/* * SSL data transfer functions between buffers and SOCK_STREAM sockets * * Copyright (C) 2012 EXCELIANCE, Emeric Brun * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Acknowledgement: * We'd like to specially thank the Stud project authors for a very clean * and well documented code which helped us understand how the OpenSSL API * ought to be used in non-blocking mode. This is one difficult part which * is not easy to get from the OpenSSL doc, and reading the Stud code made * it much more obvious than the examples in the OpenSSL package. Keep up * the good works, guys ! * * Stud is an extremely efficient and scalable SSL/TLS proxy which combines * particularly well with haproxy. For more info about this project, visit : * https://github.com/bumptech/stud * */ #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SSL_SOCK_ST_FL_VERIFY_DONE 0x00000001 /* bits 0xFFFF0000 are reserved to store verify errors */ /* Verify errors macros */ #define SSL_SOCK_CA_ERROR_TO_ST(e) (((e > 63) ? 63 : e) << (16)) #define SSL_SOCK_CAEDEPTH_TO_ST(d) (((d > 15) ? 15 : d) << (6+16)) #define SSL_SOCK_CRTERROR_TO_ST(e) (((e > 63) ? 63 : e) << (4+6+16)) #define SSL_SOCK_ST_TO_CA_ERROR(s) ((s >> (16)) & 63) #define SSL_SOCK_ST_TO_CAEDEPTH(s) ((s >> (6+16)) & 15) #define SSL_SOCK_ST_TO_CRTERROR(s) ((s >> (4+6+16)) & 63) static int sslconns = 0; void ssl_sock_infocbk(const SSL *ssl, int where, int ret) { struct connection *conn = (struct connection *)SSL_get_app_data(ssl); (void)ret; /* shut gcc stupid warning */ if (where & SSL_CB_HANDSHAKE_START) { /* Disable renegotiation (CVE-2009-3555) */ if (conn->flags & CO_FL_CONNECTED) conn->flags |= CO_FL_ERROR; } } /* Callback is called for each certificate of the chain during a verify ok is set to 1 if preverify detect no error on current certificate. Returns 0 to break the handshake, 1 otherwise. */ int ssl_sock_verifycbk(int ok, X509_STORE_CTX *x_store) { SSL *ssl; struct connection *conn; int err, depth; ssl = X509_STORE_CTX_get_ex_data(x_store, SSL_get_ex_data_X509_STORE_CTX_idx()); conn = (struct connection *)SSL_get_app_data(ssl); conn->data_st |= SSL_SOCK_ST_FL_VERIFY_DONE; if (ok) /* no errors */ return ok; depth = X509_STORE_CTX_get_error_depth(x_store); err = X509_STORE_CTX_get_error(x_store); /* check if CA error needs to be ignored */ if (depth > 0) { if (!SSL_SOCK_ST_TO_CA_ERROR(conn->data_st)) { conn->data_st |= SSL_SOCK_CA_ERROR_TO_ST(err); conn->data_st |= SSL_SOCK_CAEDEPTH_TO_ST(depth); } if (target_client(&conn->target)->bind_conf->ca_ignerr & (1ULL << err)) return 1; return 0; } if (!SSL_SOCK_ST_TO_CRTERROR(conn->data_st)) conn->data_st |= SSL_SOCK_CRTERROR_TO_ST(err); /* check if certificate error needs to be ignored */ if (target_client(&conn->target)->bind_conf->crt_ignerr & (1ULL << err)) return 1; return 0; } #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME /* Sets the SSL ctx of to match the advertised server name. Returns a * warning when no match is found, which implies the default (first) cert * will keep being used. */ static int ssl_sock_switchctx_cbk(SSL *ssl, int *al, struct bind_conf *s) { const char *servername; const char *wildp = NULL; struct ebmb_node *node; int i; (void)al; /* shut gcc stupid warning */ servername = SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name); if (!servername) return SSL_TLSEXT_ERR_NOACK; for (i = 0; i < trashlen; i++) { if (!servername[i]) break; trash[i] = tolower(servername[i]); if (!wildp && (trash[i] == '.')) wildp = &trash[i]; } trash[i] = 0; /* lookup in full qualified names */ node = ebst_lookup(&s->sni_ctx, trash); if (!node) { if (!wildp) return SSL_TLSEXT_ERR_ALERT_WARNING; /* lookup in full wildcards names */ node = ebst_lookup(&s->sni_w_ctx, wildp); if (!node) return SSL_TLSEXT_ERR_ALERT_WARNING; } /* switch ctx */ SSL_set_SSL_CTX(ssl, container_of(node, struct sni_ctx, name)->ctx); return SSL_TLSEXT_ERR_OK; } #endif /* SSL_CTRL_SET_TLSEXT_HOSTNAME */ #ifndef OPENSSL_NO_DH /* Loads Diffie-Hellman parameter from a file. Returns 1 if loaded, else -1 if an error occured, and 0 if parameter not found. */ int ssl_sock_load_dh_params(SSL_CTX *ctx, const char *file) { int ret = -1; BIO *in; DH *dh = NULL; in = BIO_new(BIO_s_file()); if (in == NULL) goto end; if (BIO_read_filename(in, file) <= 0) goto end; dh = PEM_read_bio_DHparams(in, NULL, ctx->default_passwd_callback, ctx->default_passwd_callback_userdata); if (dh) { SSL_CTX_set_tmp_dh(ctx, dh); ret = 1; goto end; } ret = 0; /* DH params not found */ end: if (dh) DH_free(dh); if (in) BIO_free(in); return ret; } #endif /* Loads a certificate key and CA chain from a file. Returns 0 on error, -1 if * an early error happens and the caller must call SSL_CTX_free() by itelf. */ int ssl_sock_load_cert_chain_file(SSL_CTX *ctx, const char *file, struct bind_conf *s) { BIO *in; X509 *x = NULL, *ca; int i, len, err; int ret = -1; int order = 0; X509_NAME *xname; char *str; struct sni_ctx *sc; #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME STACK_OF(GENERAL_NAME) *names; #endif in = BIO_new(BIO_s_file()); if (in == NULL) goto end; if (BIO_read_filename(in, file) <= 0) goto end; x = PEM_read_bio_X509_AUX(in, NULL, ctx->default_passwd_callback, ctx->default_passwd_callback_userdata); if (x == NULL) goto end; #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME names = X509_get_ext_d2i(x, NID_subject_alt_name, NULL, NULL); if (names) { for (i = 0; i < sk_GENERAL_NAME_num(names); i++) { GENERAL_NAME *name = sk_GENERAL_NAME_value(names, i); if (name->type == GEN_DNS) { if (ASN1_STRING_to_UTF8((unsigned char **)&str, name->d.dNSName) >= 0) { if ((len = strlen(str))) { int j; if (*str != '*') { sc = malloc(sizeof(struct sni_ctx) + len + 1); for (j = 0; j < len; j++) sc->name.key[j] = tolower(str[j]); sc->name.key[len] = 0; sc->order = order++; sc->ctx = ctx; ebst_insert(&s->sni_ctx, &sc->name); } else { sc = malloc(sizeof(struct sni_ctx) + len); for (j = 1; j < len; j++) sc->name.key[j-1] = tolower(str[j]); sc->name.key[len-1] = 0; sc->order = order++; sc->ctx = ctx; ebst_insert(&s->sni_w_ctx, &sc->name); } } OPENSSL_free(str); } } } sk_GENERAL_NAME_pop_free(names, GENERAL_NAME_free); } #endif /* SSL_CTRL_SET_TLSEXT_HOSTNAME */ xname = X509_get_subject_name(x); i = -1; while ((i = X509_NAME_get_index_by_NID(xname, NID_commonName, i)) != -1) { X509_NAME_ENTRY *entry = X509_NAME_get_entry(xname, i); if (ASN1_STRING_to_UTF8((unsigned char **)&str, entry->value) >= 0) { if ((len = strlen(str))) { int j; if (*str != '*') { sc = malloc(sizeof(struct sni_ctx) + len + 1); for (j = 0; j < len; j++) sc->name.key[j] = tolower(str[j]); sc->name.key[len] = 0; sc->order = order++; sc->ctx = ctx; ebst_insert(&s->sni_ctx, &sc->name); } else { sc = malloc(sizeof(struct sni_ctx) + len); for (j = 1; j < len; j++) sc->name.key[j-1] = tolower(str[j]); sc->name.key[len-1] = 0; sc->order = order++; sc->ctx = ctx; ebst_insert(&s->sni_w_ctx, &sc->name); } } OPENSSL_free(str); } } ret = 0; /* the caller must not free the SSL_CTX argument anymore */ if (!SSL_CTX_use_certificate(ctx, x)) goto end; if (ctx->extra_certs != NULL) { sk_X509_pop_free(ctx->extra_certs, X509_free); ctx->extra_certs = NULL; } while ((ca = PEM_read_bio_X509(in, NULL, ctx->default_passwd_callback, ctx->default_passwd_callback_userdata))) { if (!SSL_CTX_add_extra_chain_cert(ctx, ca)) { X509_free(ca); goto end; } } err = ERR_get_error(); if (!err || (ERR_GET_LIB(err) == ERR_LIB_PEM && ERR_GET_REASON(err) == PEM_R_NO_START_LINE)) { /* we successfully reached the last cert in the file */ ret = 1; } ERR_clear_error(); end: if (x) X509_free(x); if (in) BIO_free(in); return ret; } static int ssl_sock_load_cert_file(const char *path, struct bind_conf *bind_conf, struct proxy *curproxy, char **err) { int ret; SSL_CTX *ctx; ctx = SSL_CTX_new(SSLv23_server_method()); if (!ctx) { memprintf(err, "%sunable to allocate SSL context for cert '%s'.\n", err && *err ? *err : "", path); return 1; } if (SSL_CTX_use_PrivateKey_file(ctx, path, SSL_FILETYPE_PEM) <= 0) { memprintf(err, "%sunable to load SSL private key from PEM file '%s'.\n", err && *err ? *err : "", path); SSL_CTX_free(ctx); return 1; } ret = ssl_sock_load_cert_chain_file(ctx, path, bind_conf); if (ret <= 0) { memprintf(err, "%sunable to load SSL certificate from PEM file '%s'.\n", err && *err ? *err : "", path); if (ret < 0) /* serious error, must do that ourselves */ SSL_CTX_free(ctx); return 1; } /* we must not free the SSL_CTX anymore below, since it's already in * the tree, so it will be discovered and cleaned in time. */ #ifndef OPENSSL_NO_DH ret = ssl_sock_load_dh_params(ctx, path); if (ret < 0) { if (err) memprintf(err, "%sunable to load DH parameters from file '%s'.\n", *err ? *err : "", path); return 1; } #endif #ifndef SSL_CTRL_SET_TLSEXT_HOSTNAME if (bind_conf->default_ctx) { memprintf(err, "%sthis version of openssl cannot load multiple SSL certificates.\n", err && *err ? *err : ""); return 1; } #endif if (!bind_conf->default_ctx) bind_conf->default_ctx = ctx; return 0; } int ssl_sock_load_cert(char *path, struct bind_conf *bind_conf, struct proxy *curproxy, char **err) { struct dirent *de; DIR *dir; struct stat buf; int pathlen = 0; char *end, *fp; int cfgerr = 0; if (!(dir = opendir(path))) return ssl_sock_load_cert_file(path, bind_conf, curproxy, err); /* strip trailing slashes, including first one */ for (end = path + strlen(path) - 1; end >= path && *end == '/'; end--) *end = 0; if (end >= path) pathlen = end + 1 - path; fp = malloc(pathlen + 1 + NAME_MAX + 1); while ((de = readdir(dir))) { snprintf(fp, pathlen + 1 + NAME_MAX + 1, "%s/%s", path, de->d_name); if (stat(fp, &buf) != 0) { memprintf(err, "%sunable to stat SSL certificate from file '%s' : %s.\n", err && *err ? *err : "", fp, strerror(errno)); cfgerr++; continue; } if (!S_ISREG(buf.st_mode)) continue; cfgerr += ssl_sock_load_cert_file(fp, bind_conf, curproxy, err); } free(fp); closedir(dir); return cfgerr; } #ifndef SSL_OP_CIPHER_SERVER_PREFERENCE /* needs OpenSSL >= 0.9.7 */ #define SSL_OP_CIPHER_SERVER_PREFERENCE 0 #endif #ifndef SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION /* needs OpenSSL >= 0.9.7 */ #define SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION 0 #endif #ifndef SSL_OP_SINGLE_ECDH_USE /* needs OpenSSL >= 0.9.8 */ #define SSL_OP_SINGLE_ECDH_USE 0 #endif #ifndef SSL_OP_NO_TICKET /* needs OpenSSL >= 0.9.8 */ #define SSL_OP_NO_TICKET 0 #endif #ifndef SSL_OP_NO_COMPRESSION /* needs OpenSSL >= 0.9.9 */ #define SSL_OP_NO_COMPRESSION 0 #endif #ifndef SSL_OP_NO_TLSv1_1 /* needs OpenSSL >= 1.0.1 */ #define SSL_OP_NO_TLSv1_1 0 #endif #ifndef SSL_OP_NO_TLSv1_2 /* needs OpenSSL >= 1.0.1 */ #define SSL_OP_NO_TLSv1_2 0 #endif #ifndef SSL_OP_SINGLE_DH_USE /* needs OpenSSL >= 0.9.6 */ #define SSL_OP_SINGLE_DH_USE 0 #endif #ifndef SSL_OP_SINGLE_ECDH_USE /* needs OpenSSL >= 1.0.0 */ #define SSL_OP_SINGLE_ECDH_USE 0 #endif #ifndef SSL_MODE_RELEASE_BUFFERS /* needs OpenSSL >= 1.0.0 */ #define SSL_MODE_RELEASE_BUFFERS 0 #endif int ssl_sock_prepare_ctx(struct bind_conf *bind_conf, SSL_CTX *ctx, struct proxy *curproxy) { int cfgerr = 0; int ssloptions = SSL_OP_ALL | /* all known workarounds for bugs */ SSL_OP_NO_SSLv2 | SSL_OP_NO_COMPRESSION | SSL_OP_SINGLE_DH_USE | SSL_OP_SINGLE_ECDH_USE | SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION; int sslmode = SSL_MODE_ENABLE_PARTIAL_WRITE | SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER | SSL_MODE_RELEASE_BUFFERS; if (bind_conf->nosslv3) ssloptions |= SSL_OP_NO_SSLv3; if (bind_conf->notlsv10) ssloptions |= SSL_OP_NO_TLSv1; if (bind_conf->notlsv11) ssloptions |= SSL_OP_NO_TLSv1_1; if (bind_conf->notlsv12) ssloptions |= SSL_OP_NO_TLSv1_2; if (bind_conf->no_tls_tickets) ssloptions |= SSL_OP_NO_TICKET; if (bind_conf->prefer_server_ciphers) ssloptions |= SSL_OP_CIPHER_SERVER_PREFERENCE; SSL_CTX_set_options(ctx, ssloptions); SSL_CTX_set_mode(ctx, sslmode); SSL_CTX_set_verify(ctx, bind_conf->verify ? bind_conf->verify : SSL_VERIFY_NONE, ssl_sock_verifycbk); if (bind_conf->verify & SSL_VERIFY_PEER) { if (bind_conf->cafile) { /* load CAfile to verify */ if (!SSL_CTX_load_verify_locations(ctx, bind_conf->cafile, NULL)) { Alert("Proxy '%s': unable to load CA file '%s' for bind '%s' at [%s:%d].\n", curproxy->id, bind_conf->cafile, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr++; } /* set CA names fo client cert request, function returns void */ SSL_CTX_set_client_CA_list(ctx, SSL_load_client_CA_file(bind_conf->cafile)); } #ifdef X509_V_FLAG_CRL_CHECK if (bind_conf->crlfile) { X509_STORE *store = SSL_CTX_get_cert_store(ctx); if (!store || !X509_STORE_load_locations(store, bind_conf->crlfile, NULL)) { Alert("Proxy '%s': unable to configure CRL file '%s' for bind '%s' at [%s:%d].\n", curproxy->id, bind_conf->cafile, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr++; } else { X509_STORE_set_flags(store, X509_V_FLAG_CRL_CHECK|X509_V_FLAG_CRL_CHECK_ALL); } } #endif } shared_context_set_cache(ctx); if (bind_conf->ciphers && !SSL_CTX_set_cipher_list(ctx, bind_conf->ciphers)) { Alert("Proxy '%s': unable to set SSL cipher list to '%s' for bind '%s' at [%s:%d].\n", curproxy->id, bind_conf->ciphers, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr++; } SSL_CTX_set_info_callback(ctx, ssl_sock_infocbk); #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME SSL_CTX_set_tlsext_servername_callback(ctx, ssl_sock_switchctx_cbk); SSL_CTX_set_tlsext_servername_arg(ctx, bind_conf); #endif #if defined(SSL_CTX_set_tmp_ecdh) && !defined(OPENSSL_NO_ECDH) if (bind_conf->ecdhe) { int i; EC_KEY *ecdh; i = OBJ_sn2nid(bind_conf->ecdhe); if (!i || ((ecdh = EC_KEY_new_by_curve_name(i)) == NULL)) { Alert("Proxy '%s': unable to set elliptic named curve to '%s' for bind '%s' at [%s:%d].\n", curproxy->id, bind_conf->ecdhe, bind_conf->arg, bind_conf->file, bind_conf->line); cfgerr++; } else { SSL_CTX_set_tmp_ecdh(ctx, ecdh); EC_KEY_free(ecdh); } } #endif return cfgerr; } /* Walks down the two trees in bind_conf and prepares all certs. The pointer may * be NULL, in which case nothing is done. Returns the number of errors * encountered. */ int ssl_sock_prepare_all_ctx(struct bind_conf *bind_conf, struct proxy *px) { struct ebmb_node *node; struct sni_ctx *sni; int err = 0; if (!bind_conf || !bind_conf->is_ssl) return 0; node = ebmb_first(&bind_conf->sni_ctx); while (node) { sni = ebmb_entry(node, struct sni_ctx, name); if (!sni->order) /* only initialize the CTX on its first occurrence */ err += ssl_sock_prepare_ctx(bind_conf, sni->ctx, px); node = ebmb_next(node); } node = ebmb_first(&bind_conf->sni_w_ctx); while (node) { sni = ebmb_entry(node, struct sni_ctx, name); if (!sni->order) /* only initialize the CTX on its first occurrence */ err += ssl_sock_prepare_ctx(bind_conf, sni->ctx, px); node = ebmb_next(node); } return err; } /* Walks down the two trees in bind_conf and frees all the certs. The pointer may * be NULL, in which case nothing is done. The default_ctx is nullified too. */ void ssl_sock_free_all_ctx(struct bind_conf *bind_conf) { struct ebmb_node *node, *back; struct sni_ctx *sni; if (!bind_conf || !bind_conf->is_ssl) return; node = ebmb_first(&bind_conf->sni_ctx); while (node) { sni = ebmb_entry(node, struct sni_ctx, name); back = ebmb_next(node); ebmb_delete(node); if (!sni->order) /* only free the CTX on its first occurrence */ SSL_CTX_free(sni->ctx); free(sni); node = back; } node = ebmb_first(&bind_conf->sni_w_ctx); while (node) { sni = ebmb_entry(node, struct sni_ctx, name); back = ebmb_next(node); ebmb_delete(node); if (!sni->order) /* only free the CTX on its first occurrence */ SSL_CTX_free(sni->ctx); free(sni); node = back; } bind_conf->default_ctx = NULL; } /* * This function is called if SSL * context is not yet allocated. The function * is designed to be called before any other data-layer operation and sets the * handshake flag on the connection. It is safe to call it multiple times. * It returns 0 on success and -1 in error case. */ static int ssl_sock_init(struct connection *conn) { /* already initialized */ if (conn->data_ctx) return 0; if (global.maxsslconn && sslconns >= global.maxsslconn) return -1; /* If it is in client mode initiate SSL session in connect state otherwise accept state */ if (target_srv(&conn->target)) { /* Alloc a new SSL session ctx */ conn->data_ctx = SSL_new(target_srv(&conn->target)->ssl_ctx.ctx); if (!conn->data_ctx) return -1; SSL_set_connect_state(conn->data_ctx); if (target_srv(&conn->target)->ssl_ctx.reused_sess) SSL_set_session(conn->data_ctx, target_srv(&conn->target)->ssl_ctx.reused_sess); /* set fd on SSL session context */ SSL_set_fd(conn->data_ctx, conn->t.sock.fd); /* leave init state and start handshake */ conn->flags |= CO_FL_SSL_WAIT_HS | CO_FL_WAIT_L6_CONN; sslconns++; return 0; } else if (target_client(&conn->target)) { /* Alloc a new SSL session ctx */ conn->data_ctx = SSL_new(target_client(&conn->target)->bind_conf->default_ctx); if (!conn->data_ctx) return -1; SSL_set_accept_state(conn->data_ctx); /* set fd on SSL session context */ SSL_set_fd(conn->data_ctx, conn->t.sock.fd); /* set connection pointer */ SSL_set_app_data(conn->data_ctx, conn); /* leave init state and start handshake */ conn->flags |= CO_FL_SSL_WAIT_HS | CO_FL_WAIT_L6_CONN; sslconns++; return 0; } /* don't know how to handle such a target */ return -1; } /* This is the callback which is used when an SSL handshake is pending. It * updates the FD status if it wants some polling before being called again. * It returns 0 if it fails in a fatal way or needs to poll to go further, * otherwise it returns non-zero and removes itself from the connection's * flags (the bit is provided in by the caller). */ int ssl_sock_handshake(struct connection *conn, unsigned int flag) { int ret; if (!conn->data_ctx) goto out_error; ret = SSL_do_handshake(conn->data_ctx); if (ret != 1) { /* handshake did not complete, let's find why */ ret = SSL_get_error(conn->data_ctx, ret); if (ret == SSL_ERROR_WANT_WRITE) { /* SSL handshake needs to write, L4 connection may not be ready */ __conn_sock_stop_recv(conn); __conn_sock_poll_send(conn); return 0; } else if (ret == SSL_ERROR_WANT_READ) { /* SSL handshake needs to read, L4 connection is ready */ if (conn->flags & CO_FL_WAIT_L4_CONN) conn->flags &= ~CO_FL_WAIT_L4_CONN; __conn_sock_stop_send(conn); __conn_sock_poll_recv(conn); return 0; } else { /* Fail on all other handshake errors */ goto out_error; } } /* Handshake succeeded */ if (target_srv(&conn->target)) { if (!SSL_session_reused(conn->data_ctx)) { /* check if session was reused, if not store current session on server for reuse */ if (target_srv(&conn->target)->ssl_ctx.reused_sess) SSL_SESSION_free(target_srv(&conn->target)->ssl_ctx.reused_sess); target_srv(&conn->target)->ssl_ctx.reused_sess = SSL_get1_session(conn->data_ctx); } } /* The connection is now established at both layers, it's time to leave */ conn->flags &= ~(flag | CO_FL_WAIT_L4_CONN | CO_FL_WAIT_L6_CONN); return 1; out_error: /* Fail on all other handshake errors */ conn->flags |= CO_FL_ERROR; conn->flags &= ~flag; return 0; } /* Receive up to bytes from connection 's socket and store them * into buffer . The caller must ensure that is always smaller * than the buffer's size. Only one call to recv() is performed, unless the * buffer wraps, in which case a second call may be performed. The connection's * flags are updated with whatever special event is detected (error, read0, * empty). The caller is responsible for taking care of those events and * avoiding the call if inappropriate. The function does not call the * connection's polling update function, so the caller is responsible for this. */ static int ssl_sock_to_buf(struct connection *conn, struct buffer *buf, int count) { int ret, done = 0; int try = count; if (!conn->data_ctx) goto out_error; if (conn->flags & CO_FL_HANDSHAKE) /* a handshake was requested */ return 0; /* compute the maximum block size we can read at once. */ if (buffer_empty(buf)) { /* let's realign the buffer to optimize I/O */ buf->p = buf->data; } else if (buf->data + buf->o < buf->p && buf->p + buf->i < buf->data + buf->size) { /* remaining space wraps at the end, with a moving limit */ if (try > buf->data + buf->size - (buf->p + buf->i)) try = buf->data + buf->size - (buf->p + buf->i); } /* read the largest possible block. For this, we perform only one call * to recv() unless the buffer wraps and we exactly fill the first hunk, * in which case we accept to do it once again. A new attempt is made on * EINTR too. */ while (try) { ret = SSL_read(conn->data_ctx, bi_end(buf), try); if (conn->flags & CO_FL_ERROR) { /* CO_FL_ERROR may be set by ssl_sock_infocbk */ break; } if (ret > 0) { buf->i += ret; done += ret; if (ret < try) break; count -= ret; try = count; } else if (ret == 0) { goto read0; } else { ret = SSL_get_error(conn->data_ctx, ret); if (ret == SSL_ERROR_WANT_WRITE) { /* handshake is running, and it needs to poll for a write event */ conn->flags |= CO_FL_SSL_WAIT_HS; __conn_sock_poll_send(conn); break; } else if (ret == SSL_ERROR_WANT_READ) { /* we need to poll for retry a read later */ __conn_data_poll_recv(conn); break; } /* otherwise it's a real error */ goto out_error; } } return done; read0: conn_sock_read0(conn); return done; out_error: conn->flags |= CO_FL_ERROR; return done; } /* Send all pending bytes from buffer to connection 's socket. * may contain MSG_MORE to make the system hold on without sending * data too fast, but this flag is ignored at the moment. * Only one call to send() is performed, unless the buffer wraps, in which case * a second call may be performed. The connection's flags are updated with * whatever special event is detected (error, empty). The caller is responsible * for taking care of those events and avoiding the call if inappropriate. The * function does not call the connection's polling update function, so the caller * is responsible for this. */ static int ssl_sock_from_buf(struct connection *conn, struct buffer *buf, int flags) { int ret, try, done; done = 0; if (!conn->data_ctx) goto out_error; if (conn->flags & CO_FL_HANDSHAKE) /* a handshake was requested */ return 0; /* send the largest possible block. For this we perform only one call * to send() unless the buffer wraps and we exactly fill the first hunk, * in which case we accept to do it once again. */ while (buf->o) { try = buf->o; /* outgoing data may wrap at the end */ if (buf->data + try > buf->p) try = buf->data + try - buf->p; ret = SSL_write(conn->data_ctx, bo_ptr(buf), try); if (conn->flags & CO_FL_ERROR) { /* CO_FL_ERROR may be set by ssl_sock_infocbk */ break; } if (ret > 0) { buf->o -= ret; done += ret; if (likely(!buffer_len(buf))) /* optimize data alignment in the buffer */ buf->p = buf->data; /* if the system buffer is full, don't insist */ if (ret < try) break; } else { ret = SSL_get_error(conn->data_ctx, ret); if (ret == SSL_ERROR_WANT_WRITE) { /* we need to poll to retry a write later */ __conn_data_poll_send(conn); break; } else if (ret == SSL_ERROR_WANT_READ) { /* handshake is running, and it needs to poll for a read event, write polling must be disabled cause we are sure we can't write anything more before handshake re-performed */ conn->flags |= CO_FL_SSL_WAIT_HS; __conn_sock_poll_recv(conn); break; } goto out_error; } } return done; out_error: conn->flags |= CO_FL_ERROR; return done; } static void ssl_sock_close(struct connection *conn) { if (conn->data_ctx) { SSL_free(conn->data_ctx); conn->data_ctx = NULL; sslconns--; } } /* This function tries to perform a clean shutdown on an SSL connection, and in * any case, flags the connection as reusable if no handshake was in progress. */ static void ssl_sock_shutw(struct connection *conn, int clean) { if (conn->flags & CO_FL_HANDSHAKE) return; /* no handshake was in progress, try a clean ssl shutdown */ if (clean) SSL_shutdown(conn->data_ctx); /* force flag on ssl to keep session in cache regardless shutdown result */ SSL_set_shutdown(conn->data_ctx, SSL_SENT_SHUTDOWN); } /***** Below are some sample fetching functions for ACL/patterns *****/ /* boolean, returns true if client cert was present */ static int smp_fetch_client_crt(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp) { if (!l4 || l4->si[0].conn.data != &ssl_sock) return 0; if (!(l4->si[0].conn.flags & CO_FL_CONNECTED)) { smp->flags |= SMP_F_MAY_CHANGE; return 0; } smp->flags = 0; smp->type = SMP_T_BOOL; smp->data.uint = SSL_SOCK_ST_FL_VERIFY_DONE & l4->si[0].conn.data_st ? 1 : 0; return 1; } /* boolean, returns true if data layer is SSL */ static int smp_fetch_is_ssl(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp) { smp->type = SMP_T_BOOL; smp->data.uint = (l4->si[0].conn.data == &ssl_sock); return 1; } /* boolean, returns true if data layer is SSL */ static int smp_fetch_has_sni(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp) { #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME smp->type = SMP_T_BOOL; smp->data.uint = (l4->si[0].conn.data == &ssl_sock) && l4->si[0].conn.data_ctx && SSL_get_servername(l4->si[0].conn.data_ctx, TLSEXT_NAMETYPE_host_name) != NULL; return 1; #else return 0; #endif } static int smp_fetch_ssl_sni(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp) { #ifdef SSL_CTRL_SET_TLSEXT_HOSTNAME smp->flags = 0; smp->type = SMP_T_CSTR; if (!l4 || !l4->si[0].conn.data_ctx || l4->si[0].conn.data != &ssl_sock) return 0; smp->data.str.str = (char *)SSL_get_servername(l4->si[0].conn.data_ctx, TLSEXT_NAMETYPE_host_name); if (!smp->data.str.str) return 0; smp->data.str.len = strlen(smp->data.str.str); return 1; #else return 0; #endif } /* integer, returns the first verify error ID in CA */ static int smp_fetch_verify_caerr(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp) { if (!l4 || l4->si[0].conn.data != &ssl_sock) return 0; if (!(l4->si[0].conn.flags & CO_FL_CONNECTED)) { smp->flags = SMP_F_MAY_CHANGE; return 0; } smp->type = SMP_T_UINT; smp->data.uint = (unsigned int)SSL_SOCK_ST_TO_CA_ERROR(l4->si[0].conn.data_st); smp->flags = 0; return 1; } /* integer, returns the depth of the first verify error in CA */ static int smp_fetch_verify_caerr_depth(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp) { if (!l4 || l4->si[0].conn.data != &ssl_sock) return 0; if (!(l4->si[0].conn.flags & CO_FL_CONNECTED)) { smp->flags = SMP_F_MAY_CHANGE; return 0; } smp->type = SMP_T_UINT; smp->data.uint = (unsigned int)SSL_SOCK_ST_TO_CAEDEPTH(l4->si[0].conn.data_st); smp->flags = 0; return 1; } /* integer, returns the depth of the first verify error in CA */ static int smp_fetch_verify_crterr(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp) { if (!l4 || l4->si[0].conn.data != &ssl_sock) return 0; if (!(l4->si[0].conn.flags & CO_FL_CONNECTED)) { smp->flags = SMP_F_MAY_CHANGE; return 0; } smp->type = SMP_T_UINT; smp->data.uint = (unsigned int)SSL_SOCK_ST_TO_CRTERROR(l4->si[0].conn.data_st); smp->flags = 0; return 1; } /* integer, returns the verify result */ static int smp_fetch_verify_result(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp) { if (!l4 || l4->si[0].conn.data != &ssl_sock) return 0; if (!(l4->si[0].conn.flags & CO_FL_CONNECTED)) { smp->flags = SMP_F_MAY_CHANGE; return 0; } if (!l4->si[0].conn.data_ctx) return 0; smp->type = SMP_T_UINT; smp->data.uint = (unsigned int)SSL_get_verify_result(l4->si[0].conn.data_ctx); smp->flags = 0; return 1; } /* parse the "cafile" bind keyword */ static int bind_parse_cafile(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { if (!*args[cur_arg + 1]) { if (err) memprintf(err, "'%s' : missing CAfile path", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } conf->cafile = strdup(args[cur_arg + 1]); return 0; } /* parse the "ciphers" bind keyword */ static int bind_parse_ciphers(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { if (!*args[cur_arg + 1]) { memprintf(err, "'%s' : missing cipher suite", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } conf->ciphers = strdup(args[cur_arg + 1]); return 0; } /* parse the "crt" bind keyword */ static int bind_parse_crt(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { if (!*args[cur_arg + 1]) { memprintf(err, "'%s' : missing certificate location", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } if (ssl_sock_load_cert(args[cur_arg + 1], conf, px, err) > 0) return ERR_ALERT | ERR_FATAL; return 0; } /* parse the "crlfile" bind keyword */ static int bind_parse_crlfile(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { #ifndef X509_V_FLAG_CRL_CHECK if (err) memprintf(err, "'%s' : library does not support CRL verify", args[cur_arg]); return ERR_ALERT | ERR_FATAL; #else if (!*args[cur_arg + 1]) { if (err) memprintf(err, "'%s' : missing CRLfile path", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } conf->crlfile = strdup(args[cur_arg + 1]); return 0; #endif } /* parse the "ecdhe" bind keyword keywords */ static int bind_parse_ecdhe(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { #if OPENSSL_VERSION_NUMBER < 0x0090800fL if (err) memprintf(err, "'%s' : library does not support elliptic curve Diffie-Hellman (too old)", args[cur_arg]); return ERR_ALERT | ERR_FATAL; #elif defined(OPENSSL_NO_ECDH) if (err) memprintf(err, "'%s' : library does not support elliptic curve Diffie-Hellman (disabled via OPENSSL_NO_ECDH)", args[cur_arg]); return ERR_ALERT | ERR_FATAL; #else if (!*args[cur_arg + 1]) { if (err) memprintf(err, "'%s' : missing named curve", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } conf->ecdhe = strdup(args[cur_arg + 1]); return 0; #endif } /* parse the "crt_ignerr" and "ca_ignerr" bind keywords */ static int bind_parse_ignore_err(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { int code; char *p = args[cur_arg + 1]; unsigned long long *ignerr = &conf->crt_ignerr; if (!*p) { if (err) memprintf(err, "'%s' : missing error IDs list", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } if (strcmp(args[cur_arg], "ca-ignore-err") == 0) ignerr = &conf->ca_ignerr; if (strcmp(p, "all") == 0) { *ignerr = ~0ULL; return 0; } while (p) { code = atoi(p); if ((code <= 0) || (code > 63)) { if (err) memprintf(err, "'%s' : ID '%d' out of range (1..63) in error IDs list '%s'", args[cur_arg], code, args[cur_arg + 1]); return ERR_ALERT | ERR_FATAL; } *ignerr |= 1ULL << code; p = strchr(p, ','); if (p) p++; } return 0; } /* parse the "no-tls-tickets" bind keyword */ static int bind_parse_no_tls_tickets(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { conf->no_tls_tickets = 1; return 0; } /* parse the "nosslv3" bind keyword */ static int bind_parse_nosslv3(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { conf->nosslv3 = 1; return 0; } /* parse the "notlsv1" bind keyword */ static int bind_parse_notlsv10(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { conf->notlsv10 = 1; return 0; } /* parse the "notlsv11" bind keyword */ static int bind_parse_notlsv11(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { conf->notlsv11 = 1; return 0; } /* parse the "notlsv12" bind keyword */ static int bind_parse_notlsv12(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { conf->notlsv12 = 1; return 0; } /* parse the "prefer-server-ciphers" bind keyword */ static int bind_parse_psc(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { conf->prefer_server_ciphers = 1; return 0; } /* parse the "ssl" bind keyword */ static int bind_parse_ssl(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { struct listener *l; conf->is_ssl = 1; list_for_each_entry(l, &conf->listeners, by_bind) l->data = &ssl_sock; return 0; } /* parse the "verify" bind keyword */ static int bind_parse_verify(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err) { if (!*args[cur_arg + 1]) { if (err) memprintf(err, "'%s' : missing verify method", args[cur_arg]); return ERR_ALERT | ERR_FATAL; } if (strcmp(args[cur_arg + 1], "none") == 0) conf->verify = SSL_VERIFY_NONE; else if (strcmp(args[cur_arg + 1], "optional") == 0) conf->verify = SSL_VERIFY_PEER; else if (strcmp(args[cur_arg + 1], "required") == 0) conf->verify = SSL_VERIFY_PEER|SSL_VERIFY_FAIL_IF_NO_PEER_CERT; else { if (err) memprintf(err, "'%s' : unknown verify method '%s', only 'none', 'optional', and 'required' are supported\n", args[cur_arg], args[cur_arg + 1]); return ERR_ALERT | ERR_FATAL; } return 0; } /* Note: must not be declared as its list will be overwritten. * Please take care of keeping this list alphabetically sorted. */ static struct sample_fetch_kw_list sample_fetch_keywords = {{ },{ { "client_crt", smp_fetch_client_crt, 0, NULL, SMP_T_BOOL, SMP_CAP_REQ|SMP_CAP_RES }, { "is_ssl", smp_fetch_is_ssl, 0, NULL, SMP_T_BOOL, SMP_CAP_REQ|SMP_CAP_RES }, { "ssl_has_sni", smp_fetch_has_sni, 0, NULL, SMP_T_BOOL, SMP_CAP_REQ|SMP_CAP_RES }, { "ssl_sni", smp_fetch_ssl_sni, 0, NULL, SMP_T_CSTR, SMP_CAP_REQ|SMP_CAP_RES }, { "ssl_verify_caerr", smp_fetch_verify_caerr, 0, NULL, SMP_T_UINT, SMP_CAP_REQ|SMP_CAP_RES }, { "ssl_verify_caerr_depth", smp_fetch_verify_caerr_depth, 0, NULL, SMP_T_UINT, SMP_CAP_REQ|SMP_CAP_RES }, { "ssl_verify_crterr", smp_fetch_verify_crterr, 0, NULL, SMP_T_UINT, SMP_CAP_REQ|SMP_CAP_RES }, { "ssl_verify_result", smp_fetch_verify_result, 0, NULL, SMP_T_UINT, SMP_CAP_REQ|SMP_CAP_RES }, { NULL, NULL, 0, 0, 0 }, }}; /* Note: must not be declared as its list will be overwritten. * Please take care of keeping this list alphabetically sorted. */ static struct acl_kw_list acl_kws = {{ },{ { "client_crt", acl_parse_int, smp_fetch_client_crt, acl_match_nothing, ACL_USE_L6REQ_PERMANENT|ACL_MAY_LOOKUP, 0 }, { "is_ssl", acl_parse_int, smp_fetch_is_ssl, acl_match_nothing, ACL_USE_L6REQ_PERMANENT|ACL_MAY_LOOKUP, 0 }, { "ssl_has_sni", acl_parse_int, smp_fetch_has_sni, acl_match_nothing, ACL_USE_L6REQ_PERMANENT, 0 }, { "ssl_sni", acl_parse_str, smp_fetch_ssl_sni, acl_match_str, ACL_USE_L6REQ_PERMANENT|ACL_MAY_LOOKUP, 0 }, { "ssl_sni_end", acl_parse_str, smp_fetch_ssl_sni, acl_match_end, ACL_USE_L6REQ_PERMANENT|ACL_MAY_LOOKUP, 0 }, { "ssl_sni_reg", acl_parse_str, smp_fetch_ssl_sni, acl_match_reg, ACL_USE_L6REQ_PERMANENT|ACL_MAY_LOOKUP, 0 }, { "ssl_verify_caerr", acl_parse_int, smp_fetch_verify_caerr, acl_match_int, ACL_USE_L6REQ_PERMANENT|ACL_MAY_LOOKUP, 0 }, { "ssl_verify_caerr_depth", acl_parse_int, smp_fetch_verify_caerr_depth, acl_match_int, ACL_USE_L6REQ_PERMANENT|ACL_MAY_LOOKUP, 0 }, { "ssl_verify_crterr", acl_parse_int, smp_fetch_verify_crterr, acl_match_int, ACL_USE_L6REQ_PERMANENT|ACL_MAY_LOOKUP, 0 }, { "ssl_verify_result", acl_parse_int, smp_fetch_verify_result, acl_match_int, ACL_USE_L6REQ_PERMANENT|ACL_MAY_LOOKUP, 0 }, { NULL, NULL, NULL, NULL }, }}; /* Note: must not be declared as its list will be overwritten. * Please take care of keeping this list alphabetically sorted, doing so helps * all code contributors. * Optional keywords are also declared with a NULL ->parse() function so that * the config parser can report an appropriate error when a known keyword was * not enabled. */ static struct bind_kw_list bind_kws = { "SSL", { }, { { "cafile", bind_parse_cafile, 1 }, /* set CAfile to process verify on client cert */ { "ca-ignore-err", bind_parse_ignore_err, 1 }, /* set error IDs to ignore on verify depth > 0 */ { "ciphers", bind_parse_ciphers, 1 }, /* set SSL cipher suite */ { "crlfile", bind_parse_crlfile, 1 }, /* set certificat revocation list file use on client cert verify */ { "crt", bind_parse_crt, 1 }, /* load SSL certificates from this location */ { "crt-ignore-err", bind_parse_ignore_err, 1 }, /* set error IDs to ingore on verify depth == 0 */ { "ecdhe", bind_parse_ecdhe, 1 }, /* defines named curve for elliptic curve Diffie-Hellman */ { "no-tls-tickets", bind_parse_no_tls_tickets, 0 }, /* disable session resumption tickets */ { "nosslv3", bind_parse_nosslv3, 0 }, /* disable SSLv3 */ { "notlsv10", bind_parse_notlsv10, 0 }, /* disable TLSv10 */ { "notlsv11", bind_parse_notlsv11, 0 }, /* disable TLSv11 */ { "notlsv12", bind_parse_notlsv12, 0 }, /* disable TLSv12 */ { "prefer-server-ciphers", bind_parse_psc, 0 }, /* prefer server ciphers */ { "ssl", bind_parse_ssl, 0 }, /* enable SSL processing */ { "verify", bind_parse_verify, 1 }, /* set SSL verify method */ { NULL, NULL, 0 }, }}; /* data-layer operations for SSL sockets */ struct data_ops ssl_sock = { .snd_buf = ssl_sock_from_buf, .rcv_buf = ssl_sock_to_buf, .rcv_pipe = NULL, .snd_pipe = NULL, .shutr = NULL, .shutw = ssl_sock_shutw, .close = ssl_sock_close, .init = ssl_sock_init, }; __attribute__((constructor)) static void __ssl_sock_init(void) { STACK_OF(SSL_COMP)* cm; SSL_library_init(); cm = SSL_COMP_get_compression_methods(); sk_SSL_COMP_zero(cm); sample_register_fetches(&sample_fetch_keywords); acl_register_keywords(&acl_kws); bind_register_keywords(&bind_kws); } /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */