/* * HTTP compression. * * Copyright 2012 Exceliance, David Du Colombier * William Lallemand * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #ifdef USE_ZLIB /* Note: the crappy zlib and openssl libs both define the "free_func" type. * That's a very clever idea to use such a generic name in general purpose * libraries, really... The zlib one is easier to redefine than openssl's, * so let's only fix this one. */ #define free_func zlib_free_func #include #undef free_func #endif /* USE_ZLIB */ #include #include #include #include #include #include #include #include #ifdef USE_ZLIB static void *alloc_zlib(void *opaque, unsigned int items, unsigned int size); static void free_zlib(void *opaque, void *ptr); /* zlib allocation */ static struct pool_head *zlib_pool_deflate_state = NULL; static struct pool_head *zlib_pool_window = NULL; static struct pool_head *zlib_pool_prev = NULL; static struct pool_head *zlib_pool_head = NULL; static struct pool_head *zlib_pool_pending_buf = NULL; long zlib_used_memory = 0; #endif unsigned int compress_min_idle = 0; static struct pool_head *pool_comp_ctx = NULL; const struct comp_algo comp_algos[] = { { "identity", 8, identity_init, identity_add_data, identity_flush, identity_reset, identity_end }, #ifdef USE_ZLIB { "deflate", 7, deflate_init, deflate_add_data, deflate_flush, deflate_reset, deflate_end }, { "gzip", 4, gzip_init, deflate_add_data, deflate_flush, deflate_reset, deflate_end }, #endif /* USE_ZLIB */ { NULL, 0, NULL , NULL, NULL, NULL, NULL } }; /* * Add a content-type in the configuration */ int comp_append_type(struct comp *comp, const char *type) { struct comp_type *comp_type; comp_type = calloc(1, sizeof(struct comp_type)); comp_type->name_len = strlen(type); comp_type->name = strdup(type); comp_type->next = comp->types; comp->types = comp_type; return 0; } /* * Add an algorithm in the configuration */ int comp_append_algo(struct comp *comp, const char *algo) { struct comp_algo *comp_algo; int i; for (i = 0; comp_algos[i].name; i++) { if (!strcmp(algo, comp_algos[i].name)) { comp_algo = calloc(1, sizeof(struct comp_algo)); memmove(comp_algo, &comp_algos[i], sizeof(struct comp_algo)); comp_algo->next = comp->algos; comp->algos = comp_algo; return 0; } } return -1; } /* emit the chunksize followed by a CRLF on the output and return the number of * bytes written. Appends additional CRLF after the first one. Chunk * sizes are truncated to 6 hex digits (16 MB) and padded left. The caller is * responsible for ensuring there is enough room left in the output buffer for * the string (8 bytes * add_crlf*2). */ int http_emit_chunk_size(char *out, unsigned int chksz, int add_crlf) { int shift; int pos = 0; for (shift = 20; shift >= 0; shift -= 4) out[pos++] = hextab[(chksz >> shift) & 0xF]; do { out[pos++] = '\r'; out[pos++] = '\n'; } while (--add_crlf >= 0); return pos; } /* * Init HTTP compression */ int http_compression_buffer_init(struct session *s, struct buffer *in, struct buffer *out) { int left; /* not enough space */ if (in->size - buffer_len(in) < 40) return -1; /* We start by copying the current buffer's pending outgoing data into * a new temporary buffer that we initialize with a new empty chunk. */ out->size = global.tune.bufsize; b_reset(out); if (in->o > 0) { left = in->o - bo_contig_data(in); memcpy(out->data, bo_ptr(in), bo_contig_data(in)); out->p += bo_contig_data(in); if (left > 0) { /* second part of the buffer */ memcpy(out->p, in->data, left); out->p += left; } out->o = in->o; } out->i += http_emit_chunk_size(out->p, 0, 0); return 0; } /* * Add data to compress */ int http_compression_buffer_add_data(struct session *s, struct buffer *in, struct buffer *out) { struct http_msg *msg = &s->txn.rsp; int consumed_data = 0; int data_process_len; int block1, block2; /* * Temporarily skip already parsed data and chunks to jump to the * actual data block. It is fixed before leaving. */ b_adv(in, msg->next); /* * select the smallest size between the announced chunk size, the input * data, and the available output buffer size. The compressors are * assumed to be able to process all the bytes we pass to them at once. */ data_process_len = MIN(in->i, msg->chunk_len); data_process_len = MIN(out->size - buffer_len(out), data_process_len); block1 = data_process_len; if (block1 > bi_contig_data(in)) block1 = bi_contig_data(in); block2 = data_process_len - block1; /* compressors return < 0 upon error or the amount of bytes read */ consumed_data = s->comp_algo->add_data(s->comp_ctx, bi_ptr(in), block1, out); if (consumed_data >= 0 && block2 > 0) { consumed_data = s->comp_algo->add_data(s->comp_ctx, in->data, block2, out); if (consumed_data >= 0) consumed_data += block1; } /* restore original buffer pointer */ b_rew(in, msg->next); if (consumed_data > 0) { msg->next += consumed_data; msg->chunk_len -= consumed_data; } return consumed_data; } /* * Flush data in process, and write the header and footer of the chunk. Upon * success, in and out buffers are swapped to avoid a copy. */ int http_compression_buffer_end(struct session *s, struct buffer **in, struct buffer **out, int end) { int to_forward; int left; struct http_msg *msg = &s->txn.rsp; struct buffer *ib = *in, *ob = *out; #ifdef USE_ZLIB int ret; /* flush data here */ if (end) ret = s->comp_algo->flush(s->comp_ctx, ob, Z_FINISH); /* end of data */ else ret = s->comp_algo->flush(s->comp_ctx, ob, Z_SYNC_FLUSH); /* end of buffer */ if (ret < 0) return -1; /* flush failed */ #endif /* USE_ZLIB */ if (ob->i > 8) { /* more than a chunk size => some data were emitted */ char *tail = ob->p + ob->i; /* write real size at the begining of the chunk, no need of wrapping */ http_emit_chunk_size(ob->p, ob->i - 8, 0); /* chunked encoding requires CRLF after data */ *tail++ = '\r'; *tail++ = '\n'; /* At the end of data, we must write the empty chunk 0, * and terminate the trailers section with a last . If * we're forwarding a chunked-encoded response, we'll have a * trailers section after the empty chunk which needs to be * forwarded and which will provide the last CRLF. Otherwise * we write it ourselves. */ if (msg->msg_state >= HTTP_MSG_TRAILERS) { memcpy(tail, "0\r\n", 3); tail += 3; if (msg->msg_state >= HTTP_MSG_DONE) { memcpy(tail, "\r\n", 2); tail += 2; } } ob->i = tail - ob->p; } else { /* no data were sent, cancel the chunk size */ ob->i = 0; } to_forward = ob->i; /* update input rate */ if (s->comp_ctx && s->comp_ctx->cur_lvl > 0) { update_freq_ctr(&global.comp_bps_in, msg->next); s->fe->fe_counters.comp_in += msg->next; s->be->be_counters.comp_in += msg->next; } else { s->fe->fe_counters.comp_byp += msg->next; s->be->be_counters.comp_byp += msg->next; } /* copy the remaining data in the tmp buffer. */ b_adv(ib, msg->next); msg->next = 0; if (ib->i > 0) { left = ib->i - bi_contig_data(ib); memcpy(bi_end(ob), bi_ptr(ib), bi_contig_data(ib)); ob->i += bi_contig_data(ib); if (left > 0) { memcpy(bi_end(ob), ib->data, left); ob->i += left; } } /* swap the buffers */ *in = ob; *out = ib; if (s->comp_ctx && s->comp_ctx->cur_lvl > 0) { update_freq_ctr(&global.comp_bps_out, to_forward); s->fe->fe_counters.comp_out += to_forward; s->be->be_counters.comp_out += to_forward; } /* forward the new chunk without remaining data */ b_adv(ob, to_forward); return to_forward; } /* * Alloc the comp_ctx */ static inline int init_comp_ctx(struct comp_ctx **comp_ctx) { #ifdef USE_ZLIB z_stream *strm; if (global.maxzlibmem > 0 && (global.maxzlibmem - zlib_used_memory) < sizeof(struct comp_ctx)) return -1; #endif if (unlikely(pool_comp_ctx == NULL)) pool_comp_ctx = create_pool("comp_ctx", sizeof(struct comp_ctx), MEM_F_SHARED); *comp_ctx = pool_alloc2(pool_comp_ctx); if (*comp_ctx == NULL) return -1; #ifdef USE_ZLIB zlib_used_memory += sizeof(struct comp_ctx); strm = &(*comp_ctx)->strm; strm->zalloc = alloc_zlib; strm->zfree = free_zlib; strm->opaque = *comp_ctx; #endif return 0; } /* * Dealloc the comp_ctx */ static inline int deinit_comp_ctx(struct comp_ctx **comp_ctx) { if (!*comp_ctx) return 0; pool_free2(pool_comp_ctx, *comp_ctx); *comp_ctx = NULL; #ifdef USE_ZLIB zlib_used_memory -= sizeof(struct comp_ctx); #endif return 0; } /**************************** **** Identity algorithm **** ****************************/ /* * Init the identity algorithm */ int identity_init(struct comp_ctx **comp_ctx, int level) { return 0; } /* * Process data * Return size of consumed data or -1 on error */ int identity_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out) { char *out_data = bi_end(out); int out_len = out->size - buffer_len(out); if (out_len < in_len) return -1; memcpy(out_data, in_data, in_len); out->i += in_len; return in_len; } int identity_flush(struct comp_ctx *comp_ctx, struct buffer *out, int flag) { return 0; } int identity_reset(struct comp_ctx *comp_ctx) { return 0; } /* * Deinit the algorithm */ int identity_end(struct comp_ctx **comp_ctx) { return 0; } #ifdef USE_ZLIB /* * This is a tricky allocation function using the zlib. * This is based on the allocation order in deflateInit2. */ static void *alloc_zlib(void *opaque, unsigned int items, unsigned int size) { struct comp_ctx *ctx = opaque; static char round = 0; /* order in deflateInit2 */ void *buf = NULL; struct pool_head *pool = NULL; if (global.maxzlibmem > 0 && (global.maxzlibmem - zlib_used_memory) < (long)(items * size)) goto end; switch (round) { case 0: if (zlib_pool_deflate_state == NULL) zlib_pool_deflate_state = create_pool("zlib_state", size * items, MEM_F_SHARED); pool = zlib_pool_deflate_state; ctx->zlib_deflate_state = buf = pool_alloc2(pool); break; case 1: if (zlib_pool_window == NULL) zlib_pool_window = create_pool("zlib_window", size * items, MEM_F_SHARED); pool = zlib_pool_window; ctx->zlib_window = buf = pool_alloc2(pool); break; case 2: if (zlib_pool_prev == NULL) zlib_pool_prev = create_pool("zlib_prev", size * items, MEM_F_SHARED); pool = zlib_pool_prev; ctx->zlib_prev = buf = pool_alloc2(pool); break; case 3: if (zlib_pool_head == NULL) zlib_pool_head = create_pool("zlib_head", size * items, MEM_F_SHARED); pool = zlib_pool_head; ctx->zlib_head = buf = pool_alloc2(pool); break; case 4: if (zlib_pool_pending_buf == NULL) zlib_pool_pending_buf = create_pool("zlib_pending_buf", size * items, MEM_F_SHARED); pool = zlib_pool_pending_buf; ctx->zlib_pending_buf = buf = pool_alloc2(pool); break; } if (buf != NULL) zlib_used_memory += pool->size; end: /* deflateInit2() first allocates and checks the deflate_state, then if * it succeeds, it allocates all other 4 areas at ones and checks them * at the end. So we want to correctly count the rounds depending on when * zlib is supposed to abort. */ if (buf || round) round = (round + 1) % 5; return buf; } static void free_zlib(void *opaque, void *ptr) { struct comp_ctx *ctx = opaque; struct pool_head *pool = NULL; if (ptr == ctx->zlib_window) pool = zlib_pool_window; else if (ptr == ctx->zlib_deflate_state) pool = zlib_pool_deflate_state; else if (ptr == ctx->zlib_prev) pool = zlib_pool_prev; else if (ptr == ctx->zlib_head) pool = zlib_pool_head; else if (ptr == ctx->zlib_pending_buf) pool = zlib_pool_pending_buf; pool_free2(pool, ptr); zlib_used_memory -= pool->size; } /************************** **** gzip algorithm **** ***************************/ int gzip_init(struct comp_ctx **comp_ctx, int level) { z_stream *strm; if (init_comp_ctx(comp_ctx) < 0) return -1; strm = &(*comp_ctx)->strm; if (deflateInit2(strm, level, Z_DEFLATED, global.tune.zlibwindowsize + 16, global.tune.zlibmemlevel, Z_DEFAULT_STRATEGY) != Z_OK) { deinit_comp_ctx(comp_ctx); return -1; } (*comp_ctx)->cur_lvl = level; return 0; } /************************** **** Deflate algorithm **** ***************************/ int deflate_init(struct comp_ctx **comp_ctx, int level) { z_stream *strm; if (init_comp_ctx(comp_ctx) < 0) return -1; strm = &(*comp_ctx)->strm; if (deflateInit2(strm, level, Z_DEFLATED, global.tune.zlibwindowsize, global.tune.zlibmemlevel, Z_DEFAULT_STRATEGY) != Z_OK) { deinit_comp_ctx(comp_ctx); return -1; } (*comp_ctx)->cur_lvl = level; return 0; } /* Return the size of consumed data or -1 */ int deflate_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out) { int ret; z_stream *strm = &comp_ctx->strm; char *out_data = bi_end(out); int out_len = out->size - buffer_len(out); if (in_len <= 0) return 0; if (out_len <= 0) return -1; strm->next_in = (unsigned char *)in_data; strm->avail_in = in_len; strm->next_out = (unsigned char *)out_data; strm->avail_out = out_len; ret = deflate(strm, Z_NO_FLUSH); if (ret != Z_OK) return -1; /* deflate update the available data out */ out->i += out_len - strm->avail_out; return in_len - strm->avail_in; } int deflate_flush(struct comp_ctx *comp_ctx, struct buffer *out, int flag) { int ret; int out_len = 0; z_stream *strm = &comp_ctx->strm; strm->next_out = (unsigned char *)bi_end(out); strm->avail_out = out->size - buffer_len(out); ret = deflate(strm, flag); if (ret != Z_OK && ret != Z_STREAM_END) return -1; out_len = (out->size - buffer_len(out)) - strm->avail_out; out->i += out_len; /* compression limit */ if ((global.comp_rate_lim > 0 && (read_freq_ctr(&global.comp_bps_out) > global.comp_rate_lim)) || /* rate */ (idle_pct < compress_min_idle)) { /* idle */ /* decrease level */ if (comp_ctx->cur_lvl > 0) { comp_ctx->cur_lvl--; deflateParams(&comp_ctx->strm, comp_ctx->cur_lvl, Z_DEFAULT_STRATEGY); } } else if (comp_ctx->cur_lvl < global.tune.comp_maxlevel) { /* increase level */ comp_ctx->cur_lvl++ ; deflateParams(&comp_ctx->strm, comp_ctx->cur_lvl, Z_DEFAULT_STRATEGY); } return out_len; } int deflate_reset(struct comp_ctx *comp_ctx) { z_stream *strm = &comp_ctx->strm; if (deflateReset(strm) == Z_OK) return 0; return -1; } int deflate_end(struct comp_ctx **comp_ctx) { z_stream *strm = &(*comp_ctx)->strm; int ret; ret = deflateEnd(strm); deinit_comp_ctx(comp_ctx); return ret; } #endif /* USE_ZLIB */ /* boolean, returns true if compression is used (either gzip or deflate) in the response */ static int smp_fetch_res_comp(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp, const char *kw) { smp->type = SMP_T_BOOL; smp->data.uint = (l4->comp_algo != NULL); return 1; } /* string, returns algo */ static int smp_fetch_res_comp_algo(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp, const char *kw) { if (!l4->comp_algo) return 0; smp->type = SMP_T_STR; smp->flags = SMP_F_CONST; smp->data.str.str = l4->comp_algo->name; smp->data.str.len = l4->comp_algo->name_len; return 1; } /* Note: must not be declared as its list will be overwritten */ static struct acl_kw_list acl_kws = {ILH, { { /* END */ }, }}; /* Note: must not be declared as its list will be overwritten */ static struct sample_fetch_kw_list sample_fetch_keywords = {ILH, { { "res.comp", smp_fetch_res_comp, 0, NULL, SMP_T_BOOL, SMP_USE_HRSHP }, { "res.comp_algo", smp_fetch_res_comp_algo, 0, NULL, SMP_T_STR, SMP_USE_HRSHP }, { /* END */ }, }}; __attribute__((constructor)) static void __comp_fetch_init(void) { acl_register_keywords(&acl_kws); sample_register_fetches(&sample_fetch_keywords); }