/* * Memory management functions. * * Copyright 2000-2007 Willy Tarreau * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_HAP_POOLS /* These ones are initialized per-thread on startup by init_pools() */ THREAD_LOCAL size_t pool_cache_bytes = 0; /* total cache size */ THREAD_LOCAL size_t pool_cache_count = 0; /* #cache objects */ #endif static struct list pools = LIST_HEAD_INIT(pools); int mem_poison_byte = -1; #ifdef DEBUG_FAIL_ALLOC static int mem_fail_rate = 0; #endif static int using_default_allocator = 1; static int(*my_mallctl)(const char *, void *, size_t *, void *, size_t) = NULL; /* ask the allocator to trim memory pools. * This must run under thread isolation so that competing threads trying to * allocate or release memory do not prevent the allocator from completing * its job. We just have to be careful as callers might already be isolated * themselves. */ static void trim_all_pools(void) { int isolated = thread_isolated(); if (!isolated) thread_isolate(); if (my_mallctl) { unsigned int i, narenas = 0; size_t len = sizeof(narenas); if (my_mallctl("arenas.narenas", &narenas, &len, NULL, 0) == 0) { for (i = 0; i < narenas; i ++) { char mib[32] = {0}; snprintf(mib, sizeof(mib), "arena.%u.purge", i); (void)my_mallctl(mib, NULL, NULL, NULL, 0); } } } else { #if defined(HA_HAVE_MALLOC_TRIM) if (using_default_allocator) malloc_trim(0); #elif defined(HA_HAVE_MALLOC_ZONE) if (using_default_allocator) { vm_address_t *zones; unsigned int i, nzones; if (malloc_get_all_zones(0, NULL, &zones, &nzones) == KERN_SUCCESS) { for (i = 0; i < nzones; i ++) { malloc_zone_t *zone = (malloc_zone_t *)zones[i]; /* we cannot purge anonymous zones */ if (zone->zone_name) malloc_zone_pressure_relief(zone, 0); } } } #endif } if (!isolated) thread_release(); } /* check if we're using the same allocator as the one that provides * malloc_trim() and mallinfo(). The principle is that on glibc, both * malloc_trim() and mallinfo() are provided, and using mallinfo() we * can check if malloc() is performed through glibc or any other one * the executable was linked against (e.g. jemalloc). Prior to this we * have to check whether we're running on jemalloc by verifying if the * mallctl() function is provided. Its pointer will be used later. */ static void detect_allocator(void) { #if defined(__ELF__) extern int mallctl(const char *, void *, size_t *, void *, size_t) __attribute__((weak)); my_mallctl = mallctl; #endif if (!my_mallctl) { my_mallctl = get_sym_curr_addr("mallctl"); using_default_allocator = (my_mallctl == NULL); } if (!my_mallctl) { #if defined(HA_HAVE_MALLOC_TRIM) #ifdef HA_HAVE_MALLINFO2 struct mallinfo2 mi1, mi2; #else struct mallinfo mi1, mi2; #endif void *ptr; #ifdef HA_HAVE_MALLINFO2 mi1 = mallinfo2(); #else mi1 = mallinfo(); #endif ptr = DISGUISE(malloc(1)); #ifdef HA_HAVE_MALLINFO2 mi2 = mallinfo2(); #else mi2 = mallinfo(); #endif free(DISGUISE(ptr)); using_default_allocator = !!memcmp(&mi1, &mi2, sizeof(mi1)); #elif defined(HA_HAVE_MALLOC_ZONE) using_default_allocator = (malloc_default_zone() != NULL); #endif } } static int is_trim_enabled(void) { return using_default_allocator; } /* Try to find an existing shared pool with the same characteristics and * returns it, otherwise creates this one. NULL is returned if no memory * is available for a new creation. Two flags are supported : * - MEM_F_SHARED to indicate that the pool may be shared with other users * - MEM_F_EXACT to indicate that the size must not be rounded up */ struct pool_head *create_pool(char *name, unsigned int size, unsigned int flags) { struct pool_head *pool; struct pool_head *entry; struct list *start; unsigned int align; int thr __maybe_unused; /* We need to store a (void *) at the end of the chunks. Since we know * that the malloc() function will never return such a small size, * let's round the size up to something slightly bigger, in order to * ease merging of entries. Note that the rounding is a power of two. * This extra (void *) is not accounted for in the size computation * so that the visible parts outside are not affected. * * Note: for the LRU cache, we need to store 2 doubly-linked lists. */ if (!(flags & MEM_F_EXACT)) { align = 4 * sizeof(void *); // 2 lists = 4 pointers min size = ((size + POOL_EXTRA + align - 1) & -align) - POOL_EXTRA; } /* TODO: thread: we do not lock pool list for now because all pools are * created during HAProxy startup (so before threads creation) */ start = &pools; pool = NULL; list_for_each_entry(entry, &pools, list) { if (entry->size == size) { /* either we can share this place and we take it, or * we look for a shareable one or for the next position * before which we will insert a new one. */ if ((flags & entry->flags & MEM_F_SHARED) #ifdef DEBUG_DONT_SHARE_POOLS && strcmp(name, entry->name) == 0 #endif ) { /* we can share this one */ pool = entry; DPRINTF(stderr, "Sharing %s with %s\n", name, pool->name); break; } } else if (entry->size > size) { /* insert before this one */ start = &entry->list; break; } } if (!pool) { if (!pool) pool = calloc(1, sizeof(*pool)); if (!pool) return NULL; if (name) strlcpy2(pool->name, name, sizeof(pool->name)); pool->size = size; pool->flags = flags; LIST_APPEND(start, &pool->list); #ifdef CONFIG_HAP_POOLS /* update per-thread pool cache if necessary */ for (thr = 0; thr < MAX_THREADS; thr++) { LIST_INIT(&pool->cache[thr].list); } #endif } pool->users++; return pool; } /* Tries to allocate an object for the pool using the system's allocator * and directly returns it. The pool's allocated counter is checked and updated, * but no other checks are performed. */ void *pool_get_from_os(struct pool_head *pool) { if (!pool->limit || pool->allocated < pool->limit) { void *ptr = pool_alloc_area(pool->size + POOL_EXTRA); if (ptr) { _HA_ATOMIC_INC(&pool->allocated); return ptr; } _HA_ATOMIC_INC(&pool->failed); } activity[tid].pool_fail++; return NULL; } /* Releases a pool item back to the operating system and atomically updates * the allocation counter. */ void pool_put_to_os(struct pool_head *pool, void *ptr) { #ifdef DEBUG_UAF /* This object will be released for real in order to detect a use after * free. We also force a write to the area to ensure we crash on double * free or free of a const area. */ *(uint32_t *)ptr = 0xDEADADD4; #endif /* DEBUG_UAF */ pool_free_area(ptr, pool->size + POOL_EXTRA); _HA_ATOMIC_DEC(&pool->allocated); } /* Tries to allocate an object for the pool using the system's allocator * and directly returns it. The pool's counters are updated but the object is * never cached, so this is usable with and without local or shared caches. */ void *pool_alloc_nocache(struct pool_head *pool) { void *ptr = NULL; ptr = pool_get_from_os(pool); if (!ptr) return NULL; swrate_add_scaled(&pool->needed_avg, POOL_AVG_SAMPLES, pool->used, POOL_AVG_SAMPLES/4); _HA_ATOMIC_INC(&pool->used); /* keep track of where the element was allocated from */ POOL_DEBUG_SET_MARK(pool, ptr); return ptr; } /* Release a pool item back to the OS and keeps the pool's counters up to date. * This is always defined even when pools are not enabled (their usage stats * are maintained). */ void pool_free_nocache(struct pool_head *pool, void *ptr) { _HA_ATOMIC_DEC(&pool->used); swrate_add(&pool->needed_avg, POOL_AVG_SAMPLES, pool->used); pool_put_to_os(pool, ptr); } #ifdef CONFIG_HAP_POOLS /* removes up to items from the end of the local pool cache for * pool . The shared pool is refilled with these objects in the limit * of the number of acceptable objects, and the rest will be released to the * OS. It is not a problem is is larger than the number of objects in * the local cache. The counters are automatically updated. */ static void pool_evict_last_items(struct pool_head *pool, struct pool_cache_head *ph, uint count) { struct pool_cache_item *item; struct pool_item *pi, *head = NULL; uint released = 0; uint cluster = 0; uint to_free_max; to_free_max = pool_releasable(pool); while (released < count && !LIST_ISEMPTY(&ph->list)) { item = LIST_PREV(&ph->list, typeof(item), by_pool); pool_check_pattern(ph, item, pool->size); LIST_DELETE(&item->by_pool); LIST_DELETE(&item->by_lru); if (to_free_max > released || cluster) { pi = (struct pool_item *)item; pi->next = NULL; pi->down = head; head = pi; cluster++; if (cluster >= CONFIG_HAP_POOL_CLUSTER_SIZE) { /* enough to make a cluster */ pool_put_to_shared_cache(pool, head, cluster); cluster = 0; head = NULL; } } else pool_free_nocache(pool, item); released++; } /* incomplete cluster left */ if (cluster) pool_put_to_shared_cache(pool, head, cluster); ph->count -= released; pool_cache_count -= released; pool_cache_bytes -= released * pool->size; } /* Evicts some of the oldest objects from one local cache, until its number of * objects is no more than 16+1/8 of the total number of locally cached objects * or the total size of the local cache is no more than 75% of its maximum (i.e. * we don't want a single cache to use all the cache for itself). For this, the * list is scanned in reverse. */ void pool_evict_from_local_cache(struct pool_head *pool) { struct pool_cache_head *ph = &pool->cache[tid]; while (ph->count >= CONFIG_HAP_POOL_CLUSTER_SIZE && ph->count >= 16 + pool_cache_count / 8 && pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE * 3 / 4) { pool_evict_last_items(pool, ph, CONFIG_HAP_POOL_CLUSTER_SIZE); } } /* Evicts some of the oldest objects from the local cache, pushing them to the * global pool. */ void pool_evict_from_local_caches() { struct pool_cache_item *item; struct pool_cache_head *ph; struct pool_head *pool; do { item = LIST_PREV(&th_ctx->pool_lru_head, struct pool_cache_item *, by_lru); /* note: by definition we remove oldest objects so they also are the * oldest in their own pools, thus their next is the pool's head. */ ph = LIST_NEXT(&item->by_pool, struct pool_cache_head *, list); pool = container_of(ph - tid, struct pool_head, cache); pool_evict_last_items(pool, ph, CONFIG_HAP_POOL_CLUSTER_SIZE); } while (pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE * 7 / 8); } /* Frees an object to the local cache, possibly pushing oldest objects to the * shared cache, which itself may decide to release some of them to the OS. * While it is unspecified what the object becomes past this point, it is * guaranteed to be released from the users' perpective. */ void pool_put_to_cache(struct pool_head *pool, void *ptr, const void *caller) { struct pool_cache_item *item = (struct pool_cache_item *)ptr; struct pool_cache_head *ph = &pool->cache[tid]; LIST_INSERT(&ph->list, &item->by_pool); LIST_INSERT(&th_ctx->pool_lru_head, &item->by_lru); ph->count++; pool_fill_pattern(ph, item, pool->size); pool_cache_count++; pool_cache_bytes += pool->size; if (unlikely(pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE * 3 / 4)) { if (ph->count >= 16 + pool_cache_count / 8 + CONFIG_HAP_POOL_CLUSTER_SIZE) pool_evict_from_local_cache(pool); if (pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE) pool_evict_from_local_caches(); } } #if defined(CONFIG_HAP_NO_GLOBAL_POOLS) /* legacy stuff */ void pool_flush(struct pool_head *pool) { } /* This function might ask the malloc library to trim its buffers. */ void pool_gc(struct pool_head *pool_ctx) { trim_all_pools(); } #else /* CONFIG_HAP_NO_GLOBAL_POOLS */ /* Tries to refill the local cache from the shared one for pool . * This is only used when pools are in use and shared pools are enabled. No * malloc() is attempted, and poisonning is never performed. The purpose is to * get the fastest possible refilling so that the caller can easily check if * the cache has enough objects for its use. */ void pool_refill_local_from_shared(struct pool_head *pool, struct pool_cache_head *pch) { struct pool_cache_item *item; struct pool_item *ret, *down; uint count; /* we'll need to reference the first element to figure the next one. We * must temporarily lock it so that nobody allocates then releases it, * or the dereference could fail. */ ret = _HA_ATOMIC_LOAD(&pool->free_list); do { while (unlikely(ret == POOL_BUSY)) { __ha_cpu_relax(); ret = _HA_ATOMIC_LOAD(&pool->free_list); } if (ret == NULL) return; } while (unlikely((ret = _HA_ATOMIC_XCHG(&pool->free_list, POOL_BUSY)) == POOL_BUSY)); if (unlikely(ret == NULL)) { HA_ATOMIC_STORE(&pool->free_list, NULL); return; } /* this releases the lock */ HA_ATOMIC_STORE(&pool->free_list, ret->next); /* now store the retrieved object(s) into the local cache */ count = 0; for (; ret; ret = down) { down = ret->down; /* keep track of where the element was allocated from */ POOL_DEBUG_SET_MARK(pool, ret); item = (struct pool_cache_item *)ret; LIST_INSERT(&pch->list, &item->by_pool); LIST_INSERT(&th_ctx->pool_lru_head, &item->by_lru); count++; pool_fill_pattern(pch, item, pool->size); } HA_ATOMIC_ADD(&pool->used, count); pch->count += count; pool_cache_count += count; pool_cache_bytes += count * pool->size; } /* Adds pool item cluster to the shared cache, which contains * elements. The caller is advised to first check using pool_releasable() if * it's wise to add this series of objects there. Both the pool and the item's * head must be valid. */ void pool_put_to_shared_cache(struct pool_head *pool, struct pool_item *item, uint count) { struct pool_item *free_list; _HA_ATOMIC_SUB(&pool->used, count); free_list = _HA_ATOMIC_LOAD(&pool->free_list); do { while (unlikely(free_list == POOL_BUSY)) { __ha_cpu_relax(); free_list = _HA_ATOMIC_LOAD(&pool->free_list); } _HA_ATOMIC_STORE(&item->next, free_list); __ha_barrier_atomic_store(); } while (!_HA_ATOMIC_CAS(&pool->free_list, &free_list, item)); __ha_barrier_atomic_store(); swrate_add(&pool->needed_avg, POOL_AVG_SAMPLES, pool->used); } /* * This function frees whatever can be freed in pool . */ void pool_flush(struct pool_head *pool) { struct pool_item *next, *temp, *down; if (!pool) return; /* The loop below atomically detaches the head of the free list and * replaces it with a NULL. Then the list can be released. */ next = pool->free_list; do { while (unlikely(next == POOL_BUSY)) { __ha_cpu_relax(); next = _HA_ATOMIC_LOAD(&pool->free_list); } if (next == NULL) return; } while (unlikely((next = _HA_ATOMIC_XCHG(&pool->free_list, POOL_BUSY)) == POOL_BUSY)); _HA_ATOMIC_STORE(&pool->free_list, NULL); __ha_barrier_atomic_store(); while (next) { temp = next; next = temp->next; for (; temp; temp = down) { down = temp->down; pool_put_to_os(pool, temp); } } /* here, we should have pool->allocated == pool->used */ } /* * This function frees whatever can be freed in all pools, but respecting * the minimum thresholds imposed by owners. It makes sure to be alone to * run by using thread_isolate(). is unused. */ void pool_gc(struct pool_head *pool_ctx) { struct pool_head *entry; int isolated = thread_isolated(); if (!isolated) thread_isolate(); list_for_each_entry(entry, &pools, list) { struct pool_item *temp, *down; while (entry->free_list && (int)(entry->allocated - entry->used) > (int)entry->minavail) { temp = entry->free_list; entry->free_list = temp->next; for (; temp; temp = down) { down = temp->down; pool_put_to_os(entry, temp); } } } trim_all_pools(); if (!isolated) thread_release(); } #endif /* CONFIG_HAP_NO_GLOBAL_POOLS */ #else /* CONFIG_HAP_POOLS */ /* legacy stuff */ void pool_flush(struct pool_head *pool) { } /* This function might ask the malloc library to trim its buffers. */ void pool_gc(struct pool_head *pool_ctx) { trim_all_pools(); } #endif /* CONFIG_HAP_POOLS */ /* * Returns a pointer to type taken from the pool or * dynamically allocated. In the first case, is updated to point to * the next element in the list. is a binary-OR of POOL_F_* flags. * Prefer using pool_alloc() which does the right thing without flags. */ void *__pool_alloc(struct pool_head *pool, unsigned int flags) { void *p = NULL; void *caller = NULL; #ifdef DEBUG_FAIL_ALLOC if (unlikely(!(flags & POOL_F_NO_FAIL) && mem_should_fail(pool))) return NULL; #endif if (!p) p = pool_get_from_cache(pool, caller); if (unlikely(!p)) p = pool_alloc_nocache(pool); if (likely(p)) { if (unlikely(flags & POOL_F_MUST_ZERO)) memset(p, 0, pool->size); else if (unlikely(!(flags & POOL_F_NO_POISON) && mem_poison_byte >= 0)) memset(p, mem_poison_byte, pool->size); } return p; } /* * Puts a memory area back to the corresponding pool. be valid. Using * pool_free() is preferred. */ void __pool_free(struct pool_head *pool, void *ptr) { const void *caller = NULL; /* we'll get late corruption if we refill to the wrong pool or double-free */ POOL_DEBUG_CHECK_MARK(pool, ptr); if (unlikely(mem_poison_byte >= 0)) memset(ptr, mem_poison_byte, pool->size); pool_put_to_cache(pool, ptr, caller); } #ifdef DEBUG_UAF /************* use-after-free allocator *************/ /* allocates an area of size and returns it. The semantics are similar * to those of malloc(). However the allocation is rounded up to 4kB so that a * full page is allocated. This ensures the object can be freed alone so that * future dereferences are easily detected. The returned object is always * 16-bytes aligned to avoid issues with unaligned structure objects. In case * some padding is added, the area's start address is copied at the end of the * padding to help detect underflows. */ void *pool_alloc_area_uaf(size_t size) { size_t pad = (4096 - size) & 0xFF0; void *ret; ret = mmap(NULL, (size + 4095) & -4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); if (ret != MAP_FAILED) { /* let's dereference the page before returning so that the real * allocation in the system is performed without holding the lock. */ *(int *)ret = 0; if (pad >= sizeof(void *)) *(void **)(ret + pad - sizeof(void *)) = ret + pad; ret += pad; } else { ret = NULL; } return ret; } /* frees an area of size allocated by pool_alloc_area(). The * semantics are identical to free() except that the size must absolutely match * the one passed to pool_alloc_area(). In case some padding is added, the * area's start address is compared to the one at the end of the padding, and * a segfault is triggered if they don't match, indicating an underflow. */ void pool_free_area_uaf(void *area, size_t size) { size_t pad = (4096 - size) & 0xFF0; if (pad >= sizeof(void *) && *(void **)(area - sizeof(void *)) != area) ABORT_NOW(); munmap(area - pad, (size + 4095) & -4096); } #endif /* DEBUG_UAF */ /* * This function destroys a pool by freeing it completely, unless it's still * in use. This should be called only under extreme circumstances. It always * returns NULL if the resulting pool is empty, easing the clearing of the old * pointer, otherwise it returns the pool. * . */ void *pool_destroy(struct pool_head *pool) { if (pool) { pool_flush(pool); if (pool->used) return pool; pool->users--; if (!pool->users) { LIST_DELETE(&pool->list); /* note that if used == 0, the cache is empty */ free(pool); } } return NULL; } /* This destroys all pools on exit. It is *not* thread safe. */ void pool_destroy_all() { struct pool_head *entry, *back; list_for_each_entry_safe(entry, back, &pools, list) pool_destroy(entry); } /* This function dumps memory usage information into the trash buffer. */ void dump_pools_to_trash() { struct pool_head *entry; unsigned long allocated, used; int nbpools; #ifdef CONFIG_HAP_POOLS unsigned long cached_bytes = 0; uint cached = 0; #endif allocated = used = nbpools = 0; chunk_printf(&trash, "Dumping pools usage. Use SIGQUIT to flush them.\n"); list_for_each_entry(entry, &pools, list) { #ifdef CONFIG_HAP_POOLS int i; for (cached = i = 0; i < global.nbthread; i++) cached += entry->cache[i].count; cached_bytes += cached * entry->size; #endif chunk_appendf(&trash, " - Pool %s (%u bytes) : %u allocated (%u bytes), %u used" #ifdef CONFIG_HAP_POOLS " (~%u by thread caches)" #endif ", needed_avg %u, %u failures, %u users, @%p%s\n", entry->name, entry->size, entry->allocated, entry->size * entry->allocated, entry->used, #ifdef CONFIG_HAP_POOLS cached, #endif swrate_avg(entry->needed_avg, POOL_AVG_SAMPLES), entry->failed, entry->users, entry, (entry->flags & MEM_F_SHARED) ? " [SHARED]" : ""); allocated += entry->allocated * entry->size; used += entry->used * entry->size; nbpools++; } chunk_appendf(&trash, "Total: %d pools, %lu bytes allocated, %lu used" #ifdef CONFIG_HAP_POOLS " (~%lu by thread caches)" #endif ".\n", nbpools, allocated, used #ifdef CONFIG_HAP_POOLS , cached_bytes #endif ); } /* Dump statistics on pools usage. */ void dump_pools(void) { dump_pools_to_trash(); qfprintf(stderr, "%s", trash.area); } /* This function returns the total number of failed pool allocations */ int pool_total_failures() { struct pool_head *entry; int failed = 0; list_for_each_entry(entry, &pools, list) failed += entry->failed; return failed; } /* This function returns the total amount of memory allocated in pools (in bytes) */ unsigned long pool_total_allocated() { struct pool_head *entry; unsigned long allocated = 0; list_for_each_entry(entry, &pools, list) allocated += entry->allocated * entry->size; return allocated; } /* This function returns the total amount of memory used in pools (in bytes) */ unsigned long pool_total_used() { struct pool_head *entry; unsigned long used = 0; list_for_each_entry(entry, &pools, list) used += entry->used * entry->size; return used; } /* This function dumps memory usage information onto the stream interface's * read buffer. It returns 0 as long as it does not complete, non-zero upon * completion. No state is used. */ static int cli_io_handler_dump_pools(struct appctx *appctx) { struct stream_interface *si = appctx->owner; dump_pools_to_trash(); if (ci_putchk(si_ic(si), &trash) == -1) { si_rx_room_blk(si); return 0; } return 1; } /* callback used to create early pool of size and store the * resulting pointer into . If the allocation fails, it quits with after * emitting an error message. */ void create_pool_callback(struct pool_head **ptr, char *name, unsigned int size) { *ptr = create_pool(name, size, MEM_F_SHARED); if (!*ptr) { ha_alert("Failed to allocate pool '%s' of size %u : %s. Aborting.\n", name, size, strerror(errno)); exit(1); } } /* Initializes all per-thread arrays on startup */ static void init_pools() { #ifdef CONFIG_HAP_POOLS int thr; for (thr = 0; thr < MAX_THREADS; thr++) { LIST_INIT(&ha_thread_ctx[thr].pool_lru_head); } #endif detect_allocator(); } INITCALL0(STG_PREPARE, init_pools); /* Report in build options if trim is supported */ static void pools_register_build_options(void) { if (is_trim_enabled()) { char *ptr = NULL; memprintf(&ptr, "Support for malloc_trim() is enabled."); hap_register_build_opts(ptr, 1); } } INITCALL0(STG_REGISTER, pools_register_build_options); /* register cli keywords */ static struct cli_kw_list cli_kws = {{ },{ { { "show", "pools", NULL }, "show pools : report information about the memory pools usage", NULL, cli_io_handler_dump_pools }, {{},} }}; INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws); #ifdef DEBUG_FAIL_ALLOC int mem_should_fail(const struct pool_head *pool) { int ret = 0; if (mem_fail_rate > 0 && !(global.mode & MODE_STARTING)) { if (mem_fail_rate > statistical_prng_range(100)) ret = 1; else ret = 0; } return ret; } /* config parser for global "tune.fail-alloc" */ static int mem_parse_global_fail_alloc(char **args, int section_type, struct proxy *curpx, const struct proxy *defpx, const char *file, int line, char **err) { if (too_many_args(1, args, err, NULL)) return -1; mem_fail_rate = atoi(args[1]); if (mem_fail_rate < 0 || mem_fail_rate > 100) { memprintf(err, "'%s' expects a numeric value between 0 and 100.", args[0]); return -1; } return 0; } #endif /* register global config keywords */ static struct cfg_kw_list mem_cfg_kws = {ILH, { #ifdef DEBUG_FAIL_ALLOC { CFG_GLOBAL, "tune.fail-alloc", mem_parse_global_fail_alloc }, #endif { 0, NULL, NULL } }}; INITCALL1(STG_REGISTER, cfg_register_keywords, &mem_cfg_kws); /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */