/* * Task management functions. * * Copyright 2000-2009 Willy Tarreau * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_POOL(pool_head_task, "task", sizeof(struct task)); DECLARE_POOL(pool_head_tasklet, "tasklet", sizeof(struct tasklet)); /* This is the memory pool containing all the signal structs. These * struct are used to store each required signal between two tasks. */ DECLARE_POOL(pool_head_notification, "notification", sizeof(struct notification)); unsigned int nb_tasks = 0; volatile unsigned long active_tasks_mask = 0; /* Mask of threads with active tasks */ volatile unsigned long global_tasks_mask = 0; /* Mask of threads with tasks in the global runqueue */ unsigned int tasks_run_queue = 0; unsigned int tasks_run_queue_cur = 0; /* copy of the run queue size */ unsigned int nb_tasks_cur = 0; /* copy of the tasks count */ unsigned int niced_tasks = 0; /* number of niced tasks in the run queue */ THREAD_LOCAL struct task *curr_task = NULL; /* task currently running or NULL */ THREAD_LOCAL struct eb32sc_node *rq_next = NULL; /* Next task to be potentially run */ __decl_aligned_spinlock(rq_lock); /* spin lock related to run queue */ __decl_aligned_spinlock(wq_lock); /* spin lock related to wait queue */ #ifdef USE_THREAD struct eb_root timers; /* sorted timers tree, global */ struct eb_root rqueue; /* tree constituting the run queue */ int global_rqueue_size; /* Number of element sin the global runqueue */ #endif static unsigned int rqueue_ticks; /* insertion count */ struct task_per_thread task_per_thread[MAX_THREADS]; /* Puts the task in run queue at a position depending on t->nice. is * returned. The nice value assigns boosts in 32th of the run queue size. A * nice value of -1024 sets the task to -tasks_run_queue*32, while a nice value * of 1024 sets the task to tasks_run_queue*32. The state flags are cleared, so * the caller will have to set its flags after this call. * The task must not already be in the run queue. If unsure, use the safer * task_wakeup() function. */ void __task_wakeup(struct task *t, struct eb_root *root) { void *expected = NULL; int *rq_size; unsigned long __maybe_unused old_active_mask; #ifdef USE_THREAD if (root == &rqueue) { rq_size = &global_rqueue_size; HA_SPIN_LOCK(TASK_RQ_LOCK, &rq_lock); } else #endif { int nb = ((void *)root - (void *)&task_per_thread[0].rqueue) / sizeof(task_per_thread[0]); rq_size = &task_per_thread[nb].rqueue_size; } /* Make sure if the task isn't in the runqueue, nobody inserts it * in the meanwhile. */ redo: if (unlikely(!HA_ATOMIC_CAS(&t->rq.node.leaf_p, &expected, (void *)0x1))) { #ifdef USE_THREAD if (root == &rqueue) HA_SPIN_UNLOCK(TASK_RQ_LOCK, &rq_lock); #endif return; } /* There's a small race condition, when running a task, the thread * first sets TASK_RUNNING, and then unlink the task. * If an another thread calls task_wakeup() for the same task, * it may set t->state before TASK_RUNNING was set, and then try * to set t->rq.nod.leaf_p after it was unlinked. * To make sure it is not a problem, we check if TASK_RUNNING is set * again. If it is, we unset t->rq.node.leaf_p. * We then check for TASK_RUNNING a third time. If it is still there, * then we can give up, the task will be re-queued later if it needs * to be. If it's not there, and there is still something in t->state, * then we have to requeue. */ if (((volatile unsigned short)(t->state)) & TASK_RUNNING) { unsigned short state; t->rq.node.leaf_p = NULL; __ha_barrier_store(); state = (volatile unsigned short)(t->state); if (unlikely(state != 0 && !(state & TASK_RUNNING))) goto redo; #ifdef USE_THREAD if (root == &rqueue) HA_SPIN_UNLOCK(TASK_RQ_LOCK, &rq_lock); #endif return; } HA_ATOMIC_ADD(&tasks_run_queue, 1); #ifdef USE_THREAD if (root == &rqueue) { HA_ATOMIC_OR(&global_tasks_mask, t->thread_mask); __ha_barrier_store(); } #endif old_active_mask = active_tasks_mask; HA_ATOMIC_OR(&active_tasks_mask, t->thread_mask); t->rq.key = HA_ATOMIC_ADD(&rqueue_ticks, 1); if (likely(t->nice)) { int offset; HA_ATOMIC_ADD(&niced_tasks, 1); if (likely(t->nice > 0)) offset = (unsigned)((*rq_size * (unsigned int)t->nice) / 32U); else offset = -(unsigned)((*rq_size * (unsigned int)-t->nice) / 32U); t->rq.key += offset; } if (profiling & HA_PROF_TASKS) t->call_date = now_mono_time(); eb32sc_insert(root, &t->rq, t->thread_mask); #ifdef USE_THREAD if (root == &rqueue) { global_rqueue_size++; HA_ATOMIC_OR(&t->state, TASK_GLOBAL); HA_SPIN_UNLOCK(TASK_RQ_LOCK, &rq_lock); } else #endif { int nb = ((void *)root - (void *)&task_per_thread[0].rqueue) / sizeof(task_per_thread[0]); task_per_thread[nb].rqueue_size++; } #ifdef USE_THREAD /* If all threads that are supposed to handle this task are sleeping, * wake one. */ if ((((t->thread_mask & all_threads_mask) & sleeping_thread_mask) == (t->thread_mask & all_threads_mask)) && !(t->thread_mask & old_active_mask)) wake_thread(my_ffsl((t->thread_mask & all_threads_mask) &~ tid_bit) - 1); #endif return; } /* * __task_queue() * * Inserts a task into wait queue at the position given by its expiration * date. It does not matter if the task was already in the wait queue or not, * as it will be unlinked. The task must not have an infinite expiration timer. * Last, tasks must not be queued further than the end of the tree, which is * between and + 2^31 ms (now+24days in 32bit). * * This function should not be used directly, it is meant to be called by the * inline version of task_queue() which performs a few cheap preliminary tests * before deciding to call __task_queue(). Moreover this function doesn't care * at all about locking so the caller must be careful when deciding whether to * lock or not around this call. */ void __task_queue(struct task *task, struct eb_root *wq) { if (likely(task_in_wq(task))) __task_unlink_wq(task); /* the task is not in the queue now */ task->wq.key = task->expire; #ifdef DEBUG_CHECK_INVALID_EXPIRATION_DATES if (tick_is_lt(task->wq.key, now_ms)) /* we're queuing too far away or in the past (most likely) */ return; #endif eb32_insert(wq, &task->wq); } /* * Extract all expired timers from the timer queue, and wakes up all * associated tasks. Returns the date of next event (or eternity). */ int wake_expired_tasks() { struct task *task; struct eb32_node *eb; int ret = TICK_ETERNITY; while (1) { lookup_next_local: eb = eb32_lookup_ge(&task_per_thread[tid].timers, now_ms - TIMER_LOOK_BACK); if (!eb) { /* we might have reached the end of the tree, typically because * is in the first half and we're first scanning the last * half. Let's loop back to the beginning of the tree now. */ eb = eb32_first(&task_per_thread[tid].timers); if (likely(!eb)) break; } if (tick_is_lt(now_ms, eb->key)) { /* timer not expired yet, revisit it later */ ret = eb->key; break; } /* timer looks expired, detach it from the queue */ task = eb32_entry(eb, struct task, wq); __task_unlink_wq(task); /* It is possible that this task was left at an earlier place in the * tree because a recent call to task_queue() has not moved it. This * happens when the new expiration date is later than the old one. * Since it is very unlikely that we reach a timeout anyway, it's a * lot cheaper to proceed like this because we almost never update * the tree. We may also find disabled expiration dates there. Since * we have detached the task from the tree, we simply call task_queue * to take care of this. Note that we might occasionally requeue it at * the same place, before , so we have to check if this happens, * and adjust , otherwise we may skip it which is not what we want. * We may also not requeue the task (and not point eb at it) if its * expiration time is not set. */ if (!tick_is_expired(task->expire, now_ms)) { if (tick_isset(task->expire)) __task_queue(task, &task_per_thread[tid].timers); goto lookup_next_local; } task_wakeup(task, TASK_WOKEN_TIMER); } #ifdef USE_THREAD while (1) { HA_SPIN_LOCK(TASK_WQ_LOCK, &wq_lock); lookup_next: eb = eb32_lookup_ge(&timers, now_ms - TIMER_LOOK_BACK); if (!eb) { /* we might have reached the end of the tree, typically because * is in the first half and we're first scanning the last * half. Let's loop back to the beginning of the tree now. */ eb = eb32_first(&timers); if (likely(!eb)) break; } if (tick_is_lt(now_ms, eb->key)) { /* timer not expired yet, revisit it later */ ret = tick_first(ret, eb->key); break; } /* timer looks expired, detach it from the queue */ task = eb32_entry(eb, struct task, wq); __task_unlink_wq(task); /* It is possible that this task was left at an earlier place in the * tree because a recent call to task_queue() has not moved it. This * happens when the new expiration date is later than the old one. * Since it is very unlikely that we reach a timeout anyway, it's a * lot cheaper to proceed like this because we almost never update * the tree. We may also find disabled expiration dates there. Since * we have detached the task from the tree, we simply call task_queue * to take care of this. Note that we might occasionally requeue it at * the same place, before , so we have to check if this happens, * and adjust , otherwise we may skip it which is not what we want. * We may also not requeue the task (and not point eb at it) if its * expiration time is not set. */ if (!tick_is_expired(task->expire, now_ms)) { if (tick_isset(task->expire)) __task_queue(task, &timers); goto lookup_next; } task_wakeup(task, TASK_WOKEN_TIMER); HA_SPIN_UNLOCK(TASK_WQ_LOCK, &wq_lock); } HA_SPIN_UNLOCK(TASK_WQ_LOCK, &wq_lock); #endif return ret; } /* The run queue is chronologically sorted in a tree. An insertion counter is * used to assign a position to each task. This counter may be combined with * other variables (eg: nice value) to set the final position in the tree. The * counter may wrap without a problem, of course. We then limit the number of * tasks processed to 200 in any case, so that general latency remains low and * so that task positions have a chance to be considered. * * The function adjusts if a new event is closer. */ void process_runnable_tasks() { struct task *t; int max_processed; tasks_run_queue_cur = tasks_run_queue; /* keep a copy for reporting */ nb_tasks_cur = nb_tasks; max_processed = global.tune.runqueue_depth; if (likely(global_tasks_mask & tid_bit)) { HA_SPIN_LOCK(TASK_RQ_LOCK, &rq_lock); if (!(active_tasks_mask & tid_bit)) { HA_SPIN_UNLOCK(TASK_RQ_LOCK, &rq_lock); activity[tid].empty_rq++; return; } #ifdef USE_THREAD /* Get some elements from the global run queue and put it in the * local run queue. To try to keep a bit of fairness, just get as * much elements from the global list as to have a bigger local queue * than the average. */ rq_next = eb32sc_lookup_ge(&rqueue, rqueue_ticks - TIMER_LOOK_BACK, tid_bit); while ((task_per_thread[tid].task_list_size + task_per_thread[tid].rqueue_size) * global.nbthread <= tasks_run_queue) { if (unlikely(!rq_next)) { /* either we just started or we reached the end * of the tree, typically because * is in the first half and we're first scanning * the last half. Let's loop back to the beginning * of the tree now. */ rq_next = eb32sc_first(&rqueue, tid_bit); if (!rq_next) { HA_ATOMIC_AND(&global_tasks_mask, ~tid_bit); break; } } t = eb32sc_entry(rq_next, struct task, rq); rq_next = eb32sc_next(rq_next, tid_bit); /* detach the task from the queue */ __task_unlink_rq(t); __task_wakeup(t, &task_per_thread[tid].rqueue); } #endif HA_SPIN_UNLOCK(TASK_RQ_LOCK, &rq_lock); } else { if (!(active_tasks_mask & tid_bit)) { activity[tid].empty_rq++; return; } } /* Get some tasks from the run queue, make sure we don't * get too much in the task list, but put a bit more than * the max that will be run, to give a bit more fairness */ rq_next = eb32sc_lookup_ge(&task_per_thread[tid].rqueue, rqueue_ticks - TIMER_LOOK_BACK, tid_bit); while (max_processed + (max_processed / 10) > task_per_thread[tid].task_list_size) { /* Note: this loop is one of the fastest code path in * the whole program. It should not be re-arranged * without a good reason. */ if (unlikely(!rq_next)) { /* either we just started or we reached the end * of the tree, typically because * is in the first half and we're first scanning * the last half. Let's loop back to the beginning * of the tree now. */ rq_next = eb32sc_first(&task_per_thread[tid].rqueue, tid_bit); if (!rq_next) break; } t = eb32sc_entry(rq_next, struct task, rq); rq_next = eb32sc_next(rq_next, tid_bit); /* Make sure nobody re-adds the task in the runqueue */ HA_ATOMIC_OR(&t->state, TASK_RUNNING); /* detach the task from the queue */ __task_unlink_rq(t); /* And add it to the local task list */ task_insert_into_tasklet_list(t); } if (!(global_tasks_mask & tid_bit) && task_per_thread[tid].rqueue_size == 0) { HA_ATOMIC_AND(&active_tasks_mask, ~tid_bit); __ha_barrier_load(); if (global_tasks_mask & tid_bit) HA_ATOMIC_OR(&active_tasks_mask, tid_bit); } while (max_processed > 0 && !LIST_ISEMPTY(&task_per_thread[tid].task_list)) { struct task *t; unsigned short state; void *ctx; struct task *(*process)(struct task *t, void *ctx, unsigned short state); t = (struct task *)LIST_ELEM(task_per_thread[tid].task_list.n, struct tasklet *, list); state = HA_ATOMIC_XCHG(&t->state, TASK_RUNNING); __ha_barrier_store(); task_remove_from_task_list(t); ctx = t->context; process = t->process; t->calls++; if (unlikely(!TASK_IS_TASKLET(t) && t->call_date)) { uint64_t now_ns = now_mono_time(); t->lat_time += now_ns - t->call_date; t->call_date = now_ns; } curr_task = (struct task *)t; if (likely(process == process_stream)) t = process_stream(t, ctx, state); else { if (t->process != NULL) t = process(TASK_IS_TASKLET(t) ? NULL : t, ctx, state); else { __task_free(t); t = NULL; } } curr_task = NULL; /* If there is a pending state we have to wake up the task * immediately, else we defer it into wait queue */ if (t != NULL) { if (unlikely(!TASK_IS_TASKLET(t) && t->call_date)) { t->cpu_time += now_mono_time() - t->call_date; t->call_date = 0; } state = HA_ATOMIC_AND(&t->state, ~TASK_RUNNING); if (state) #ifdef USE_THREAD __task_wakeup(t, ((t->thread_mask & all_threads_mask) == tid_bit) ? &task_per_thread[tid].rqueue : &rqueue); #else __task_wakeup(t, &task_per_thread[tid].rqueue); #endif else task_queue(t); } max_processed--; if (max_processed <= 0) { HA_ATOMIC_OR(&active_tasks_mask, tid_bit); activity[tid].long_rq++; break; } } } /* * Delete every tasks before running the master polling loop */ void mworker_cleantasks() { struct task *t; int i; struct eb32_node *tmp_wq = NULL; struct eb32sc_node *tmp_rq = NULL; #ifdef USE_THREAD /* cleanup the global run queue */ tmp_rq = eb32sc_first(&rqueue, MAX_THREADS_MASK); while (tmp_rq) { t = eb32sc_entry(tmp_rq, struct task, rq); tmp_rq = eb32sc_next(tmp_rq, MAX_THREADS_MASK); task_delete(t); task_free(t); } /* cleanup the timers queue */ tmp_wq = eb32_first(&timers); while (tmp_wq) { t = eb32_entry(tmp_wq, struct task, wq); tmp_wq = eb32_next(tmp_wq); task_delete(t); task_free(t); } #endif /* clean the per thread run queue */ for (i = 0; i < global.nbthread; i++) { tmp_rq = eb32sc_first(&task_per_thread[i].rqueue, MAX_THREADS_MASK); while (tmp_rq) { t = eb32sc_entry(tmp_rq, struct task, rq); tmp_rq = eb32sc_next(tmp_rq, MAX_THREADS_MASK); task_delete(t); task_free(t); } /* cleanup the per thread timers queue */ tmp_wq = eb32_first(&task_per_thread[i].timers); while (tmp_wq) { t = eb32_entry(tmp_wq, struct task, wq); tmp_wq = eb32_next(tmp_wq); task_delete(t); task_free(t); } } } /* perform minimal intializations */ static void init_task() { int i; #ifdef USE_THREAD memset(&timers, 0, sizeof(timers)); memset(&rqueue, 0, sizeof(rqueue)); #endif memset(&task_per_thread, 0, sizeof(task_per_thread)); for (i = 0; i < MAX_THREADS; i++) { LIST_INIT(&task_per_thread[i].task_list); } } INITCALL0(STG_PREPARE, init_task); /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */