capture; struct ssl_sock_ctx *ctx; conn = objt_conn(smp->sess->origin); if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock) return 0; ctx = conn->xprt_ctx; capture = SSL_get_ex_data(ctx->ssl, ssl_capture_ptr_index); if (!capture) return 0; smp->flags = SMP_F_CONST; smp->data.type = SMP_T_BIN; smp->data.u.str.area = capture->ciphersuite; smp->data.u.str.data = capture->ciphersuite_len; return 1; } static int smp_fetch_ssl_fc_cl_hex(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct buffer *data; if (!smp_fetch_ssl_fc_cl_bin(args, smp, kw, private)) return 0; data = get_trash_chunk(); dump_binary(data, smp->data.u.str.area, smp->data.u.str.data); smp->data.type = SMP_T_BIN; smp->data.u.str = *data; return 1; } static int smp_fetch_ssl_fc_cl_xxh64(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; struct ssl_capture *capture; struct ssl_sock_ctx *ctx; conn = objt_conn(smp->sess->origin); if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock) return 0; ctx = conn->xprt_ctx; capture = SSL_get_ex_data(ctx->ssl, ssl_capture_ptr_index); if (!capture) return 0; smp->data.type = SMP_T_SINT; smp->data.u.sint = capture->xxh64; return 1; } static int smp_fetch_ssl_fc_cl_str(const struct arg *args, struct sample *smp, const char *kw, void *private) { #if (HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL) struct buffer *data; int i; if (!smp_fetch_ssl_fc_cl_bin(args, smp, kw, private)) return 0; data = get_trash_chunk(); for (i = 0; i + 1 < smp->data.u.str.data; i += 2) { const char *str; const SSL_CIPHER *cipher; const unsigned char *bin = (const unsigned char *) smp->data.u.str.area + i; uint16_t id = (bin[0] << 8) | bin[1]; #if defined(OPENSSL_IS_BORINGSSL) cipher = SSL_get_cipher_by_value(id); #else struct connection *conn = __objt_conn(smp->sess->origin); struct ssl_sock_ctx *ctx = conn->xprt_ctx; cipher = SSL_CIPHER_find(ctx->ssl, bin); #endif str = SSL_CIPHER_get_name(cipher); if (!str || strcmp(str, "(NONE)") == 0) chunk_appendf(data, "%sUNKNOWN(%04x)", i == 0 ? "" : ",", id); else chunk_appendf(data, "%s%s", i == 0 ? "" : ",", str); } smp->data.type = SMP_T_STR; smp->data.u.str = *data; return 1; #else return smp_fetch_ssl_fc_cl_xxh64(args, smp, kw, private); #endif } #if HA_OPENSSL_VERSION_NUMBER > 0x0090800fL static int smp_fetch_ssl_fc_unique_id(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn = (kw[4] != 'b') ? objt_conn(smp->sess->origin) : smp->strm ? cs_conn(objt_cs(smp->strm->si[1].end)) : NULL; int finished_len; struct buffer *finished_trash; struct ssl_sock_ctx *ctx; smp->flags = 0; if (!conn || !conn->xprt_ctx || conn->xprt != &ssl_sock) return 0; ctx = conn->xprt_ctx; if (conn->flags & CO_FL_WAIT_XPRT) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } finished_trash = get_trash_chunk(); if (!SSL_session_reused(ctx->ssl)) finished_len = SSL_get_peer_finished(ctx->ssl, finished_trash->area, finished_trash->size); else finished_len = SSL_get_finished(ctx->ssl, finished_trash->area, finished_trash->size); if (!finished_len) return 0; finished_trash->data = finished_len; smp->data.u.str = *finished_trash; smp->data.type = SMP_T_BIN; return 1; } #endif /* integer, returns the first verify error in CA chain of client certificate chain. */ static int smp_fetch_ssl_c_ca_err(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; struct ssl_sock_ctx *ctx; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; ctx = conn->xprt_ctx; if (conn->flags & CO_FL_WAIT_XPRT) { smp->flags = SMP_F_MAY_CHANGE; return 0; } smp->data.type = SMP_T_SINT; smp->data.u.sint = (unsigned long long int)SSL_SOCK_ST_TO_CA_ERROR(ctx->xprt_st); smp->flags = 0; return 1; } /* integer, returns the depth of the first verify error in CA chain of client certificate chain. */ static int smp_fetch_ssl_c_ca_err_depth(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; struct ssl_sock_ctx *ctx; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; if (conn->flags & CO_FL_WAIT_XPRT) { smp->flags = SMP_F_MAY_CHANGE; return 0; } ctx = conn->xprt_ctx; smp->data.type = SMP_T_SINT; smp->data.u.sint = (long long int)SSL_SOCK_ST_TO_CAEDEPTH(ctx->xprt_st); smp->flags = 0; return 1; } /* integer, returns the first verify error on client certificate */ static int smp_fetch_ssl_c_err(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; struct ssl_sock_ctx *ctx; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; if (conn->flags & CO_FL_WAIT_XPRT) { smp->flags = SMP_F_MAY_CHANGE; return 0; } ctx = conn->xprt_ctx; smp->data.type = SMP_T_SINT; smp->data.u.sint = (long long int)SSL_SOCK_ST_TO_CRTERROR(ctx->xprt_st); smp->flags = 0; return 1; } /* integer, returns the verify result on client cert */ static int smp_fetch_ssl_c_verify(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct connection *conn; struct ssl_sock_ctx *ctx; conn = objt_conn(smp->sess->origin); if (!conn || conn->xprt != &ssl_sock) return 0; if (conn->flags & CO_FL_WAIT_XPRT) { smp->flags = SMP_F_MAY_CHANGE; return 0; } if (!conn->xprt_ctx) return 0; ctx = conn->xprt_ctx; smp->data.type = SMP_T_SINT; smp->data.u.sint = (long long int)SSL_get_verify_result(ctx->ssl); smp->flags = 0; return 1; } /* for ca-file and ca-verify-file */ static int ssl_bind_parse_ca_file_common(char **args, int cur_arg, char **ca_file_p, char **err) { if (!*args[cur_arg + 1]) { memprintf(err, "'%s' : missing CAfile path", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } if ((*args[cur_arg + 1] != '/') && global_ssl.ca_base) memprintf(ca_file_p, "%s/%s", global_ssl.ca_base, args[cur_arg + 1]); else memprintf(ca_file_p, "%s", args[cur_arg + 1]); if (!ssl_store_load_locations_file(*ca_file_p)) { memprintf(err, "'%s' : unable to load %s", args[cur_arg], *ca_file_p); return ERR_ALERT | ERR_FATAL; } return 0; } /* parse the "ca-file" bind keyword */ static int ssl_bind_parse_ca_file(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err) { return ssl_bind_parse_ca_file_common(args, cur_arg, &conf->ca_file, err); } static int bind_parse_ca_file(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { return ssl_bind_parse_ca_file(args, cur_arg, px, &conf->ssl_conf, err); } /* parse the "ca-verify-file" bind keyword */ static int ssl_bind_parse_ca_verify_file(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err) { return ssl_bind_parse_ca_file_common(args, cur_arg, &conf->ca_verify_file, err); } static int bind_parse_ca_verify_file(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { return ssl_bind_parse_ca_verify_file(args, cur_arg, px, &conf->ssl_conf, err); } /* parse the "ca-sign-file" bind keyword */ static int bind_parse_ca_sign_file(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { if (!*args[cur_arg + 1]) { memprintf(err, "'%s' : missing CAfile path", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } if ((*args[cur_arg + 1] != '/') && global_ssl.ca_base) memprintf(&conf->ca_sign_file, "%s/%s", global_ssl.ca_base, args[cur_arg + 1]); else memprintf(&conf->ca_sign_file, "%s", args[cur_arg + 1]); return 0; } /* parse the "ca-sign-pass" bind keyword */ static int bind_parse_ca_sign_pass(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { if (!*args[cur_arg + 1]) { memprintf(err, "'%s' : missing CAkey password", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } memprintf(&conf->ca_sign_pass, "%s", args[cur_arg + 1]); return 0; } /* parse the "ciphers" bind keyword */ static int ssl_bind_parse_ciphers(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err) { if (!*args[cur_arg + 1]) { memprintf(err, "'%s' : missing cipher suite", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } free(conf->ciphers); conf->ciphers = strdup(args[cur_arg + 1]); return 0; } static int bind_parse_ciphers(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { return ssl_bind_parse_ciphers(args, cur_arg, px, &conf->ssl_conf, err); } #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) /* parse the "ciphersuites" bind keyword */ static int ssl_bind_parse_ciphersuites(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err) { if (!*args[cur_arg + 1]) { memprintf(err, "'%s' : missing cipher suite", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } free(conf->ciphersuites); conf->ciphersuites = strdup(args[cur_arg + 1]); return 0; } static int bind_parse_ciphersuites(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { return ssl_bind_parse_ciphersuites(args, cur_arg, px, &conf->ssl_conf, err); } #endif /* parse the "crt" bind keyword. Returns a set of ERR_* flags possibly with an error in . */ static int bind_parse_crt(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { char path[MAXPATHLEN]; if (!*args[cur_arg + 1]) { memprintf(err, "'%s' : missing certificate location", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } if ((*args[cur_arg + 1] != '/' ) && global_ssl.crt_base) { if ((strlen(global_ssl.crt_base) + 1 + strlen(args[cur_arg + 1]) + 1) > MAXPATHLEN) { memprintf(err, "'%s' : path too long", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } snprintf(path, sizeof(path), "%s/%s", global_ssl.crt_base, args[cur_arg + 1]); return ssl_sock_load_cert(path, conf, err); } return ssl_sock_load_cert(args[cur_arg + 1], conf, err); } /* parse the "crt-list" bind keyword. Returns a set of ERR_* flags possibly with an error in . */ static int bind_parse_crt_list(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { int err_code; if (!*args[cur_arg + 1]) { memprintf(err, "'%s' : missing certificate location", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } err_code = ssl_sock_load_cert_list_file(args[cur_arg + 1], 0, conf, px, err); if (err_code) memprintf(err, "'%s' : %s", args[cur_arg], *err); return err_code; } /* parse the "crl-file" bind keyword */ static int ssl_bind_parse_crl_file(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err) { #ifndef X509_V_FLAG_CRL_CHECK memprintf(err, "'%s' : library does not support CRL verify", args[cur_arg]); return ERR_ALERT | ERR_FATAL; #else if (!*args[cur_arg + 1]) { memprintf(err, "'%s' : missing CRLfile path", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } if ((*args[cur_arg + 1] != '/') && global_ssl.ca_base) memprintf(&conf->crl_file, "%s/%s", global_ssl.ca_base, args[cur_arg + 1]); else memprintf(&conf->crl_file, "%s", args[cur_arg + 1]); if (!ssl_store_load_locations_file(conf->crl_file)) { memprintf(err, "'%s' : unable to load %s", args[cur_arg], conf->crl_file); return ERR_ALERT | ERR_FATAL; } return 0; #endif } static int bind_parse_crl_file(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { return ssl_bind_parse_crl_file(args, cur_arg, px, &conf->ssl_conf, err); } /* parse the "curves" bind keyword keyword */ static int ssl_bind_parse_curves(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err) { #if ((HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL) || defined(LIBRESSL_VERSION_NUMBER)) if (!*args[cur_arg + 1]) { memprintf(err, "'%s' : missing curve suite", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } conf->curves = strdup(args[cur_arg + 1]); return 0; #else memprintf(err, "'%s' : library does not support curve suite", args[cur_arg]); return ERR_ALERT | ERR_FATAL; #endif } static int bind_parse_curves(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { return ssl_bind_parse_curves(args, cur_arg, px, &conf->ssl_conf, err); } /* parse the "ecdhe" bind keyword keyword */ static int ssl_bind_parse_ecdhe(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err) { #if HA_OPENSSL_VERSION_NUMBER < 0x0090800fL memprintf(err, "'%s' : library does not support elliptic curve Diffie-Hellman (too old)", args[cur_arg]); return ERR_ALERT | ERR_FATAL; #elif defined(OPENSSL_NO_ECDH) memprintf(err, "'%s' : library does not support elliptic curve Diffie-Hellman (disabled via OPENSSL_NO_ECDH)", args[cur_arg]); return ERR_ALERT | ERR_FATAL; #else if (!*args[cur_arg + 1]) { memprintf(err, "'%s' : missing named curve", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } conf->ecdhe = strdup(args[cur_arg + 1]); return 0; #endif } static int bind_parse_ecdhe(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { return ssl_bind_parse_ecdhe(args, cur_arg, px, &conf->ssl_conf, err); } /* parse the "crt-ignore-err" and "ca-ignore-err" bind keywords */ static int bind_parse_ignore_err(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { int code; char *p = args[cur_arg + 1]; unsigned long long *ignerr = &conf->crt_ignerr; if (!*p) { memprintf(err, "'%s' : missing error IDs list", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } if (strcmp(args[cur_arg], "ca-ignore-err") == 0) ignerr = &conf->ca_ignerr; if (strcmp(p, "all") == 0) { *ignerr = ~0ULL; return 0; } while (p) { code = atoi(p); if ((code <= 0) || (code > 63)) { memprintf(err, "'%s' : ID '%d' out of range (1..63) in error IDs list '%s'", args[cur_arg], code, args[cur_arg + 1]); return ERR_ALERT | ERR_FATAL; } *ignerr |= 1ULL << code; p = strchr(p, ','); if (p) p++; } return 0; } /* parse tls_method_options "no-xxx" and "force-xxx" */ static int parse_tls_method_options(char *arg, struct tls_version_filter *methods, char **err) { uint16_t v; char *p; p = strchr(arg, '-'); if (!p) goto fail; p++; if (!strcmp(p, "sslv3")) v = CONF_SSLV3; else if (!strcmp(p, "tlsv10")) v = CONF_TLSV10; else if (!strcmp(p, "tlsv11")) v = CONF_TLSV11; else if (!strcmp(p, "tlsv12")) v = CONF_TLSV12; else if (!strcmp(p, "tlsv13")) v = CONF_TLSV13; else goto fail; if (!strncmp(arg, "no-", 3)) methods->flags |= methodVersions[v].flag; else if (!strncmp(arg, "force-", 6)) methods->min = methods->max = v; else goto fail; return 0; fail: memprintf(err, "'%s' : option not implemented", arg); return ERR_ALERT | ERR_FATAL; } static int bind_parse_tls_method_options(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { return parse_tls_method_options(args[cur_arg], &conf->ssl_conf.ssl_methods, err); } static int srv_parse_tls_method_options(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { return parse_tls_method_options(args[*cur_arg], &newsrv->ssl_ctx.methods, err); } /* parse tls_method min/max: "ssl-min-ver" and "ssl-max-ver" */ static int parse_tls_method_minmax(char **args, int cur_arg, struct tls_version_filter *methods, char **err) { uint16_t i, v = 0; char *argv = args[cur_arg + 1]; if (!*argv) { memprintf(err, "'%s' : missing the ssl/tls version", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } for (i = CONF_TLSV_MIN; i <= CONF_TLSV_MAX; i++) if (!strcmp(argv, methodVersions[i].name)) v = i; if (!v) { memprintf(err, "'%s' : unknown ssl/tls version", args[cur_arg + 1]); return ERR_ALERT | ERR_FATAL; } if (!strcmp("ssl-min-ver", args[cur_arg])) methods->min = v; else if (!strcmp("ssl-max-ver", args[cur_arg])) methods->max = v; else { memprintf(err, "'%s' : option not implemented", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } return 0; } static int ssl_bind_parse_tls_method_minmax(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err) { #if (HA_OPENSSL_VERSION_NUMBER < 0x10101000L) && !defined(OPENSSL_IS_BORINGSSL) ha_warning("crt-list: ssl-min-ver and ssl-max-ver are not supported with this Openssl version (skipped).\n"); #endif return parse_tls_method_minmax(args, cur_arg, &conf->ssl_methods, err); } static int bind_parse_tls_method_minmax(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { return parse_tls_method_minmax(args, cur_arg, &conf->ssl_conf.ssl_methods, err); } static int srv_parse_tls_method_minmax(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { return parse_tls_method_minmax(args, *cur_arg, &newsrv->ssl_ctx.methods, err); } /* parse the "no-tls-tickets" bind keyword */ static int bind_parse_no_tls_tickets(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { conf->ssl_options |= BC_SSL_O_NO_TLS_TICKETS; return 0; } /* parse the "allow-0rtt" bind keyword */ static int ssl_bind_parse_allow_0rtt(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err) { conf->early_data = 1; return 0; } static int bind_parse_allow_0rtt(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { conf->ssl_conf.early_data = 1; return 0; } /* parse the "npn" bind keyword */ static int ssl_bind_parse_npn(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err) { #if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG) char *p1, *p2; if (!*args[cur_arg + 1]) { memprintf(err, "'%s' : missing the comma-delimited NPN protocol suite", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } free(conf->npn_str); /* the NPN string is built as a suite of ( )*, * so we reuse each comma to store the next and need * one more for the end of the string. */ conf->npn_len = strlen(args[cur_arg + 1]) + 1; conf->npn_str = calloc(1, conf->npn_len + 1); memcpy(conf->npn_str + 1, args[cur_arg + 1], conf->npn_len); /* replace commas with the name length */ p1 = conf->npn_str; p2 = p1 + 1; while (1) { p2 = memchr(p1 + 1, ',', conf->npn_str + conf->npn_len - (p1 + 1)); if (!p2) p2 = p1 + 1 + strlen(p1 + 1); if (p2 - (p1 + 1) > 255) { *p2 = '\0'; memprintf(err, "'%s' : NPN protocol name too long : '%s'", args[cur_arg], p1 + 1); return ERR_ALERT | ERR_FATAL; } *p1 = p2 - (p1 + 1); p1 = p2; if (!*p2) break; *(p2++) = '\0'; } return 0; #else memprintf(err, "'%s' : library does not support TLS NPN extension", args[cur_arg]); return ERR_ALERT | ERR_FATAL; #endif } static int bind_parse_npn(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { return ssl_bind_parse_npn(args, cur_arg, px, &conf->ssl_conf, err); } /* Parses a alpn string and converts it to the right format for the SSL api */ int ssl_sock_parse_alpn(char *arg, char **alpn_str, int *alpn_len, char **err) { char *p1, *p2, *alpn = NULL; int len, ret = 0; *alpn_str = NULL; *alpn_len = 0; if (!*arg) { memprintf(err, "missing the comma-delimited ALPN protocol suite"); goto error; } /* the ALPN string is built as a suite of ( )*, * so we reuse each comma to store the next and need * one more for the end of the string. */ len = strlen(arg) + 1; alpn = calloc(1, len+1); if (!alpn) { memprintf(err, "'%s' : out of memory", arg); goto error; } memcpy(alpn+1, arg, len); /* replace commas with the name length */ p1 = alpn; p2 = p1 + 1; while (1) { p2 = memchr(p1 + 1, ',', alpn + len - (p1 + 1)); if (!p2) p2 = p1 + 1 + strlen(p1 + 1); if (p2 - (p1 + 1) > 255) { *p2 = '\0'; memprintf(err, "ALPN protocol name too long : '%s'", p1 + 1); goto error; } *p1 = p2 - (p1 + 1); p1 = p2; if (!*p2) break; *(p2++) = '\0'; } *alpn_str = alpn; *alpn_len = len; out: return ret; error: free(alpn); ret = ERR_ALERT | ERR_FATAL; goto out; } /* parse the "alpn" bind keyword */ static int ssl_bind_parse_alpn(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err) { #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation int ret; free(conf->alpn_str); ret = ssl_sock_parse_alpn(args[cur_arg + 1], &conf->alpn_str, &conf->alpn_len, err); if (ret) memprintf(err, "'%s' : %s", args[cur_arg], *err); return ret; #else memprintf(err, "'%s' : library does not support TLS ALPN extension", args[cur_arg]); return ERR_ALERT | ERR_FATAL; #endif } static int bind_parse_alpn(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { return ssl_bind_parse_alpn(args, cur_arg, px, &conf->ssl_conf, err); } /* parse the "ssl" bind keyword */ static int bind_parse_ssl(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { conf->xprt = &ssl_sock; conf->is_ssl = 1; if (global_ssl.listen_default_ciphers && !conf->ssl_conf.ciphers) conf->ssl_conf.ciphers = strdup(global_ssl.listen_default_ciphers); #if ((HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL) || defined(LIBRESSL_VERSION_NUMBER)) if (global_ssl.listen_default_curves && !conf->ssl_conf.curves) conf->ssl_conf.curves = strdup(global_ssl.listen_default_curves); #endif #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) if (global_ssl.listen_default_ciphersuites && !conf->ssl_conf.ciphersuites) conf->ssl_conf.ciphersuites = strdup(global_ssl.listen_default_ciphersuites); #endif conf->ssl_options |= global_ssl.listen_default_ssloptions; conf->ssl_conf.ssl_methods.flags |= global_ssl.listen_default_sslmethods.flags; if (!conf->ssl_conf.ssl_methods.min) conf->ssl_conf.ssl_methods.min = global_ssl.listen_default_sslmethods.min; if (!conf->ssl_conf.ssl_methods.max) conf->ssl_conf.ssl_methods.max = global_ssl.listen_default_sslmethods.max; return 0; } /* parse the "prefer-client-ciphers" bind keyword */ static int bind_parse_pcc(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { conf->ssl_options |= BC_SSL_O_PREF_CLIE_CIPH; return 0; } /* parse the "generate-certificates" bind keyword */ static int bind_parse_generate_certs(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { #if (defined SSL_CTRL_SET_TLSEXT_HOSTNAME && !defined SSL_NO_GENERATE_CERTIFICATES) conf->generate_certs = 1; #else memprintf(err, "%sthis version of openssl cannot generate SSL certificates.\n", err && *err ? *err : ""); #endif return 0; } /* parse the "strict-sni" bind keyword */ static int bind_parse_strict_sni(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { conf->strict_sni = 1; return 0; } /* parse the "tls-ticket-keys" bind keyword */ static int bind_parse_tls_ticket_keys(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { #if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0) FILE *f = NULL; int i = 0; char thisline[LINESIZE]; struct tls_keys_ref *keys_ref = NULL; if (!*args[cur_arg + 1]) { memprintf(err, "'%s' : missing TLS ticket keys file path", args[cur_arg]); goto fail; } keys_ref = tlskeys_ref_lookup(args[cur_arg + 1]); if (keys_ref) { keys_ref->refcount++; conf->keys_ref = keys_ref; return 0; } keys_ref = calloc(1, sizeof(*keys_ref)); if (!keys_ref) { memprintf(err, "'%s' : allocation error", args[cur_arg+1]); goto fail; } keys_ref->tlskeys = malloc(TLS_TICKETS_NO * sizeof(union tls_sess_key)); if (!keys_ref->tlskeys) { memprintf(err, "'%s' : allocation error", args[cur_arg+1]); goto fail; } if ((f = fopen(args[cur_arg + 1], "r")) == NULL) { memprintf(err, "'%s' : unable to load ssl tickets keys file", args[cur_arg+1]); goto fail; } keys_ref->filename = strdup(args[cur_arg + 1]); if (!keys_ref->filename) { memprintf(err, "'%s' : allocation error", args[cur_arg+1]); goto fail; } keys_ref->key_size_bits = 0; while (fgets(thisline, sizeof(thisline), f) != NULL) { int len = strlen(thisline); int dec_size; /* Strip newline characters from the end */ if(thisline[len - 1] == '\n') thisline[--len] = 0; if(thisline[len - 1] == '\r') thisline[--len] = 0; dec_size = base64dec(thisline, len, (char *) (keys_ref->tlskeys + i % TLS_TICKETS_NO), sizeof(union tls_sess_key)); if (dec_size < 0) { memprintf(err, "'%s' : unable to decode base64 key on line %d", args[cur_arg+1], i + 1); goto fail; } else if (!keys_ref->key_size_bits && (dec_size == sizeof(struct tls_sess_key_128))) { keys_ref->key_size_bits = 128; } else if (!keys_ref->key_size_bits && (dec_size == sizeof(struct tls_sess_key_256))) { keys_ref->key_size_bits = 256; } else if (((dec_size != sizeof(struct tls_sess_key_128)) && (dec_size != sizeof(struct tls_sess_key_256))) || ((dec_size == sizeof(struct tls_sess_key_128) && (keys_ref->key_size_bits != 128))) || ((dec_size == sizeof(struct tls_sess_key_256) && (keys_ref->key_size_bits != 256)))) { memprintf(err, "'%s' : wrong sized key on line %d", args[cur_arg+1], i + 1); goto fail; } i++; } if (i < TLS_TICKETS_NO) { memprintf(err, "'%s' : please supply at least %d keys in the tls-tickets-file", args[cur_arg+1], TLS_TICKETS_NO); goto fail; } fclose(f); /* Use penultimate key for encryption, handle when TLS_TICKETS_NO = 1 */ i -= 2; keys_ref->tls_ticket_enc_index = i < 0 ? 0 : i % TLS_TICKETS_NO; keys_ref->unique_id = -1; keys_ref->refcount = 1; HA_RWLOCK_INIT(&keys_ref->lock); conf->keys_ref = keys_ref; LIST_ADD(&tlskeys_reference, &keys_ref->list); return 0; fail: if (f) fclose(f); if (keys_ref) { free(keys_ref->filename); free(keys_ref->tlskeys); free(keys_ref); } return ERR_ALERT | ERR_FATAL; #else memprintf(err, "'%s' : TLS ticket callback extension not supported", args[cur_arg]); return ERR_ALERT | ERR_FATAL; #endif /* SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB */ } /* parse the "verify" bind keyword */ static int ssl_bind_parse_verify(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err) { if (!*args[cur_arg + 1]) { memprintf(err, "'%s' : missing verify method", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } if (strcmp(args[cur_arg + 1], "none") == 0) conf->verify = SSL_SOCK_VERIFY_NONE; else if (strcmp(args[cur_arg + 1], "optional") == 0) conf->verify = SSL_SOCK_VERIFY_OPTIONAL; else if (strcmp(args[cur_arg + 1], "required") == 0) conf->verify = SSL_SOCK_VERIFY_REQUIRED; else { memprintf(err, "'%s' : unknown verify method '%s', only 'none', 'optional', and 'required' are supported\n", args[cur_arg], args[cur_arg + 1]); return ERR_ALERT | ERR_FATAL; } return 0; } static int bind_parse_verify(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { return ssl_bind_parse_verify(args, cur_arg, px, &conf->ssl_conf, err); } /* parse the "no-ca-names" bind keyword */ static int ssl_bind_parse_no_ca_names(char **args, int cur_arg, struct proxy *px, struct ssl_bind_conf *conf, char **err) { conf->no_ca_names = 1; return 0; } static int bind_parse_no_ca_names(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { return ssl_bind_parse_no_ca_names(args, cur_arg, px, &conf->ssl_conf, err); } /************** "server" keywords ****************/ /* parse the "npn" bind keyword */ static int srv_parse_npn(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { #if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG) char *p1, *p2; if (!*args[*cur_arg + 1]) { memprintf(err, "'%s' : missing the comma-delimited NPN protocol suite", args[*cur_arg]); return ERR_ALERT | ERR_FATAL; } free(newsrv->ssl_ctx.npn_str); /* the NPN string is built as a suite of ( )*, * so we reuse each comma to store the next and need * one more for the end of the string. */ newsrv->ssl_ctx.npn_len = strlen(args[*cur_arg + 1]) + 1; newsrv->ssl_ctx.npn_str = calloc(1, newsrv->ssl_ctx.npn_len + 1); memcpy(newsrv->ssl_ctx.npn_str + 1, args[*cur_arg + 1], newsrv->ssl_ctx.npn_len); /* replace commas with the name length */ p1 = newsrv->ssl_ctx.npn_str; p2 = p1 + 1; while (1) { p2 = memchr(p1 + 1, ',', newsrv->ssl_ctx.npn_str + newsrv->ssl_ctx.npn_len - (p1 + 1)); if (!p2) p2 = p1 + 1 + strlen(p1 + 1); if (p2 - (p1 + 1) > 255) { *p2 = '\0'; memprintf(err, "'%s' : NPN protocol name too long : '%s'", args[*cur_arg], p1 + 1); return ERR_ALERT | ERR_FATAL; } *p1 = p2 - (p1 + 1); p1 = p2; if (!*p2) break; *(p2++) = '\0'; } return 0; #else memprintf(err, "'%s' : library does not support TLS NPN extension", args[*cur_arg]); return ERR_ALERT | ERR_FATAL; #endif } /* parse the "alpn" or the "check-alpn" server keyword */ static int srv_parse_alpn(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation char **alpn_str; int *alpn_len; int ret; if (*args[*cur_arg] == 'c') { alpn_str = &newsrv->check.alpn_str; alpn_len = &newsrv->check.alpn_len; } else { alpn_str = &newsrv->ssl_ctx.alpn_str; alpn_len = &newsrv->ssl_ctx.alpn_len; } free(*alpn_str); ret = ssl_sock_parse_alpn(args[*cur_arg + 1], alpn_str, alpn_len, err); if (ret) memprintf(err, "'%s' : %s", args[*cur_arg], *err); return ret; #else memprintf(err, "'%s' : library does not support TLS ALPN extension", args[*cur_arg]); return ERR_ALERT | ERR_FATAL; #endif } /* parse the "ca-file" server keyword */ static int srv_parse_ca_file(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { if (!*args[*cur_arg + 1]) { memprintf(err, "'%s' : missing CAfile path", args[*cur_arg]); return ERR_ALERT | ERR_FATAL; } if ((*args[*cur_arg + 1] != '/') && global_ssl.ca_base) memprintf(&newsrv->ssl_ctx.ca_file, "%s/%s", global_ssl.ca_base, args[*cur_arg + 1]); else memprintf(&newsrv->ssl_ctx.ca_file, "%s", args[*cur_arg + 1]); if (!ssl_store_load_locations_file(newsrv->ssl_ctx.ca_file)) { memprintf(err, "'%s' : unable to load %s", args[*cur_arg], newsrv->ssl_ctx.ca_file); return ERR_ALERT | ERR_FATAL; } return 0; } /* parse the "check-sni" server keyword */ static int srv_parse_check_sni(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { if (!*args[*cur_arg + 1]) { memprintf(err, "'%s' : missing SNI", args[*cur_arg]); return ERR_ALERT | ERR_FATAL; } newsrv->check.sni = strdup(args[*cur_arg + 1]); if (!newsrv->check.sni) { memprintf(err, "'%s' : failed to allocate memory", args[*cur_arg]); return ERR_ALERT | ERR_FATAL; } return 0; } /* parse the "check-ssl" server keyword */ static int srv_parse_check_ssl(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { newsrv->check.use_ssl = 1; if (global_ssl.connect_default_ciphers && !newsrv->ssl_ctx.ciphers) newsrv->ssl_ctx.ciphers = strdup(global_ssl.connect_default_ciphers); #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) if (global_ssl.connect_default_ciphersuites && !newsrv->ssl_ctx.ciphersuites) newsrv->ssl_ctx.ciphersuites = strdup(global_ssl.connect_default_ciphersuites); #endif newsrv->ssl_ctx.options |= global_ssl.connect_default_ssloptions; newsrv->ssl_ctx.methods.flags |= global_ssl.connect_default_sslmethods.flags; if (!newsrv->ssl_ctx.methods.min) newsrv->ssl_ctx.methods.min = global_ssl.connect_default_sslmethods.min; if (!newsrv->ssl_ctx.methods.max) newsrv->ssl_ctx.methods.max = global_ssl.connect_default_sslmethods.max; return 0; } /* parse the "ciphers" server keyword */ static int srv_parse_ciphers(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { if (!*args[*cur_arg + 1]) { memprintf(err, "'%s' : missing cipher suite", args[*cur_arg]); return ERR_ALERT | ERR_FATAL; } free(newsrv->ssl_ctx.ciphers); newsrv->ssl_ctx.ciphers = strdup(args[*cur_arg + 1]); return 0; } #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) /* parse the "ciphersuites" server keyword */ static int srv_parse_ciphersuites(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { if (!*args[*cur_arg + 1]) { memprintf(err, "'%s' : missing cipher suite", args[*cur_arg]); return ERR_ALERT | ERR_FATAL; } free(newsrv->ssl_ctx.ciphersuites); newsrv->ssl_ctx.ciphersuites = strdup(args[*cur_arg + 1]); return 0; } #endif /* parse the "crl-file" server keyword */ static int srv_parse_crl_file(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { #ifndef X509_V_FLAG_CRL_CHECK memprintf(err, "'%s' : library does not support CRL verify", args[*cur_arg]); return ERR_ALERT | ERR_FATAL; #else if (!*args[*cur_arg + 1]) { memprintf(err, "'%s' : missing CRLfile path", args[*cur_arg]); return ERR_ALERT | ERR_FATAL; } if ((*args[*cur_arg + 1] != '/') && global_ssl.ca_base) memprintf(&newsrv->ssl_ctx.crl_file, "%s/%s", global_ssl.ca_base, args[*cur_arg + 1]); else memprintf(&newsrv->ssl_ctx.crl_file, "%s", args[*cur_arg + 1]); if (!ssl_store_load_locations_file(newsrv->ssl_ctx.crl_file)) { memprintf(err, "'%s' : unable to load %s", args[*cur_arg], newsrv->ssl_ctx.crl_file); return ERR_ALERT | ERR_FATAL; } return 0; #endif } /* parse the "crt" server keyword */ static int srv_parse_crt(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { if (!*args[*cur_arg + 1]) { memprintf(err, "'%s' : missing certificate file path", args[*cur_arg]); return ERR_ALERT | ERR_FATAL; } if ((*args[*cur_arg + 1] != '/') && global_ssl.crt_base) memprintf(&newsrv->ssl_ctx.client_crt, "%s/%s", global_ssl.crt_base, args[*cur_arg + 1]); else memprintf(&newsrv->ssl_ctx.client_crt, "%s", args[*cur_arg + 1]); return 0; } /* parse the "no-check-ssl" server keyword */ static int srv_parse_no_check_ssl(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { newsrv->check.use_ssl = -1; free(newsrv->ssl_ctx.ciphers); newsrv->ssl_ctx.ciphers = NULL; newsrv->ssl_ctx.options &= ~global_ssl.connect_default_ssloptions; return 0; } /* parse the "no-send-proxy-v2-ssl" server keyword */ static int srv_parse_no_send_proxy_ssl(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { newsrv->pp_opts &= ~SRV_PP_V2; newsrv->pp_opts &= ~SRV_PP_V2_SSL; return 0; } /* parse the "no-send-proxy-v2-ssl-cn" server keyword */ static int srv_parse_no_send_proxy_cn(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { newsrv->pp_opts &= ~SRV_PP_V2; newsrv->pp_opts &= ~SRV_PP_V2_SSL; newsrv->pp_opts &= ~SRV_PP_V2_SSL_CN; return 0; } /* parse the "no-ssl" server keyword */ static int srv_parse_no_ssl(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { newsrv->use_ssl = -1; free(newsrv->ssl_ctx.ciphers); newsrv->ssl_ctx.ciphers = NULL; return 0; } /* parse the "allow-0rtt" server keyword */ static int srv_parse_allow_0rtt(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { newsrv->ssl_ctx.options |= SRV_SSL_O_EARLY_DATA; return 0; } /* parse the "no-ssl-reuse" server keyword */ static int srv_parse_no_ssl_reuse(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { newsrv->ssl_ctx.options |= SRV_SSL_O_NO_REUSE; return 0; } /* parse the "no-tls-tickets" server keyword */ static int srv_parse_no_tls_tickets(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { newsrv->ssl_ctx.options |= SRV_SSL_O_NO_TLS_TICKETS; return 0; } /* parse the "send-proxy-v2-ssl" server keyword */ static int srv_parse_send_proxy_ssl(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { newsrv->pp_opts |= SRV_PP_V2; newsrv->pp_opts |= SRV_PP_V2_SSL; return 0; } /* parse the "send-proxy-v2-ssl-cn" server keyword */ static int srv_parse_send_proxy_cn(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { newsrv->pp_opts |= SRV_PP_V2; newsrv->pp_opts |= SRV_PP_V2_SSL; newsrv->pp_opts |= SRV_PP_V2_SSL_CN; return 0; } /* parse the "sni" server keyword */ static int srv_parse_sni(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { #ifndef SSL_CTRL_SET_TLSEXT_HOSTNAME memprintf(err, "'%s' : the current SSL library doesn't support the SNI TLS extension", args[*cur_arg]); return ERR_ALERT | ERR_FATAL; #else char *arg; arg = args[*cur_arg + 1]; if (!*arg) { memprintf(err, "'%s' : missing sni expression", args[*cur_arg]); return ERR_ALERT | ERR_FATAL; } free(newsrv->sni_expr); newsrv->sni_expr = strdup(arg); return 0; #endif } /* parse the "ssl" server keyword */ static int srv_parse_ssl(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { newsrv->use_ssl = 1; if (global_ssl.connect_default_ciphers && !newsrv->ssl_ctx.ciphers) newsrv->ssl_ctx.ciphers = strdup(global_ssl.connect_default_ciphers); #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) if (global_ssl.connect_default_ciphersuites && !newsrv->ssl_ctx.ciphersuites) newsrv->ssl_ctx.ciphersuites = strdup(global_ssl.connect_default_ciphersuites); #endif newsrv->ssl_ctx.options |= global_ssl.connect_default_ssloptions; newsrv->ssl_ctx.methods.flags |= global_ssl.connect_default_sslmethods.flags; if (!newsrv->ssl_ctx.methods.min) newsrv->ssl_ctx.methods.min = global_ssl.connect_default_sslmethods.min; if (!newsrv->ssl_ctx.methods.max) newsrv->ssl_ctx.methods.max = global_ssl.connect_default_sslmethods.max; return 0; } /* parse the "ssl-reuse" server keyword */ static int srv_parse_ssl_reuse(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { newsrv->ssl_ctx.options &= ~SRV_SSL_O_NO_REUSE; return 0; } /* parse the "tls-tickets" server keyword */ static int srv_parse_tls_tickets(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { newsrv->ssl_ctx.options &= ~SRV_SSL_O_NO_TLS_TICKETS; return 0; } /* parse the "verify" server keyword */ static int srv_parse_verify(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { if (!*args[*cur_arg + 1]) { memprintf(err, "'%s' : missing verify method", args[*cur_arg]); return ERR_ALERT | ERR_FATAL; } if (strcmp(args[*cur_arg + 1], "none") == 0) newsrv->ssl_ctx.verify = SSL_SOCK_VERIFY_NONE; else if (strcmp(args[*cur_arg + 1], "required") == 0) newsrv->ssl_ctx.verify = SSL_SOCK_VERIFY_REQUIRED; else { memprintf(err, "'%s' : unknown verify method '%s', only 'none' and 'required' are supported\n", args[*cur_arg], args[*cur_arg + 1]); return ERR_ALERT | ERR_FATAL; } return 0; } /* parse the "verifyhost" server keyword */ static int srv_parse_verifyhost(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err) { if (!*args[*cur_arg + 1]) { memprintf(err, "'%s' : missing hostname to verify against", args[*cur_arg]); return ERR_ALERT | ERR_FATAL; } free(newsrv->ssl_ctx.verify_host); newsrv->ssl_ctx.verify_host = strdup(args[*cur_arg + 1]); return 0; } /* parse the "ssl-default-bind-options" keyword in global section */ static int ssl_parse_default_bind_options(char **args, int section_type, struct proxy *curpx, struct proxy *defpx, const char *file, int line, char **err) { int i = 1; if (*(args[i]) == 0) { memprintf(err, "global statement '%s' expects an option as an argument.", args[0]); return -1; } while (*(args[i])) { if (!strcmp(args[i], "no-tls-tickets")) global_ssl.listen_default_ssloptions |= BC_SSL_O_NO_TLS_TICKETS; else if (!strcmp(args[i], "prefer-client-ciphers")) global_ssl.listen_default_ssloptions |= BC_SSL_O_PREF_CLIE_CIPH; else if (!strcmp(args[i], "ssl-min-ver") || !strcmp(args[i], "ssl-max-ver")) { if (!parse_tls_method_minmax(args, i, &global_ssl.listen_default_sslmethods, err)) i++; else { memprintf(err, "%s on global statement '%s'.", *err, args[0]); return -1; } } else if (parse_tls_method_options(args[i], &global_ssl.listen_default_sslmethods, err)) { memprintf(err, "unknown option '%s' on global statement '%s'.", args[i], args[0]); return -1; } i++; } return 0; } /* parse the "ssl-default-server-options" keyword in global section */ static int ssl_parse_default_server_options(char **args, int section_type, struct proxy *curpx, struct proxy *defpx, const char *file, int line, char **err) { int i = 1; if (*(args[i]) == 0) { memprintf(err, "global statement '%s' expects an option as an argument.", args[0]); return -1; } while (*(args[i])) { if (!strcmp(args[i], "no-tls-tickets")) global_ssl.connect_default_ssloptions |= SRV_SSL_O_NO_TLS_TICKETS; else if (!strcmp(args[i], "ssl-min-ver") || !strcmp(args[i], "ssl-max-ver")) { if (!parse_tls_method_minmax(args, i, &global_ssl.connect_default_sslmethods, err)) i++; else { memprintf(err, "%s on global statement '%s'.", *err, args[0]); return -1; } } else if (parse_tls_method_options(args[i], &global_ssl.connect_default_sslmethods, err)) { memprintf(err, "unknown option '%s' on global statement '%s'.", args[i], args[0]); return -1; } i++; } return 0; } /* parse the "ca-base" / "crt-base" keywords in global section. * Returns <0 on alert, >0 on warning, 0 on success. */ static int ssl_parse_global_ca_crt_base(char **args, int section_type, struct proxy *curpx, struct proxy *defpx, const char *file, int line, char **err) { char **target; target = (args[0][1] == 'a') ? &global_ssl.ca_base : &global_ssl.crt_base; if (too_many_args(1, args, err, NULL)) return -1; if (*target) { memprintf(err, "'%s' already specified.", args[0]); return -1; } if (*(args[1]) == 0) { memprintf(err, "global statement '%s' expects a directory path as an argument.", args[0]); return -1; } *target = strdup(args[1]); return 0; } /* parse the "ssl-skip-self-issued-ca" keyword in global section. */ static int ssl_parse_skip_self_issued_ca(char **args, int section_type, struct proxy *curpx, struct proxy *defpx, const char *file, int line, char **err) { global_ssl.skip_self_issued_ca = 1; return 0; } /* "issuers-chain-path" load chain certificate in global */ static int ssl_load_global_issuer_from_BIO(BIO *in, char *fp, char **err) { X509 *ca; X509_NAME *name = NULL; ASN1_OCTET_STRING *skid = NULL; STACK_OF(X509) *chain = NULL; struct issuer_chain *issuer; struct eb64_node *node; char *path; u64 key; int ret = 0; while ((ca = PEM_read_bio_X509(in, NULL, NULL, NULL))) { if (chain == NULL) { chain = sk_X509_new_null(); skid = X509_get_ext_d2i(ca, NID_subject_key_identifier, NULL, NULL); name = X509_get_subject_name(ca); } if (!sk_X509_push(chain, ca)) { X509_free(ca); goto end; } } if (!chain) { memprintf(err, "unable to load issuers-chain %s : pem certificate not found.\n", fp); goto end; } if (!skid) { memprintf(err, "unable to load issuers-chain %s : SubjectKeyIdentifier not found.\n", fp); goto end; } if (!name) { memprintf(err, "unable to load issuers-chain %s : SubjectName not found.\n", fp); goto end; } key = XXH64(ASN1_STRING_get0_data(skid), ASN1_STRING_length(skid), 0); for (node = eb64_lookup(&cert_issuer_tree, key); node; node = eb64_next(node)) { issuer = container_of(node, typeof(*issuer), node); if (!X509_NAME_cmp(name, X509_get_subject_name(sk_X509_value(issuer->chain, 0)))) { memprintf(err, "duplicate issuers-chain %s: %s already in store\n", fp, issuer->path); goto end; } } issuer = calloc(1, sizeof *issuer); path = strdup(fp); if (!issuer || !path) { free(issuer); free(path); goto end; } issuer->node.key = key; issuer->path = path; issuer->chain = chain; chain = NULL; eb64_insert(&cert_issuer_tree, &issuer->node); ret = 1; end: if (skid) ASN1_OCTET_STRING_free(skid); if (chain) sk_X509_pop_free(chain, X509_free); return ret; } static struct issuer_chain* ssl_get0_issuer_chain(X509 *cert) { AUTHORITY_KEYID *akid; struct issuer_chain *issuer = NULL; akid = X509_get_ext_d2i(cert, NID_authority_key_identifier, NULL, NULL); if (akid) { struct eb64_node *node; u64 hk; hk = XXH64(ASN1_STRING_get0_data(akid->keyid), ASN1_STRING_length(akid->keyid), 0); for (node = eb64_lookup(&cert_issuer_tree, hk); node; node = eb64_next(node)) { struct issuer_chain *ti = container_of(node, typeof(*issuer), node); if (X509_check_issued(sk_X509_value(ti->chain, 0), cert) == X509_V_OK) { issuer = ti; break; } } AUTHORITY_KEYID_free(akid); } return issuer; } static void ssl_free_global_issuers(void) { struct eb64_node *node, *back; struct issuer_chain *issuer; node = eb64_first(&cert_issuer_tree); while (node) { issuer = container_of(node, typeof(*issuer), node); back = eb64_next(node); eb64_delete(node); free(issuer->path); sk_X509_pop_free(issuer->chain, X509_free); free(issuer); node = back; } } static int ssl_load_global_issuers_from_path(char **args, int section_type, struct proxy *curpx, struct proxy *defpx, const char *file, int line, char **err) { char *path; struct dirent **de_list; int i, n; struct stat buf; char *end; char fp[MAXPATHLEN+1]; if (too_many_args(1, args, err, NULL)) return -1; path = args[1]; if (*path == 0 || stat(path, &buf)) { memprintf(err, "%sglobal statement '%s' expects a directory path as an argument.\n", err && *err ? *err : "", args[0]); return -1; } if (S_ISDIR(buf.st_mode) == 0) { memprintf(err, "%sglobal statement '%s': %s is not a directory.\n", err && *err ? *err : "", args[0], path); return -1; } /* strip trailing slashes, including first one */ for (end = path + strlen(path) - 1; end >= path && *end == '/'; end--) *end = 0; /* path already parsed? */ if (global_ssl.issuers_chain_path && strcmp(global_ssl.issuers_chain_path, path) == 0) return 0; /* overwrite old issuers_chain_path */ free(global_ssl.issuers_chain_path); global_ssl.issuers_chain_path = strdup(path); ssl_free_global_issuers(); n = scandir(path, &de_list, 0, alphasort); if (n < 0) { memprintf(err, "%sglobal statement '%s': unable to scan directory '%s' : %s.\n", err && *err ? *err : "", args[0], path, strerror(errno)); return -1; } for (i = 0; i < n; i++) { struct dirent *de = de_list[i]; BIO *in = NULL; char *warn = NULL; snprintf(fp, sizeof(fp), "%s/%s", path, de->d_name); free(de); if (stat(fp, &buf) != 0) { ha_warning("unable to stat certificate from file '%s' : %s.\n", fp, strerror(errno)); goto next; } if (!S_ISREG(buf.st_mode)) goto next; in = BIO_new(BIO_s_file()); if (in == NULL) goto next; if (BIO_read_filename(in, fp) <= 0) goto next; ssl_load_global_issuer_from_BIO(in, fp, &warn); if (warn) { ha_warning("%s", warn); free(warn); warn = NULL; } next: if (in) BIO_free(in); } free(de_list); return 0; } /* parse the "ssl-mode-async" keyword in global section. * Returns <0 on alert, >0 on warning, 0 on success. */ static int ssl_parse_global_ssl_async(char **args, int section_type, struct proxy *curpx, struct proxy *defpx, const char *file, int line, char **err) { #if (HA_OPENSSL_VERSION_NUMBER >= 0x1010000fL) && !defined(OPENSSL_NO_ASYNC) global_ssl.async = 1; global.ssl_used_async_engines = nb_engines; return 0; #else memprintf(err, "'%s': openssl library does not support async mode", args[0]); return -1; #endif } #ifndef OPENSSL_NO_ENGINE static int ssl_check_async_engine_count(void) { int err_code = 0; if (global_ssl.async && (openssl_engines_initialized > 32)) { ha_alert("ssl-mode-async only supports a maximum of 32 engines.\n"); err_code = ERR_ABORT; } return err_code; } /* parse the "ssl-engine" keyword in global section. * Returns <0 on alert, >0 on warning, 0 on success. */ static int ssl_parse_global_ssl_engine(char **args, int section_type, struct proxy *curpx, struct proxy *defpx, const char *file, int line, char **err) { char *algo; int ret = -1; if (*(args[1]) == 0) { memprintf(err, "global statement '%s' expects a valid engine name as an argument.", args[0]); return ret; } if (*(args[2]) == 0) { /* if no list of algorithms is given, it defaults to ALL */ algo = strdup("ALL"); goto add_engine; } /* otherwise the expected format is ssl-engine algo */ if (strcmp(args[2], "algo") != 0) { memprintf(err, "global statement '%s' expects to have algo keyword.", args[0]); return ret; } if (*(args[3]) == 0) { memprintf(err, "global statement '%s' expects algorithm names as an argument.", args[0]); return ret; } algo = strdup(args[3]); add_engine: if (ssl_init_single_engine(args[1], algo)==0) { openssl_engines_initialized++; ret = 0; } free(algo); return ret; } #endif /* parse the "ssl-default-bind-ciphers" / "ssl-default-server-ciphers" keywords * in global section. Returns <0 on alert, >0 on warning, 0 on success. */ static int ssl_parse_global_ciphers(char **args, int section_type, struct proxy *curpx, struct proxy *defpx, const char *file, int line, char **err) { char **target; target = (args[0][12] == 'b') ? &global_ssl.listen_default_ciphers : &global_ssl.connect_default_ciphers; if (too_many_args(1, args, err, NULL)) return -1; if (*(args[1]) == 0) { memprintf(err, "global statement '%s' expects a cipher suite as an argument.", args[0]); return -1; } free(*target); *target = strdup(args[1]); return 0; } #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) /* parse the "ssl-default-bind-ciphersuites" / "ssl-default-server-ciphersuites" keywords * in global section. Returns <0 on alert, >0 on warning, 0 on success. */ static int ssl_parse_global_ciphersuites(char **args, int section_type, struct proxy *curpx, struct proxy *defpx, const char *file, int line, char **err) { char **target; target = (args[0][12] == 'b') ? &global_ssl.listen_default_ciphersuites : &global_ssl.connect_default_ciphersuites; if (too_many_args(1, args, err, NULL)) return -1; if (*(args[1]) == 0) { memprintf(err, "global statement '%s' expects a cipher suite as an argument.", args[0]); return -1; } free(*target); *target = strdup(args[1]); return 0; } #endif #if ((HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL) || defined(LIBRESSL_VERSION_NUMBER)) /* * parse the "ssl-default-bind-curves" keyword in a global section. * Returns <0 on alert, >0 on warning, 0 on success. */ static int ssl_parse_global_curves(char **args, int section_type, struct proxy *curpx, struct proxy *defpx, const char *file, int line, char **err) { char **target; target = &global_ssl.listen_default_curves; if (too_many_args(1, args, err, NULL)) return -1; if (*(args[1]) == 0) { memprintf(err, "global statement '%s' expects a curves suite as an arguments.", args[0]); return -1; } free(*target); *target = strdup(args[1]); return 0; } #endif /* parse various global tune.ssl settings consisting in positive integers. * Returns <0 on alert, >0 on warning, 0 on success. */ static int ssl_parse_global_int(char **args, int section_type, struct proxy *curpx, struct proxy *defpx, const char *file, int line, char **err) { int *target; if (strcmp(args[0], "tune.ssl.cachesize") == 0) target = &global.tune.sslcachesize; else if (strcmp(args[0], "tune.ssl.maxrecord") == 0) target = (int *)&global_ssl.max_record; else if (strcmp(args[0], "tune.ssl.ssl-ctx-cache-size") == 0) target = &global_ssl.ctx_cache; else if (strcmp(args[0], "maxsslconn") == 0) target = &global.maxsslconn; else if (strcmp(args[0], "tune.ssl.capture-cipherlist-size") == 0) target = &global_ssl.capture_cipherlist; else { memprintf(err, "'%s' keyword not unhandled (please report this bug).", args[0]); return -1; } if (too_many_args(1, args, err, NULL)) return -1; if (*(args[1]) == 0) { memprintf(err, "'%s' expects an integer argument.", args[0]); return -1; } *target = atoi(args[1]); if (*target < 0) { memprintf(err, "'%s' expects a positive numeric value.", args[0]); return -1; } return 0; } static int ssl_parse_global_capture_cipherlist(char **args, int section_type, struct proxy *curpx, struct proxy *defpx, const char *file, int line, char **err) { int ret; ret = ssl_parse_global_int(args, section_type, curpx, defpx, file, line, err); if (ret != 0) return ret; if (pool_head_ssl_capture) { memprintf(err, "'%s' is already configured.", args[0]); return -1; } pool_head_ssl_capture = create_pool("ssl-capture", sizeof(struct ssl_capture) + global_ssl.capture_cipherlist, MEM_F_SHARED); if (!pool_head_ssl_capture) { memprintf(err, "Out of memory error."); return -1; } return 0; } /* parse "ssl.force-private-cache". * Returns <0 on alert, >0 on warning, 0 on success. */ static int ssl_parse_global_private_cache(char **args, int section_type, struct proxy *curpx, struct proxy *defpx, const char *file, int line, char **err) { if (too_many_args(0, args, err, NULL)) return -1; global_ssl.private_cache = 1; return 0; } /* parse "ssl.lifetime". * Returns <0 on alert, >0 on warning, 0 on success. */ static int ssl_parse_global_lifetime(char **args, int section_type, struct proxy *curpx, struct proxy *defpx, const char *file, int line, char **err) { const char *res; if (too_many_args(1, args, err, NULL)) return -1; if (*(args[1]) == 0) { memprintf(err, "'%s' expects ssl sessions in seconds as argument.", args[0]); return -1; } res = parse_time_err(args[1], &global_ssl.life_time, TIME_UNIT_S); if (res == PARSE_TIME_OVER) { memprintf(err, "timer overflow in argument '%s' to <%s> (maximum value is 2147483647 s or ~68 years).", args[1], args[0]); return -1; } else if (res == PARSE_TIME_UNDER) { memprintf(err, "timer underflow in argument '%s' to <%s> (minimum non-null value is 1 s).", args[1], args[0]); return -1; } else if (res) { memprintf(err, "unexpected character '%c' in argument to <%s>.", *res, args[0]); return -1; } return 0; } #ifndef OPENSSL_NO_DH /* parse "ssl-dh-param-file". * Returns <0 on alert, >0 on warning, 0 on success. */ static int ssl_parse_global_dh_param_file(char **args, int section_type, struct proxy *curpx, struct proxy *defpx, const char *file, int line, char **err) { if (too_many_args(1, args, err, NULL)) return -1; if (*(args[1]) == 0) { memprintf(err, "'%s' expects a file path as an argument.", args[0]); return -1; } if (ssl_sock_load_global_dh_param_from_file(args[1])) { memprintf(err, "'%s': unable to load DH parameters from file <%s>.", args[0], args[1]); return -1; } return 0; } /* parse "ssl.default-dh-param". * Returns <0 on alert, >0 on warning, 0 on success. */ static int ssl_parse_global_default_dh(char **args, int section_type, struct proxy *curpx, struct proxy *defpx, const char *file, int line, char **err) { if (too_many_args(1, args, err, NULL)) return -1; if (*(args[1]) == 0) { memprintf(err, "'%s' expects an integer argument.", args[0]); return -1; } global_ssl.default_dh_param = atoi(args[1]); if (global_ssl.default_dh_param < 1024) { memprintf(err, "'%s' expects a value >= 1024.", args[0]); return -1; } return 0; } #endif /* * parse "ssl-load-extra-files". * multiple arguments are allowed: "bundle", "sctl", "ocsp", "issuer", "all", "none" */ static int ssl_parse_global_extra_files(char **args, int section_type, struct proxy *curpx, struct proxy *defpx, const char *file, int line, char **err) { int i; int gf = SSL_GF_NONE; if (*(args[1]) == 0) goto err_arg; for (i = 1; *args[i]; i++) { if (!strcmp("bundle", args[i])) { gf |= SSL_GF_BUNDLE; } else if (!strcmp("sctl", args[i])) { gf |= SSL_GF_SCTL; } else if (!strcmp("ocsp", args[i])){ gf |= SSL_GF_OCSP; } else if (!strcmp("issuer", args[i])){ gf |= SSL_GF_OCSP_ISSUER; } else if (!strcmp("key", args[i])) { gf |= SSL_GF_KEY; } else if (!strcmp("none", args[i])) { if (gf != SSL_GF_NONE) goto err_alone; gf = SSL_GF_NONE; i++; break; } else if (!strcmp("all", args[i])) { if (gf != SSL_GF_NONE) goto err_alone; gf = SSL_GF_ALL; i++; break; } else { goto err_arg; } } /* break from loop but there are still arguments */ if (*args[i]) goto err_alone; global_ssl.extra_files = gf; return 0; err_alone: memprintf(err, "'%s' 'none' and 'all' can be only used alone", args[0]); return -1; err_arg: memprintf(err, "'%s' expects one or multiple arguments (none, all, bundle, sctl, ocsp, issuer).", args[0]); return -1; } /* This function is used with TLS ticket keys management. It permits to browse * each reference. The variable must contain the current node, * point to the root node. */ #if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0) static inline struct tls_keys_ref *tlskeys_list_get_next(struct tls_keys_ref *getnext, struct list *end) { struct tls_keys_ref *ref = getnext; while (1) { /* Get next list entry. */ ref = LIST_NEXT(&ref->list, struct tls_keys_ref *, list); /* If the entry is the last of the list, return NULL. */ if (&ref->list == end) return NULL; return ref; } } static inline struct tls_keys_ref *tlskeys_ref_lookup_ref(const char *reference) { int id; char *error; /* If the reference starts by a '#', this is numeric id. */ if (reference[0] == '#') { /* Try to convert the numeric id. If the conversion fails, the lookup fails. */ id = strtol(reference + 1, &error, 10); if (*error != '\0') return NULL; /* Perform the unique id lookup. */ return tlskeys_ref_lookupid(id); } /* Perform the string lookup. */ return tlskeys_ref_lookup(reference); } #endif #if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0) static int cli_io_handler_tlskeys_files(struct appctx *appctx); static inline int cli_io_handler_tlskeys_entries(struct appctx *appctx) { return cli_io_handler_tlskeys_files(appctx); } /* dumps all tls keys. Relies on cli.i0 (non-null = only list file names), cli.i1 * (next index to be dumped), and cli.p0 (next key reference). */ static int cli_io_handler_tlskeys_files(struct appctx *appctx) { struct stream_interface *si = appctx->owner; switch (appctx->st2) { case STAT_ST_INIT: /* Display the column headers. If the message cannot be sent, * quit the function with returning 0. The function is called * later and restart at the state "STAT_ST_INIT". */ chunk_reset(&trash); if (appctx->io_handler == cli_io_handler_tlskeys_entries) chunk_appendf(&trash, "# id secret\n"); else chunk_appendf(&trash, "# id (file)\n"); if (ci_putchk(si_ic(si), &trash) == -1) { si_rx_room_blk(si); return 0; } /* Now, we start the browsing of the references lists. * Note that the following call to LIST_ELEM return bad pointer. The only * available field of this pointer is . It is used with the function * tlskeys_list_get_next() for retruning the first available entry */ if (appctx->ctx.cli.p0 == NULL) { appctx->ctx.cli.p0 = LIST_ELEM(&tlskeys_reference, struct tls_keys_ref *, list); appctx->ctx.cli.p0 = tlskeys_list_get_next(appctx->ctx.cli.p0, &tlskeys_reference); } appctx->st2 = STAT_ST_LIST; /* fall through */ case STAT_ST_LIST: while (appctx->ctx.cli.p0) { struct tls_keys_ref *ref = appctx->ctx.cli.p0; chunk_reset(&trash); if (appctx->io_handler == cli_io_handler_tlskeys_entries && appctx->ctx.cli.i1 == 0) chunk_appendf(&trash, "# "); if (appctx->ctx.cli.i1 == 0) chunk_appendf(&trash, "%d (%s)\n", ref->unique_id, ref->filename); if (appctx->io_handler == cli_io_handler_tlskeys_entries) { int head; HA_RWLOCK_RDLOCK(TLSKEYS_REF_LOCK, &ref->lock); head = ref->tls_ticket_enc_index; while (appctx->ctx.cli.i1 < TLS_TICKETS_NO) { struct buffer *t2 = get_trash_chunk(); chunk_reset(t2); /* should never fail here because we dump only a key in the t2 buffer */ if (ref->key_size_bits == 128) { t2->data = a2base64((char *)(ref->tlskeys + (head + 2 + appctx->ctx.cli.i1) % TLS_TICKETS_NO), sizeof(struct tls_sess_key_128), t2->area, t2->size); chunk_appendf(&trash, "%d.%d %s\n", ref->unique_id, appctx->ctx.cli.i1, t2->area); } else if (ref->key_size_bits == 256) { t2->data = a2base64((char *)(ref->tlskeys + (head + 2 + appctx->ctx.cli.i1) % TLS_TICKETS_NO), sizeof(struct tls_sess_key_256), t2->area, t2->size); chunk_appendf(&trash, "%d.%d %s\n", ref->unique_id, appctx->ctx.cli.i1, t2->area); } else { /* This case should never happen */ chunk_appendf(&trash, "%d.%d \n", ref->unique_id, appctx->ctx.cli.i1); } if (ci_putchk(si_ic(si), &trash) == -1) { /* let's try again later from this stream. We add ourselves into * this stream's users so that it can remove us upon termination. */ HA_RWLOCK_RDUNLOCK(TLSKEYS_REF_LOCK, &ref->lock); si_rx_room_blk(si); return 0; } appctx->ctx.cli.i1++; } HA_RWLOCK_RDUNLOCK(TLSKEYS_REF_LOCK, &ref->lock); appctx->ctx.cli.i1 = 0; } if (ci_putchk(si_ic(si), &trash) == -1) { /* let's try again later from this stream. We add ourselves into * this stream's users so that it can remove us upon termination. */ si_rx_room_blk(si); return 0; } if (appctx->ctx.cli.i0 == 0) /* don't display everything if not necessary */ break; /* get next list entry and check the end of the list */ appctx->ctx.cli.p0 = tlskeys_list_get_next(appctx->ctx.cli.p0, &tlskeys_reference); } appctx->st2 = STAT_ST_FIN; /* fall through */ default: appctx->st2 = STAT_ST_FIN; return 1; } return 0; } /* sets cli.i0 to non-zero if only file lists should be dumped */ static int cli_parse_show_tlskeys(char **args, char *payload, struct appctx *appctx, void *private) { /* no parameter, shows only file list */ if (!*args[2]) { appctx->ctx.cli.i0 = 1; appctx->io_handler = cli_io_handler_tlskeys_files; return 0; } if (args[2][0] == '*') { /* list every TLS ticket keys */ appctx->ctx.cli.i0 = 1; } else { appctx->ctx.cli.p0 = tlskeys_ref_lookup_ref(args[2]); if (!appctx->ctx.cli.p0) return cli_err(appctx, "'show tls-keys' unable to locate referenced filename\n"); } appctx->io_handler = cli_io_handler_tlskeys_entries; return 0; } static int cli_parse_set_tlskeys(char **args, char *payload, struct appctx *appctx, void *private) { struct tls_keys_ref *ref; int ret; /* Expect two parameters: the filename and the new new TLS key in encoding */ if (!*args[3] || !*args[4]) return cli_err(appctx, "'set ssl tls-key' expects a filename and the new TLS key in base64 encoding.\n"); ref = tlskeys_ref_lookup_ref(args[3]); if (!ref) return cli_err(appctx, "'set ssl tls-key' unable to locate referenced filename\n"); ret = base64dec(args[4], strlen(args[4]), trash.area, trash.size); if (ret < 0) return cli_err(appctx, "'set ssl tls-key' received invalid base64 encoded TLS key.\n"); trash.data = ret; if (ssl_sock_update_tlskey_ref(ref, &trash) < 0) return cli_err(appctx, "'set ssl tls-key' received a key of wrong size.\n"); return cli_msg(appctx, LOG_INFO, "TLS ticket key updated!\n"); } #endif /* * Take an ssl_bind_conf structure and append the configuration line used to * create it in the buffer */ static void dump_crtlist_sslconf(struct buffer *buf, const struct ssl_bind_conf *conf) { int space = 0; if (conf == NULL) return; chunk_appendf(buf, " ["); #ifdef OPENSSL_NPN_NEGOTIATED if (conf->npn_str) { int len = conf->npn_len; char *ptr = conf->npn_str; int comma = 0; if (space) chunk_appendf(buf, " "); chunk_appendf(buf, "npn "); while (len) { unsigned short size; size = *ptr; ptr++; if (comma) chunk_memcat(buf, ",", 1); chunk_memcat(buf, ptr, size); ptr += size; len -= size + 1; comma = 1; } chunk_memcat(buf, "", 1); /* finish with a \0 */ space++; } #endif #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation if (conf->alpn_str) { int len = conf->alpn_len; char *ptr = conf->alpn_str; int comma = 0; if (space) chunk_appendf(buf, " "); chunk_appendf(buf, "alpn "); while (len) { unsigned short size; size = *ptr; ptr++; if (comma) chunk_memcat(buf, ",", 1); chunk_memcat(buf, ptr, size); ptr += size; len -= size + 1; comma = 1; } chunk_memcat(buf, "", 1); /* finish with a \0 */ space++; } #endif /* verify */ { if (conf->verify == SSL_SOCK_VERIFY_NONE) { if (space) chunk_appendf(buf, " "); chunk_appendf(buf, "verify none"); space++; } else if (conf->verify == SSL_SOCK_VERIFY_OPTIONAL) { if (space) chunk_appendf(buf, " "); chunk_appendf(buf, "verify optional"); space++; } else if (conf->verify == SSL_SOCK_VERIFY_REQUIRED) { if (space) chunk_appendf(buf, " "); chunk_appendf(buf, "verify required"); space++; } } if (conf->no_ca_names) { if (space) chunk_appendf(buf, " "); chunk_appendf(buf, "no-ca-names"); space++; } if (conf->early_data) { if (space) chunk_appendf(buf, " "); chunk_appendf(buf, "allow-0rtt"); space++; } if (conf->ca_file) { if (space) chunk_appendf(buf, " "); chunk_appendf(buf, "ca-file %s", conf->ca_file); space++; } if (conf->crl_file) { if (space) chunk_appendf(buf, " "); chunk_appendf(buf, "crl-file %s", conf->crl_file); space++; } if (conf->ciphers) { if (space) chunk_appendf(buf, " "); chunk_appendf(buf, "ciphers %s", conf->ciphers); space++; } #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L && !defined OPENSSL_IS_BORINGSSL && !defined LIBRESSL_VERSION_NUMBER) if (conf->ciphersuites) { if (space) chunk_appendf(buf, " "); chunk_appendf(buf, "ciphersuites %s", conf->ciphersuites); space++; } #endif if (conf->curves) { if (space) chunk_appendf(buf, " "); chunk_appendf(buf, "curves %s", conf->curves); space++; } if (conf->ecdhe) { if (space) chunk_appendf(buf, " "); chunk_appendf(buf, "ecdhe %s", conf->ecdhe); space++; } /* the crt-lists only support ssl-min-ver and ssl-max-ver */ /* XXX: this part need to be revamp so we don't dump the default settings */ if (conf->ssl_methods.min) { if (space) chunk_appendf(buf, " "); chunk_appendf(buf, "ssl-min-ver %s", methodVersions[conf->ssl_methods.min].name); space++; } if (conf->ssl_methods.max) { if (space) chunk_appendf(buf, " "); chunk_appendf(buf, "ssl-max-ver %s", methodVersions[conf->ssl_methods.max].name); space++; } chunk_appendf(buf, "]"); return; } /* dump a list of filters */ static void dump_crtlist_filters(struct buffer *buf, struct crtlist_entry *entry) { int i; if (!entry->fcount) return; for (i = 0; i < entry->fcount; i++) { chunk_appendf(buf, " %s", entry->filters[i]); } return; } /* CLI IO handler for '(show|dump) ssl crt-list' */ static int cli_io_handler_dump_crtlist(struct appctx *appctx) { struct buffer *trash = alloc_trash_chunk(); struct stream_interface *si = appctx->owner; struct ebmb_node *lnode; if (trash == NULL) return 1; /* dump the list of crt-lists */ lnode = appctx->ctx.cli.p1; if (lnode == NULL) lnode = ebmb_first(&crtlists_tree); while (lnode) { chunk_appendf(trash, "%s\n", lnode->key); if (ci_putchk(si_ic(si), trash) == -1) { si_rx_room_blk(si); goto yield; } lnode = ebmb_next(lnode); } free_trash_chunk(trash); return 1; yield: appctx->ctx.cli.p1 = lnode; free_trash_chunk(trash); return 0; } /* CLI IO handler for '(show|dump) ssl crt-list ' */ static int cli_io_handler_dump_crtlist_entries(struct appctx *appctx) { struct buffer *trash = alloc_trash_chunk(); struct crtlist *crtlist; struct stream_interface *si = appctx->owner; struct crtlist_entry *entry; if (trash == NULL) return 1; crtlist = ebmb_entry(appctx->ctx.cli.p0, struct crtlist, node); entry = appctx->ctx.cli.p1; if (entry == NULL) { entry = LIST_ELEM((crtlist->ord_entries).n, typeof(entry), by_crtlist); chunk_appendf(trash, "# %s\n", crtlist->node.key); if (ci_putchk(si_ic(si), trash) == -1) { si_rx_room_blk(si); goto yield; } } list_for_each_entry_from(entry, &crtlist->ord_entries, by_crtlist) { struct ckch_store *store; const char *filename; store = entry->node.key; filename = store->path; chunk_appendf(trash, "%s", filename); if (appctx->ctx.cli.i0 == 's') /* show */ chunk_appendf(trash, ":%d", entry->linenum); dump_crtlist_sslconf(trash, entry->ssl_conf); dump_crtlist_filters(trash, entry); chunk_appendf(trash, "\n"); if (ci_putchk(si_ic(si), trash) == -1) { si_rx_room_blk(si); goto yield; } } free_trash_chunk(trash); return 1; yield: appctx->ctx.cli.p1 = entry; free_trash_chunk(trash); return 0; } /* CLI argument parser for '(show|dump) ssl crt-list' */ static int cli_parse_dump_crtlist(char **args, char *payload, struct appctx *appctx, void *private) { struct ebmb_node *lnode; char *filename = NULL; int mode; if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) return 1; appctx->ctx.cli.p0 = NULL; appctx->ctx.cli.p1 = NULL; if (*args[3] && !strcmp(args[3], "-n")) { mode = 's'; filename = args[4]; } else { mode = 'd'; filename = args[3]; } if (mode == 's' && !*args[4]) return cli_err(appctx, "'show ssl crt-list -n' expects a filename or a directory\n"); if (filename && *filename) { lnode = ebst_lookup(&crtlists_tree, filename); if (lnode == NULL) return cli_err(appctx, "didn't find the specified filename\n"); appctx->ctx.cli.p0 = lnode; appctx->io_handler = cli_io_handler_dump_crtlist_entries; } appctx->ctx.cli.i0 = mode; return 0; } /* release function of the "add ssl crt-list' command, free things and unlock the spinlock */ static void cli_release_add_crtlist(struct appctx *appctx) { struct crtlist_entry *entry = appctx->ctx.cli.p1; if (appctx->st2 != SETCERT_ST_FIN) { struct ckch_inst *inst, *inst_s; /* upon error free the ckch_inst and everything inside */ ebpt_delete(&entry->node); LIST_DEL(&entry->by_crtlist); LIST_DEL(&entry->by_ckch_store); list_for_each_entry_safe(inst, inst_s, &entry->ckch_inst, by_ckchs) { ckch_inst_free(inst); } crtlist_free_filters(entry->filters); ssl_sock_free_ssl_conf(entry->ssl_conf); free(entry->ssl_conf); free(entry); } HA_SPIN_UNLOCK(CKCH_LOCK, &ckch_lock); } /* IO Handler for the "add ssl crt-list" command It adds a new entry in the * crt-list and generates the ckch_insts for each bind_conf that uses this crt-list * * The logic is the same as the "commit ssl cert" command but without the * freeing of the old structures, because there are none. */ static int cli_io_handler_add_crtlist(struct appctx *appctx) { struct bind_conf_list *bind_conf_node; struct stream_interface *si = appctx->owner; struct crtlist *crtlist = appctx->ctx.cli.p0; struct crtlist_entry *entry = appctx->ctx.cli.p1; struct ckch_store *store = entry->node.key; struct buffer *trash = alloc_trash_chunk(); struct ckch_inst *new_inst; char *err = NULL; int i = 0; int errcode = 0; if (trash == NULL) goto error; /* for each bind_conf which use the crt-list, a new ckch_inst must be * created. */ if (unlikely(si_ic(si)->flags & (CF_WRITE_ERROR|CF_SHUTW))) goto error; while (1) { switch (appctx->st2) { case SETCERT_ST_INIT: /* This state just print the update message */ chunk_printf(trash, "Inserting certificate '%s' in crt-list '%s'", store->path, crtlist->node.key); if (ci_putchk(si_ic(si), trash) == -1) { si_rx_room_blk(si); goto yield; } appctx->st2 = SETCERT_ST_GEN; /* fallthrough */ case SETCERT_ST_GEN: bind_conf_node = appctx->ctx.cli.p2; /* get the previous ptr from the yield */ if (bind_conf_node == NULL) bind_conf_node = crtlist->bind_conf; for (; bind_conf_node; bind_conf_node = bind_conf_node->next) { struct bind_conf *bind_conf = bind_conf_node->bind_conf; struct sni_ctx *sni; /* yield every 10 generations */ if (i > 10) { appctx->ctx.cli.p2 = bind_conf_node; goto yield; } /* we don't support multi-cert bundles, only simple ones */ errcode |= ckch_inst_new_load_store(store->path, store, bind_conf, entry->ssl_conf, entry->filters, entry->fcount, &new_inst, &err); if (errcode & ERR_CODE) goto error; /* we need to initialize the SSL_CTX generated */ /* this iterate on the newly generated SNIs in the new instance to prepare their SSL_CTX */ list_for_each_entry(sni, &new_inst->sni_ctx, by_ckch_inst) { if (!sni->order) { /* we initialized only the first SSL_CTX because it's the same in the other sni_ctx's */ errcode |= ssl_sock_prepare_ctx(bind_conf, new_inst->ssl_conf, sni->ctx, &err); if (errcode & ERR_CODE) goto error; } } /* display one dot for each new instance */ chunk_appendf(trash, "."); i++; LIST_ADDQ(&store->ckch_inst, &new_inst->by_ckchs); } appctx->st2 = SETCERT_ST_INSERT; /* fallthrough */ case SETCERT_ST_INSERT: /* insert SNIs in bind_conf */ list_for_each_entry(new_inst, &store->ckch_inst, by_ckchs) { HA_RWLOCK_WRLOCK(SNI_LOCK, &new_inst->bind_conf->sni_lock); ssl_sock_load_cert_sni(new_inst, new_inst->bind_conf); HA_RWLOCK_WRUNLOCK(SNI_LOCK, &new_inst->bind_conf->sni_lock); } entry->linenum = ++crtlist->linecount; appctx->st2 = SETCERT_ST_FIN; goto end; } } end: chunk_appendf(trash, "\n"); if (errcode & ERR_WARN) chunk_appendf(trash, "%s", err); chunk_appendf(trash, "Success!\n"); if (ci_putchk(si_ic(si), trash) == -1) si_rx_room_blk(si); free_trash_chunk(trash); /* success: call the release function and don't come back */ return 1; yield: /* store the state */ if (ci_putchk(si_ic(si), trash) == -1) si_rx_room_blk(si); free_trash_chunk(trash); si_rx_endp_more(si); /* let's come back later */ return 0; /* should come back */ error: /* spin unlock and free are done in the release function */ if (trash) { chunk_appendf(trash, "\n%sFailed!\n", err); if (ci_putchk(si_ic(si), trash) == -1) si_rx_room_blk(si); free_trash_chunk(trash); } /* error: call the release function and don't come back */ return 1; } /* * Parse a "add ssl crt-list " line. * Filters and option must be passed through payload: */ static int cli_parse_add_crtlist(char **args, char *payload, struct appctx *appctx, void *private) { int cfgerr = 0; struct ckch_store *store; char *err = NULL; char path[MAXPATHLEN+1]; char *crtlist_path; char *cert_path = NULL; struct ebmb_node *eb; struct ebpt_node *inserted; struct crtlist *crtlist; struct crtlist_entry *entry = NULL; if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) return 1; if (!*args[3] || (!payload && !*args[4])) return cli_err(appctx, "'add ssl crtlist' expects a filename and a certificate name\n"); crtlist_path = args[3]; if (HA_SPIN_TRYLOCK(CKCH_LOCK, &ckch_lock)) return cli_err(appctx, "Operations on certificates are currently locked!\n"); eb = ebst_lookup(&crtlists_tree, crtlist_path); if (!eb) { memprintf(&err, "crt-list '%s' does not exist!", crtlist_path); goto error; } crtlist = ebmb_entry(eb, struct crtlist, node); entry = crtlist_entry_new(); if (entry == NULL) { memprintf(&err, "Not enough memory!"); goto error; } if (payload) { char *lf; lf = strrchr(payload, '\n'); if (lf) { memprintf(&err, "only one line of payload is supported!"); goto error; } /* cert_path is filled here */ cfgerr |= crtlist_parse_line(payload, &cert_path, entry, "CLI", 1, &err); if (cfgerr & ERR_CODE) goto error; } else { cert_path = args[4]; } if (!cert_path) { memprintf(&err, "'add ssl crtlist' should contain the certificate name in the payload"); cfgerr |= ERR_ALERT | ERR_FATAL; goto error; } if (eb_gettag(crtlist->entries.b[EB_RGHT])) { char *slash; slash = strrchr(cert_path, '/'); if (!slash) { memprintf(&err, "'%s' is a directory, certificate path '%s' must contain the directory path", (char *)crtlist->node.key, cert_path); goto error; } /* temporary replace / by 0 to do an strcmp */ *slash = '\0'; if (strcmp(cert_path, (char*)crtlist->node.key) != 0) { *slash = '/'; memprintf(&err, "'%s' is a directory, certificate path '%s' must contain the directory path", (char *)crtlist->node.key, cert_path); goto error; } *slash = '/'; } if (*cert_path != '/' && global_ssl.crt_base) { if ((strlen(global_ssl.crt_base) + 1 + strlen(cert_path)) > MAXPATHLEN) { memprintf(&err, "'%s' : path too long", cert_path); cfgerr |= ERR_ALERT | ERR_FATAL; goto error; } snprintf(path, sizeof(path), "%s/%s", global_ssl.crt_base, cert_path); cert_path = path; } store = ckchs_lookup(cert_path); if (store == NULL) { memprintf(&err, "certificate '%s' does not exist!", cert_path); goto error; } if (store->multi) { memprintf(&err, "certificate '%s' is a bundle. You can disable the bundle merging with the directive 'ssl-load-extra-files' in the global section.", cert_path); goto error; } if (store->ckch == NULL || store->ckch->cert == NULL) { memprintf(&err, "certificate '%s' is empty!", cert_path); goto error; } /* check if it's possible to insert this new crtlist_entry */ entry->node.key = store; inserted = ebpt_insert(&crtlist->entries, &entry->node); if (inserted != &entry->node) { memprintf(&err, "file already exists in this directory!"); goto error; } /* this is supposed to be a directory (EB_ROOT_UNIQUE), so no ssl_conf are allowed */ if ((entry->ssl_conf || entry->filters) && eb_gettag(crtlist->entries.b[EB_RGHT])) { memprintf(&err, "this is a directory, SSL configuration and filters are not allowed"); goto error; } LIST_ADDQ(&crtlist->ord_entries, &entry->by_crtlist); entry->crtlist = crtlist; LIST_ADDQ(&store->crtlist_entry, &entry->by_ckch_store); appctx->st2 = SETCERT_ST_INIT; appctx->ctx.cli.p0 = crtlist; appctx->ctx.cli.p1 = entry; /* unlock is done in the release handler */ return 0; error: crtlist_entry_free(entry); HA_SPIN_UNLOCK(CKCH_LOCK, &ckch_lock); err = memprintf(&err, "Can't edit the crt-list: %s\n", err ? err : ""); return cli_dynerr(appctx, err); } /* Parse a "del ssl crt-list " line. */ static int cli_parse_del_crtlist(char **args, char *payload, struct appctx *appctx, void *private) { struct ckch_store *store; char *err = NULL; char *crtlist_path, *cert_path; struct ebmb_node *ebmb; struct ebpt_node *ebpt; struct crtlist *crtlist; struct crtlist_entry *entry = NULL; struct ckch_inst *inst, *inst_s; int linenum = 0; char *colons; if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) return 1; if (!*args[3] || !*args[4]) return cli_err(appctx, "'del ssl crtlist' expects a filename and a certificate name\n"); if (HA_SPIN_TRYLOCK(CKCH_LOCK, &ckch_lock)) return cli_err(appctx, "Can't delete!\nOperations on certificates are currently locked!\n"); crtlist_path = args[3]; cert_path = args[4]; colons = strchr(cert_path, ':'); if (colons) { char *endptr; linenum = strtol(colons + 1, &endptr, 10); if (colons + 1 == endptr || *endptr != '\0') { memprintf(&err, "wrong line number after colons in '%s'!", cert_path); goto error; } *colons = '\0'; } /* look for crtlist */ ebmb = ebst_lookup(&crtlists_tree, crtlist_path); if (!ebmb) { memprintf(&err, "crt-list '%s' does not exist!", crtlist_path); goto error; } crtlist = ebmb_entry(ebmb, struct crtlist, node); /* look for store */ store = ckchs_lookup(cert_path); if (store == NULL) { memprintf(&err, "certificate '%s' does not exist!", cert_path); goto error; } if (store->multi) { memprintf(&err, "certificate '%s' is a bundle. You can disable the bundle merging with the directive 'ssl-load-extra-files' in the global section.", cert_path); goto error; } if (store->ckch == NULL || store->ckch->cert == NULL) { memprintf(&err, "certificate '%s' is empty!", cert_path); goto error; } ebpt = ebpt_lookup(&crtlist->entries, store); if (!ebpt) { memprintf(&err, "certificate '%s' can't be found in crt-list '%s'!", cert_path, crtlist_path); goto error; } /* list the line number of entries for errors in err, and select the right ebpt */ for (; ebpt; ebpt = ebpt_next_dup(ebpt)) { struct crtlist_entry *tmp; tmp = ebpt_entry(ebpt, struct crtlist_entry, node); memprintf(&err, "%s%s%d", err ? err : "", err ? ", " : "", tmp->linenum); /* select the entry we wanted */ if (linenum == 0 || tmp->linenum == linenum) { if (!entry) entry = tmp; } } /* we didn't found the specified entry */ if (!entry) { memprintf(&err, "found a certificate '%s' but the line number is incorrect, please specify a correct line number preceded by colons (%s)!", cert_path, err ? err : NULL); goto error; } /* we didn't specified a line number but there were several entries */ if (linenum == 0 && ebpt_next_dup(&entry->node)) { memprintf(&err, "found the certificate '%s' in several entries, please specify a line number preceded by colons (%s)!", cert_path, err ? err : NULL); goto error; } /* upon error free the ckch_inst and everything inside */ ebpt_delete(&entry->node); LIST_DEL(&entry->by_crtlist); LIST_DEL(&entry->by_ckch_store); list_for_each_entry_safe(inst, inst_s, &entry->ckch_inst, by_crtlist_entry) { struct sni_ctx *sni, *sni_s; HA_RWLOCK_WRLOCK(SNI_LOCK, &inst->bind_conf->sni_lock); list_for_each_entry_safe(sni, sni_s, &inst->sni_ctx, by_ckch_inst) { ebmb_delete(&sni->name); LIST_DEL(&sni->by_ckch_inst); SSL_CTX_free(sni->ctx); free(sni); } HA_RWLOCK_WRUNLOCK(SNI_LOCK, &inst->bind_conf->sni_lock); LIST_DEL(&inst->by_ckchs); free(inst); } crtlist_free_filters(entry->filters); ssl_sock_free_ssl_conf(entry->ssl_conf); free(entry->ssl_conf); free(entry); HA_SPIN_UNLOCK(CKCH_LOCK, &ckch_lock); err = memprintf(&err, "Entry '%s' deleted in crtlist '%s'!\n", cert_path, crtlist_path); return cli_dynmsg(appctx, LOG_NOTICE, err); error: HA_SPIN_UNLOCK(CKCH_LOCK, &ckch_lock); err = memprintf(&err, "Can't delete the entry: %s\n", err ? err : ""); return cli_dynerr(appctx, err); } /* Type of SSL payloads that can be updated over the CLI */ enum { CERT_TYPE_PEM = 0, CERT_TYPE_KEY, #if ((defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP) || defined OPENSSL_IS_BORINGSSL) CERT_TYPE_OCSP, #endif CERT_TYPE_ISSUER, #if (HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL && !defined OPENSSL_NO_TLSEXT && !defined OPENSSL_IS_BORINGSSL) CERT_TYPE_SCTL, #endif CERT_TYPE_MAX, }; struct { const char *ext; int type; int (*load)(const char *path, char *payload, struct cert_key_and_chain *ckch, char **err); /* add a parsing callback */ } cert_exts[CERT_TYPE_MAX+1] = { [CERT_TYPE_PEM] = { "", CERT_TYPE_PEM, &ssl_sock_load_pem_into_ckch }, /* default mode, no extensions */ [CERT_TYPE_KEY] = { "key", CERT_TYPE_KEY, &ssl_sock_load_key_into_ckch }, #if ((defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP) || defined OPENSSL_IS_BORINGSSL) [CERT_TYPE_OCSP] = { "ocsp", CERT_TYPE_OCSP, &ssl_sock_load_ocsp_response_from_file }, #endif #if (HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL && !defined OPENSSL_NO_TLSEXT && !defined OPENSSL_IS_BORINGSSL) [CERT_TYPE_SCTL] = { "sctl", CERT_TYPE_SCTL, &ssl_sock_load_sctl_from_file }, #endif [CERT_TYPE_ISSUER] = { "issuer", CERT_TYPE_ISSUER, &ssl_sock_load_issuer_file_into_ckch }, [CERT_TYPE_MAX] = { NULL, CERT_TYPE_MAX, NULL }, }; /* release function of the `show ssl cert' command */ static void cli_release_show_cert(struct appctx *appctx) { HA_SPIN_UNLOCK(CKCH_LOCK, &ckch_lock); } /* IO handler of "show ssl cert " */ static int cli_io_handler_show_cert(struct appctx *appctx) { struct buffer *trash = alloc_trash_chunk(); struct ebmb_node *node; struct stream_interface *si = appctx->owner; struct ckch_store *ckchs; if (trash == NULL) return 1; if (!appctx->ctx.ssl.old_ckchs) { if (ckchs_transaction.old_ckchs) { ckchs = ckchs_transaction.old_ckchs; chunk_appendf(trash, "# transaction\n"); if (!ckchs->multi) { chunk_appendf(trash, "*%s\n", ckchs->path); #if HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL } else { int n; chunk_appendf(trash, "*%s:", ckchs->path); for (n = 0; n < SSL_SOCK_NUM_KEYTYPES; n++) { if (ckchs->ckch[n].cert) chunk_appendf(trash, " %s.%s\n", ckchs->path, SSL_SOCK_KEYTYPE_NAMES[n]); } chunk_appendf(trash, "\n"); #endif } } } if (!appctx->ctx.cli.p0) { chunk_appendf(trash, "# filename\n"); node = ebmb_first(&ckchs_tree); } else { node = &((struct ckch_store *)appctx->ctx.cli.p0)->node; } while (node) { ckchs = ebmb_entry(node, struct ckch_store, node); if (!ckchs->multi) { chunk_appendf(trash, "%s\n", ckchs->path); #if HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL } else { int n; chunk_appendf(trash, "%s:", ckchs->path); for (n = 0; n < SSL_SOCK_NUM_KEYTYPES; n++) { if (ckchs->ckch[n].cert) chunk_appendf(trash, " %s.%s", ckchs->path, SSL_SOCK_KEYTYPE_NAMES[n]); } chunk_appendf(trash, "\n"); #endif } node = ebmb_next(node); if (ci_putchk(si_ic(si), trash) == -1) { si_rx_room_blk(si); goto yield; } } appctx->ctx.cli.p0 = NULL; free_trash_chunk(trash); return 1; yield: free_trash_chunk(trash); appctx->ctx.cli.p0 = ckchs; return 0; /* should come back */ } /* IO handler of the details "show ssl cert " */ static int cli_io_handler_show_cert_detail(struct appctx *appctx) { struct stream_interface *si = appctx->owner; struct ckch_store *ckchs = appctx->ctx.cli.p0; struct buffer *out = alloc_trash_chunk(); struct buffer *tmp = alloc_trash_chunk(); X509_NAME *name = NULL; STACK_OF(X509) *chain; unsigned int len = 0; int write = -1; BIO *bio = NULL; int i; if (!tmp || !out) goto end_no_putchk; if (!ckchs->multi) { chunk_appendf(out, "Filename: "); if (ckchs == ckchs_transaction.new_ckchs) chunk_appendf(out, "*"); chunk_appendf(out, "%s\n", ckchs->path); chunk_appendf(out, "Status: "); if (ckchs->ckch->cert == NULL) chunk_appendf(out, "Empty\n"); else if (LIST_ISEMPTY(&ckchs->ckch_inst)) chunk_appendf(out, "Unused\n"); else chunk_appendf(out, "Used\n"); if (ckchs->ckch->cert == NULL) goto end; chain = ckchs->ckch->chain; if (chain == NULL) { struct issuer_chain *issuer; issuer = ssl_get0_issuer_chain(ckchs->ckch->cert); if (issuer) { chain = issuer->chain; chunk_appendf(out, "Chain Filename: "); chunk_appendf(out, "%s\n", issuer->path); } } chunk_appendf(out, "Serial: "); if (ssl_sock_get_serial(ckchs->ckch->cert, tmp) == -1) goto end; dump_binary(out, tmp->area, tmp->data); chunk_appendf(out, "\n"); chunk_appendf(out, "notBefore: "); chunk_reset(tmp); if ((bio = BIO_new(BIO_s_mem())) == NULL) goto end; if (ASN1_TIME_print(bio, X509_getm_notBefore(ckchs->ckch->cert)) == 0) goto end; write = BIO_read(bio, tmp->area, tmp->size-1); tmp->area[write] = '\0'; BIO_free(bio); bio = NULL; chunk_appendf(out, "%s\n", tmp->area); chunk_appendf(out, "notAfter: "); chunk_reset(tmp); if ((bio = BIO_new(BIO_s_mem())) == NULL) goto end; if (ASN1_TIME_print(bio, X509_getm_notAfter(ckchs->ckch->cert)) == 0) goto end; if ((write = BIO_read(bio, tmp->area, tmp->size-1)) <= 0) goto end; tmp->area[write] = '\0'; BIO_free(bio); bio = NULL; chunk_appendf(out, "%s\n", tmp->area); #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME chunk_appendf(out, "Subject Alternative Name: "); if (ssl_sock_get_san_oneline(ckchs->ckch->cert, out) == -1) goto end; *(out->area + out->data) = '\0'; chunk_appendf(out, "\n"); #endif chunk_reset(tmp); chunk_appendf(out, "Algorithm: "); if (cert_get_pkey_algo(ckchs->ckch->cert, tmp) == 0) goto end; chunk_appendf(out, "%s\n", tmp->area); chunk_reset(tmp); chunk_appendf(out, "SHA1 FingerPrint: "); if (X509_digest(ckchs->ckch->cert, EVP_sha1(), (unsigned char *) tmp->area, &len) == 0) goto end; tmp->data = len; dump_binary(out, tmp->area, tmp->data); chunk_appendf(out, "\n"); chunk_appendf(out, "Subject: "); if ((name = X509_get_subject_name(ckchs->ckch->cert)) == NULL) goto end; if ((ssl_sock_get_dn_oneline(name, tmp)) == -1) goto end; *(tmp->area + tmp->data) = '\0'; chunk_appendf(out, "%s\n", tmp->area); chunk_appendf(out, "Issuer: "); if ((name = X509_get_issuer_name(ckchs->ckch->cert)) == NULL) goto end; if ((ssl_sock_get_dn_oneline(name, tmp)) == -1) goto end; *(tmp->area + tmp->data) = '\0'; chunk_appendf(out, "%s\n", tmp->area); /* Displays subject of each certificate in the chain */ for (i = 0; i < sk_X509_num(chain); i++) { X509 *ca = sk_X509_value(chain, i); chunk_appendf(out, "Chain Subject: "); if ((name = X509_get_subject_name(ca)) == NULL) goto end; if ((ssl_sock_get_dn_oneline(name, tmp)) == -1) goto end; *(tmp->area + tmp->data) = '\0'; chunk_appendf(out, "%s\n", tmp->area); chunk_appendf(out, "Chain Issuer: "); if ((name = X509_get_issuer_name(ca)) == NULL) goto end; if ((ssl_sock_get_dn_oneline(name, tmp)) == -1) goto end; *(tmp->area + tmp->data) = '\0'; chunk_appendf(out, "%s\n", tmp->area); } } end: if (ci_putchk(si_ic(si), out) == -1) { si_rx_room_blk(si); goto yield; } end_no_putchk: if (bio) BIO_free(bio); free_trash_chunk(tmp); free_trash_chunk(out); return 1; yield: free_trash_chunk(tmp); free_trash_chunk(out); return 0; /* should come back */ } /* parsing function for 'show ssl cert [certfile]' */ static int cli_parse_show_cert(char **args, char *payload, struct appctx *appctx, void *private) { struct ckch_store *ckchs; if (!cli_has_level(appctx, ACCESS_LVL_OPER)) return cli_err(appctx, "Can't allocate memory!\n"); /* The operations on the CKCH architecture are locked so we can * manipulate ckch_store and ckch_inst */ if (HA_SPIN_TRYLOCK(CKCH_LOCK, &ckch_lock)) return cli_err(appctx, "Can't show!\nOperations on certificates are currently locked!\n"); /* check if there is a certificate to lookup */ if (*args[3]) { if (*args[3] == '*') { if (!ckchs_transaction.new_ckchs) goto error; ckchs = ckchs_transaction.new_ckchs; if (strcmp(args[3] + 1, ckchs->path)) goto error; } else { if ((ckchs = ckchs_lookup(args[3])) == NULL) goto error; } if (ckchs->multi) goto error; appctx->ctx.cli.p0 = ckchs; /* use the IO handler that shows details */ appctx->io_handler = cli_io_handler_show_cert_detail; } return 0; error: HA_SPIN_UNLOCK(CKCH_LOCK, &ckch_lock); return cli_err(appctx, "Can't display the certificate: Not found or the certificate is a bundle!\n"); } /* release function of the `set ssl cert' command, free things and unlock the spinlock */ static void cli_release_commit_cert(struct appctx *appctx) { struct ckch_store *new_ckchs; HA_SPIN_UNLOCK(CKCH_LOCK, &ckch_lock); if (appctx->st2 != SETCERT_ST_FIN) { /* free every new sni_ctx and the new store, which are not in the trees so no spinlock there */ new_ckchs = appctx->ctx.ssl.new_ckchs; /* if the allocation failed, we need to free everything from the temporary list */ ckch_store_free(new_ckchs); } } /* * This function tries to create the new ckch_inst and their SNIs */ static int cli_io_handler_commit_cert(struct appctx *appctx) { struct stream_interface *si = appctx->owner; int y = 0; char *err = NULL; int errcode = 0; struct ckch_store *old_ckchs, *new_ckchs = NULL; struct ckch_inst *ckchi, *ckchis; struct buffer *trash = alloc_trash_chunk(); struct sni_ctx *sc0, *sc0s; struct crtlist_entry *entry; if (trash == NULL) goto error; if (unlikely(si_ic(si)->flags & (CF_WRITE_ERROR|CF_SHUTW))) goto error; while (1) { switch (appctx->st2) { case SETCERT_ST_INIT: /* This state just print the update message */ chunk_printf(trash, "Committing %s", ckchs_transaction.path); if (ci_putchk(si_ic(si), trash) == -1) { si_rx_room_blk(si); goto yield; } appctx->st2 = SETCERT_ST_GEN; /* fallthrough */ case SETCERT_ST_GEN: /* * This state generates the ckch instances with their * sni_ctxs and SSL_CTX. * * Since the SSL_CTX generation can be CPU consumer, we * yield every 10 instances. */ old_ckchs = appctx->ctx.ssl.old_ckchs; new_ckchs = appctx->ctx.ssl.new_ckchs; if (!new_ckchs) continue; /* get the next ckchi to regenerate */ ckchi = appctx->ctx.ssl.next_ckchi; /* we didn't start yet, set it to the first elem */ if (ckchi == NULL) ckchi = LIST_ELEM(old_ckchs->ckch_inst.n, typeof(ckchi), by_ckchs); /* walk through the old ckch_inst and creates new ckch_inst using the updated ckchs */ list_for_each_entry_from(ckchi, &old_ckchs->ckch_inst, by_ckchs) { struct ckch_inst *new_inst; char **sni_filter = NULL; int fcount = 0; /* it takes a lot of CPU to creates SSL_CTXs, so we yield every 10 CKCH instances */ if (y >= 10) { /* save the next ckchi to compute */ appctx->ctx.ssl.next_ckchi = ckchi; goto yield; } if (ckchi->crtlist_entry) { sni_filter = ckchi->crtlist_entry->filters; fcount = ckchi->crtlist_entry->fcount; } if (new_ckchs->multi) errcode |= ckch_inst_new_load_multi_store(new_ckchs->path, new_ckchs, ckchi->bind_conf, ckchi->ssl_conf, sni_filter, fcount, &new_inst, &err); else errcode |= ckch_inst_new_load_store(new_ckchs->path, new_ckchs, ckchi->bind_conf, ckchi->ssl_conf, sni_filter, fcount, &new_inst, &err); if (errcode & ERR_CODE) goto error; /* if the previous ckchi was used as the default */ if (ckchi->is_default) new_inst->is_default = 1; /* we need to initialize the SSL_CTX generated */ /* this iterate on the newly generated SNIs in the new instance to prepare their SSL_CTX */ list_for_each_entry_safe(sc0, sc0s, &new_inst->sni_ctx, by_ckch_inst) { if (!sc0->order) { /* we initialized only the first SSL_CTX because it's the same in the other sni_ctx's */ errcode |= ssl_sock_prepare_ctx(ckchi->bind_conf, ckchi->ssl_conf, sc0->ctx, &err); if (errcode & ERR_CODE) goto error; } } /* display one dot per new instance */ chunk_appendf(trash, "."); /* link the new ckch_inst to the duplicate */ LIST_ADDQ(&new_ckchs->ckch_inst, &new_inst->by_ckchs); y++; } appctx->st2 = SETCERT_ST_INSERT; /* fallthrough */ case SETCERT_ST_INSERT: /* The generation is finished, we can insert everything */ old_ckchs = appctx->ctx.ssl.old_ckchs; new_ckchs = appctx->ctx.ssl.new_ckchs; if (!new_ckchs) continue; /* get the list of crtlist_entry in the old store, and update the pointers to the store */ LIST_SPLICE(&new_ckchs->crtlist_entry, &old_ckchs->crtlist_entry); list_for_each_entry(entry, &new_ckchs->crtlist_entry, by_ckch_store) { ebpt_delete(&entry->node); /* change the ptr and reinsert the node */ entry->node.key = new_ckchs; ebpt_insert(&entry->crtlist->entries, &entry->node); } /* First, we insert every new SNIs in the trees, also replace the default_ctx */ list_for_each_entry_safe(ckchi, ckchis, &new_ckchs->ckch_inst, by_ckchs) { HA_RWLOCK_WRLOCK(SNI_LOCK, &ckchi->bind_conf->sni_lock); ssl_sock_load_cert_sni(ckchi, ckchi->bind_conf); HA_RWLOCK_WRUNLOCK(SNI_LOCK, &ckchi->bind_conf->sni_lock); } /* delete the old sni_ctx, the old ckch_insts and the ckch_store */ list_for_each_entry_safe(ckchi, ckchis, &old_ckchs->ckch_inst, by_ckchs) { struct bind_conf *bind_conf = ckchi->bind_conf; HA_RWLOCK_WRLOCK(SNI_LOCK, &bind_conf->sni_lock); ckch_inst_free(ckchi); HA_RWLOCK_WRUNLOCK(SNI_LOCK, &bind_conf->sni_lock); } /* Replace the old ckchs by the new one */ ckch_store_free(old_ckchs); ebst_insert(&ckchs_tree, &new_ckchs->node); appctx->st2 = SETCERT_ST_FIN; /* fallthrough */ case SETCERT_ST_FIN: /* we achieved the transaction, we can set everything to NULL */ free(ckchs_transaction.path); ckchs_transaction.path = NULL; ckchs_transaction.new_ckchs = NULL; ckchs_transaction.old_ckchs = NULL; goto end; } } end: chunk_appendf(trash, "\n"); if (errcode & ERR_WARN) chunk_appendf(trash, "%s", err); chunk_appendf(trash, "Success!\n"); if (ci_putchk(si_ic(si), trash) == -1) si_rx_room_blk(si); free_trash_chunk(trash); /* success: call the release function and don't come back */ return 1; yield: /* store the state */ if (ci_putchk(si_ic(si), trash) == -1) si_rx_room_blk(si); free_trash_chunk(trash); si_rx_endp_more(si); /* let's come back later */ return 0; /* should come back */ error: /* spin unlock and free are done in the release function */ if (trash) { chunk_appendf(trash, "\n%sFailed!\n", err); if (ci_putchk(si_ic(si), trash) == -1) si_rx_room_blk(si); free_trash_chunk(trash); } /* error: call the release function and don't come back */ return 1; } /* * Parsing function of 'commit ssl cert' */ static int cli_parse_commit_cert(char **args, char *payload, struct appctx *appctx, void *private) { char *err = NULL; if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) return 1; if (!*args[3]) return cli_err(appctx, "'commit ssl cert expects a filename\n"); /* The operations on the CKCH architecture are locked so we can * manipulate ckch_store and ckch_inst */ if (HA_SPIN_TRYLOCK(CKCH_LOCK, &ckch_lock)) return cli_err(appctx, "Can't commit the certificate!\nOperations on certificates are currently locked!\n"); if (!ckchs_transaction.path) { memprintf(&err, "No ongoing transaction! !\n"); goto error; } if (strcmp(ckchs_transaction.path, args[3]) != 0) { memprintf(&err, "The ongoing transaction is about '%s' but you are trying to set '%s'\n", ckchs_transaction.path, args[3]); goto error; } #if HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL if (ckchs_transaction.new_ckchs->multi) { int n; for (n = 0; n < SSL_SOCK_NUM_KEYTYPES; n++) { if (ckchs_transaction.new_ckchs->ckch[n].cert && !X509_check_private_key(ckchs_transaction.new_ckchs->ckch[n].cert, ckchs_transaction.new_ckchs->ckch[n].key)) { memprintf(&err, "inconsistencies between private key and certificate loaded '%s'.\n", ckchs_transaction.path); goto error; } } } else #endif { if (!X509_check_private_key(ckchs_transaction.new_ckchs->ckch->cert, ckchs_transaction.new_ckchs->ckch->key)) { memprintf(&err, "inconsistencies between private key and certificate loaded '%s'.\n", ckchs_transaction.path); goto error; } } /* init the appctx structure */ appctx->st2 = SETCERT_ST_INIT; appctx->ctx.ssl.next_ckchi = NULL; appctx->ctx.ssl.new_ckchs = ckchs_transaction.new_ckchs; appctx->ctx.ssl.old_ckchs = ckchs_transaction.old_ckchs; /* we don't unlock there, it will be unlock after the IO handler, in the release handler */ return 0; error: HA_SPIN_UNLOCK(CKCH_LOCK, &ckch_lock); err = memprintf(&err, "%sCan't commit %s!\n", err ? err : "", args[3]); return cli_dynerr(appctx, err); } /* * Parsing function of `set ssl cert`, it updates or creates a temporary ckch. */ static int cli_parse_set_cert(char **args, char *payload, struct appctx *appctx, void *private) { struct ckch_store *new_ckchs = NULL; struct ckch_store *old_ckchs = NULL; char *err = NULL; int i; int bundle = -1; /* TRUE if >= 0 (ckch index) */ int errcode = 0; char *end; int type = CERT_TYPE_PEM; struct cert_key_and_chain *ckch; struct buffer *buf; if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) return 1; if ((buf = alloc_trash_chunk()) == NULL) return cli_err(appctx, "Can't allocate memory\n"); if (!*args[3] || !payload) return cli_err(appctx, "'set ssl cert expects a filename and a certificate as a payload\n"); /* The operations on the CKCH architecture are locked so we can * manipulate ckch_store and ckch_inst */ if (HA_SPIN_TRYLOCK(CKCH_LOCK, &ckch_lock)) return cli_err(appctx, "Can't update the certificate!\nOperations on certificates are currently locked!\n"); if (!chunk_strcpy(buf, args[3])) { memprintf(&err, "%sCan't allocate memory\n", err ? err : ""); errcode |= ERR_ALERT | ERR_FATAL; goto end; } /* check which type of file we want to update */ for (i = 0; cert_exts[i].type < CERT_TYPE_MAX; i++) { end = strrchr(buf->area, '.'); if (end && *cert_exts[i].ext && (!strcmp(end + 1, cert_exts[i].ext))) { *end = '\0'; type = cert_exts[i].type; break; } } appctx->ctx.ssl.old_ckchs = NULL; appctx->ctx.ssl.new_ckchs = NULL; /* if there is an ongoing transaction */ if (ckchs_transaction.path) { /* if the ongoing transaction is a bundle, we need to find which part of the bundle need to be updated */ #if HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL if (ckchs_transaction.new_ckchs->multi) { char *end; int j; /* check if it was used in a bundle by removing the * .dsa/.rsa/.ecdsa at the end of the filename */ end = strrchr(buf->area, '.'); for (j = 0; end && j < SSL_SOCK_NUM_KEYTYPES; j++) { if (!strcmp(end + 1, SSL_SOCK_KEYTYPE_NAMES[j])) { bundle = j; /* keep the type of certificate so we insert it at the right place */ *end = '\0'; /* it's a bundle let's end the string*/ break; } } if (bundle < 0) { memprintf(&err, "The ongoing transaction is the '%s' bundle. You need to specify which part of the bundle you want to update ('%s.{rsa,ecdsa,dsa}')\n", ckchs_transaction.path, buf->area); errcode |= ERR_ALERT | ERR_FATAL; goto end; } } #endif /* if there is an ongoing transaction, check if this is the same file */ if (strcmp(ckchs_transaction.path, buf->area) != 0) { memprintf(&err, "The ongoing transaction is about '%s' but you are trying to set '%s'\n", ckchs_transaction.path, buf->area); errcode |= ERR_ALERT | ERR_FATAL; goto end; } appctx->ctx.ssl.old_ckchs = ckchs_transaction.new_ckchs; } else { struct ckch_store *find_ckchs[2] = { NULL, NULL }; /* lookup for the certificate in the tree: * check if this is used as a bundle AND as a unique certificate */ for (i = 0; i < 2; i++) { if ((find_ckchs[i] = ckchs_lookup(buf->area)) != NULL) { /* only the bundle name is in the tree and you should * never update a bundle name, only a filename */ if (bundle < 0 && find_ckchs[i]->multi) { /* we tried to look for a non-bundle and we found a bundle */ memprintf(&err, "%s%s is a multi-cert bundle. Try updating %s.{dsa,rsa,ecdsa}\n", err ? err : "", args[3], args[3]); errcode |= ERR_ALERT | ERR_FATAL; goto end; } /* If we want a bundle but this is not a bundle * example: When you try to update .rsa, but * is a regular file */ if (bundle >= 0 && find_ckchs[i]->multi == 0) { find_ckchs[i] = NULL; break; } } #if HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL { char *end; int j; /* check if it was used in a bundle by removing the * .dsa/.rsa/.ecdsa at the end of the filename */ end = strrchr(buf->area, '.'); for (j = 0; end && j < SSL_SOCK_NUM_KEYTYPES; j++) { if (!strcmp(end + 1, SSL_SOCK_KEYTYPE_NAMES[j])) { bundle = j; /* keep the type of certificate so we insert it at the right place */ *end = '\0'; /* it's a bundle let's end the string*/ break; } } if (bundle < 0) /* we didn't find a bundle extension */ break; } #else /* bundles are not supported here, so we don't need to lookup again */ break; #endif } if (find_ckchs[0] && find_ckchs[1]) { memprintf(&err, "%sUpdating a certificate which is used in the HAProxy configuration as a bundle and as a unique certificate is not supported. ('%s' and '%s')\n", err ? err : "", find_ckchs[0]->path, find_ckchs[1]->path); errcode |= ERR_ALERT | ERR_FATAL; goto end; } appctx->ctx.ssl.old_ckchs = find_ckchs[0] ? find_ckchs[0] : find_ckchs[1]; } if (!appctx->ctx.ssl.old_ckchs) { memprintf(&err, "%sCan't replace a certificate which is not referenced by the configuration!\n", err ? err : ""); errcode |= ERR_ALERT | ERR_FATAL; goto end; } if (!appctx->ctx.ssl.path) { /* this is a new transaction, set the path of the transaction */ appctx->ctx.ssl.path = strdup(appctx->ctx.ssl.old_ckchs->path); if (!appctx->ctx.ssl.path) { memprintf(&err, "%sCan't allocate memory\n", err ? err : ""); errcode |= ERR_ALERT | ERR_FATAL; goto end; } } old_ckchs = appctx->ctx.ssl.old_ckchs; /* duplicate the ckch store */ new_ckchs = ckchs_dup(old_ckchs); if (!new_ckchs) { memprintf(&err, "%sCannot allocate memory!\n", err ? err : ""); errcode |= ERR_ALERT | ERR_FATAL; goto end; } if (!new_ckchs->multi) ckch = new_ckchs->ckch; else ckch = &new_ckchs->ckch[bundle]; /* appply the change on the duplicate */ if (cert_exts[type].load(buf->area, payload, ckch, &err) != 0) { memprintf(&err, "%sCan't load the payload\n", err ? err : ""); errcode |= ERR_ALERT | ERR_FATAL; goto end; } appctx->ctx.ssl.new_ckchs = new_ckchs; /* we succeed, we can save the ckchs in the transaction */ /* if there wasn't a transaction, update the old ckchs */ if (!ckchs_transaction.old_ckchs) { ckchs_transaction.old_ckchs = appctx->ctx.ssl.old_ckchs; ckchs_transaction.path = appctx->ctx.ssl.path; err = memprintf(&err, "Transaction created for certificate %s!\n", ckchs_transaction.path); } else { err = memprintf(&err, "Transaction updated for certificate %s!\n", ckchs_transaction.path); } /* free the previous ckchs if there was a transaction */ ckch_store_free(ckchs_transaction.new_ckchs); ckchs_transaction.new_ckchs = appctx->ctx.ssl.new_ckchs; /* creates the SNI ctxs later in the IO handler */ end: free_trash_chunk(buf); if (errcode & ERR_CODE) { ckch_store_free(appctx->ctx.ssl.new_ckchs); appctx->ctx.ssl.new_ckchs = NULL; appctx->ctx.ssl.old_ckchs = NULL; free(appctx->ctx.ssl.path); appctx->ctx.ssl.path = NULL; HA_SPIN_UNLOCK(CKCH_LOCK, &ckch_lock); return cli_dynerr(appctx, memprintf(&err, "%sCan't update %s!\n", err ? err : "", args[3])); } else { HA_SPIN_UNLOCK(CKCH_LOCK, &ckch_lock); return cli_dynmsg(appctx, LOG_NOTICE, err); } /* TODO: handle the ERR_WARN which are not handled because of the io_handler */ } /* parsing function of 'abort ssl cert' */ static int cli_parse_abort_cert(char **args, char *payload, struct appctx *appctx, void *private) { char *err = NULL; if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) return 1; if (!*args[3]) return cli_err(appctx, "'abort ssl cert' expects a filename\n"); /* The operations on the CKCH architecture are locked so we can * manipulate ckch_store and ckch_inst */ if (HA_SPIN_TRYLOCK(CKCH_LOCK, &ckch_lock)) return cli_err(appctx, "Can't abort!\nOperations on certificates are currently locked!\n"); if (!ckchs_transaction.path) { memprintf(&err, "No ongoing transaction!\n"); goto error; } if (strcmp(ckchs_transaction.path, args[3]) != 0) { memprintf(&err, "The ongoing transaction is about '%s' but you are trying to abort a transaction for '%s'\n", ckchs_transaction.path, args[3]); goto error; } /* Only free the ckchs there, because the SNI and instances were not generated yet */ ckch_store_free(ckchs_transaction.new_ckchs); ckchs_transaction.new_ckchs = NULL; ckch_store_free(ckchs_transaction.old_ckchs); ckchs_transaction.old_ckchs = NULL; free(ckchs_transaction.path); ckchs_transaction.path = NULL; HA_SPIN_UNLOCK(CKCH_LOCK, &ckch_lock); err = memprintf(&err, "Transaction aborted for certificate '%s'!\n", args[3]); return cli_dynmsg(appctx, LOG_NOTICE, err); error: HA_SPIN_UNLOCK(CKCH_LOCK, &ckch_lock); return cli_dynerr(appctx, err); } /* parsing function of 'new ssl cert' */ static int cli_parse_new_cert(char **args, char *payload, struct appctx *appctx, void *private) { struct ckch_store *store; char *err = NULL; char *path; if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) return 1; if (!*args[3]) return cli_err(appctx, "'new ssl cert' expects a filename\n"); path = args[3]; /* The operations on the CKCH architecture are locked so we can * manipulate ckch_store and ckch_inst */ if (HA_SPIN_TRYLOCK(CKCH_LOCK, &ckch_lock)) return cli_err(appctx, "Can't create a certificate!\nOperations on certificates are currently locked!\n"); store = ckchs_lookup(path); if (store != NULL) { memprintf(&err, "Certificate '%s' already exists!\n", path); store = NULL; /* we don't want to free it */ goto error; } /* we won't support multi-certificate bundle here */ store = ckch_store_new(path, 1); if (!store) { memprintf(&err, "unable to allocate memory.\n"); goto error; } /* insert into the ckchs tree */ ebst_insert(&ckchs_tree, &store->node); memprintf(&err, "New empty certificate store '%s'!\n", args[3]); HA_SPIN_UNLOCK(CKCH_LOCK, &ckch_lock); return cli_dynmsg(appctx, LOG_NOTICE, err); error: free(store); HA_SPIN_UNLOCK(CKCH_LOCK, &ckch_lock); return cli_dynerr(appctx, err); } /* parsing function of 'del ssl cert' */ static int cli_parse_del_cert(char **args, char *payload, struct appctx *appctx, void *private) { struct ckch_store *store; char *err = NULL; char *filename; if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) return 1; if (!*args[3]) return cli_err(appctx, "'del ssl cert' expects a certificate name\n"); if (HA_SPIN_TRYLOCK(CKCH_LOCK, &ckch_lock)) return cli_err(appctx, "Can't delete the certificate!\nOperations on certificates are currently locked!\n"); filename = args[3]; store = ckchs_lookup(filename); if (store == NULL) { memprintf(&err, "certificate '%s' doesn't exist!\n", filename); goto error; } if (!LIST_ISEMPTY(&store->ckch_inst)) { memprintf(&err, "certificate '%s' in use, can't be deleted!\n", filename); goto error; } ebmb_delete(&store->node); ckch_store_free(store); memprintf(&err, "Certificate '%s' deleted!\n", filename); HA_SPIN_UNLOCK(CKCH_LOCK, &ckch_lock); return cli_dynmsg(appctx, LOG_NOTICE, err); error: memprintf(&err, "Can't remove the certificate: %s\n", err ? err : ""); HA_SPIN_UNLOCK(CKCH_LOCK, &ckch_lock); return cli_dynerr(appctx, err); } static int cli_parse_set_ocspresponse(char **args, char *payload, struct appctx *appctx, void *private) { #if (defined SSL_CTRL_SET_TLSEXT_STATUS_REQ_CB && !defined OPENSSL_NO_OCSP) char *err = NULL; int i, j, ret; if (!payload) payload = args[3]; /* Expect one parameter: the new response in base64 encoding */ if (!*payload) return cli_err(appctx, "'set ssl ocsp-response' expects response in base64 encoding.\n"); /* remove \r and \n from the payload */ for (i = 0, j = 0; payload[i]; i++) { if (payload[i] == '\r' || payload[i] == '\n') continue; payload[j++] = payload[i]; } payload[j] = 0; ret = base64dec(payload, j, trash.area, trash.size); if (ret < 0) return cli_err(appctx, "'set ssl ocsp-response' received invalid base64 encoded response.\n"); trash.data = ret; if (ssl_sock_update_ocsp_response(&trash, &err)) { if (err) return cli_dynerr(appctx, memprintf(&err, "%s.\n", err)); else return cli_err(appctx, "Failed to update OCSP response.\n"); } return cli_msg(appctx, LOG_INFO, "OCSP Response updated!\n"); #else return cli_err(appctx, "HAProxy was compiled against a version of OpenSSL that doesn't support OCSP stapling.\n"); #endif } #if (HA_OPENSSL_VERSION_NUMBER >= 0x1000100fL) static inline int sample_conv_var2smp_str(const struct arg *arg, struct sample *smp) { switch (arg->type) { case ARGT_STR: smp->data.type = SMP_T_STR; smp->data.u.str = arg->data.str; return 1; case ARGT_VAR: if (!vars_get_by_desc(&arg->data.var, smp)) return 0; if (!sample_casts[smp->data.type][SMP_T_STR]) return 0; if (!sample_casts[smp->data.type][SMP_T_STR](smp)) return 0; return 1; default: return 0; } } static int check_aes_gcm(struct arg *args, struct sample_conv *conv, const char *file, int line, char **err) { switch(args[0].data.sint) { case 128: case 192: case 256: break; default: memprintf(err, "key size must be 128, 192 or 256 (bits)."); return 0; } /* Try to decode a variable. */ vars_check_arg(&args[1], NULL); vars_check_arg(&args[2], NULL); vars_check_arg(&args[3], NULL); return 1; } /* Arguments: AES size in bits, nonce, key, tag. The last three arguments are base64 encoded */ static int sample_conv_aes_gcm_dec(const struct arg *arg_p, struct sample *smp, void *private) { struct sample nonce, key, aead_tag; struct buffer *smp_trash, *smp_trash_alloc; EVP_CIPHER_CTX *ctx; int dec_size, ret; smp_set_owner(&nonce, smp->px, smp->sess, smp->strm, smp->opt); if (!sample_conv_var2smp_str(&arg_p[1], &nonce)) return 0; smp_set_owner(&key, smp->px, smp->sess, smp->strm, smp->opt); if (!sample_conv_var2smp_str(&arg_p[2], &key)) return 0; smp_set_owner(&aead_tag, smp->px, smp->sess, smp->strm, smp->opt); if (!sample_conv_var2smp_str(&arg_p[3], &aead_tag)) return 0; smp_trash = get_trash_chunk(); smp_trash_alloc = alloc_trash_chunk(); if (!smp_trash_alloc) return 0; ctx = EVP_CIPHER_CTX_new(); if (!ctx) goto err; dec_size = base64dec(nonce.data.u.str.area, nonce.data.u.str.data, smp_trash->area, smp_trash->size); if (dec_size < 0) goto err; smp_trash->data = dec_size; /* Set cipher type and mode */ switch(arg_p[0].data.sint) { case 128: EVP_DecryptInit_ex(ctx, EVP_aes_128_gcm(), NULL, NULL, NULL); break; case 192: EVP_DecryptInit_ex(ctx, EVP_aes_192_gcm(), NULL, NULL, NULL); break; case 256: EVP_DecryptInit_ex(ctx, EVP_aes_256_gcm(), NULL, NULL, NULL); break; } EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, smp_trash->data, NULL); /* Initialise IV */ if(!EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, (unsigned char *) smp_trash->area)) goto err; dec_size = base64dec(key.data.u.str.area, key.data.u.str.data, smp_trash->area, smp_trash->size); if (dec_size < 0) goto err; smp_trash->data = dec_size; /* Initialise key */ if (!EVP_DecryptInit_ex(ctx, NULL, NULL, (unsigned char *) smp_trash->area, NULL)) goto err; if (!EVP_DecryptUpdate(ctx, (unsigned char *) smp_trash->area, (int *) &smp_trash->data, (unsigned char *) smp->data.u.str.area, (int) smp->data.u.str.data)) goto err; dec_size = base64dec(aead_tag.data.u.str.area, aead_tag.data.u.str.data, smp_trash_alloc->area, smp_trash_alloc->size); if (dec_size < 0) goto err; smp_trash_alloc->data = dec_size; dec_size = smp_trash->data; EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, smp_trash_alloc->data, (void *) smp_trash_alloc->area); ret = EVP_DecryptFinal_ex(ctx, (unsigned char *) smp_trash->area + smp_trash->data, (int *) &smp_trash->data); if (ret <= 0) goto err; smp->data.u.str.data = dec_size + smp_trash->data; smp->data.u.str.area = smp_trash->area; smp->data.type = SMP_T_BIN; smp->flags &= ~SMP_F_CONST; free_trash_chunk(smp_trash_alloc); return 1; err: free_trash_chunk(smp_trash_alloc); return 0; } # endif /* Argument validation functions */ /* This function is used to validate the arguments passed to any "x_dn" ssl * keywords. These keywords support specifying a third parameter that must be * either empty or the value "rfc2253". Returns 0 on error, non-zero if OK. */ int val_dnfmt(struct arg *arg, char **err_msg) { if (arg && arg[2].type == ARGT_STR && arg[2].data.str.data > 0 && (strcmp(arg[2].data.str.area, "rfc2253") != 0)) { memprintf(err_msg, "only rfc2253 or a blank value are currently supported as the format argument."); return 0; } return 1; } /* register cli keywords */ static struct cli_kw_list cli_kws = {{ },{ #if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0) { { "show", "tls-keys", NULL }, "show tls-keys [id|*]: show tls keys references or dump tls ticket keys when id specified", cli_parse_show_tlskeys, NULL }, { { "set", "ssl", "tls-key", NULL }, "set ssl tls-key [id|keyfile] : set the next TLS key for the or listener to ", cli_parse_set_tlskeys, NULL }, #endif { { "set", "ssl", "ocsp-response", NULL }, NULL, cli_parse_set_ocspresponse, NULL }, { { "new", "ssl", "cert", NULL }, "new ssl cert : create a new certificate file to be used in a crt-list or a directory", cli_parse_new_cert, NULL, NULL }, { { "set", "ssl", "cert", NULL }, "set ssl cert : replace a certificate file", cli_parse_set_cert, NULL, NULL }, { { "commit", "ssl", "cert", NULL }, "commit ssl cert : commit a certificate file", cli_parse_commit_cert, cli_io_handler_commit_cert, cli_release_commit_cert }, { { "abort", "ssl", "cert", NULL }, "abort ssl cert : abort a transaction for a certificate file", cli_parse_abort_cert, NULL, NULL }, { { "del", "ssl", "cert", NULL }, "del ssl cert : delete an unused certificate file", cli_parse_del_cert, NULL, NULL }, { { "show", "ssl", "cert", NULL }, "show ssl cert [] : display the SSL certificates used in memory, or the details of a ", cli_parse_show_cert, cli_io_handler_show_cert, cli_release_show_cert }, { { "add", "ssl", "crt-list", NULL }, "add ssl crt-list [options] : add a line to a crt-list ", cli_parse_add_crtlist, cli_io_handler_add_crtlist, cli_release_add_crtlist }, { { "del", "ssl", "crt-list", NULL }, "del ssl crt-list : delete a line in a crt-list ", cli_parse_del_crtlist, NULL, NULL }, { { "show", "ssl", "crt-list", NULL }, "show ssl crt-list [-n] [] : show the list of crt-lists or the content of a crt-list ", cli_parse_dump_crtlist, cli_io_handler_dump_crtlist, NULL }, { { NULL }, NULL, NULL, NULL } }}; INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws); /* Note: must not be declared as its list will be overwritten. * Please take care of keeping this list alphabetically sorted. */ static struct sample_fetch_kw_list sample_fetch_keywords = {ILH, { { "ssl_bc", smp_fetch_ssl_fc, 0, NULL, SMP_T_BOOL, SMP_USE_L5SRV }, { "ssl_bc_alg_keysize", smp_fetch_ssl_fc_alg_keysize, 0, NULL, SMP_T_SINT, SMP_USE_L5SRV }, #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation { "ssl_bc_alpn", smp_fetch_ssl_fc_alpn, 0, NULL, SMP_T_STR, SMP_USE_L5SRV }, #endif { "ssl_bc_cipher", smp_fetch_ssl_fc_cipher, 0, NULL, SMP_T_STR, SMP_USE_L5SRV }, #if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG) { "ssl_bc_npn", smp_fetch_ssl_fc_npn, 0, NULL, SMP_T_STR, SMP_USE_L5SRV }, #endif { "ssl_bc_is_resumed", smp_fetch_ssl_fc_is_resumed, 0, NULL, SMP_T_BOOL, SMP_USE_L5SRV }, { "ssl_bc_protocol", smp_fetch_ssl_fc_protocol, 0, NULL, SMP_T_STR, SMP_USE_L5SRV }, { "ssl_bc_unique_id", smp_fetch_ssl_fc_unique_id, 0, NULL, SMP_T_BIN, SMP_USE_L5SRV }, { "ssl_bc_use_keysize", smp_fetch_ssl_fc_use_keysize, 0, NULL, SMP_T_SINT, SMP_USE_L5SRV }, #if HA_OPENSSL_VERSION_NUMBER > 0x0090800fL { "ssl_bc_session_id", smp_fetch_ssl_fc_session_id, 0, NULL, SMP_T_BIN, SMP_USE_L5SRV }, #endif #if HA_OPENSSL_VERSION_NUMBER >= 0x10100000L { "ssl_bc_client_random", smp_fetch_ssl_fc_random, 0, NULL, SMP_T_BIN, SMP_USE_L5SRV }, { "ssl_bc_server_random", smp_fetch_ssl_fc_random, 0, NULL, SMP_T_BIN, SMP_USE_L5SRV }, { "ssl_bc_session_key", smp_fetch_ssl_fc_session_key, 0, NULL, SMP_T_BIN, SMP_USE_L5SRV }, #endif { "ssl_c_ca_err", smp_fetch_ssl_c_ca_err, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI }, { "ssl_c_ca_err_depth", smp_fetch_ssl_c_ca_err_depth, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI }, { "ssl_c_der", smp_fetch_ssl_x_der, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, { "ssl_c_err", smp_fetch_ssl_c_err, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI }, { "ssl_c_i_dn", smp_fetch_ssl_x_i_dn, ARG3(0,STR,SINT,STR),val_dnfmt, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_c_key_alg", smp_fetch_ssl_x_key_alg, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_c_notafter", smp_fetch_ssl_x_notafter, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_c_notbefore", smp_fetch_ssl_x_notbefore, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_c_sig_alg", smp_fetch_ssl_x_sig_alg, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_c_s_dn", smp_fetch_ssl_x_s_dn, ARG3(0,STR,SINT,STR),val_dnfmt, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_c_serial", smp_fetch_ssl_x_serial, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, { "ssl_c_sha1", smp_fetch_ssl_x_sha1, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, { "ssl_c_used", smp_fetch_ssl_c_used, 0, NULL, SMP_T_BOOL, SMP_USE_L5CLI }, { "ssl_c_verify", smp_fetch_ssl_c_verify, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI }, { "ssl_c_version", smp_fetch_ssl_x_version, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI }, { "ssl_f_der", smp_fetch_ssl_x_der, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, { "ssl_f_i_dn", smp_fetch_ssl_x_i_dn, ARG3(0,STR,SINT,STR),val_dnfmt, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_f_key_alg", smp_fetch_ssl_x_key_alg, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_f_notafter", smp_fetch_ssl_x_notafter, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_f_notbefore", smp_fetch_ssl_x_notbefore, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_f_sig_alg", smp_fetch_ssl_x_sig_alg, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_f_s_dn", smp_fetch_ssl_x_s_dn, ARG3(0,STR,SINT,STR),val_dnfmt, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_f_serial", smp_fetch_ssl_x_serial, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, { "ssl_f_sha1", smp_fetch_ssl_x_sha1, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, { "ssl_f_version", smp_fetch_ssl_x_version, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI }, { "ssl_fc", smp_fetch_ssl_fc, 0, NULL, SMP_T_BOOL, SMP_USE_L5CLI }, { "ssl_fc_alg_keysize", smp_fetch_ssl_fc_alg_keysize, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI }, { "ssl_fc_cipher", smp_fetch_ssl_fc_cipher, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_fc_has_crt", smp_fetch_ssl_fc_has_crt, 0, NULL, SMP_T_BOOL, SMP_USE_L5CLI }, { "ssl_fc_has_early", smp_fetch_ssl_fc_has_early, 0, NULL, SMP_T_BOOL, SMP_USE_L5CLI }, { "ssl_fc_has_sni", smp_fetch_ssl_fc_has_sni, 0, NULL, SMP_T_BOOL, SMP_USE_L5CLI }, { "ssl_fc_is_resumed", smp_fetch_ssl_fc_is_resumed, 0, NULL, SMP_T_BOOL, SMP_USE_L5CLI }, #if defined(OPENSSL_NPN_NEGOTIATED) && !defined(OPENSSL_NO_NEXTPROTONEG) { "ssl_fc_npn", smp_fetch_ssl_fc_npn, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, #endif #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation { "ssl_fc_alpn", smp_fetch_ssl_fc_alpn, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, #endif { "ssl_fc_protocol", smp_fetch_ssl_fc_protocol, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, #if HA_OPENSSL_VERSION_NUMBER > 0x0090800fL { "ssl_fc_unique_id", smp_fetch_ssl_fc_unique_id, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, #endif { "ssl_fc_use_keysize", smp_fetch_ssl_fc_use_keysize, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI }, #if HA_OPENSSL_VERSION_NUMBER > 0x0090800fL { "ssl_fc_session_id", smp_fetch_ssl_fc_session_id, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, #endif #if HA_OPENSSL_VERSION_NUMBER >= 0x10100000L { "ssl_fc_client_random", smp_fetch_ssl_fc_random, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, { "ssl_fc_server_random", smp_fetch_ssl_fc_random, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, { "ssl_fc_session_key", smp_fetch_ssl_fc_session_key, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, #endif #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME { "ssl_fc_sni", smp_fetch_ssl_fc_sni, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, #endif { "ssl_fc_cipherlist_bin", smp_fetch_ssl_fc_cl_bin, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_fc_cipherlist_hex", smp_fetch_ssl_fc_cl_hex, 0, NULL, SMP_T_BIN, SMP_USE_L5CLI }, { "ssl_fc_cipherlist_str", smp_fetch_ssl_fc_cl_str, 0, NULL, SMP_T_STR, SMP_USE_L5CLI }, { "ssl_fc_cipherlist_xxh", smp_fetch_ssl_fc_cl_xxh64, 0, NULL, SMP_T_SINT, SMP_USE_L5CLI }, { NULL, NULL, 0, 0, 0 }, }}; INITCALL1(STG_REGISTER, sample_register_fetches, &sample_fetch_keywords); /* Note: must not be declared as its list will be overwritten. * Please take care of keeping this list alphabetically sorted. */ static struct acl_kw_list acl_kws = {ILH, { { "ssl_fc_sni_end", "ssl_fc_sni", PAT_MATCH_END }, { "ssl_fc_sni_reg", "ssl_fc_sni", PAT_MATCH_REG }, { /* END */ }, }}; INITCALL1(STG_REGISTER, acl_register_keywords, &acl_kws); /* Note: must not be declared as its list will be overwritten. * Please take care of keeping this list alphabetically sorted, doing so helps * all code contributors. * Optional keywords are also declared with a NULL ->parse() function so that * the config parser can report an appropriate error when a known keyword was * not enabled. */ /* the keywords are used for crt-list parsing, they *MUST* be safe * with their proxy argument NULL and must only fill the ssl_bind_conf */ static struct ssl_bind_kw ssl_bind_kws[] = { { "allow-0rtt", ssl_bind_parse_allow_0rtt, 0 }, /* allow 0-RTT */ { "alpn", ssl_bind_parse_alpn, 1 }, /* set ALPN supported protocols */ { "ca-file", ssl_bind_parse_ca_file, 1 }, /* set CAfile to process ca-names and verify on client cert */ { "ca-verify-file", ssl_bind_parse_ca_verify_file, 1 }, /* set CAverify file to process verify on client cert */ { "ciphers", ssl_bind_parse_ciphers, 1 }, /* set SSL cipher suite */ #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) { "ciphersuites", ssl_bind_parse_ciphersuites, 1 }, /* set TLS 1.3 cipher suite */ #endif { "crl-file", ssl_bind_parse_crl_file, 1 }, /* set certificate revocation list file use on client cert verify */ { "curves", ssl_bind_parse_curves, 1 }, /* set SSL curve suite */ { "ecdhe", ssl_bind_parse_ecdhe, 1 }, /* defines named curve for elliptic curve Diffie-Hellman */ { "no-ca-names", ssl_bind_parse_no_ca_names, 0 }, /* do not send ca names to clients (ca_file related) */ { "npn", ssl_bind_parse_npn, 1 }, /* set NPN supported protocols */ { "ssl-min-ver", ssl_bind_parse_tls_method_minmax,1 }, /* minimum version */ { "ssl-max-ver", ssl_bind_parse_tls_method_minmax,1 }, /* maximum version */ { "verify", ssl_bind_parse_verify, 1 }, /* set SSL verify method */ { NULL, NULL, 0 }, }; /* no initcall for ssl_bind_kws, these ones are parsed in the parser loop */ static struct bind_kw_list bind_kws = { "SSL", { }, { { "allow-0rtt", bind_parse_allow_0rtt, 0 }, /* Allow 0RTT */ { "alpn", bind_parse_alpn, 1 }, /* set ALPN supported protocols */ { "ca-file", bind_parse_ca_file, 1 }, /* set CAfile to process ca-names and verify on client cert */ { "ca-verify-file", bind_parse_ca_verify_file, 1 }, /* set CAverify file to process verify on client cert */ { "ca-ignore-err", bind_parse_ignore_err, 1 }, /* set error IDs to ignore on verify depth > 0 */ { "ca-sign-file", bind_parse_ca_sign_file, 1 }, /* set CAFile used to generate and sign server certs */ { "ca-sign-pass", bind_parse_ca_sign_pass, 1 }, /* set CAKey passphrase */ { "ciphers", bind_parse_ciphers, 1 }, /* set SSL cipher suite */ #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) { "ciphersuites", bind_parse_ciphersuites, 1 }, /* set TLS 1.3 cipher suite */ #endif { "crl-file", bind_parse_crl_file, 1 }, /* set certificate revocation list file use on client cert verify */ { "crt", bind_parse_crt, 1 }, /* load SSL certificates from this location */ { "crt-ignore-err", bind_parse_ignore_err, 1 }, /* set error IDs to ignore on verify depth == 0 */ { "crt-list", bind_parse_crt_list, 1 }, /* load a list of crt from this location */ { "curves", bind_parse_curves, 1 }, /* set SSL curve suite */ { "ecdhe", bind_parse_ecdhe, 1 }, /* defines named curve for elliptic curve Diffie-Hellman */ { "force-sslv3", bind_parse_tls_method_options, 0 }, /* force SSLv3 */ { "force-tlsv10", bind_parse_tls_method_options, 0 }, /* force TLSv10 */ { "force-tlsv11", bind_parse_tls_method_options, 0 }, /* force TLSv11 */ { "force-tlsv12", bind_parse_tls_method_options, 0 }, /* force TLSv12 */ { "force-tlsv13", bind_parse_tls_method_options, 0 }, /* force TLSv13 */ { "generate-certificates", bind_parse_generate_certs, 0 }, /* enable the server certificates generation */ { "no-ca-names", bind_parse_no_ca_names, 0 }, /* do not send ca names to clients (ca_file related) */ { "no-sslv3", bind_parse_tls_method_options, 0 }, /* disable SSLv3 */ { "no-tlsv10", bind_parse_tls_method_options, 0 }, /* disable TLSv10 */ { "no-tlsv11", bind_parse_tls_method_options, 0 }, /* disable TLSv11 */ { "no-tlsv12", bind_parse_tls_method_options, 0 }, /* disable TLSv12 */ { "no-tlsv13", bind_parse_tls_method_options, 0 }, /* disable TLSv13 */ { "no-tls-tickets", bind_parse_no_tls_tickets, 0 }, /* disable session resumption tickets */ { "ssl", bind_parse_ssl, 0 }, /* enable SSL processing */ { "ssl-min-ver", bind_parse_tls_method_minmax, 1 }, /* minimum version */ { "ssl-max-ver", bind_parse_tls_method_minmax, 1 }, /* maximum version */ { "strict-sni", bind_parse_strict_sni, 0 }, /* refuse negotiation if sni doesn't match a certificate */ { "tls-ticket-keys", bind_parse_tls_ticket_keys, 1 }, /* set file to load TLS ticket keys from */ { "verify", bind_parse_verify, 1 }, /* set SSL verify method */ { "npn", bind_parse_npn, 1 }, /* set NPN supported protocols */ { "prefer-client-ciphers", bind_parse_pcc, 0 }, /* prefer client ciphers */ { NULL, NULL, 0 }, }}; INITCALL1(STG_REGISTER, bind_register_keywords, &bind_kws); /* Note: must not be declared as its list will be overwritten. * Please take care of keeping this list alphabetically sorted, doing so helps * all code contributors. * Optional keywords are also declared with a NULL ->parse() function so that * the config parser can report an appropriate error when a known keyword was * not enabled. */ static struct srv_kw_list srv_kws = { "SSL", { }, { { "allow-0rtt", srv_parse_allow_0rtt, 0, 1 }, /* Allow using early data on this server */ { "alpn", srv_parse_alpn, 1, 1 }, /* Set ALPN supported protocols */ { "ca-file", srv_parse_ca_file, 1, 1 }, /* set CAfile to process verify server cert */ { "check-alpn", srv_parse_alpn, 1, 1 }, /* Set ALPN used for checks */ { "check-sni", srv_parse_check_sni, 1, 1 }, /* set SNI */ { "check-ssl", srv_parse_check_ssl, 0, 1 }, /* enable SSL for health checks */ { "ciphers", srv_parse_ciphers, 1, 1 }, /* select the cipher suite */ #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) { "ciphersuites", srv_parse_ciphersuites, 1, 1 }, /* select the cipher suite */ #endif { "crl-file", srv_parse_crl_file, 1, 1 }, /* set certificate revocation list file use on server cert verify */ { "crt", srv_parse_crt, 1, 1 }, /* set client certificate */ { "force-sslv3", srv_parse_tls_method_options, 0, 1 }, /* force SSLv3 */ { "force-tlsv10", srv_parse_tls_method_options, 0, 1 }, /* force TLSv10 */ { "force-tlsv11", srv_parse_tls_method_options, 0, 1 }, /* force TLSv11 */ { "force-tlsv12", srv_parse_tls_method_options, 0, 1 }, /* force TLSv12 */ { "force-tlsv13", srv_parse_tls_method_options, 0, 1 }, /* force TLSv13 */ { "no-check-ssl", srv_parse_no_check_ssl, 0, 1 }, /* disable SSL for health checks */ { "no-send-proxy-v2-ssl", srv_parse_no_send_proxy_ssl, 0, 1 }, /* do not send PROXY protocol header v2 with SSL info */ { "no-send-proxy-v2-ssl-cn", srv_parse_no_send_proxy_cn, 0, 1 }, /* do not send PROXY protocol header v2 with CN */ { "no-ssl", srv_parse_no_ssl, 0, 1 }, /* disable SSL processing */ { "no-ssl-reuse", srv_parse_no_ssl_reuse, 0, 1 }, /* disable session reuse */ { "no-sslv3", srv_parse_tls_method_options, 0, 0 }, /* disable SSLv3 */ { "no-tlsv10", srv_parse_tls_method_options, 0, 0 }, /* disable TLSv10 */ { "no-tlsv11", srv_parse_tls_method_options, 0, 0 }, /* disable TLSv11 */ { "no-tlsv12", srv_parse_tls_method_options, 0, 0 }, /* disable TLSv12 */ { "no-tlsv13", srv_parse_tls_method_options, 0, 0 }, /* disable TLSv13 */ { "no-tls-tickets", srv_parse_no_tls_tickets, 0, 1 }, /* disable session resumption tickets */ { "npn", srv_parse_npn, 1, 1 }, /* Set NPN supported protocols */ { "send-proxy-v2-ssl", srv_parse_send_proxy_ssl, 0, 1 }, /* send PROXY protocol header v2 with SSL info */ { "send-proxy-v2-ssl-cn", srv_parse_send_proxy_cn, 0, 1 }, /* send PROXY protocol header v2 with CN */ { "sni", srv_parse_sni, 1, 1 }, /* send SNI extension */ { "ssl", srv_parse_ssl, 0, 1 }, /* enable SSL processing */ { "ssl-min-ver", srv_parse_tls_method_minmax, 1, 1 }, /* minimum version */ { "ssl-max-ver", srv_parse_tls_method_minmax, 1, 1 }, /* maximum version */ { "ssl-reuse", srv_parse_ssl_reuse, 0, 1 }, /* enable session reuse */ { "tls-tickets", srv_parse_tls_tickets, 0, 1 }, /* enable session resumption tickets */ { "verify", srv_parse_verify, 1, 1 }, /* set SSL verify method */ { "verifyhost", srv_parse_verifyhost, 1, 1 }, /* require that SSL cert verifies for hostname */ { NULL, NULL, 0, 0 }, }}; INITCALL1(STG_REGISTER, srv_register_keywords, &srv_kws); static struct cfg_kw_list cfg_kws = {ILH, { { CFG_GLOBAL, "ca-base", ssl_parse_global_ca_crt_base }, { CFG_GLOBAL, "crt-base", ssl_parse_global_ca_crt_base }, { CFG_GLOBAL, "issuers-chain-path", ssl_load_global_issuers_from_path }, { CFG_GLOBAL, "maxsslconn", ssl_parse_global_int }, { CFG_GLOBAL, "ssl-default-bind-options", ssl_parse_default_bind_options }, { CFG_GLOBAL, "ssl-default-server-options", ssl_parse_default_server_options }, #ifndef OPENSSL_NO_DH { CFG_GLOBAL, "ssl-dh-param-file", ssl_parse_global_dh_param_file }, #endif { CFG_GLOBAL, "ssl-mode-async", ssl_parse_global_ssl_async }, #ifndef OPENSSL_NO_ENGINE { CFG_GLOBAL, "ssl-engine", ssl_parse_global_ssl_engine }, #endif { CFG_GLOBAL, "ssl-skip-self-issued-ca", ssl_parse_skip_self_issued_ca }, { CFG_GLOBAL, "tune.ssl.cachesize", ssl_parse_global_int }, #ifndef OPENSSL_NO_DH { CFG_GLOBAL, "tune.ssl.default-dh-param", ssl_parse_global_default_dh }, #endif { CFG_GLOBAL, "tune.ssl.force-private-cache", ssl_parse_global_private_cache }, { CFG_GLOBAL, "tune.ssl.lifetime", ssl_parse_global_lifetime }, { CFG_GLOBAL, "tune.ssl.maxrecord", ssl_parse_global_int }, { CFG_GLOBAL, "tune.ssl.ssl-ctx-cache-size", ssl_parse_global_int }, { CFG_GLOBAL, "tune.ssl.capture-cipherlist-size", ssl_parse_global_capture_cipherlist }, { CFG_GLOBAL, "ssl-default-bind-ciphers", ssl_parse_global_ciphers }, { CFG_GLOBAL, "ssl-default-server-ciphers", ssl_parse_global_ciphers }, #if ((HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL) || defined(LIBRESSL_VERSION_NUMBER)) { CFG_GLOBAL, "ssl-default-bind-curves", ssl_parse_global_curves }, #endif #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) { CFG_GLOBAL, "ssl-default-bind-ciphersuites", ssl_parse_global_ciphersuites }, { CFG_GLOBAL, "ssl-default-server-ciphersuites", ssl_parse_global_ciphersuites }, #endif { CFG_GLOBAL, "ssl-load-extra-files", ssl_parse_global_extra_files }, { 0, NULL, NULL }, }}; INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws); /* Note: must not be declared as its list will be overwritten */ static struct sample_conv_kw_list conv_kws = {ILH, { #if (HA_OPENSSL_VERSION_NUMBER >= 0x1000100fL) { "aes_gcm_dec", sample_conv_aes_gcm_dec, ARG4(4,SINT,STR,STR,STR), check_aes_gcm, SMP_T_BIN, SMP_T_BIN }, #endif { NULL, NULL, 0, 0, 0 }, }}; INITCALL1(STG_REGISTER, sample_register_convs, &conv_kws); /* transport-layer operations for SSL sockets */ static struct xprt_ops ssl_sock = { .snd_buf = ssl_sock_from_buf, .rcv_buf = ssl_sock_to_buf, .subscribe = ssl_subscribe, .unsubscribe = ssl_unsubscribe, .remove_xprt = ssl_remove_xprt, .add_xprt = ssl_add_xprt, .rcv_pipe = NULL, .snd_pipe = NULL, .shutr = NULL, .shutw = ssl_sock_shutw, .close = ssl_sock_close, .init = ssl_sock_init, .prepare_bind_conf = ssl_sock_prepare_bind_conf, .destroy_bind_conf = ssl_sock_destroy_bind_conf, .prepare_srv = ssl_sock_prepare_srv_ctx, .destroy_srv = ssl_sock_free_srv_ctx, .get_alpn = ssl_sock_get_alpn, .name = "SSL", }; enum act_return ssl_action_wait_for_hs(struct act_rule *rule, struct proxy *px, struct session *sess, struct stream *s, int flags) { struct connection *conn; struct conn_stream *cs; conn = objt_conn(sess->origin); cs = objt_cs(s->si[0].end); if (conn && cs) { if (conn->flags & (CO_FL_EARLY_SSL_HS | CO_FL_SSL_WAIT_HS)) { cs->flags |= CS_FL_WAIT_FOR_HS; s->req.flags |= CF_READ_NULL; return ACT_RET_YIELD; } } return (ACT_RET_CONT); } static enum act_parse_ret ssl_parse_wait_for_hs(const char **args, int *orig_arg, struct proxy *px, struct act_rule *rule, char **err) { rule->action_ptr = ssl_action_wait_for_hs; return ACT_RET_PRS_OK; } static struct action_kw_list http_req_actions = {ILH, { { "wait-for-handshake", ssl_parse_wait_for_hs }, { /* END */ } }}; INITCALL1(STG_REGISTER, http_req_keywords_register, &http_req_actions); #if (HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL && !defined OPENSSL_NO_TLSEXT && !defined OPENSSL_IS_BORINGSSL) static void ssl_sock_sctl_free_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad, int idx, long argl, void *argp) { if (ptr) { chunk_destroy(ptr); free(ptr); } } #endif static void ssl_sock_capture_free_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad, int idx, long argl, void *argp) { pool_free(pool_head_ssl_capture, ptr); } __attribute__((constructor)) static void __ssl_sock_init(void) { #if (!defined(OPENSSL_NO_COMP) && !defined(SSL_OP_NO_COMPRESSION)) STACK_OF(SSL_COMP)* cm; int n; #endif if (global_ssl.listen_default_ciphers) global_ssl.listen_default_ciphers = strdup(global_ssl.listen_default_ciphers); if (global_ssl.connect_default_ciphers) global_ssl.connect_default_ciphers = strdup(global_ssl.connect_default_ciphers); #if (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L) if (global_ssl.listen_default_ciphersuites) global_ssl.listen_default_ciphersuites = strdup(global_ssl.listen_default_ciphersuites); if (global_ssl.connect_default_ciphersuites) global_ssl.connect_default_ciphersuites = strdup(global_ssl.connect_default_ciphersuites); #endif xprt_register(XPRT_SSL, &ssl_sock); #if HA_OPENSSL_VERSION_NUMBER < 0x10100000L SSL_library_init(); #endif #if (!defined(OPENSSL_NO_COMP) && !defined(SSL_OP_NO_COMPRESSION)) cm = SSL_COMP_get_compression_methods(); n = sk_SSL_COMP_num(cm); while (n--) { (void) sk_SSL_COMP_pop(cm); } #endif #if defined(USE_THREAD) && (HA_OPENSSL_VERSION_NUMBER < 0x10100000L) ssl_locking_init(); #endif #if (HA_OPENSSL_VERSION_NUMBER >= 0x1000200fL && !defined OPENSSL_NO_TLSEXT && !defined OPENSSL_IS_BORINGSSL) sctl_ex_index = SSL_CTX_get_ex_new_index(0, NULL, NULL, NULL, ssl_sock_sctl_free_func); #endif ssl_app_data_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, NULL); ssl_capture_ptr_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, ssl_sock_capture_free_func); #ifndef OPENSSL_NO_ENGINE ENGINE_load_builtin_engines(); hap_register_post_check(ssl_check_async_engine_count); #endif #if (defined SSL_CTRL_SET_TLSEXT_TICKET_KEY_CB && TLS_TICKETS_NO > 0) hap_register_post_check(tlskeys_finalize_config); #endif global.ssl_session_max_cost = SSL_SESSION_MAX_COST; global.ssl_handshake_max_cost = SSL_HANDSHAKE_MAX_COST; hap_register_post_deinit(ssl_free_global_issuers); #ifndef OPENSSL_NO_DH ssl_dh_ptr_index = SSL_CTX_get_ex_new_index(0, NULL, NULL, NULL, NULL); hap_register_post_deinit(ssl_free_dh); #endif #ifndef OPENSSL_NO_ENGINE hap_register_post_deinit(ssl_free_engines); #endif /* Load SSL string for the verbose & debug mode. */ ERR_load_SSL_strings(); ha_meth = BIO_meth_new(0x666, "ha methods"); BIO_meth_set_write(ha_meth, ha_ssl_write); BIO_meth_set_read(ha_meth, ha_ssl_read); BIO_meth_set_ctrl(ha_meth, ha_ssl_ctrl); BIO_meth_set_create(ha_meth, ha_ssl_new); BIO_meth_set_destroy(ha_meth, ha_ssl_free); BIO_meth_set_puts(ha_meth, ha_ssl_puts); BIO_meth_set_gets(ha_meth, ha_ssl_gets); HA_SPIN_INIT(&ckch_lock); } /* Compute and register the version string */ static void ssl_register_build_options() { char *ptr = NULL; int i; memprintf(&ptr, "Built with OpenSSL version : " #ifdef OPENSSL_IS_BORINGSSL "BoringSSL"); #else /* OPENSSL_IS_BORINGSSL */ OPENSSL_VERSION_TEXT "\nRunning on OpenSSL version : %s%s", OpenSSL_version(OPENSSL_VERSION), ((OPENSSL_VERSION_NUMBER ^ OpenSSL_version_num()) >> 8) ? " (VERSIONS DIFFER!)" : ""); #endif memprintf(&ptr, "%s\nOpenSSL library supports TLS extensions : " #if HA_OPENSSL_VERSION_NUMBER < 0x00907000L "no (library version too old)" #elif defined(OPENSSL_NO_TLSEXT) "no (disabled via OPENSSL_NO_TLSEXT)" #else "yes" #endif "", ptr); memprintf(&ptr, "%s\nOpenSSL library supports SNI : " #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME "yes" #else #ifdef OPENSSL_NO_TLSEXT "no (because of OPENSSL_NO_TLSEXT)" #else "no (version might be too old, 0.9.8f min needed)" #endif #endif "", ptr); memprintf(&ptr, "%s\nOpenSSL library supports :", ptr); for (i = CONF_TLSV_MIN; i <= CONF_TLSV_MAX; i++) if (methodVersions[i].option) memprintf(&ptr, "%s %s", ptr, methodVersions[i].name); hap_register_build_opts(ptr, 1); } INITCALL0(STG_REGISTER, ssl_register_build_options); #ifndef OPENSSL_NO_ENGINE void ssl_free_engines(void) { struct ssl_engine_list *wl, *wlb; /* free up engine list */ list_for_each_entry_safe(wl, wlb, &openssl_engines, list) { ENGINE_finish(wl->e); ENGINE_free(wl->e); LIST_DEL(&wl->list); free(wl); } } #endif #ifndef OPENSSL_NO_DH void ssl_free_dh(void) { if (local_dh_1024) { DH_free(local_dh_1024); local_dh_1024 = NULL; } if (local_dh_2048) { DH_free(local_dh_2048); local_dh_2048 = NULL; } if (local_dh_4096) { DH_free(local_dh_4096); local_dh_4096 = NULL; } if (global_dh) { DH_free(global_dh); global_dh = NULL; } } #endif __attribute__((destructor)) static void __ssl_sock_deinit(void) { #if (defined SSL_CTRL_SET_TLSEXT_HOSTNAME && !defined SSL_NO_GENERATE_CERTIFICATES) if (ssl_ctx_lru_tree) { lru64_destroy(ssl_ctx_lru_tree); HA_RWLOCK_DESTROY(&ssl_ctx_lru_rwlock); } #endif #if (HA_OPENSSL_VERSION_NUMBER < 0x10100000L) ERR_remove_state(0); ERR_free_strings(); EVP_cleanup(); #endif #if (HA_OPENSSL_VERSION_NUMBER >= 0x00907000L) && (HA_OPENSSL_VERSION_NUMBER < 0x10100000L) CRYPTO_cleanup_all_ex_data(); #endif BIO_meth_free(ha_meth); } /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */