/* * HTTP protocol analyzer * * Copyright 2000-2011 Willy Tarreau * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include const char HTTP_100[] = "HTTP/1.1 100 Continue\r\n\r\n"; const struct chunk http_100_chunk = { .str = (char *)&HTTP_100, .len = sizeof(HTTP_100)-1 }; /* Warning: no "connection" header is provided with the 3xx messages below */ const char *HTTP_301 = "HTTP/1.1 301 Moved Permanently\r\n" "Content-length: 0\r\n" "Location: "; /* not terminated since it will be concatenated with the URL */ const char *HTTP_302 = "HTTP/1.1 302 Found\r\n" "Cache-Control: no-cache\r\n" "Content-length: 0\r\n" "Location: "; /* not terminated since it will be concatenated with the URL */ /* same as 302 except that the browser MUST retry with the GET method */ const char *HTTP_303 = "HTTP/1.1 303 See Other\r\n" "Cache-Control: no-cache\r\n" "Content-length: 0\r\n" "Location: "; /* not terminated since it will be concatenated with the URL */ /* same as 302 except that the browser MUST retry with the same method */ const char *HTTP_307 = "HTTP/1.1 307 Temporary Redirect\r\n" "Cache-Control: no-cache\r\n" "Content-length: 0\r\n" "Location: "; /* not terminated since it will be concatenated with the URL */ /* same as 301 except that the browser MUST retry with the same method */ const char *HTTP_308 = "HTTP/1.1 308 Permanent Redirect\r\n" "Content-length: 0\r\n" "Location: "; /* not terminated since it will be concatenated with the URL */ /* Warning: this one is an sprintf() fmt string, with as its only argument */ const char *HTTP_401_fmt = "HTTP/1.0 401 Unauthorized\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "WWW-Authenticate: Basic realm=\"%s\"\r\n" "\r\n" "

401 Unauthorized

\nYou need a valid user and password to access this content.\n\n"; const char *HTTP_407_fmt = "HTTP/1.0 407 Unauthorized\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "Proxy-Authenticate: Basic realm=\"%s\"\r\n" "\r\n" "

401 Unauthorized

\nYou need a valid user and password to access this content.\n\n"; const int http_err_codes[HTTP_ERR_SIZE] = { [HTTP_ERR_200] = 200, /* used by "monitor-uri" */ [HTTP_ERR_400] = 400, [HTTP_ERR_403] = 403, [HTTP_ERR_408] = 408, [HTTP_ERR_500] = 500, [HTTP_ERR_502] = 502, [HTTP_ERR_503] = 503, [HTTP_ERR_504] = 504, }; static const char *http_err_msgs[HTTP_ERR_SIZE] = { [HTTP_ERR_200] = "HTTP/1.0 200 OK\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

200 OK

\nService ready.\n\n", [HTTP_ERR_400] = "HTTP/1.0 400 Bad request\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

400 Bad request

\nYour browser sent an invalid request.\n\n", [HTTP_ERR_403] = "HTTP/1.0 403 Forbidden\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

403 Forbidden

\nRequest forbidden by administrative rules.\n\n", [HTTP_ERR_408] = "HTTP/1.0 408 Request Time-out\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

408 Request Time-out

\nYour browser didn't send a complete request in time.\n\n", [HTTP_ERR_500] = "HTTP/1.0 500 Server Error\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

500 Server Error

\nAn internal server error occured.\n\n", [HTTP_ERR_502] = "HTTP/1.0 502 Bad Gateway\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

502 Bad Gateway

\nThe server returned an invalid or incomplete response.\n\n", [HTTP_ERR_503] = "HTTP/1.0 503 Service Unavailable\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

503 Service Unavailable

\nNo server is available to handle this request.\n\n", [HTTP_ERR_504] = "HTTP/1.0 504 Gateway Time-out\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: text/html\r\n" "\r\n" "

504 Gateway Time-out

\nThe server didn't respond in time.\n\n", }; /* status codes available for the stats admin page (strictly 4 chars length) */ const char *stat_status_codes[STAT_STATUS_SIZE] = { [STAT_STATUS_DENY] = "DENY", [STAT_STATUS_DONE] = "DONE", [STAT_STATUS_ERRP] = "ERRP", [STAT_STATUS_EXCD] = "EXCD", [STAT_STATUS_NONE] = "NONE", [STAT_STATUS_PART] = "PART", [STAT_STATUS_UNKN] = "UNKN", }; /* We must put the messages here since GCC cannot initialize consts depending * on strlen(). */ struct chunk http_err_chunks[HTTP_ERR_SIZE]; #define FD_SETS_ARE_BITFIELDS #ifdef FD_SETS_ARE_BITFIELDS /* * This map is used with all the FD_* macros to check whether a particular bit * is set or not. Each bit represents an ACSII code. FD_SET() sets those bytes * which should be encoded. When FD_ISSET() returns non-zero, it means that the * byte should be encoded. Be careful to always pass bytes from 0 to 255 * exclusively to the macros. */ fd_set hdr_encode_map[(sizeof(fd_set) > (256/8)) ? 1 : ((256/8) / sizeof(fd_set))]; fd_set url_encode_map[(sizeof(fd_set) > (256/8)) ? 1 : ((256/8) / sizeof(fd_set))]; #else #error "Check if your OS uses bitfields for fd_sets" #endif void init_proto_http() { int i; char *tmp; int msg; for (msg = 0; msg < HTTP_ERR_SIZE; msg++) { if (!http_err_msgs[msg]) { Alert("Internal error: no message defined for HTTP return code %d. Aborting.\n", msg); abort(); } http_err_chunks[msg].str = (char *)http_err_msgs[msg]; http_err_chunks[msg].len = strlen(http_err_msgs[msg]); } /* initialize the log header encoding map : '{|}"#' should be encoded with * '#' as prefix, as well as non-printable characters ( <32 or >= 127 ). * URL encoding only requires '"', '#' to be encoded as well as non- * printable characters above. */ memset(hdr_encode_map, 0, sizeof(hdr_encode_map)); memset(url_encode_map, 0, sizeof(url_encode_map)); for (i = 0; i < 32; i++) { FD_SET(i, hdr_encode_map); FD_SET(i, url_encode_map); } for (i = 127; i < 256; i++) { FD_SET(i, hdr_encode_map); FD_SET(i, url_encode_map); } tmp = "\"#{|}"; while (*tmp) { FD_SET(*tmp, hdr_encode_map); tmp++; } tmp = "\"#"; while (*tmp) { FD_SET(*tmp, url_encode_map); tmp++; } /* memory allocations */ pool2_requri = create_pool("requri", REQURI_LEN, MEM_F_SHARED); pool2_uniqueid = create_pool("uniqueid", UNIQUEID_LEN, MEM_F_SHARED); } /* * We have 26 list of methods (1 per first letter), each of which can have * up to 3 entries (2 valid, 1 null). */ struct http_method_desc { http_meth_t meth; int len; const char text[8]; }; const struct http_method_desc http_methods[26][3] = { ['C' - 'A'] = { [0] = { .meth = HTTP_METH_CONNECT , .len=7, .text="CONNECT" }, }, ['D' - 'A'] = { [0] = { .meth = HTTP_METH_DELETE , .len=6, .text="DELETE" }, }, ['G' - 'A'] = { [0] = { .meth = HTTP_METH_GET , .len=3, .text="GET" }, }, ['H' - 'A'] = { [0] = { .meth = HTTP_METH_HEAD , .len=4, .text="HEAD" }, }, ['P' - 'A'] = { [0] = { .meth = HTTP_METH_POST , .len=4, .text="POST" }, [1] = { .meth = HTTP_METH_PUT , .len=3, .text="PUT" }, }, ['T' - 'A'] = { [0] = { .meth = HTTP_METH_TRACE , .len=5, .text="TRACE" }, }, /* rest is empty like this : * [1] = { .meth = HTTP_METH_NONE , .len=0, .text="" }, */ }; /* It is about twice as fast on recent architectures to lookup a byte in a * table than to perform a boolean AND or OR between two tests. Refer to * RFC2616 for those chars. */ const char http_is_spht[256] = { [' '] = 1, ['\t'] = 1, }; const char http_is_crlf[256] = { ['\r'] = 1, ['\n'] = 1, }; const char http_is_lws[256] = { [' '] = 1, ['\t'] = 1, ['\r'] = 1, ['\n'] = 1, }; const char http_is_sep[256] = { ['('] = 1, [')'] = 1, ['<'] = 1, ['>'] = 1, ['@'] = 1, [','] = 1, [';'] = 1, [':'] = 1, ['"'] = 1, ['/'] = 1, ['['] = 1, [']'] = 1, ['{'] = 1, ['}'] = 1, ['?'] = 1, ['='] = 1, [' '] = 1, ['\t'] = 1, ['\\'] = 1, }; const char http_is_ctl[256] = { [0 ... 31] = 1, [127] = 1, }; /* * A token is any ASCII char that is neither a separator nor a CTL char. * Do not overwrite values in assignment since gcc-2.95 will not handle * them correctly. Instead, define every non-CTL char's status. */ const char http_is_token[256] = { [' '] = 0, ['!'] = 1, ['"'] = 0, ['#'] = 1, ['$'] = 1, ['%'] = 1, ['&'] = 1, ['\''] = 1, ['('] = 0, [')'] = 0, ['*'] = 1, ['+'] = 1, [','] = 0, ['-'] = 1, ['.'] = 1, ['/'] = 0, ['0'] = 1, ['1'] = 1, ['2'] = 1, ['3'] = 1, ['4'] = 1, ['5'] = 1, ['6'] = 1, ['7'] = 1, ['8'] = 1, ['9'] = 1, [':'] = 0, [';'] = 0, ['<'] = 0, ['='] = 0, ['>'] = 0, ['?'] = 0, ['@'] = 0, ['A'] = 1, ['B'] = 1, ['C'] = 1, ['D'] = 1, ['E'] = 1, ['F'] = 1, ['G'] = 1, ['H'] = 1, ['I'] = 1, ['J'] = 1, ['K'] = 1, ['L'] = 1, ['M'] = 1, ['N'] = 1, ['O'] = 1, ['P'] = 1, ['Q'] = 1, ['R'] = 1, ['S'] = 1, ['T'] = 1, ['U'] = 1, ['V'] = 1, ['W'] = 1, ['X'] = 1, ['Y'] = 1, ['Z'] = 1, ['['] = 0, ['\\'] = 0, [']'] = 0, ['^'] = 1, ['_'] = 1, ['`'] = 1, ['a'] = 1, ['b'] = 1, ['c'] = 1, ['d'] = 1, ['e'] = 1, ['f'] = 1, ['g'] = 1, ['h'] = 1, ['i'] = 1, ['j'] = 1, ['k'] = 1, ['l'] = 1, ['m'] = 1, ['n'] = 1, ['o'] = 1, ['p'] = 1, ['q'] = 1, ['r'] = 1, ['s'] = 1, ['t'] = 1, ['u'] = 1, ['v'] = 1, ['w'] = 1, ['x'] = 1, ['y'] = 1, ['z'] = 1, ['{'] = 0, ['|'] = 1, ['}'] = 0, ['~'] = 1, }; /* * An http ver_token is any ASCII which can be found in an HTTP version, * which includes 'H', 'T', 'P', '/', '.' and any digit. */ const char http_is_ver_token[256] = { ['.'] = 1, ['/'] = 1, ['0'] = 1, ['1'] = 1, ['2'] = 1, ['3'] = 1, ['4'] = 1, ['5'] = 1, ['6'] = 1, ['7'] = 1, ['8'] = 1, ['9'] = 1, ['H'] = 1, ['P'] = 1, ['T'] = 1, }; /* * Silent debug that outputs only in strace, using fd #-1. Trash is modified. */ #if defined(DEBUG_FSM) static void http_silent_debug(int line, struct session *s) { chunk_printf(&trash, "[%04d] req: p=%d(%d) s=%d bf=%08x an=%08x data=%p size=%d l=%d w=%p r=%p o=%p sm=%d fw=%ld tf=%08x\n", line, s->si[0].state, s->si[0].fd, s->txn.req.msg_state, s->req->flags, s->req->analysers, s->req->buf->data, s->req->buf->size, s->req->l, s->req->w, s->req->r, s->req->buf->p, s->req->buf->o, s->req->to_forward, s->txn.flags); write(-1, trash.str, trash.len); chunk_printf(&trash, " %04d rep: p=%d(%d) s=%d bf=%08x an=%08x data=%p size=%d l=%d w=%p r=%p o=%p sm=%d fw=%ld\n", line, s->si[1].state, s->si[1].fd, s->txn.rsp.msg_state, s->rep->flags, s->rep->analysers, s->rep->buf->data, s->rep->buf->size, s->rep->l, s->rep->w, s->rep->r, s->rep->buf->p, s->rep->buf->o, s->rep->to_forward); write(-1, trash.str, trash.len); } #else #define http_silent_debug(l,s) do { } while (0) #endif /* * Adds a header and its CRLF at the tail of the message's buffer, just before * the last CRLF. Text length is measured first, so it cannot be NULL. * The header is also automatically added to the index , and the end * of headers is automatically adjusted. The number of bytes added is returned * on success, otherwise <0 is returned indicating an error. */ int http_header_add_tail(struct http_msg *msg, struct hdr_idx *hdr_idx, const char *text) { int bytes, len; len = strlen(text); bytes = buffer_insert_line2(msg->chn->buf, msg->chn->buf->p + msg->eoh, text, len); if (!bytes) return -1; http_msg_move_end(msg, bytes); return hdr_idx_add(len, 1, hdr_idx, hdr_idx->tail); } /* * Adds a header and its CRLF at the tail of the message's buffer, just before * the last CRLF. bytes are copied, not counting the CRLF. If is NULL, then * the buffer is only opened and the space reserved, but nothing is copied. * The header is also automatically added to the index , and the end * of headers is automatically adjusted. The number of bytes added is returned * on success, otherwise <0 is returned indicating an error. */ int http_header_add_tail2(struct http_msg *msg, struct hdr_idx *hdr_idx, const char *text, int len) { int bytes; bytes = buffer_insert_line2(msg->chn->buf, msg->chn->buf->p + msg->eoh, text, len); if (!bytes) return -1; http_msg_move_end(msg, bytes); return hdr_idx_add(len, 1, hdr_idx, hdr_idx->tail); } /* * Checks if is exactly for chars, and ends with a colon. * If so, returns the position of the first non-space character relative to * , or - if not found before. If no value is found, it tries * to return a pointer to the place after the first space. Returns 0 if the * header name does not match. Checks are case-insensitive. */ int http_header_match2(const char *hdr, const char *end, const char *name, int len) { const char *val; if (hdr + len >= end) return 0; if (hdr[len] != ':') return 0; if (strncasecmp(hdr, name, len) != 0) return 0; val = hdr + len + 1; while (val < end && HTTP_IS_SPHT(*val)) val++; if ((val >= end) && (len + 2 <= end - hdr)) return len + 2; /* we may replace starting from second space */ return val - hdr; } /* Find the end of the header value contained between and . See RFC2616, * par 2.2 for more information. Note that it requires a valid header to return * a valid result. This works for headers defined as comma-separated lists. */ char *find_hdr_value_end(char *s, const char *e) { int quoted, qdpair; quoted = qdpair = 0; for (; s < e; s++) { if (qdpair) qdpair = 0; else if (quoted) { if (*s == '\\') qdpair = 1; else if (*s == '"') quoted = 0; } else if (*s == '"') quoted = 1; else if (*s == ',') return s; } return s; } /* Find the first or next occurrence of header in message buffer * using headers index , and return it in the structure. This * structure holds everything necessary to use the header and find next * occurrence. If its member is 0, the header is searched from the * beginning. Otherwise, the next occurrence is returned. The function returns * 1 when it finds a value, and 0 when there is no more. It is designed to work * with headers defined as comma-separated lists. As a special case, if ctx->val * is NULL when searching for a new values of a header, the current header is * rescanned. This allows rescanning after a header deletion. */ int http_find_header2(const char *name, int len, char *sol, struct hdr_idx *idx, struct hdr_ctx *ctx) { char *eol, *sov; int cur_idx, old_idx; cur_idx = ctx->idx; if (cur_idx) { /* We have previously returned a value, let's search * another one on the same line. */ sol = ctx->line; ctx->del = ctx->val + ctx->vlen + ctx->tws; sov = sol + ctx->del; eol = sol + idx->v[cur_idx].len; if (sov >= eol) /* no more values in this header */ goto next_hdr; /* values remaining for this header, skip the comma but save it * for later use (eg: for header deletion). */ sov++; while (sov < eol && http_is_lws[(unsigned char)*sov]) sov++; goto return_hdr; } /* first request for this header */ sol += hdr_idx_first_pos(idx); old_idx = 0; cur_idx = hdr_idx_first_idx(idx); while (cur_idx) { eol = sol + idx->v[cur_idx].len; if (len == 0) { /* No argument was passed, we want any header. * To achieve this, we simply build a fake request. */ while (sol + len < eol && sol[len] != ':') len++; name = sol; } if ((len < eol - sol) && (sol[len] == ':') && (strncasecmp(sol, name, len) == 0)) { ctx->del = len; sov = sol + len + 1; while (sov < eol && http_is_lws[(unsigned char)*sov]) sov++; ctx->line = sol; ctx->prev = old_idx; return_hdr: ctx->idx = cur_idx; ctx->val = sov - sol; eol = find_hdr_value_end(sov, eol); ctx->tws = 0; while (eol > sov && http_is_lws[(unsigned char)*(eol - 1)]) { eol--; ctx->tws++; } ctx->vlen = eol - sov; return 1; } next_hdr: sol = eol + idx->v[cur_idx].cr + 1; old_idx = cur_idx; cur_idx = idx->v[cur_idx].next; } return 0; } int http_find_header(const char *name, char *sol, struct hdr_idx *idx, struct hdr_ctx *ctx) { return http_find_header2(name, strlen(name), sol, idx, ctx); } /* Remove one value of a header. This only works on a returned by one of * the http_find_header functions. The value is removed, as well as surrounding * commas if any. If the removed value was alone, the whole header is removed. * The ctx is always updated accordingly, as well as the buffer and HTTP * message . The new index is returned. If it is zero, it means there is * no more header, so any processing may stop. The ctx is always left in a form * that can be handled by http_find_header2() to find next occurrence. */ int http_remove_header2(struct http_msg *msg, struct hdr_idx *idx, struct hdr_ctx *ctx) { int cur_idx = ctx->idx; char *sol = ctx->line; struct hdr_idx_elem *hdr; int delta, skip_comma; if (!cur_idx) return 0; hdr = &idx->v[cur_idx]; if (sol[ctx->del] == ':' && ctx->val + ctx->vlen + ctx->tws == hdr->len) { /* This was the only value of the header, we must now remove it entirely. */ delta = buffer_replace2(msg->chn->buf, sol, sol + hdr->len + hdr->cr + 1, NULL, 0); http_msg_move_end(msg, delta); idx->used--; hdr->len = 0; /* unused entry */ idx->v[ctx->prev].next = idx->v[ctx->idx].next; if (idx->tail == ctx->idx) idx->tail = ctx->prev; ctx->idx = ctx->prev; /* walk back to the end of previous header */ ctx->line -= idx->v[ctx->idx].len + idx->v[cur_idx].cr + 1; ctx->val = idx->v[ctx->idx].len; /* point to end of previous header */ ctx->tws = ctx->vlen = 0; return ctx->idx; } /* This was not the only value of this header. We have to remove between * ctx->del+1 and ctx->val+ctx->vlen+ctx->tws+1 included. If it is the * last entry of the list, we remove the last separator. */ skip_comma = (ctx->val + ctx->vlen + ctx->tws == hdr->len) ? 0 : 1; delta = buffer_replace2(msg->chn->buf, sol + ctx->del + skip_comma, sol + ctx->val + ctx->vlen + ctx->tws + skip_comma, NULL, 0); hdr->len += delta; http_msg_move_end(msg, delta); ctx->val = ctx->del; ctx->tws = ctx->vlen = 0; return ctx->idx; } /* This function handles a server error at the stream interface level. The * stream interface is assumed to be already in a closed state. An optional * message is copied into the input buffer, and an HTTP status code stored. * The error flags are set to the values in arguments. Any pending request * in this buffer will be lost. */ static void http_server_error(struct session *t, struct stream_interface *si, int err, int finst, int status, const struct chunk *msg) { channel_auto_read(si->ob); channel_abort(si->ob); channel_auto_close(si->ob); channel_erase(si->ob); channel_auto_close(si->ib); channel_auto_read(si->ib); if (status > 0 && msg) { t->txn.status = status; bo_inject(si->ib, msg->str, msg->len); } if (!(t->flags & SN_ERR_MASK)) t->flags |= err; if (!(t->flags & SN_FINST_MASK)) t->flags |= finst; } /* This function returns the appropriate error location for the given session * and message. */ struct chunk *http_error_message(struct session *s, int msgnum) { if (s->be->errmsg[msgnum].str) return &s->be->errmsg[msgnum]; else if (s->fe->errmsg[msgnum].str) return &s->fe->errmsg[msgnum]; else return &http_err_chunks[msgnum]; } /* * returns HTTP_METH_NONE if there is nothing valid to read (empty or non-text * string), HTTP_METH_OTHER for unknown methods, or the identified method. */ static http_meth_t find_http_meth(const char *str, const int len) { unsigned char m; const struct http_method_desc *h; m = ((unsigned)*str - 'A'); if (m < 26) { for (h = http_methods[m]; h->len > 0; h++) { if (unlikely(h->len != len)) continue; if (likely(memcmp(str, h->text, h->len) == 0)) return h->meth; }; return HTTP_METH_OTHER; } return HTTP_METH_NONE; } /* Parse the URI from the given transaction (which is assumed to be in request * phase) and look for the "/" beginning the PATH. If not found, return NULL. * It is returned otherwise. */ static char * http_get_path(struct http_txn *txn) { char *ptr, *end; ptr = txn->req.chn->buf->p + txn->req.sl.rq.u; end = ptr + txn->req.sl.rq.u_l; if (ptr >= end) return NULL; /* RFC2616, par. 5.1.2 : * Request-URI = "*" | absuri | abspath | authority */ if (*ptr == '*') return NULL; if (isalpha((unsigned char)*ptr)) { /* this is a scheme as described by RFC3986, par. 3.1 */ ptr++; while (ptr < end && (isalnum((unsigned char)*ptr) || *ptr == '+' || *ptr == '-' || *ptr == '.')) ptr++; /* skip '://' */ if (ptr == end || *ptr++ != ':') return NULL; if (ptr == end || *ptr++ != '/') return NULL; if (ptr == end || *ptr++ != '/') return NULL; } /* skip [user[:passwd]@]host[:[port]] */ while (ptr < end && *ptr != '/') ptr++; if (ptr == end) return NULL; /* OK, we got the '/' ! */ return ptr; } /* Returns a 302 for a redirectable request that reaches a server working in * in redirect mode. This may only be called just after the stream interface * has moved to SI_ST_ASS. Unprocessable requests are left unchanged and will * follow normal proxy processing. NOTE: this function is designed to support * being called once data are scheduled for forwarding. */ void http_perform_server_redirect(struct session *s, struct stream_interface *si) { struct http_txn *txn; struct server *srv; char *path; int len, rewind; /* 1: create the response header */ trash.len = strlen(HTTP_302); memcpy(trash.str, HTTP_302, trash.len); srv = objt_server(s->target); /* 2: add the server's prefix */ if (trash.len + srv->rdr_len > trash.size) return; /* special prefix "/" means don't change URL */ if (srv->rdr_len != 1 || *srv->rdr_pfx != '/') { memcpy(trash.str + trash.len, srv->rdr_pfx, srv->rdr_len); trash.len += srv->rdr_len; } /* 3: add the request URI. Since it was already forwarded, we need * to temporarily rewind the buffer. */ txn = &s->txn; b_rew(s->req->buf, rewind = s->req->buf->o); path = http_get_path(txn); len = buffer_count(s->req->buf, path, b_ptr(s->req->buf, txn->req.sl.rq.u + txn->req.sl.rq.u_l)); b_adv(s->req->buf, rewind); if (!path) return; if (trash.len + len > trash.size - 4) /* 4 for CRLF-CRLF */ return; memcpy(trash.str + trash.len, path, len); trash.len += len; if (unlikely(txn->flags & TX_USE_PX_CONN)) { memcpy(trash.str + trash.len, "\r\nProxy-Connection: close\r\n\r\n", 29); trash.len += 29; } else { memcpy(trash.str + trash.len, "\r\nConnection: close\r\n\r\n", 23); trash.len += 23; } /* prepare to return without error. */ si_shutr(si); si_shutw(si); si->err_type = SI_ET_NONE; si->err_loc = NULL; si->state = SI_ST_CLO; /* send the message */ http_server_error(s, si, SN_ERR_PRXCOND, SN_FINST_C, 302, &trash); /* FIXME: we should increase a counter of redirects per server and per backend. */ srv_inc_sess_ctr(srv); } /* Return the error message corresponding to si->err_type. It is assumed * that the server side is closed. Note that err_type is actually a * bitmask, where almost only aborts may be cumulated with other * values. We consider that aborted operations are more important * than timeouts or errors due to the fact that nobody else in the * logs might explain incomplete retries. All others should avoid * being cumulated. It should normally not be possible to have multiple * aborts at once, but just in case, the first one in sequence is reported. */ void http_return_srv_error(struct session *s, struct stream_interface *si) { int err_type = si->err_type; if (err_type & SI_ET_QUEUE_ABRT) http_server_error(s, si, SN_ERR_CLICL, SN_FINST_Q, 503, http_error_message(s, HTTP_ERR_503)); else if (err_type & SI_ET_CONN_ABRT) http_server_error(s, si, SN_ERR_CLICL, SN_FINST_C, 503, http_error_message(s, HTTP_ERR_503)); else if (err_type & SI_ET_QUEUE_TO) http_server_error(s, si, SN_ERR_SRVTO, SN_FINST_Q, 503, http_error_message(s, HTTP_ERR_503)); else if (err_type & SI_ET_QUEUE_ERR) http_server_error(s, si, SN_ERR_SRVCL, SN_FINST_Q, 503, http_error_message(s, HTTP_ERR_503)); else if (err_type & SI_ET_CONN_TO) http_server_error(s, si, SN_ERR_SRVTO, SN_FINST_C, 503, http_error_message(s, HTTP_ERR_503)); else if (err_type & SI_ET_CONN_ERR) http_server_error(s, si, SN_ERR_SRVCL, SN_FINST_C, 503, http_error_message(s, HTTP_ERR_503)); else /* SI_ET_CONN_OTHER and others */ http_server_error(s, si, SN_ERR_INTERNAL, SN_FINST_C, 500, http_error_message(s, HTTP_ERR_500)); } extern const char sess_term_cond[8]; extern const char sess_fin_state[8]; extern const char *monthname[12]; struct pool_head *pool2_requri; struct pool_head *pool2_capture = NULL; struct pool_head *pool2_uniqueid; /* * Capture headers from message starting at according to header list * , and fill the structure appropriately. */ void capture_headers(char *som, struct hdr_idx *idx, char **cap, struct cap_hdr *cap_hdr) { char *eol, *sol, *col, *sov; int cur_idx; struct cap_hdr *h; int len; sol = som + hdr_idx_first_pos(idx); cur_idx = hdr_idx_first_idx(idx); while (cur_idx) { eol = sol + idx->v[cur_idx].len; col = sol; while (col < eol && *col != ':') col++; sov = col + 1; while (sov < eol && http_is_lws[(unsigned char)*sov]) sov++; for (h = cap_hdr; h; h = h->next) { if ((h->namelen == col - sol) && (strncasecmp(sol, h->name, h->namelen) == 0)) { if (cap[h->index] == NULL) cap[h->index] = pool_alloc2(h->pool); if (cap[h->index] == NULL) { Alert("HTTP capture : out of memory.\n"); continue; } len = eol - sov; if (len > h->len) len = h->len; memcpy(cap[h->index], sov, len); cap[h->index][len]=0; } } sol = eol + idx->v[cur_idx].cr + 1; cur_idx = idx->v[cur_idx].next; } } /* either we find an LF at or we jump to . */ #define EXPECT_LF_HERE(ptr, bad) do { if (unlikely(*(ptr) != '\n')) goto bad; } while (0) /* plays with variables , and . Jumps to if OK, * otherwise to with set to . */ #define EAT_AND_JUMP_OR_RETURN(good, st) do { \ ptr++; \ if (likely(ptr < end)) \ goto good; \ else { \ state = (st); \ goto http_msg_ood; \ } \ } while (0) /* * This function parses a status line between and , starting with * parser state . Only states HTTP_MSG_RPVER, HTTP_MSG_RPVER_SP, * HTTP_MSG_RPCODE, HTTP_MSG_RPCODE_SP and HTTP_MSG_RPREASON are handled. Others * will give undefined results. * Note that it is upon the caller's responsibility to ensure that ptr < end, * and that msg->sol points to the beginning of the response. * If a complete line is found (which implies that at least one CR or LF is * found before , the updated is returned, otherwise NULL is * returned indicating an incomplete line (which does not mean that parts have * not been updated). In the incomplete case, if or are * non-NULL, they are fed with the new and values to be passed * upon next call. * * This function was intentionally designed to be called from * http_msg_analyzer() with the lowest overhead. It should integrate perfectly * within its state machine and use the same macros, hence the need for same * labels and variable names. Note that msg->sol is left unchanged. */ const char *http_parse_stsline(struct http_msg *msg, unsigned int state, const char *ptr, const char *end, unsigned int *ret_ptr, unsigned int *ret_state) { const char *msg_start = msg->chn->buf->p; switch (state) { case HTTP_MSG_RPVER: http_msg_rpver: if (likely(HTTP_IS_VER_TOKEN(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rpver, HTTP_MSG_RPVER); if (likely(HTTP_IS_SPHT(*ptr))) { msg->sl.st.v_l = ptr - msg_start; EAT_AND_JUMP_OR_RETURN(http_msg_rpver_sp, HTTP_MSG_RPVER_SP); } state = HTTP_MSG_ERROR; break; case HTTP_MSG_RPVER_SP: http_msg_rpver_sp: if (likely(!HTTP_IS_LWS(*ptr))) { msg->sl.st.c = ptr - msg_start; goto http_msg_rpcode; } if (likely(HTTP_IS_SPHT(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rpver_sp, HTTP_MSG_RPVER_SP); /* so it's a CR/LF, this is invalid */ state = HTTP_MSG_ERROR; break; case HTTP_MSG_RPCODE: http_msg_rpcode: if (likely(!HTTP_IS_LWS(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rpcode, HTTP_MSG_RPCODE); if (likely(HTTP_IS_SPHT(*ptr))) { msg->sl.st.c_l = ptr - msg_start - msg->sl.st.c; EAT_AND_JUMP_OR_RETURN(http_msg_rpcode_sp, HTTP_MSG_RPCODE_SP); } /* so it's a CR/LF, so there is no reason phrase */ msg->sl.st.c_l = ptr - msg_start - msg->sl.st.c; http_msg_rsp_reason: /* FIXME: should we support HTTP responses without any reason phrase ? */ msg->sl.st.r = ptr - msg_start; msg->sl.st.r_l = 0; goto http_msg_rpline_eol; case HTTP_MSG_RPCODE_SP: http_msg_rpcode_sp: if (likely(!HTTP_IS_LWS(*ptr))) { msg->sl.st.r = ptr - msg_start; goto http_msg_rpreason; } if (likely(HTTP_IS_SPHT(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rpcode_sp, HTTP_MSG_RPCODE_SP); /* so it's a CR/LF, so there is no reason phrase */ goto http_msg_rsp_reason; case HTTP_MSG_RPREASON: http_msg_rpreason: if (likely(!HTTP_IS_CRLF(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rpreason, HTTP_MSG_RPREASON); msg->sl.st.r_l = ptr - msg_start - msg->sl.st.r; http_msg_rpline_eol: /* We have seen the end of line. Note that we do not * necessarily have the \n yet, but at least we know that we * have EITHER \r OR \n, otherwise the response would not be * complete. We can then record the response length and return * to the caller which will be able to register it. */ msg->sl.st.l = ptr - msg_start - msg->sol; return ptr; #ifdef DEBUG_FULL default: fprintf(stderr, "FIXME !!!! impossible state at %s:%d = %d\n", __FILE__, __LINE__, state); exit(1); #endif } http_msg_ood: /* out of valid data */ if (ret_state) *ret_state = state; if (ret_ptr) *ret_ptr = ptr - msg_start; return NULL; } /* * This function parses a request line between and , starting with * parser state . Only states HTTP_MSG_RQMETH, HTTP_MSG_RQMETH_SP, * HTTP_MSG_RQURI, HTTP_MSG_RQURI_SP and HTTP_MSG_RQVER are handled. Others * will give undefined results. * Note that it is upon the caller's responsibility to ensure that ptr < end, * and that msg->sol points to the beginning of the request. * If a complete line is found (which implies that at least one CR or LF is * found before , the updated is returned, otherwise NULL is * returned indicating an incomplete line (which does not mean that parts have * not been updated). In the incomplete case, if or are * non-NULL, they are fed with the new and values to be passed * upon next call. * * This function was intentionally designed to be called from * http_msg_analyzer() with the lowest overhead. It should integrate perfectly * within its state machine and use the same macros, hence the need for same * labels and variable names. Note that msg->sol is left unchanged. */ const char *http_parse_reqline(struct http_msg *msg, unsigned int state, const char *ptr, const char *end, unsigned int *ret_ptr, unsigned int *ret_state) { const char *msg_start = msg->chn->buf->p; switch (state) { case HTTP_MSG_RQMETH: http_msg_rqmeth: if (likely(HTTP_IS_TOKEN(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rqmeth, HTTP_MSG_RQMETH); if (likely(HTTP_IS_SPHT(*ptr))) { msg->sl.rq.m_l = ptr - msg_start; EAT_AND_JUMP_OR_RETURN(http_msg_rqmeth_sp, HTTP_MSG_RQMETH_SP); } if (likely(HTTP_IS_CRLF(*ptr))) { /* HTTP 0.9 request */ msg->sl.rq.m_l = ptr - msg_start; http_msg_req09_uri: msg->sl.rq.u = ptr - msg_start; http_msg_req09_uri_e: msg->sl.rq.u_l = ptr - msg_start - msg->sl.rq.u; http_msg_req09_ver: msg->sl.rq.v = ptr - msg_start; msg->sl.rq.v_l = 0; goto http_msg_rqline_eol; } state = HTTP_MSG_ERROR; break; case HTTP_MSG_RQMETH_SP: http_msg_rqmeth_sp: if (likely(!HTTP_IS_LWS(*ptr))) { msg->sl.rq.u = ptr - msg_start; goto http_msg_rquri; } if (likely(HTTP_IS_SPHT(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rqmeth_sp, HTTP_MSG_RQMETH_SP); /* so it's a CR/LF, meaning an HTTP 0.9 request */ goto http_msg_req09_uri; case HTTP_MSG_RQURI: http_msg_rquri: if (likely((unsigned char)(*ptr - 33) <= 93)) /* 33 to 126 included */ EAT_AND_JUMP_OR_RETURN(http_msg_rquri, HTTP_MSG_RQURI); if (likely(HTTP_IS_SPHT(*ptr))) { msg->sl.rq.u_l = ptr - msg_start - msg->sl.rq.u; EAT_AND_JUMP_OR_RETURN(http_msg_rquri_sp, HTTP_MSG_RQURI_SP); } if (likely((unsigned char)*ptr >= 128)) { /* non-ASCII chars are forbidden unless option * accept-invalid-http-request is enabled in the frontend. * In any case, we capture the faulty char. */ if (msg->err_pos < -1) goto invalid_char; if (msg->err_pos == -1) msg->err_pos = ptr - msg_start; EAT_AND_JUMP_OR_RETURN(http_msg_rquri, HTTP_MSG_RQURI); } if (likely(HTTP_IS_CRLF(*ptr))) { /* so it's a CR/LF, meaning an HTTP 0.9 request */ goto http_msg_req09_uri_e; } /* OK forbidden chars, 0..31 or 127 */ invalid_char: msg->err_pos = ptr - msg_start; state = HTTP_MSG_ERROR; break; case HTTP_MSG_RQURI_SP: http_msg_rquri_sp: if (likely(!HTTP_IS_LWS(*ptr))) { msg->sl.rq.v = ptr - msg_start; goto http_msg_rqver; } if (likely(HTTP_IS_SPHT(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rquri_sp, HTTP_MSG_RQURI_SP); /* so it's a CR/LF, meaning an HTTP 0.9 request */ goto http_msg_req09_ver; case HTTP_MSG_RQVER: http_msg_rqver: if (likely(HTTP_IS_VER_TOKEN(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_rqver, HTTP_MSG_RQVER); if (likely(HTTP_IS_CRLF(*ptr))) { msg->sl.rq.v_l = ptr - msg_start - msg->sl.rq.v; http_msg_rqline_eol: /* We have seen the end of line. Note that we do not * necessarily have the \n yet, but at least we know that we * have EITHER \r OR \n, otherwise the request would not be * complete. We can then record the request length and return * to the caller which will be able to register it. */ msg->sl.rq.l = ptr - msg_start - msg->sol; return ptr; } /* neither an HTTP_VER token nor a CRLF */ state = HTTP_MSG_ERROR; break; #ifdef DEBUG_FULL default: fprintf(stderr, "FIXME !!!! impossible state at %s:%d = %d\n", __FILE__, __LINE__, state); exit(1); #endif } http_msg_ood: /* out of valid data */ if (ret_state) *ret_state = state; if (ret_ptr) *ret_ptr = ptr - msg_start; return NULL; } /* * Returns the data from Authorization header. Function may be called more * than once so data is stored in txn->auth_data. When no header is found * or auth method is unknown auth_method is set to HTTP_AUTH_WRONG to avoid * searching again for something we are unable to find anyway. */ char *get_http_auth_buff; int get_http_auth(struct session *s) { struct http_txn *txn = &s->txn; struct chunk auth_method; struct hdr_ctx ctx; char *h, *p; int len; #ifdef DEBUG_AUTH printf("Auth for session %p: %d\n", s, txn->auth.method); #endif if (txn->auth.method == HTTP_AUTH_WRONG) return 0; if (txn->auth.method) return 1; txn->auth.method = HTTP_AUTH_WRONG; ctx.idx = 0; if (txn->flags & TX_USE_PX_CONN) { h = "Proxy-Authorization"; len = strlen(h); } else { h = "Authorization"; len = strlen(h); } if (!http_find_header2(h, len, s->req->buf->p, &txn->hdr_idx, &ctx)) return 0; h = ctx.line + ctx.val; p = memchr(h, ' ', ctx.vlen); if (!p || p == h) return 0; chunk_initlen(&auth_method, h, 0, p-h); chunk_initlen(&txn->auth.method_data, p+1, 0, ctx.vlen-(p-h)-1); if (!strncasecmp("Basic", auth_method.str, auth_method.len)) { len = base64dec(txn->auth.method_data.str, txn->auth.method_data.len, get_http_auth_buff, global.tune.bufsize - 1); if (len < 0) return 0; get_http_auth_buff[len] = '\0'; p = strchr(get_http_auth_buff, ':'); if (!p) return 0; txn->auth.user = get_http_auth_buff; *p = '\0'; txn->auth.pass = p+1; txn->auth.method = HTTP_AUTH_BASIC; return 1; } return 0; } /* * This function parses an HTTP message, either a request or a response, * depending on the initial msg->msg_state. The caller is responsible for * ensuring that the message does not wrap. The function can be preempted * everywhere when data are missing and recalled at the exact same location * with no information loss. The message may even be realigned between two * calls. The header index is re-initialized when switching from * MSG_R[PQ]BEFORE to MSG_RPVER|MSG_RQMETH. It modifies msg->sol among other * fields. Note that msg->sol will be initialized after completing the first * state, so that none of the msg pointers has to be initialized prior to the * first call. */ void http_msg_analyzer(struct http_msg *msg, struct hdr_idx *idx) { unsigned int state; /* updated only when leaving the FSM */ register char *ptr, *end; /* request pointers, to avoid dereferences */ struct buffer *buf; state = msg->msg_state; buf = msg->chn->buf; ptr = buf->p + msg->next; end = buf->p + buf->i; if (unlikely(ptr >= end)) goto http_msg_ood; switch (state) { /* * First, states that are specific to the response only. * We check them first so that request and headers are * closer to each other (accessed more often). */ case HTTP_MSG_RPBEFORE: http_msg_rpbefore: if (likely(HTTP_IS_TOKEN(*ptr))) { /* we have a start of message, but we have to check * first if we need to remove some CRLF. We can only * do this when o=0. */ if (unlikely(ptr != buf->p)) { if (buf->o) goto http_msg_ood; /* Remove empty leading lines, as recommended by RFC2616. */ bi_fast_delete(buf, ptr - buf->p); } msg->sol = 0; msg->sl.st.l = 0; /* used in debug mode */ hdr_idx_init(idx); state = HTTP_MSG_RPVER; goto http_msg_rpver; } if (unlikely(!HTTP_IS_CRLF(*ptr))) goto http_msg_invalid; if (unlikely(*ptr == '\n')) EAT_AND_JUMP_OR_RETURN(http_msg_rpbefore, HTTP_MSG_RPBEFORE); EAT_AND_JUMP_OR_RETURN(http_msg_rpbefore_cr, HTTP_MSG_RPBEFORE_CR); /* stop here */ case HTTP_MSG_RPBEFORE_CR: http_msg_rpbefore_cr: EXPECT_LF_HERE(ptr, http_msg_invalid); EAT_AND_JUMP_OR_RETURN(http_msg_rpbefore, HTTP_MSG_RPBEFORE); /* stop here */ case HTTP_MSG_RPVER: http_msg_rpver: case HTTP_MSG_RPVER_SP: case HTTP_MSG_RPCODE: case HTTP_MSG_RPCODE_SP: case HTTP_MSG_RPREASON: ptr = (char *)http_parse_stsline(msg, state, ptr, end, &msg->next, &msg->msg_state); if (unlikely(!ptr)) return; /* we have a full response and we know that we have either a CR * or an LF at . */ hdr_idx_set_start(idx, msg->sl.st.l, *ptr == '\r'); msg->sol = ptr - buf->p; if (likely(*ptr == '\r')) EAT_AND_JUMP_OR_RETURN(http_msg_rpline_end, HTTP_MSG_RPLINE_END); goto http_msg_rpline_end; case HTTP_MSG_RPLINE_END: http_msg_rpline_end: /* msg->sol must point to the first of CR or LF. */ EXPECT_LF_HERE(ptr, http_msg_invalid); EAT_AND_JUMP_OR_RETURN(http_msg_hdr_first, HTTP_MSG_HDR_FIRST); /* stop here */ /* * Second, states that are specific to the request only */ case HTTP_MSG_RQBEFORE: http_msg_rqbefore: if (likely(HTTP_IS_TOKEN(*ptr))) { /* we have a start of message, but we have to check * first if we need to remove some CRLF. We can only * do this when o=0. */ if (likely(ptr != buf->p)) { if (buf->o) goto http_msg_ood; /* Remove empty leading lines, as recommended by RFC2616. */ bi_fast_delete(buf, ptr - buf->p); } msg->sol = 0; msg->sl.rq.l = 0; /* used in debug mode */ state = HTTP_MSG_RQMETH; goto http_msg_rqmeth; } if (unlikely(!HTTP_IS_CRLF(*ptr))) goto http_msg_invalid; if (unlikely(*ptr == '\n')) EAT_AND_JUMP_OR_RETURN(http_msg_rqbefore, HTTP_MSG_RQBEFORE); EAT_AND_JUMP_OR_RETURN(http_msg_rqbefore_cr, HTTP_MSG_RQBEFORE_CR); /* stop here */ case HTTP_MSG_RQBEFORE_CR: http_msg_rqbefore_cr: EXPECT_LF_HERE(ptr, http_msg_invalid); EAT_AND_JUMP_OR_RETURN(http_msg_rqbefore, HTTP_MSG_RQBEFORE); /* stop here */ case HTTP_MSG_RQMETH: http_msg_rqmeth: case HTTP_MSG_RQMETH_SP: case HTTP_MSG_RQURI: case HTTP_MSG_RQURI_SP: case HTTP_MSG_RQVER: ptr = (char *)http_parse_reqline(msg, state, ptr, end, &msg->next, &msg->msg_state); if (unlikely(!ptr)) return; /* we have a full request and we know that we have either a CR * or an LF at . */ hdr_idx_set_start(idx, msg->sl.rq.l, *ptr == '\r'); msg->sol = ptr - buf->p; if (likely(*ptr == '\r')) EAT_AND_JUMP_OR_RETURN(http_msg_rqline_end, HTTP_MSG_RQLINE_END); goto http_msg_rqline_end; case HTTP_MSG_RQLINE_END: http_msg_rqline_end: /* check for HTTP/0.9 request : no version information available. * msg->sol must point to the first of CR or LF. */ if (unlikely(msg->sl.rq.v_l == 0)) goto http_msg_last_lf; EXPECT_LF_HERE(ptr, http_msg_invalid); EAT_AND_JUMP_OR_RETURN(http_msg_hdr_first, HTTP_MSG_HDR_FIRST); /* stop here */ /* * Common states below */ case HTTP_MSG_HDR_FIRST: http_msg_hdr_first: msg->sol = ptr - buf->p; if (likely(!HTTP_IS_CRLF(*ptr))) { goto http_msg_hdr_name; } if (likely(*ptr == '\r')) EAT_AND_JUMP_OR_RETURN(http_msg_last_lf, HTTP_MSG_LAST_LF); goto http_msg_last_lf; case HTTP_MSG_HDR_NAME: http_msg_hdr_name: /* assumes msg->sol points to the first char */ if (likely(HTTP_IS_TOKEN(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_hdr_name, HTTP_MSG_HDR_NAME); if (likely(*ptr == ':')) EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l1_sp, HTTP_MSG_HDR_L1_SP); if (likely(msg->err_pos < -1) || *ptr == '\n') goto http_msg_invalid; if (msg->err_pos == -1) /* capture error pointer */ msg->err_pos = ptr - buf->p; /* >= 0 now */ /* and we still accept this non-token character */ EAT_AND_JUMP_OR_RETURN(http_msg_hdr_name, HTTP_MSG_HDR_NAME); case HTTP_MSG_HDR_L1_SP: http_msg_hdr_l1_sp: /* assumes msg->sol points to the first char */ if (likely(HTTP_IS_SPHT(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l1_sp, HTTP_MSG_HDR_L1_SP); /* header value can be basically anything except CR/LF */ msg->sov = ptr - buf->p; if (likely(!HTTP_IS_CRLF(*ptr))) { goto http_msg_hdr_val; } if (likely(*ptr == '\r')) EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l1_lf, HTTP_MSG_HDR_L1_LF); goto http_msg_hdr_l1_lf; case HTTP_MSG_HDR_L1_LF: http_msg_hdr_l1_lf: EXPECT_LF_HERE(ptr, http_msg_invalid); EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l1_lws, HTTP_MSG_HDR_L1_LWS); case HTTP_MSG_HDR_L1_LWS: http_msg_hdr_l1_lws: if (likely(HTTP_IS_SPHT(*ptr))) { /* replace HT,CR,LF with spaces */ for (; buf->p + msg->sov < ptr; msg->sov++) buf->p[msg->sov] = ' '; goto http_msg_hdr_l1_sp; } /* we had a header consisting only in spaces ! */ msg->eol = msg->sov; goto http_msg_complete_header; case HTTP_MSG_HDR_VAL: http_msg_hdr_val: /* assumes msg->sol points to the first char, and msg->sov * points to the first character of the value. */ if (likely(!HTTP_IS_CRLF(*ptr))) EAT_AND_JUMP_OR_RETURN(http_msg_hdr_val, HTTP_MSG_HDR_VAL); msg->eol = ptr - buf->p; /* Note: we could also copy eol into ->eoh so that we have the * real header end in case it ends with lots of LWS, but is this * really needed ? */ if (likely(*ptr == '\r')) EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l2_lf, HTTP_MSG_HDR_L2_LF); goto http_msg_hdr_l2_lf; case HTTP_MSG_HDR_L2_LF: http_msg_hdr_l2_lf: EXPECT_LF_HERE(ptr, http_msg_invalid); EAT_AND_JUMP_OR_RETURN(http_msg_hdr_l2_lws, HTTP_MSG_HDR_L2_LWS); case HTTP_MSG_HDR_L2_LWS: http_msg_hdr_l2_lws: if (unlikely(HTTP_IS_SPHT(*ptr))) { /* LWS: replace HT,CR,LF with spaces */ for (; buf->p + msg->eol < ptr; msg->eol++) buf->p[msg->eol] = ' '; goto http_msg_hdr_val; } http_msg_complete_header: /* * It was a new header, so the last one is finished. * Assumes msg->sol points to the first char, msg->sov points * to the first character of the value and msg->eol to the * first CR or LF so we know how the line ends. We insert last * header into the index. */ if (unlikely(hdr_idx_add(msg->eol - msg->sol, buf->p[msg->eol] == '\r', idx, idx->tail) < 0)) goto http_msg_invalid; msg->sol = ptr - buf->p; if (likely(!HTTP_IS_CRLF(*ptr))) { goto http_msg_hdr_name; } if (likely(*ptr == '\r')) EAT_AND_JUMP_OR_RETURN(http_msg_last_lf, HTTP_MSG_LAST_LF); goto http_msg_last_lf; case HTTP_MSG_LAST_LF: http_msg_last_lf: /* Assumes msg->sol points to the first of either CR or LF */ EXPECT_LF_HERE(ptr, http_msg_invalid); ptr++; msg->sov = msg->next = ptr - buf->p; msg->eoh = msg->sol; msg->sol = 0; msg->msg_state = HTTP_MSG_BODY; return; case HTTP_MSG_ERROR: /* this may only happen if we call http_msg_analyser() twice with an error */ break; #ifdef DEBUG_FULL default: fprintf(stderr, "FIXME !!!! impossible state at %s:%d = %d\n", __FILE__, __LINE__, state); exit(1); #endif } http_msg_ood: /* out of data */ msg->msg_state = state; msg->next = ptr - buf->p; return; http_msg_invalid: /* invalid message */ msg->msg_state = HTTP_MSG_ERROR; msg->next = ptr - buf->p; return; } /* convert an HTTP/0.9 request into an HTTP/1.0 request. Returns 1 if the * conversion succeeded, 0 in case of error. If the request was already 1.X, * nothing is done and 1 is returned. */ static int http_upgrade_v09_to_v10(struct http_txn *txn) { int delta; char *cur_end; struct http_msg *msg = &txn->req; if (msg->sl.rq.v_l != 0) return 1; cur_end = msg->chn->buf->p + msg->sl.rq.l; delta = 0; if (msg->sl.rq.u_l == 0) { /* if no URI was set, add "/" */ delta = buffer_replace2(msg->chn->buf, cur_end, cur_end, " /", 2); cur_end += delta; http_msg_move_end(msg, delta); } /* add HTTP version */ delta = buffer_replace2(msg->chn->buf, cur_end, cur_end, " HTTP/1.0\r\n", 11); http_msg_move_end(msg, delta); cur_end += delta; cur_end = (char *)http_parse_reqline(msg, HTTP_MSG_RQMETH, msg->chn->buf->p, cur_end + 1, NULL, NULL); if (unlikely(!cur_end)) return 0; /* we have a full HTTP/1.0 request now and we know that * we have either a CR or an LF at . */ hdr_idx_set_start(&txn->hdr_idx, msg->sl.rq.l, *cur_end == '\r'); return 1; } /* Parse the Connection: header of an HTTP request, looking for both "close" * and "keep-alive" values. If we already know that some headers may safely * be removed, we remove them now. The flags are used for that : * - bit 0 means remove "close" headers (in HTTP/1.0 requests/responses) * - bit 1 means remove "keep-alive" headers (in HTTP/1.1 reqs/resp to 1.1). * Presence of the "Upgrade" token is also checked and reported. * The TX_HDR_CONN_* flags are adjusted in txn->flags depending on what was * found, and TX_CON_*_SET is adjusted depending on what is left so only * harmless combinations may be removed. Do not call that after changes have * been processed. */ void http_parse_connection_header(struct http_txn *txn, struct http_msg *msg, int to_del) { struct hdr_ctx ctx; const char *hdr_val = "Connection"; int hdr_len = 10; if (txn->flags & TX_HDR_CONN_PRS) return; if (unlikely(txn->flags & TX_USE_PX_CONN)) { hdr_val = "Proxy-Connection"; hdr_len = 16; } ctx.idx = 0; txn->flags &= ~(TX_CON_KAL_SET|TX_CON_CLO_SET); while (http_find_header2(hdr_val, hdr_len, msg->chn->buf->p, &txn->hdr_idx, &ctx)) { if (ctx.vlen >= 10 && word_match(ctx.line + ctx.val, ctx.vlen, "keep-alive", 10)) { txn->flags |= TX_HDR_CONN_KAL; if (to_del & 2) http_remove_header2(msg, &txn->hdr_idx, &ctx); else txn->flags |= TX_CON_KAL_SET; } else if (ctx.vlen >= 5 && word_match(ctx.line + ctx.val, ctx.vlen, "close", 5)) { txn->flags |= TX_HDR_CONN_CLO; if (to_del & 1) http_remove_header2(msg, &txn->hdr_idx, &ctx); else txn->flags |= TX_CON_CLO_SET; } else if (ctx.vlen >= 7 && word_match(ctx.line + ctx.val, ctx.vlen, "upgrade", 7)) { txn->flags |= TX_HDR_CONN_UPG; } } txn->flags |= TX_HDR_CONN_PRS; return; } /* Apply desired changes on the Connection: header. Values may be removed and/or * added depending on the flags, which are exclusively composed of * TX_CON_CLO_SET and TX_CON_KAL_SET, depending on what flags are desired. The * TX_CON_*_SET flags are adjusted in txn->flags depending on what is left. */ void http_change_connection_header(struct http_txn *txn, struct http_msg *msg, int wanted) { struct hdr_ctx ctx; const char *hdr_val = "Connection"; int hdr_len = 10; ctx.idx = 0; if (unlikely(txn->flags & TX_USE_PX_CONN)) { hdr_val = "Proxy-Connection"; hdr_len = 16; } txn->flags &= ~(TX_CON_CLO_SET | TX_CON_KAL_SET); while (http_find_header2(hdr_val, hdr_len, msg->chn->buf->p, &txn->hdr_idx, &ctx)) { if (ctx.vlen >= 10 && word_match(ctx.line + ctx.val, ctx.vlen, "keep-alive", 10)) { if (wanted & TX_CON_KAL_SET) txn->flags |= TX_CON_KAL_SET; else http_remove_header2(msg, &txn->hdr_idx, &ctx); } else if (ctx.vlen >= 5 && word_match(ctx.line + ctx.val, ctx.vlen, "close", 5)) { if (wanted & TX_CON_CLO_SET) txn->flags |= TX_CON_CLO_SET; else http_remove_header2(msg, &txn->hdr_idx, &ctx); } } if (wanted == (txn->flags & (TX_CON_CLO_SET|TX_CON_KAL_SET))) return; if ((wanted & TX_CON_CLO_SET) && !(txn->flags & TX_CON_CLO_SET)) { txn->flags |= TX_CON_CLO_SET; hdr_val = "Connection: close"; hdr_len = 17; if (unlikely(txn->flags & TX_USE_PX_CONN)) { hdr_val = "Proxy-Connection: close"; hdr_len = 23; } http_header_add_tail2(msg, &txn->hdr_idx, hdr_val, hdr_len); } if ((wanted & TX_CON_KAL_SET) && !(txn->flags & TX_CON_KAL_SET)) { txn->flags |= TX_CON_KAL_SET; hdr_val = "Connection: keep-alive"; hdr_len = 22; if (unlikely(txn->flags & TX_USE_PX_CONN)) { hdr_val = "Proxy-Connection: keep-alive"; hdr_len = 28; } http_header_add_tail2(msg, &txn->hdr_idx, hdr_val, hdr_len); } return; } /* Parse the chunk size at msg->next. Once done, it adjusts ->next to point to the * first byte of body, and increments msg->sov by the number of bytes parsed, * so that we know we can forward between ->sol and ->sov. * Return >0 on success, 0 when some data is missing, <0 on error. * Note: this function is designed to parse wrapped CRLF at the end of the buffer. */ static inline int http_parse_chunk_size(struct http_msg *msg) { const struct buffer *buf = msg->chn->buf; const char *ptr = b_ptr(buf, msg->next); const char *ptr_old = ptr; const char *end = buf->data + buf->size; const char *stop = bi_end(buf); unsigned int chunk = 0; /* The chunk size is in the following form, though we are only * interested in the size and CRLF : * 1*HEXDIGIT *WSP *[ ';' extensions ] CRLF */ while (1) { int c; if (ptr == stop) return 0; c = hex2i(*ptr); if (c < 0) /* not a hex digit anymore */ break; if (unlikely(++ptr >= end)) ptr = buf->data; if (chunk & 0xF8000000) /* integer overflow will occur if result >= 2GB */ goto error; chunk = (chunk << 4) + c; } /* empty size not allowed */ if (unlikely(ptr == ptr_old)) goto error; while (http_is_spht[(unsigned char)*ptr]) { if (++ptr >= end) ptr = buf->data; if (unlikely(ptr == stop)) return 0; } /* Up to there, we know that at least one byte is present at *ptr. Check * for the end of chunk size. */ while (1) { if (likely(HTTP_IS_CRLF(*ptr))) { /* we now have a CR or an LF at ptr */ if (likely(*ptr == '\r')) { if (++ptr >= end) ptr = buf->data; if (ptr == stop) return 0; } if (*ptr != '\n') goto error; if (++ptr >= end) ptr = buf->data; /* done */ break; } else if (*ptr == ';') { /* chunk extension, ends at next CRLF */ if (++ptr >= end) ptr = buf->data; if (ptr == stop) return 0; while (!HTTP_IS_CRLF(*ptr)) { if (++ptr >= end) ptr = buf->data; if (ptr == stop) return 0; } /* we have a CRLF now, loop above */ continue; } else goto error; } /* OK we found our CRLF and now points to the next byte, * which may or may not be present. We save that into ->next and * ->sov. */ if (unlikely(ptr < ptr_old)) msg->sov += buf->size; msg->sov += ptr - ptr_old; msg->next = buffer_count(buf, buf->p, ptr); msg->chunk_len = chunk; msg->body_len += chunk; msg->msg_state = chunk ? HTTP_MSG_DATA : HTTP_MSG_TRAILERS; return 1; error: msg->err_pos = buffer_count(buf, buf->p, ptr); return -1; } /* This function skips trailers in the buffer associated with HTTP * message . The first visited position is msg->next. If the end of * the trailers is found, it is automatically scheduled to be forwarded, * msg->msg_state switches to HTTP_MSG_DONE, and the function returns >0. * If not enough data are available, the function does not change anything * except maybe msg->next and msg->sov if it could parse some lines, and returns * zero. If a parse error is encountered, the function returns < 0 and does not * change anything except maybe msg->next and msg->sov. Note that the message * must already be in HTTP_MSG_TRAILERS state before calling this function, * which implies that all non-trailers data have already been scheduled for * forwarding, and that the difference between msg->sol and msg->sov exactly * matches the length of trailers already parsed and not forwarded. It is also * important to note that this function is designed to be able to parse wrapped * headers at end of buffer. */ static int http_forward_trailers(struct http_msg *msg) { const struct buffer *buf = msg->chn->buf; /* we have msg->next which points to next line. Look for CRLF. */ while (1) { const char *p1 = NULL, *p2 = NULL; const char *ptr = b_ptr(buf, msg->next); const char *stop = bi_end(buf); int bytes; /* scan current line and stop at LF or CRLF */ while (1) { if (ptr == stop) return 0; if (*ptr == '\n') { if (!p1) p1 = ptr; p2 = ptr; break; } if (*ptr == '\r') { if (p1) { msg->err_pos = buffer_count(buf, buf->p, ptr); return -1; } p1 = ptr; } ptr++; if (ptr >= buf->data + buf->size) ptr = buf->data; } /* after LF; point to beginning of next line */ p2++; if (p2 >= buf->data + buf->size) p2 = buf->data; bytes = p2 - b_ptr(buf, msg->next); if (bytes < 0) bytes += buf->size; /* schedule this line for forwarding */ msg->sov += bytes; if (msg->sov >= buf->size) msg->sov -= buf->size; if (p1 == b_ptr(buf, msg->next)) { /* LF/CRLF at beginning of line => end of trailers at p2. * Everything was scheduled for forwarding, there's nothing * left from this message. */ msg->next = buffer_count(buf, buf->p, p2); msg->msg_state = HTTP_MSG_DONE; return 1; } /* OK, next line then */ msg->next = buffer_count(buf, buf->p, p2); } } /* This function may be called only in HTTP_MSG_CHUNK_CRLF. It reads the CRLF or * a possible LF alone at the end of a chunk. It automatically adjusts msg->sov, * ->sol, ->next in order to include this part into the next forwarding phase. * Note that the caller must ensure that ->p points to the first byte to parse. * It also sets msg_state to HTTP_MSG_CHUNK_SIZE and returns >0 on success. If * not enough data are available, the function does not change anything and * returns zero. If a parse error is encountered, the function returns < 0 and * does not change anything. Note: this function is designed to parse wrapped * CRLF at the end of the buffer. */ static inline int http_skip_chunk_crlf(struct http_msg *msg) { const struct buffer *buf = msg->chn->buf; const char *ptr; int bytes; /* NB: we'll check data availabilty at the end. It's not a * problem because whatever we match first will be checked * against the correct length. */ bytes = 1; ptr = buf->p; if (*ptr == '\r') { bytes++; ptr++; if (ptr >= buf->data + buf->size) ptr = buf->data; } if (bytes > buf->i) return 0; if (*ptr != '\n') { msg->err_pos = buffer_count(buf, buf->p, ptr); return -1; } ptr++; if (unlikely(ptr >= buf->data + buf->size)) ptr = buf->data; /* prepare the CRLF to be forwarded (between ->sol and ->sov) */ msg->sol = 0; msg->sov = msg->next = bytes; msg->msg_state = HTTP_MSG_CHUNK_SIZE; return 1; } /* * Selects a compression algorithm depending on the client request. */ int select_compression_request_header(struct session *s, struct buffer *req) { struct http_txn *txn = &s->txn; struct http_msg *msg = &txn->req; struct hdr_ctx ctx; struct comp_algo *comp_algo = NULL; struct comp_algo *comp_algo_back = NULL; /* Disable compression for older user agents announcing themselves as "Mozilla/4" * unless they are known good (MSIE 6 with XP SP2, or MSIE 7 and later). * See http://zoompf.com/2012/02/lose-the-wait-http-compression for more details. */ ctx.idx = 0; if (http_find_header2("User-Agent", 10, req->p, &txn->hdr_idx, &ctx) && ctx.vlen >= 9 && memcmp(ctx.line + ctx.val, "Mozilla/4", 9) == 0 && (ctx.vlen < 31 || memcmp(ctx.line + ctx.val + 25, "MSIE ", 5) != 0 || ctx.line[ctx.val + 30] < '6' || (ctx.line[ctx.val + 30] == '6' && (ctx.vlen < 54 || memcmp(ctx.line + 51, "SV1", 3) != 0)))) { s->comp_algo = NULL; return 0; } /* search for the algo in the backend in priority or the frontend */ if ((s->be->comp && (comp_algo_back = s->be->comp->algos)) || (s->fe->comp && (comp_algo_back = s->fe->comp->algos))) { ctx.idx = 0; while (http_find_header2("Accept-Encoding", 15, req->p, &txn->hdr_idx, &ctx)) { for (comp_algo = comp_algo_back; comp_algo; comp_algo = comp_algo->next) { if (word_match(ctx.line + ctx.val, ctx.vlen, comp_algo->name, comp_algo->name_len)) { s->comp_algo = comp_algo; /* remove all occurrences of the header when "compression offload" is set */ if ((s->be->comp && s->be->comp->offload) || (s->fe->comp && s->fe->comp->offload)) { http_remove_header2(msg, &txn->hdr_idx, &ctx); ctx.idx = 0; while (http_find_header2("Accept-Encoding", 15, req->p, &txn->hdr_idx, &ctx)) { http_remove_header2(msg, &txn->hdr_idx, &ctx); } } return 1; } } } } /* identity is implicit does not require headers */ if ((s->be->comp && (comp_algo_back = s->be->comp->algos)) || (s->fe->comp && (comp_algo_back = s->fe->comp->algos))) { for (comp_algo = comp_algo_back; comp_algo; comp_algo = comp_algo->next) { if (comp_algo->add_data == identity_add_data) { s->comp_algo = comp_algo; return 1; } } } s->comp_algo = NULL; return 0; } /* * Selects a comression algorithm depending of the server response. */ int select_compression_response_header(struct session *s, struct buffer *res) { struct http_txn *txn = &s->txn; struct http_msg *msg = &txn->rsp; struct hdr_ctx ctx; struct comp_type *comp_type; /* no common compression algorithm was found in request header */ if (s->comp_algo == NULL) goto fail; /* HTTP < 1.1 should not be compressed */ if (!(msg->flags & HTTP_MSGF_VER_11)) goto fail; /* 200 only */ if (txn->status != 200) goto fail; /* Content-Length is null */ if (!(msg->flags & HTTP_MSGF_TE_CHNK) && msg->body_len == 0) goto fail; /* content is already compressed */ ctx.idx = 0; if (http_find_header2("Content-Encoding", 16, res->p, &txn->hdr_idx, &ctx)) goto fail; /* no compression when Cache-Control: no-transform is present in the message */ ctx.idx = 0; while (http_find_header2("Cache-Control", 13, res->p, &txn->hdr_idx, &ctx)) { if (word_match(ctx.line + ctx.val, ctx.vlen, "no-transform", 12)) goto fail; } comp_type = NULL; /* we don't want to compress multipart content-types, nor content-types that are * not listed in the "compression type" directive if any. If no content-type was * found but configuration requires one, we don't compress either. Backend has * the priority. */ ctx.idx = 0; if (http_find_header2("Content-Type", 12, res->p, &txn->hdr_idx, &ctx)) { if (ctx.vlen >= 9 && strncasecmp("multipart", ctx.line+ctx.val, 9) == 0) goto fail; if ((s->be->comp && (comp_type = s->be->comp->types)) || (s->fe->comp && (comp_type = s->fe->comp->types))) { for (; comp_type; comp_type = comp_type->next) { if (ctx.vlen >= comp_type->name_len && strncasecmp(ctx.line+ctx.val, comp_type->name, comp_type->name_len) == 0) /* this Content-Type should be compressed */ break; } /* this Content-Type should not be compressed */ if (comp_type == NULL) goto fail; } } else { /* no content-type header */ if ((s->be->comp && s->be->comp->types) || (s->fe->comp && s->fe->comp->types)) goto fail; /* a content-type was required */ } /* limit compression rate */ if (global.comp_rate_lim > 0) if (read_freq_ctr(&global.comp_bps_in) > global.comp_rate_lim) goto fail; /* limit cpu usage */ if (idle_pct < compress_min_idle) goto fail; /* initialize compression */ if (s->comp_algo->init(&s->comp_ctx, global.tune.comp_maxlevel) < 0) goto fail; s->flags |= SN_COMP_READY; /* remove Content-Length header */ ctx.idx = 0; if ((msg->flags & HTTP_MSGF_CNT_LEN) && http_find_header2("Content-Length", 14, res->p, &txn->hdr_idx, &ctx)) http_remove_header2(msg, &txn->hdr_idx, &ctx); /* add Transfer-Encoding header */ if (!(msg->flags & HTTP_MSGF_TE_CHNK)) http_header_add_tail2(&txn->rsp, &txn->hdr_idx, "Transfer-Encoding: chunked", 26); /* * Add Content-Encoding header when it's not identity encoding. * RFC 2616 : Identity encoding: This content-coding is used only in the * Accept-Encoding header, and SHOULD NOT be used in the Content-Encoding * header. */ if (s->comp_algo->add_data != identity_add_data) { trash.len = 18; memcpy(trash.str, "Content-Encoding: ", trash.len); memcpy(trash.str + trash.len, s->comp_algo->name, s->comp_algo->name_len); trash.len += s->comp_algo->name_len; trash.str[trash.len] = '\0'; http_header_add_tail2(&txn->rsp, &txn->hdr_idx, trash.str, trash.len); } return 1; fail: s->comp_algo = NULL; return 0; } /* This stream analyser waits for a complete HTTP request. It returns 1 if the * processing can continue on next analysers, or zero if it either needs more * data or wants to immediately abort the request (eg: timeout, error, ...). It * is tied to AN_REQ_WAIT_HTTP and may may remove itself from s->req->analysers * when it has nothing left to do, and may remove any analyser when it wants to * abort. */ int http_wait_for_request(struct session *s, struct channel *req, int an_bit) { /* * We will parse the partial (or complete) lines. * We will check the request syntax, and also join multi-line * headers. An index of all the lines will be elaborated while * parsing. * * For the parsing, we use a 28 states FSM. * * Here is the information we currently have : * req->buf->p = beginning of request * req->buf->p + msg->eoh = end of processed headers / start of current one * req->buf->p + req->buf->i = end of input data * msg->eol = end of current header or line (LF or CRLF) * msg->next = first non-visited byte * * At end of parsing, we may perform a capture of the error (if any), and * we will set a few fields (msg->sol, txn->meth, sn->flags/SN_REDIRECTABLE). * We also check for monitor-uri, logging, HTTP/0.9 to 1.0 conversion, and * finally headers capture. */ int cur_idx; int use_close_only; struct http_txn *txn = &s->txn; struct http_msg *msg = &txn->req; struct hdr_ctx ctx; DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n", now_ms, __FUNCTION__, s, req, req->rex, req->wex, req->flags, req->buf->i, req->analysers); /* we're speaking HTTP here, so let's speak HTTP to the client */ s->srv_error = http_return_srv_error; /* There's a protected area at the end of the buffer for rewriting * purposes. We don't want to start to parse the request if the * protected area is affected, because we may have to move processed * data later, which is much more complicated. */ if (buffer_not_empty(req->buf) && msg->msg_state < HTTP_MSG_ERROR) { if ((txn->flags & TX_NOT_FIRST) && unlikely(channel_full(req) || bi_end(req->buf) < b_ptr(req->buf, msg->next) || bi_end(req->buf) > req->buf->data + req->buf->size - global.tune.maxrewrite)) { if (req->buf->o) { if (req->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) goto failed_keep_alive; /* some data has still not left the buffer, wake us once that's done */ channel_dont_connect(req); req->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */ return 0; } if (bi_end(req->buf) < b_ptr(req->buf, msg->next) || bi_end(req->buf) > req->buf->data + req->buf->size - global.tune.maxrewrite) buffer_slow_realign(msg->chn->buf); } /* Note that we have the same problem with the response ; we * may want to send a redirect, error or anything which requires * some spare space. So we'll ensure that we have at least * maxrewrite bytes available in the response buffer before * processing that one. This will only affect pipelined * keep-alive requests. */ if ((txn->flags & TX_NOT_FIRST) && unlikely(channel_full(s->rep) || bi_end(s->rep->buf) < b_ptr(s->rep->buf, txn->rsp.next) || bi_end(s->rep->buf) > s->rep->buf->data + s->rep->buf->size - global.tune.maxrewrite)) { if (s->rep->buf->o) { if (s->rep->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) goto failed_keep_alive; /* don't let a connection request be initiated */ channel_dont_connect(req); s->rep->flags &= ~CF_EXPECT_MORE; /* speed up sending a previous response */ s->rep->analysers |= an_bit; /* wake us up once it changes */ return 0; } } if (likely(msg->next < req->buf->i)) /* some unparsed data are available */ http_msg_analyzer(msg, &txn->hdr_idx); } /* 1: we might have to print this header in debug mode */ if (unlikely((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)) && (msg->msg_state >= HTTP_MSG_BODY || msg->msg_state == HTTP_MSG_ERROR))) { char *eol, *sol; sol = req->buf->p; /* this is a bit complex : in case of error on the request line, * we know that rq.l is still zero, so we display only the part * up to the end of the line (truncated by debug_hdr). */ eol = sol + (msg->sl.rq.l ? msg->sl.rq.l : req->buf->i); debug_hdr("clireq", s, sol, eol); sol += hdr_idx_first_pos(&txn->hdr_idx); cur_idx = hdr_idx_first_idx(&txn->hdr_idx); while (cur_idx) { eol = sol + txn->hdr_idx.v[cur_idx].len; debug_hdr("clihdr", s, sol, eol); sol = eol + txn->hdr_idx.v[cur_idx].cr + 1; cur_idx = txn->hdr_idx.v[cur_idx].next; } } /* * Now we quickly check if we have found a full valid request. * If not so, we check the FD and buffer states before leaving. * A full request is indicated by the fact that we have seen * the double LF/CRLF, so the state is >= HTTP_MSG_BODY. Invalid * requests are checked first. When waiting for a second request * on a keep-alive session, if we encounter and error, close, t/o, * we note the error in the session flags but don't set any state. * Since the error will be noted there, it will not be counted by * process_session() as a frontend error. * Last, we may increase some tracked counters' http request errors on * the cases that are deliberately the client's fault. For instance, * a timeout or connection reset is not counted as an error. However * a bad request is. */ if (unlikely(msg->msg_state < HTTP_MSG_BODY)) { /* * First, let's catch bad requests. */ if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) { session_inc_http_req_ctr(s); session_inc_http_err_ctr(s); proxy_inc_fe_req_ctr(s->fe); goto return_bad_req; } /* 1: Since we are in header mode, if there's no space * left for headers, we won't be able to free more * later, so the session will never terminate. We * must terminate it now. */ if (unlikely(buffer_full(req->buf, global.tune.maxrewrite))) { /* FIXME: check if URI is set and return Status * 414 Request URI too long instead. */ session_inc_http_req_ctr(s); session_inc_http_err_ctr(s); proxy_inc_fe_req_ctr(s->fe); if (msg->err_pos < 0) msg->err_pos = req->buf->i; goto return_bad_req; } /* 2: have we encountered a read error ? */ else if (req->flags & CF_READ_ERROR) { if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_CLICL; if (txn->flags & TX_WAIT_NEXT_RQ) goto failed_keep_alive; /* we cannot return any message on error */ if (msg->err_pos >= 0) { http_capture_bad_message(&s->fe->invalid_req, s, msg, msg->msg_state, s->fe); session_inc_http_err_ctr(s); } txn->status = 400; stream_int_retnclose(req->prod, NULL); msg->msg_state = HTTP_MSG_ERROR; req->analysers = 0; session_inc_http_req_ctr(s); proxy_inc_fe_req_ctr(s->fe); s->fe->fe_counters.failed_req++; if (s->listener->counters) s->listener->counters->failed_req++; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_R; return 0; } /* 3: has the read timeout expired ? */ else if (req->flags & CF_READ_TIMEOUT || tick_is_expired(req->analyse_exp, now_ms)) { if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_CLITO; if (txn->flags & TX_WAIT_NEXT_RQ) goto failed_keep_alive; /* read timeout : give up with an error message. */ if (msg->err_pos >= 0) { http_capture_bad_message(&s->fe->invalid_req, s, msg, msg->msg_state, s->fe); session_inc_http_err_ctr(s); } txn->status = 408; stream_int_retnclose(req->prod, http_error_message(s, HTTP_ERR_408)); msg->msg_state = HTTP_MSG_ERROR; req->analysers = 0; session_inc_http_req_ctr(s); proxy_inc_fe_req_ctr(s->fe); s->fe->fe_counters.failed_req++; if (s->listener->counters) s->listener->counters->failed_req++; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_R; return 0; } /* 4: have we encountered a close ? */ else if (req->flags & CF_SHUTR) { if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_CLICL; if (txn->flags & TX_WAIT_NEXT_RQ) goto failed_keep_alive; if (msg->err_pos >= 0) http_capture_bad_message(&s->fe->invalid_req, s, msg, msg->msg_state, s->fe); txn->status = 400; stream_int_retnclose(req->prod, http_error_message(s, HTTP_ERR_400)); msg->msg_state = HTTP_MSG_ERROR; req->analysers = 0; session_inc_http_err_ctr(s); session_inc_http_req_ctr(s); proxy_inc_fe_req_ctr(s->fe); s->fe->fe_counters.failed_req++; if (s->listener->counters) s->listener->counters->failed_req++; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_R; return 0; } channel_dont_connect(req); req->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */ s->rep->flags &= ~CF_EXPECT_MORE; /* speed up sending a previous response */ #ifdef TCP_QUICKACK if (s->listener->options & LI_O_NOQUICKACK && req->buf->i) { /* We need more data, we have to re-enable quick-ack in case we * previously disabled it, otherwise we might cause the client * to delay next data. */ setsockopt(s->si[0].conn->t.sock.fd, IPPROTO_TCP, TCP_QUICKACK, &one, sizeof(one)); } #endif if ((msg->msg_state != HTTP_MSG_RQBEFORE) && (txn->flags & TX_WAIT_NEXT_RQ)) { /* If the client starts to talk, let's fall back to * request timeout processing. */ txn->flags &= ~TX_WAIT_NEXT_RQ; req->analyse_exp = TICK_ETERNITY; } /* just set the request timeout once at the beginning of the request */ if (!tick_isset(req->analyse_exp)) { if ((msg->msg_state == HTTP_MSG_RQBEFORE) && (txn->flags & TX_WAIT_NEXT_RQ) && tick_isset(s->be->timeout.httpka)) req->analyse_exp = tick_add(now_ms, s->be->timeout.httpka); else req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.httpreq); } /* we're not ready yet */ return 0; failed_keep_alive: /* Here we process low-level errors for keep-alive requests. In * short, if the request is not the first one and it experiences * a timeout, read error or shutdown, we just silently close so * that the client can try again. */ txn->status = 0; msg->msg_state = HTTP_MSG_RQBEFORE; req->analysers = 0; s->logs.logwait = 0; s->rep->flags &= ~CF_EXPECT_MORE; /* speed up sending a previous response */ stream_int_retnclose(req->prod, NULL); return 0; } /* OK now we have a complete HTTP request with indexed headers. Let's * complete the request parsing by setting a few fields we will need * later. At this point, we have the last CRLF at req->buf->data + msg->eoh. * If the request is in HTTP/0.9 form, the rule is still true, and eoh * points to the CRLF of the request line. msg->next points to the first * byte after the last LF. msg->sov points to the first byte of data. * msg->eol cannot be trusted because it may have been left uninitialized * (for instance in the absence of headers). */ session_inc_http_req_ctr(s); proxy_inc_fe_req_ctr(s->fe); /* one more valid request for this FE */ if (txn->flags & TX_WAIT_NEXT_RQ) { /* kill the pending keep-alive timeout */ txn->flags &= ~TX_WAIT_NEXT_RQ; req->analyse_exp = TICK_ETERNITY; } /* Maybe we found in invalid header name while we were configured not * to block on that, so we have to capture it now. */ if (unlikely(msg->err_pos >= 0)) http_capture_bad_message(&s->fe->invalid_req, s, msg, msg->msg_state, s->fe); /* * 1: identify the method */ txn->meth = find_http_meth(req->buf->p, msg->sl.rq.m_l); /* we can make use of server redirect on GET and HEAD */ if (txn->meth == HTTP_METH_GET || txn->meth == HTTP_METH_HEAD) s->flags |= SN_REDIRECTABLE; /* * 2: check if the URI matches the monitor_uri. * We have to do this for every request which gets in, because * the monitor-uri is defined by the frontend. */ if (unlikely((s->fe->monitor_uri_len != 0) && (s->fe->monitor_uri_len == msg->sl.rq.u_l) && !memcmp(req->buf->p + msg->sl.rq.u, s->fe->monitor_uri, s->fe->monitor_uri_len))) { /* * We have found the monitor URI */ struct acl_cond *cond; s->flags |= SN_MONITOR; s->fe->fe_counters.intercepted_req++; /* Check if we want to fail this monitor request or not */ list_for_each_entry(cond, &s->fe->mon_fail_cond, list) { int ret = acl_exec_cond(cond, s->fe, s, txn, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (cond->pol == ACL_COND_UNLESS) ret = !ret; if (ret) { /* we fail this request, let's return 503 service unavail */ txn->status = 503; stream_int_retnclose(req->prod, http_error_message(s, HTTP_ERR_503)); goto return_prx_cond; } } /* nothing to fail, let's reply normaly */ txn->status = 200; stream_int_retnclose(req->prod, http_error_message(s, HTTP_ERR_200)); goto return_prx_cond; } /* * 3: Maybe we have to copy the original REQURI for the logs ? * Note: we cannot log anymore if the request has been * classified as invalid. */ if (unlikely(s->logs.logwait & LW_REQ)) { /* we have a complete HTTP request that we must log */ if ((txn->uri = pool_alloc2(pool2_requri)) != NULL) { int urilen = msg->sl.rq.l; if (urilen >= REQURI_LEN) urilen = REQURI_LEN - 1; memcpy(txn->uri, req->buf->p, urilen); txn->uri[urilen] = 0; if (!(s->logs.logwait &= ~(LW_REQ|LW_INIT))) s->do_log(s); } else { Alert("HTTP logging : out of memory.\n"); } } if (!LIST_ISEMPTY(&s->fe->format_unique_id)) s->unique_id = pool_alloc2(pool2_uniqueid); /* 4. We may have to convert HTTP/0.9 requests to HTTP/1.0 */ if (unlikely(msg->sl.rq.v_l == 0) && !http_upgrade_v09_to_v10(txn)) goto return_bad_req; /* ... and check if the request is HTTP/1.1 or above */ if ((msg->sl.rq.v_l == 8) && ((req->buf->p[msg->sl.rq.v + 5] > '1') || ((req->buf->p[msg->sl.rq.v + 5] == '1') && (req->buf->p[msg->sl.rq.v + 7] >= '1')))) msg->flags |= HTTP_MSGF_VER_11; /* "connection" has not been parsed yet */ txn->flags &= ~(TX_HDR_CONN_PRS | TX_HDR_CONN_CLO | TX_HDR_CONN_KAL | TX_HDR_CONN_UPG); /* if the frontend has "option http-use-proxy-header", we'll check if * we have what looks like a proxied connection instead of a connection, * and in this case set the TX_USE_PX_CONN flag to use Proxy-connection. * Note that this is *not* RFC-compliant, however browsers and proxies * happen to do that despite being non-standard :-( * We consider that a request not beginning with either '/' or '*' is * a proxied connection, which covers both "scheme://location" and * CONNECT ip:port. */ if ((s->fe->options2 & PR_O2_USE_PXHDR) && req->buf->p[msg->sl.rq.u] != '/' && req->buf->p[msg->sl.rq.u] != '*') txn->flags |= TX_USE_PX_CONN; /* transfer length unknown*/ msg->flags &= ~HTTP_MSGF_XFER_LEN; /* 5: we may need to capture headers */ if (unlikely((s->logs.logwait & LW_REQHDR) && txn->req.cap)) capture_headers(req->buf->p, &txn->hdr_idx, txn->req.cap, s->fe->req_cap); /* 6: determine the transfer-length. * According to RFC2616 #4.4, amended by the HTTPbis working group, * the presence of a message-body in a REQUEST and its transfer length * must be determined that way (in order of precedence) : * 1. The presence of a message-body in a request is signaled by the * inclusion of a Content-Length or Transfer-Encoding header field * in the request's header fields. When a request message contains * both a message-body of non-zero length and a method that does * not define any semantics for that request message-body, then an * origin server SHOULD either ignore the message-body or respond * with an appropriate error message (e.g., 413). A proxy or * gateway, when presented the same request, SHOULD either forward * the request inbound with the message- body or ignore the * message-body when determining a response. * * 2. If a Transfer-Encoding header field (Section 9.7) is present * and the "chunked" transfer-coding (Section 6.2) is used, the * transfer-length is defined by the use of this transfer-coding. * If a Transfer-Encoding header field is present and the "chunked" * transfer-coding is not present, the transfer-length is defined * by the sender closing the connection. * * 3. If a Content-Length header field is present, its decimal value in * OCTETs represents both the entity-length and the transfer-length. * If a message is received with both a Transfer-Encoding header * field and a Content-Length header field, the latter MUST be ignored. * * 4. By the server closing the connection. (Closing the connection * cannot be used to indicate the end of a request body, since that * would leave no possibility for the server to send back a response.) * * Whenever a transfer-coding is applied to a message-body, the set of * transfer-codings MUST include "chunked", unless the message indicates * it is terminated by closing the connection. When the "chunked" * transfer-coding is used, it MUST be the last transfer-coding applied * to the message-body. */ use_close_only = 0; ctx.idx = 0; /* set TE_CHNK and XFER_LEN only if "chunked" is seen last */ while ((msg->flags & HTTP_MSGF_VER_11) && http_find_header2("Transfer-Encoding", 17, req->buf->p, &txn->hdr_idx, &ctx)) { if (ctx.vlen == 7 && strncasecmp(ctx.line + ctx.val, "chunked", 7) == 0) msg->flags |= (HTTP_MSGF_TE_CHNK | HTTP_MSGF_XFER_LEN); else if (msg->flags & HTTP_MSGF_TE_CHNK) { /* bad transfer-encoding (chunked followed by something else) */ use_close_only = 1; msg->flags &= ~(HTTP_MSGF_TE_CHNK | HTTP_MSGF_XFER_LEN); break; } } ctx.idx = 0; while (!(msg->flags & HTTP_MSGF_TE_CHNK) && !use_close_only && http_find_header2("Content-Length", 14, req->buf->p, &txn->hdr_idx, &ctx)) { signed long long cl; if (!ctx.vlen) { msg->err_pos = ctx.line + ctx.val - req->buf->p; goto return_bad_req; } if (strl2llrc(ctx.line + ctx.val, ctx.vlen, &cl)) { msg->err_pos = ctx.line + ctx.val - req->buf->p; goto return_bad_req; /* parse failure */ } if (cl < 0) { msg->err_pos = ctx.line + ctx.val - req->buf->p; goto return_bad_req; } if ((msg->flags & HTTP_MSGF_CNT_LEN) && (msg->chunk_len != cl)) { msg->err_pos = ctx.line + ctx.val - req->buf->p; goto return_bad_req; /* already specified, was different */ } msg->flags |= HTTP_MSGF_CNT_LEN | HTTP_MSGF_XFER_LEN; msg->body_len = msg->chunk_len = cl; } /* bodyless requests have a known length */ if (!use_close_only) msg->flags |= HTTP_MSGF_XFER_LEN; /* end of job, return OK */ req->analysers &= ~an_bit; req->analyse_exp = TICK_ETERNITY; return 1; return_bad_req: /* We centralize bad requests processing here */ if (unlikely(msg->msg_state == HTTP_MSG_ERROR) || msg->err_pos >= 0) { /* we detected a parsing error. We want to archive this request * in the dedicated proxy area for later troubleshooting. */ http_capture_bad_message(&s->fe->invalid_req, s, msg, msg->msg_state, s->fe); } txn->req.msg_state = HTTP_MSG_ERROR; txn->status = 400; stream_int_retnclose(req->prod, http_error_message(s, HTTP_ERR_400)); s->fe->fe_counters.failed_req++; if (s->listener->counters) s->listener->counters->failed_req++; return_prx_cond: if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_PRXCOND; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_R; req->analysers = 0; req->analyse_exp = TICK_ETERNITY; return 0; } /* We reached the stats page through a POST request. * Parse the posted data and enable/disable servers if necessary. * Returns 1 if request was parsed or zero if it needs more data. */ int http_process_req_stat_post(struct stream_interface *si, struct http_txn *txn, struct channel *req) { struct proxy *px = NULL; struct server *sv = NULL; char key[LINESIZE]; int action = ST_ADM_ACTION_NONE; int reprocess = 0; int total_servers = 0; int altered_servers = 0; char *first_param, *cur_param, *next_param, *end_params; char *st_cur_param = NULL; char *st_next_param = NULL; first_param = req->buf->p + txn->req.eoh + 2; end_params = first_param + txn->req.body_len; cur_param = next_param = end_params; if (end_params >= req->buf->data + req->buf->size - global.tune.maxrewrite) { /* Prevent buffer overflow */ si->applet.ctx.stats.st_code = STAT_STATUS_EXCD; return 1; } else if (end_params > req->buf->p + req->buf->i) { /* we need more data */ si->applet.ctx.stats.st_code = STAT_STATUS_NONE; return 0; } *end_params = '\0'; si->applet.ctx.stats.st_code = STAT_STATUS_NONE; /* * Parse the parameters in reverse order to only store the last value. * From the html form, the backend and the action are at the end. */ while (cur_param > first_param) { char *value; int poffset, plen; cur_param--; if ((*cur_param == '&') || (cur_param == first_param)) { reprocess_servers: /* Parse the key */ poffset = (cur_param != first_param ? 1 : 0); plen = next_param - cur_param + (cur_param == first_param ? 1 : 0); if ((plen > 0) && (plen <= sizeof(key))) { strncpy(key, cur_param + poffset, plen); key[plen - 1] = '\0'; } else { si->applet.ctx.stats.st_code = STAT_STATUS_EXCD; goto out; } /* Parse the value */ value = key; while (*value != '\0' && *value != '=') { value++; } if (*value == '=') { /* Ok, a value is found, we can mark the end of the key */ *value++ = '\0'; } if (!url_decode(key) || !url_decode(value)) break; /* Now we can check the key to see what to do */ if (!px && (strcmp(key, "b") == 0)) { if ((px = findproxy(value, PR_CAP_BE)) == NULL) { /* the backend name is unknown or ambiguous (duplicate names) */ si->applet.ctx.stats.st_code = STAT_STATUS_ERRP; goto out; } } else if (!action && (strcmp(key, "action") == 0)) { if (strcmp(value, "disable") == 0) { action = ST_ADM_ACTION_DISABLE; } else if (strcmp(value, "enable") == 0) { action = ST_ADM_ACTION_ENABLE; } else if (strcmp(value, "stop") == 0) { action = ST_ADM_ACTION_STOP; } else if (strcmp(value, "start") == 0) { action = ST_ADM_ACTION_START; } else if (strcmp(value, "shutdown") == 0) { action = ST_ADM_ACTION_SHUTDOWN; } else { si->applet.ctx.stats.st_code = STAT_STATUS_ERRP; goto out; } } else if (strcmp(key, "s") == 0) { if (!(px && action)) { /* * Indicates that we'll need to reprocess the parameters * as soon as backend and action are known */ if (!reprocess) { st_cur_param = cur_param; st_next_param = next_param; } reprocess = 1; } else if ((sv = findserver(px, value)) != NULL) { switch (action) { case ST_ADM_ACTION_DISABLE: if ((px->state != PR_STSTOPPED) && !(sv->state & SRV_MAINTAIN)) { /* Not already in maintenance, we can change the server state */ sv->state |= SRV_MAINTAIN; set_server_down(sv); altered_servers++; total_servers++; } break; case ST_ADM_ACTION_ENABLE: if ((px->state != PR_STSTOPPED) && (sv->state & SRV_MAINTAIN)) { /* Already in maintenance, we can change the server state */ set_server_up(sv); sv->health = sv->rise; /* up, but will fall down at first failure */ altered_servers++; total_servers++; } break; case ST_ADM_ACTION_STOP: case ST_ADM_ACTION_START: if (action == ST_ADM_ACTION_START) sv->uweight = sv->iweight; else sv->uweight = 0; if (px->lbprm.algo & BE_LB_PROP_DYN) { /* we must take care of not pushing the server to full throttle during slow starts */ if ((sv->state & SRV_WARMINGUP) && (px->lbprm.algo & BE_LB_PROP_DYN)) sv->eweight = (BE_WEIGHT_SCALE * (now.tv_sec - sv->last_change) + sv->slowstart - 1) / sv->slowstart; else sv->eweight = BE_WEIGHT_SCALE; sv->eweight *= sv->uweight; } else { sv->eweight = sv->uweight; } /* static LB algorithms are a bit harder to update */ if (px->lbprm.update_server_eweight) px->lbprm.update_server_eweight(sv); else if (sv->eweight) { if (px->lbprm.set_server_status_up) px->lbprm.set_server_status_up(sv); } else { if (px->lbprm.set_server_status_down) px->lbprm.set_server_status_down(sv); } altered_servers++; total_servers++; break; case ST_ADM_ACTION_SHUTDOWN: if (px->state != PR_STSTOPPED) { struct session *sess, *sess_bck; list_for_each_entry_safe(sess, sess_bck, &sv->actconns, by_srv) if (sess->srv_conn == sv) session_shutdown(sess, SN_ERR_KILLED); altered_servers++; total_servers++; } break; } } else { /* the server name is unknown or ambiguous (duplicate names) */ total_servers++; } } if (reprocess && px && action) { /* Now, we know the backend and the action chosen by the user. * We can safely restart from the first server parameter * to reprocess them */ cur_param = st_cur_param; next_param = st_next_param; reprocess = 0; goto reprocess_servers; } next_param = cur_param; } } if (total_servers == 0) { si->applet.ctx.stats.st_code = STAT_STATUS_NONE; } else if (altered_servers == 0) { si->applet.ctx.stats.st_code = STAT_STATUS_ERRP; } else if (altered_servers == total_servers) { si->applet.ctx.stats.st_code = STAT_STATUS_DONE; } else { si->applet.ctx.stats.st_code = STAT_STATUS_PART; } out: return 1; } /* This function checks whether we need to enable a POST analyser to parse a * stats request, and also registers the stats I/O handler. It returns zero * if it needs to come back again, otherwise non-zero if it finishes. In the * latter case, it also clears the request analysers. */ int http_handle_stats(struct session *s, struct channel *req) { struct stats_admin_rule *stats_admin_rule; struct stream_interface *si = s->rep->prod; struct http_txn *txn = &s->txn; struct http_msg *msg = &txn->req; struct uri_auth *uri = s->be->uri_auth; /* now check whether we have some admin rules for this request */ list_for_each_entry(stats_admin_rule, &s->be->uri_auth->admin_rules, list) { int ret = 1; if (stats_admin_rule->cond) { ret = acl_exec_cond(stats_admin_rule->cond, s->be, s, &s->txn, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (stats_admin_rule->cond->pol == ACL_COND_UNLESS) ret = !ret; } if (ret) { /* no rule, or the rule matches */ s->rep->prod->applet.ctx.stats.flags |= STAT_ADMIN; break; } } /* Was the status page requested with a POST ? */ if (unlikely(txn->meth == HTTP_METH_POST)) { if (si->applet.ctx.stats.flags & STAT_ADMIN) { if (msg->msg_state < HTTP_MSG_100_SENT) { /* If we have HTTP/1.1 and Expect: 100-continue, then we must * send an HTTP/1.1 100 Continue intermediate response. */ if (msg->flags & HTTP_MSGF_VER_11) { struct hdr_ctx ctx; ctx.idx = 0; /* Expect is allowed in 1.1, look for it */ if (http_find_header2("Expect", 6, req->buf->p, &txn->hdr_idx, &ctx) && unlikely(ctx.vlen == 12 && strncasecmp(ctx.line+ctx.val, "100-continue", 12) == 0)) { bo_inject(s->rep, http_100_chunk.str, http_100_chunk.len); } } msg->msg_state = HTTP_MSG_100_SENT; s->logs.tv_request = now; /* update the request timer to reflect full request */ } if (!http_process_req_stat_post(si, txn, req)) return 0; /* we need more data */ } else si->applet.ctx.stats.st_code = STAT_STATUS_DENY; /* We don't want to land on the posted stats page because a refresh will * repost the data. We don't want this to happen on accident so we redirect * the browse to the stats page with a GET. */ chunk_printf(&trash, "HTTP/1.1 303 See Other\r\n" "Cache-Control: no-cache\r\n" "Content-Type: text/plain\r\n" "Connection: close\r\n" "Location: %s;st=%s\r\n" "\r\n", uri->uri_prefix, ((si->applet.ctx.stats.st_code > STAT_STATUS_INIT) && (si->applet.ctx.stats.st_code < STAT_STATUS_SIZE) && stat_status_codes[si->applet.ctx.stats.st_code]) ? stat_status_codes[si->applet.ctx.stats.st_code] : stat_status_codes[STAT_STATUS_UNKN]); s->txn.status = 303; s->logs.tv_request = now; stream_int_retnclose(req->prod, &trash); s->target = &http_stats_applet.obj_type; /* just for logging the applet name */ if (s->fe == s->be) /* report it if the request was intercepted by the frontend */ s->fe->fe_counters.intercepted_req++; if (!(s->flags & SN_ERR_MASK)) // this is not really an error but it is s->flags |= SN_ERR_PRXCOND; // to mark that it comes from the proxy if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_R; req->analysers = 0; return 1; } /* OK, let's go on now */ chunk_printf(&trash, "HTTP/1.0 200 OK\r\n" "Cache-Control: no-cache\r\n" "Connection: close\r\n" "Content-Type: %s\r\n", (si->applet.ctx.stats.flags & STAT_FMT_HTML) ? "text/html" : "text/plain"); if (uri->refresh > 0 && !(si->applet.ctx.stats.flags & STAT_NO_REFRESH)) chunk_appendf(&trash, "Refresh: %d\r\n", uri->refresh); chunk_appendf(&trash, "\r\n"); s->txn.status = 200; s->logs.tv_request = now; if (s->fe == s->be) /* report it if the request was intercepted by the frontend */ s->fe->fe_counters.intercepted_req++; if (!(s->flags & SN_ERR_MASK)) // this is not really an error but it is s->flags |= SN_ERR_PRXCOND; // to mark that it comes from the proxy if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_R; if (s->txn.meth == HTTP_METH_HEAD) { /* that's all we return in case of HEAD request, so let's immediately close. */ stream_int_retnclose(req->prod, &trash); s->target = &http_stats_applet.obj_type; /* just for logging the applet name */ req->analysers = 0; return 1; } /* OK, push the response and hand over to the stats I/O handler */ bi_putchk(s->rep, &trash); s->task->nice = -32; /* small boost for HTTP statistics */ stream_int_register_handler(s->rep->prod, &http_stats_applet); s->target = s->rep->prod->conn->target; // for logging only s->rep->prod->conn->xprt_ctx = s; s->rep->prod->applet.st0 = s->rep->prod->applet.st1 = 0; req->analysers = 0; return 1; } /* Executes the http-request rules for session , proxy and * transaction . Returns the first rule that prevents further processing * of the request (auth, deny, ...) or NULL if it executed all rules or stopped * on an allow. It may set the TX_CLDENY on txn->flags if it encounters a deny * rule. */ static struct http_req_rule * http_req_get_intercept_rule(struct proxy *px, struct list *rules, struct session *s, struct http_txn *txn) { struct http_req_rule *rule; struct hdr_ctx ctx; list_for_each_entry(rule, rules, list) { if (rule->action >= HTTP_REQ_ACT_MAX) continue; /* check optional condition */ if (rule->cond) { int ret; ret = acl_exec_cond(rule->cond, px, s, txn, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (rule->cond->pol == ACL_COND_UNLESS) ret = !ret; if (!ret) /* condition not matched */ continue; } switch (rule->action) { case HTTP_REQ_ACT_ALLOW: return NULL; /* "allow" rules are OK */ case HTTP_REQ_ACT_DENY: txn->flags |= TX_CLDENY; return rule; case HTTP_REQ_ACT_TARPIT: txn->flags |= TX_CLTARPIT; return rule; case HTTP_REQ_ACT_AUTH: return rule; case HTTP_REQ_ACT_REDIR: return rule; case HTTP_REQ_ACT_SET_HDR: ctx.idx = 0; /* remove all occurrences of the header */ while (http_find_header2(rule->arg.hdr_add.name, rule->arg.hdr_add.name_len, txn->req.chn->buf->p, &txn->hdr_idx, &ctx)) { http_remove_header2(&txn->req, &txn->hdr_idx, &ctx); } /* now fall through to header addition */ case HTTP_REQ_ACT_ADD_HDR: chunk_printf(&trash, "%s: ", rule->arg.hdr_add.name); memcpy(trash.str, rule->arg.hdr_add.name, rule->arg.hdr_add.name_len); trash.len = rule->arg.hdr_add.name_len; trash.str[trash.len++] = ':'; trash.str[trash.len++] = ' '; trash.len += build_logline(s, trash.str + trash.len, trash.size - trash.len, &rule->arg.hdr_add.fmt); http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.str, trash.len); break; } } /* we reached the end of the rules, nothing to report */ return NULL; } /* Perform an HTTP redirect based on the information in . The function * returns non-zero on success, or zero in case of a, irrecoverable error such * as too large a request to build a valid response. */ static int http_apply_redirect_rule(struct redirect_rule *rule, struct session *s, struct http_txn *txn) { struct http_msg *msg = &txn->req; const char *msg_fmt; /* build redirect message */ switch(rule->code) { case 308: msg_fmt = HTTP_308; break; case 307: msg_fmt = HTTP_307; break; case 303: msg_fmt = HTTP_303; break; case 301: msg_fmt = HTTP_301; break; case 302: default: msg_fmt = HTTP_302; break; } if (unlikely(!chunk_strcpy(&trash, msg_fmt))) return 0; switch(rule->type) { case REDIRECT_TYPE_SCHEME: { const char *path; const char *host; struct hdr_ctx ctx; int pathlen; int hostlen; host = ""; hostlen = 0; ctx.idx = 0; if (http_find_header2("Host", 4, txn->req.chn->buf->p + txn->req.sol, &txn->hdr_idx, &ctx)) { host = ctx.line + ctx.val; hostlen = ctx.vlen; } path = http_get_path(txn); /* build message using path */ if (path) { pathlen = txn->req.sl.rq.u_l + (txn->req.chn->buf->p + txn->req.sl.rq.u) - path; if (rule->flags & REDIRECT_FLAG_DROP_QS) { int qs = 0; while (qs < pathlen) { if (path[qs] == '?') { pathlen = qs; break; } qs++; } } } else { path = "/"; pathlen = 1; } /* check if we can add scheme + "://" + host + path */ if (trash.len + rule->rdr_len + 3 + hostlen + pathlen > trash.size - 4) return 0; /* add scheme */ memcpy(trash.str + trash.len, rule->rdr_str, rule->rdr_len); trash.len += rule->rdr_len; /* add "://" */ memcpy(trash.str + trash.len, "://", 3); trash.len += 3; /* add host */ memcpy(trash.str + trash.len, host, hostlen); trash.len += hostlen; /* add path */ memcpy(trash.str + trash.len, path, pathlen); trash.len += pathlen; /* append a slash at the end of the location is needed and missing */ if (trash.len && trash.str[trash.len - 1] != '/' && (rule->flags & REDIRECT_FLAG_APPEND_SLASH)) { if (trash.len > trash.size - 5) return 0; trash.str[trash.len] = '/'; trash.len++; } break; } case REDIRECT_TYPE_PREFIX: { const char *path; int pathlen; path = http_get_path(txn); /* build message using path */ if (path) { pathlen = txn->req.sl.rq.u_l + (txn->req.chn->buf->p + txn->req.sl.rq.u) - path; if (rule->flags & REDIRECT_FLAG_DROP_QS) { int qs = 0; while (qs < pathlen) { if (path[qs] == '?') { pathlen = qs; break; } qs++; } } } else { path = "/"; pathlen = 1; } if (trash.len + rule->rdr_len + pathlen > trash.size - 4) return 0; /* add prefix. Note that if prefix == "/", we don't want to * add anything, otherwise it makes it hard for the user to * configure a self-redirection. */ if (rule->rdr_len != 1 || *rule->rdr_str != '/') { memcpy(trash.str + trash.len, rule->rdr_str, rule->rdr_len); trash.len += rule->rdr_len; } /* add path */ memcpy(trash.str + trash.len, path, pathlen); trash.len += pathlen; /* append a slash at the end of the location is needed and missing */ if (trash.len && trash.str[trash.len - 1] != '/' && (rule->flags & REDIRECT_FLAG_APPEND_SLASH)) { if (trash.len > trash.size - 5) return 0; trash.str[trash.len] = '/'; trash.len++; } break; } case REDIRECT_TYPE_LOCATION: default: if (trash.len + rule->rdr_len > trash.size - 4) return 0; /* add location */ memcpy(trash.str + trash.len, rule->rdr_str, rule->rdr_len); trash.len += rule->rdr_len; break; } if (rule->cookie_len) { memcpy(trash.str + trash.len, "\r\nSet-Cookie: ", 14); trash.len += 14; memcpy(trash.str + trash.len, rule->cookie_str, rule->cookie_len); trash.len += rule->cookie_len; memcpy(trash.str + trash.len, "\r\n", 2); trash.len += 2; } /* add end of headers and the keep-alive/close status. * We may choose to set keep-alive if the Location begins * with a slash, because the client will come back to the * same server. */ txn->status = rule->code; /* let's log the request time */ s->logs.tv_request = now; if (rule->rdr_len >= 1 && *rule->rdr_str == '/' && (msg->flags & HTTP_MSGF_XFER_LEN) && !(msg->flags & HTTP_MSGF_TE_CHNK) && !txn->req.body_len && ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL || (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL)) { /* keep-alive possible */ if (!(msg->flags & HTTP_MSGF_VER_11)) { if (unlikely(txn->flags & TX_USE_PX_CONN)) { memcpy(trash.str + trash.len, "\r\nProxy-Connection: keep-alive", 30); trash.len += 30; } else { memcpy(trash.str + trash.len, "\r\nConnection: keep-alive", 24); trash.len += 24; } } memcpy(trash.str + trash.len, "\r\n\r\n", 4); trash.len += 4; bo_inject(txn->rsp.chn, trash.str, trash.len); /* "eat" the request */ bi_fast_delete(txn->req.chn->buf, msg->sov); msg->sov = 0; txn->req.chn->analysers = AN_REQ_HTTP_XFER_BODY; s->rep->analysers = AN_RES_HTTP_XFER_BODY; txn->req.msg_state = HTTP_MSG_CLOSED; txn->rsp.msg_state = HTTP_MSG_DONE; } else { /* keep-alive not possible */ if (unlikely(txn->flags & TX_USE_PX_CONN)) { memcpy(trash.str + trash.len, "\r\nProxy-Connection: close\r\n\r\n", 29); trash.len += 29; } else { memcpy(trash.str + trash.len, "\r\nConnection: close\r\n\r\n", 23); trash.len += 23; } stream_int_retnclose(txn->req.chn->prod, &trash); txn->req.chn->analysers = 0; } if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_PRXCOND; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_R; return 1; } /* This stream analyser runs all HTTP request processing which is common to * frontends and backends, which means blocking ACLs, filters, connection-close, * reqadd, stats and redirects. This is performed for the designated proxy. * It returns 1 if the processing can continue on next analysers, or zero if it * either needs more data or wants to immediately abort the request (eg: deny, * error, ...). */ int http_process_req_common(struct session *s, struct channel *req, int an_bit, struct proxy *px) { struct http_txn *txn = &s->txn; struct http_msg *msg = &txn->req; struct acl_cond *cond; struct http_req_rule *http_req_last_rule = NULL; struct redirect_rule *rule; struct cond_wordlist *wl; int do_stats; if (unlikely(msg->msg_state < HTTP_MSG_BODY)) { /* we need more data */ channel_dont_connect(req); return 0; } req->analysers &= ~an_bit; req->analyse_exp = TICK_ETERNITY; DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n", now_ms, __FUNCTION__, s, req, req->rex, req->wex, req->flags, req->buf->i, req->analysers); /* first check whether we have some ACLs set to block this request */ list_for_each_entry(cond, &px->block_cond, list) { int ret = acl_exec_cond(cond, px, s, txn, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (cond->pol == ACL_COND_UNLESS) ret = !ret; if (ret) { txn->status = 403; /* let's log the request time */ s->logs.tv_request = now; stream_int_retnclose(req->prod, http_error_message(s, HTTP_ERR_403)); session_inc_http_err_ctr(s); goto return_prx_cond; } } /* just in case we have some per-backend tracking */ session_inc_be_http_req_ctr(s); /* evaluate http-request rules */ http_req_last_rule = http_req_get_intercept_rule(px, &px->http_req_rules, s, txn); /* evaluate stats http-request rules only if http-request is OK */ if (!http_req_last_rule) { do_stats = stats_check_uri(s->rep->prod, txn, px); if (do_stats) http_req_last_rule = http_req_get_intercept_rule(px, &px->uri_auth->http_req_rules, s, txn); } else do_stats = 0; /* return a 403 if either rule has blocked */ if (txn->flags & (TX_CLDENY|TX_CLTARPIT)) { if (txn->flags & TX_CLDENY) { txn->status = 403; s->logs.tv_request = now; stream_int_retnclose(req->prod, http_error_message(s, HTTP_ERR_403)); session_inc_http_err_ctr(s); s->fe->fe_counters.denied_req++; if (an_bit == AN_REQ_HTTP_PROCESS_BE) s->be->be_counters.denied_req++; if (s->listener->counters) s->listener->counters->denied_req++; goto return_prx_cond; } /* When a connection is tarpitted, we use the tarpit timeout, * which may be the same as the connect timeout if unspecified. * If unset, then set it to zero because we really want it to * eventually expire. We build the tarpit as an analyser. */ if (txn->flags & TX_CLTARPIT) { channel_erase(s->req); /* wipe the request out so that we can drop the connection early * if the client closes first. */ channel_dont_connect(req); req->analysers = 0; /* remove switching rules etc... */ req->analysers |= AN_REQ_HTTP_TARPIT; req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.tarpit); if (!req->analyse_exp) req->analyse_exp = tick_add(now_ms, 0); session_inc_http_err_ctr(s); s->fe->fe_counters.denied_req++; if (s->fe != s->be) s->be->be_counters.denied_req++; if (s->listener->counters) s->listener->counters->denied_req++; return 1; } } /* try headers filters */ if (px->req_exp != NULL) { if (apply_filters_to_request(s, req, px) < 0) goto return_bad_req; /* has the request been denied ? */ if (txn->flags & TX_CLDENY) { /* no need to go further */ txn->status = 403; /* let's log the request time */ s->logs.tv_request = now; stream_int_retnclose(req->prod, http_error_message(s, HTTP_ERR_403)); session_inc_http_err_ctr(s); goto return_prx_cond; } /* When a connection is tarpitted, we use the tarpit timeout, * which may be the same as the connect timeout if unspecified. * If unset, then set it to zero because we really want it to * eventually expire. We build the tarpit as an analyser. */ if (txn->flags & TX_CLTARPIT) { channel_erase(s->req); /* wipe the request out so that we can drop the connection early * if the client closes first. */ channel_dont_connect(req); req->analysers = 0; /* remove switching rules etc... */ req->analysers |= AN_REQ_HTTP_TARPIT; req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.tarpit); if (!req->analyse_exp) req->analyse_exp = tick_add(now_ms, 0); session_inc_http_err_ctr(s); return 1; } } /* Until set to anything else, the connection mode is set as TUNNEL. It will * only change if both the request and the config reference something else. * Option httpclose by itself does not set a mode, it remains a tunnel mode * in which headers are mangled. However, if another mode is set, it will * affect it (eg: server-close/keep-alive + httpclose = close). Note that we * avoid to redo the same work if FE and BE have the same settings (common). * The method consists in checking if options changed between the two calls * (implying that either one is non-null, or one of them is non-null and we * are there for the first time. */ if ((!(txn->flags & TX_HDR_CONN_PRS) && (s->fe->options & (PR_O_KEEPALIVE|PR_O_SERVER_CLO|PR_O_HTTP_CLOSE|PR_O_FORCE_CLO))) || ((s->fe->options & (PR_O_KEEPALIVE|PR_O_SERVER_CLO|PR_O_HTTP_CLOSE|PR_O_FORCE_CLO)) != (s->be->options & (PR_O_KEEPALIVE|PR_O_SERVER_CLO|PR_O_HTTP_CLOSE|PR_O_FORCE_CLO)))) { int tmp = TX_CON_WANT_TUN; if ((s->fe->options|s->be->options) & PR_O_KEEPALIVE || ((s->fe->options2|s->be->options2) & PR_O2_FAKE_KA)) tmp = TX_CON_WANT_KAL; if ((s->fe->options|s->be->options) & PR_O_SERVER_CLO) tmp = TX_CON_WANT_SCL; if ((s->fe->options|s->be->options) & PR_O_FORCE_CLO) tmp = TX_CON_WANT_CLO; if ((txn->flags & TX_CON_WANT_MSK) < tmp) txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | tmp; if (!(txn->flags & TX_HDR_CONN_PRS)) { /* parse the Connection header and possibly clean it */ int to_del = 0; if ((msg->flags & HTTP_MSGF_VER_11) || ((txn->flags & TX_CON_WANT_MSK) >= TX_CON_WANT_SCL && !((s->fe->options2|s->be->options2) & PR_O2_FAKE_KA))) to_del |= 2; /* remove "keep-alive" */ if (!(msg->flags & HTTP_MSGF_VER_11)) to_del |= 1; /* remove "close" */ http_parse_connection_header(txn, msg, to_del); } /* check if client or config asks for explicit close in KAL/SCL */ if (((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL || (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) && ((txn->flags & TX_HDR_CONN_CLO) || /* "connection: close" */ (!(msg->flags & HTTP_MSGF_VER_11) && !(txn->flags & TX_HDR_CONN_KAL)) || /* no "connection: k-a" in 1.0 */ ((s->fe->options|s->be->options) & PR_O_HTTP_CLOSE) || /* httpclose+any = forceclose */ !(msg->flags & HTTP_MSGF_XFER_LEN) || /* no length known => close */ s->fe->state == PR_STSTOPPED)) /* frontend is stopping */ txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_CLO; } /* we can be blocked here because the request needs to be authenticated, * either to pass or to access stats. */ if (http_req_last_rule && http_req_last_rule->action == HTTP_REQ_ACT_AUTH) { char *realm = http_req_last_rule->arg.auth.realm; if (!realm) realm = do_stats?STATS_DEFAULT_REALM:px->id; chunk_printf(&trash, (txn->flags & TX_USE_PX_CONN) ? HTTP_407_fmt : HTTP_401_fmt, realm); txn->status = 401; stream_int_retnclose(req->prod, &trash); /* on 401 we still count one error, because normal browsing * won't significantly increase the counter but brute force * attempts will. */ session_inc_http_err_ctr(s); goto return_prx_cond; } /* add request headers from the rule sets in the same order */ list_for_each_entry(wl, &px->req_add, list) { if (wl->cond) { int ret = acl_exec_cond(wl->cond, px, s, txn, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (((struct acl_cond *)wl->cond)->pol == ACL_COND_UNLESS) ret = !ret; if (!ret) continue; } if (unlikely(http_header_add_tail(&txn->req, &txn->hdr_idx, wl->s) < 0)) goto return_bad_req; } if (http_req_last_rule && http_req_last_rule->action == HTTP_REQ_ACT_REDIR) { if (!http_apply_redirect_rule(http_req_last_rule->arg.redir, s, txn)) goto return_bad_req; req->analyse_exp = TICK_ETERNITY; return 1; } if (unlikely(do_stats)) { /* process the stats request now */ if (!http_handle_stats(s, req)) { /* we need more data, let's come back here later */ req->analysers |= an_bit; channel_dont_connect(req); } return 1; } /* check whether we have some ACLs set to redirect this request */ list_for_each_entry(rule, &px->redirect_rules, list) { if (rule->cond) { int ret; ret = acl_exec_cond(rule->cond, px, s, txn, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (rule->cond->pol == ACL_COND_UNLESS) ret = !ret; if (!ret) continue; } if (!http_apply_redirect_rule(rule, s, txn)) goto return_bad_req; req->analyse_exp = TICK_ETERNITY; return 1; } /* POST requests may be accompanied with an "Expect: 100-Continue" header. * If this happens, then the data will not come immediately, so we must * send all what we have without waiting. Note that due to the small gain * in waiting for the body of the request, it's easier to simply put the * CF_SEND_DONTWAIT flag any time. It's a one-shot flag so it will remove * itself once used. */ req->flags |= CF_SEND_DONTWAIT; /* that's OK for us now, let's move on to next analysers */ return 1; return_bad_req: /* We centralize bad requests processing here */ if (unlikely(msg->msg_state == HTTP_MSG_ERROR) || msg->err_pos >= 0) { /* we detected a parsing error. We want to archive this request * in the dedicated proxy area for later troubleshooting. */ http_capture_bad_message(&s->fe->invalid_req, s, msg, msg->msg_state, s->fe); } txn->req.msg_state = HTTP_MSG_ERROR; txn->status = 400; stream_int_retnclose(req->prod, http_error_message(s, HTTP_ERR_400)); s->fe->fe_counters.failed_req++; if (s->listener->counters) s->listener->counters->failed_req++; return_prx_cond: if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_PRXCOND; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_R; req->analysers = 0; req->analyse_exp = TICK_ETERNITY; return 0; } /* This function performs all the processing enabled for the current request. * It returns 1 if the processing can continue on next analysers, or zero if it * needs more data, encounters an error, or wants to immediately abort the * request. It relies on buffers flags, and updates s->req->analysers. */ int http_process_request(struct session *s, struct channel *req, int an_bit) { struct http_txn *txn = &s->txn; struct http_msg *msg = &txn->req; if (unlikely(msg->msg_state < HTTP_MSG_BODY)) { /* we need more data */ channel_dont_connect(req); return 0; } DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n", now_ms, __FUNCTION__, s, req, req->rex, req->wex, req->flags, req->buf->i, req->analysers); if (s->fe->comp || s->be->comp) select_compression_request_header(s, req->buf); /* * Right now, we know that we have processed the entire headers * and that unwanted requests have been filtered out. We can do * whatever we want with the remaining request. Also, now we * may have separate values for ->fe, ->be. */ /* * If HTTP PROXY is set we simply get remote server address * parsing incoming request. */ if ((s->be->options & PR_O_HTTP_PROXY) && !(s->flags & SN_ADDR_SET)) { url2sa(req->buf->p + msg->sl.rq.u, msg->sl.rq.u_l, &s->req->cons->conn->addr.to); } /* * 7: Now we can work with the cookies. * Note that doing so might move headers in the request, but * the fields will stay coherent and the URI will not move. * This should only be performed in the backend. */ if ((s->be->cookie_name || s->be->appsession_name || s->fe->capture_name) && !(txn->flags & (TX_CLDENY|TX_CLTARPIT))) manage_client_side_cookies(s, req); /* * 8: the appsession cookie was looked up very early in 1.2, * so let's do the same now. */ /* It needs to look into the URI unless persistence must be ignored */ if ((txn->sessid == NULL) && s->be->appsession_name && !(s->flags & SN_IGNORE_PRST)) { get_srv_from_appsession(s, req->buf->p + msg->sl.rq.u, msg->sl.rq.u_l); } /* add unique-id if "header-unique-id" is specified */ if (!LIST_ISEMPTY(&s->fe->format_unique_id)) build_logline(s, s->unique_id, UNIQUEID_LEN, &s->fe->format_unique_id); if (s->fe->header_unique_id && s->unique_id) { chunk_printf(&trash, "%s: %s", s->fe->header_unique_id, s->unique_id); if (trash.len < 0) goto return_bad_req; if (unlikely(http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.str, trash.len) < 0)) goto return_bad_req; } /* * 9: add X-Forwarded-For if either the frontend or the backend * asks for it. */ if ((s->fe->options | s->be->options) & PR_O_FWDFOR) { struct hdr_ctx ctx = { .idx = 0 }; if (!((s->fe->options | s->be->options) & PR_O_FF_ALWAYS) && http_find_header2(s->be->fwdfor_hdr_len ? s->be->fwdfor_hdr_name : s->fe->fwdfor_hdr_name, s->be->fwdfor_hdr_len ? s->be->fwdfor_hdr_len : s->fe->fwdfor_hdr_len, req->buf->p, &txn->hdr_idx, &ctx)) { /* The header is set to be added only if none is present * and we found it, so don't do anything. */ } else if (s->req->prod->conn->addr.from.ss_family == AF_INET) { /* Add an X-Forwarded-For header unless the source IP is * in the 'except' network range. */ if ((!s->fe->except_mask.s_addr || (((struct sockaddr_in *)&s->req->prod->conn->addr.from)->sin_addr.s_addr & s->fe->except_mask.s_addr) != s->fe->except_net.s_addr) && (!s->be->except_mask.s_addr || (((struct sockaddr_in *)&s->req->prod->conn->addr.from)->sin_addr.s_addr & s->be->except_mask.s_addr) != s->be->except_net.s_addr)) { int len; unsigned char *pn; pn = (unsigned char *)&((struct sockaddr_in *)&s->req->prod->conn->addr.from)->sin_addr; /* Note: we rely on the backend to get the header name to be used for * x-forwarded-for, because the header is really meant for the backends. * However, if the backend did not specify any option, we have to rely * on the frontend's header name. */ if (s->be->fwdfor_hdr_len) { len = s->be->fwdfor_hdr_len; memcpy(trash.str, s->be->fwdfor_hdr_name, len); } else { len = s->fe->fwdfor_hdr_len; memcpy(trash.str, s->fe->fwdfor_hdr_name, len); } len += sprintf(trash.str + len, ": %d.%d.%d.%d", pn[0], pn[1], pn[2], pn[3]); if (unlikely(http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.str, len) < 0)) goto return_bad_req; } } else if (s->req->prod->conn->addr.from.ss_family == AF_INET6) { /* FIXME: for the sake of completeness, we should also support * 'except' here, although it is mostly useless in this case. */ int len; char pn[INET6_ADDRSTRLEN]; inet_ntop(AF_INET6, (const void *)&((struct sockaddr_in6 *)(&s->req->prod->conn->addr.from))->sin6_addr, pn, sizeof(pn)); /* Note: we rely on the backend to get the header name to be used for * x-forwarded-for, because the header is really meant for the backends. * However, if the backend did not specify any option, we have to rely * on the frontend's header name. */ if (s->be->fwdfor_hdr_len) { len = s->be->fwdfor_hdr_len; memcpy(trash.str, s->be->fwdfor_hdr_name, len); } else { len = s->fe->fwdfor_hdr_len; memcpy(trash.str, s->fe->fwdfor_hdr_name, len); } len += sprintf(trash.str + len, ": %s", pn); if (unlikely(http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.str, len) < 0)) goto return_bad_req; } } /* * 10: add X-Original-To if either the frontend or the backend * asks for it. */ if ((s->fe->options | s->be->options) & PR_O_ORGTO) { /* FIXME: don't know if IPv6 can handle that case too. */ if (s->req->prod->conn->addr.from.ss_family == AF_INET) { /* Add an X-Original-To header unless the destination IP is * in the 'except' network range. */ conn_get_to_addr(s->req->prod->conn); if (s->req->prod->conn->addr.to.ss_family == AF_INET && ((!s->fe->except_mask_to.s_addr || (((struct sockaddr_in *)&s->req->prod->conn->addr.to)->sin_addr.s_addr & s->fe->except_mask_to.s_addr) != s->fe->except_to.s_addr) && (!s->be->except_mask_to.s_addr || (((struct sockaddr_in *)&s->req->prod->conn->addr.to)->sin_addr.s_addr & s->be->except_mask_to.s_addr) != s->be->except_to.s_addr))) { int len; unsigned char *pn; pn = (unsigned char *)&((struct sockaddr_in *)&s->req->prod->conn->addr.to)->sin_addr; /* Note: we rely on the backend to get the header name to be used for * x-original-to, because the header is really meant for the backends. * However, if the backend did not specify any option, we have to rely * on the frontend's header name. */ if (s->be->orgto_hdr_len) { len = s->be->orgto_hdr_len; memcpy(trash.str, s->be->orgto_hdr_name, len); } else { len = s->fe->orgto_hdr_len; memcpy(trash.str, s->fe->orgto_hdr_name, len); } len += sprintf(trash.str + len, ": %d.%d.%d.%d", pn[0], pn[1], pn[2], pn[3]); if (unlikely(http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.str, len) < 0)) goto return_bad_req; } } } /* 11: add "Connection: close" or "Connection: keep-alive" if needed and not yet set. * If an "Upgrade" token is found, the header is left untouched in order not to have * to deal with some servers bugs : some of them fail an Upgrade if anything but * "Upgrade" is present in the Connection header. */ if (!(txn->flags & TX_HDR_CONN_UPG) && (((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN) || ((s->fe->options|s->be->options) & PR_O_HTTP_CLOSE))) { unsigned int want_flags = 0; if (msg->flags & HTTP_MSGF_VER_11) { if (((txn->flags & TX_CON_WANT_MSK) >= TX_CON_WANT_SCL || ((s->fe->options|s->be->options) & PR_O_HTTP_CLOSE)) && !((s->fe->options2|s->be->options2) & PR_O2_FAKE_KA)) want_flags |= TX_CON_CLO_SET; } else { if (((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL && !((s->fe->options|s->be->options) & PR_O_HTTP_CLOSE)) || ((s->fe->options2|s->be->options2) & PR_O2_FAKE_KA)) want_flags |= TX_CON_KAL_SET; } if (want_flags != (txn->flags & (TX_CON_CLO_SET|TX_CON_KAL_SET))) http_change_connection_header(txn, msg, want_flags); } /* If we have no server assigned yet and we're balancing on url_param * with a POST request, we may be interested in checking the body for * that parameter. This will be done in another analyser. */ if (!(s->flags & (SN_ASSIGNED|SN_DIRECT)) && s->txn.meth == HTTP_METH_POST && s->be->url_param_name != NULL && s->be->url_param_post_limit != 0 && (msg->flags & (HTTP_MSGF_CNT_LEN|HTTP_MSGF_TE_CHNK))) { channel_dont_connect(req); req->analysers |= AN_REQ_HTTP_BODY; } if (msg->flags & HTTP_MSGF_XFER_LEN) { req->analysers |= AN_REQ_HTTP_XFER_BODY; #ifdef TCP_QUICKACK /* We expect some data from the client. Unless we know for sure * we already have a full request, we have to re-enable quick-ack * in case we previously disabled it, otherwise we might cause * the client to delay further data. */ if ((s->listener->options & LI_O_NOQUICKACK) && ((msg->flags & HTTP_MSGF_TE_CHNK) || (msg->body_len > req->buf->i - txn->req.eoh - 2))) setsockopt(s->si[0].conn->t.sock.fd, IPPROTO_TCP, TCP_QUICKACK, &one, sizeof(one)); #endif } /************************************************************* * OK, that's finished for the headers. We have done what we * * could. Let's switch to the DATA state. * ************************************************************/ req->analyse_exp = TICK_ETERNITY; req->analysers &= ~an_bit; /* if the server closes the connection, we want to immediately react * and close the socket to save packets and syscalls. */ if (!(req->analysers & AN_REQ_HTTP_XFER_BODY)) req->cons->flags |= SI_FL_NOHALF; s->logs.tv_request = now; /* OK let's go on with the BODY now */ return 1; return_bad_req: /* let's centralize all bad requests */ if (unlikely(msg->msg_state == HTTP_MSG_ERROR) || msg->err_pos >= 0) { /* we detected a parsing error. We want to archive this request * in the dedicated proxy area for later troubleshooting. */ http_capture_bad_message(&s->fe->invalid_req, s, msg, msg->msg_state, s->fe); } txn->req.msg_state = HTTP_MSG_ERROR; txn->status = 400; req->analysers = 0; stream_int_retnclose(req->prod, http_error_message(s, HTTP_ERR_400)); s->fe->fe_counters.failed_req++; if (s->listener->counters) s->listener->counters->failed_req++; if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_PRXCOND; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_R; return 0; } /* This function is an analyser which processes the HTTP tarpit. It always * returns zero, at the beginning because it prevents any other processing * from occurring, and at the end because it terminates the request. */ int http_process_tarpit(struct session *s, struct channel *req, int an_bit) { struct http_txn *txn = &s->txn; /* This connection is being tarpitted. The CLIENT side has * already set the connect expiration date to the right * timeout. We just have to check that the client is still * there and that the timeout has not expired. */ channel_dont_connect(req); if ((req->flags & (CF_SHUTR|CF_READ_ERROR)) == 0 && !tick_is_expired(req->analyse_exp, now_ms)) return 0; /* We will set the queue timer to the time spent, just for * logging purposes. We fake a 500 server error, so that the * attacker will not suspect his connection has been tarpitted. * It will not cause trouble to the logs because we can exclude * the tarpitted connections by filtering on the 'PT' status flags. */ s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); txn->status = 500; if (!(req->flags & CF_READ_ERROR)) stream_int_retnclose(req->prod, http_error_message(s, HTTP_ERR_500)); req->analysers = 0; req->analyse_exp = TICK_ETERNITY; s->fe->fe_counters.failed_req++; if (s->listener->counters) s->listener->counters->failed_req++; if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_PRXCOND; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_T; return 0; } /* This function is an analyser which processes the HTTP request body. It looks * for parameters to be used for the load balancing algorithm (url_param). It * must only be called after the standard HTTP request processing has occurred, * because it expects the request to be parsed. It returns zero if it needs to * read more data, or 1 once it has completed its analysis. */ int http_process_request_body(struct session *s, struct channel *req, int an_bit) { struct http_txn *txn = &s->txn; struct http_msg *msg = &s->txn.req; long long limit = s->be->url_param_post_limit; /* We have to parse the HTTP request body to find any required data. * "balance url_param check_post" should have been the only way to get * into this. We were brought here after HTTP header analysis, so all * related structures are ready. */ if (unlikely(msg->msg_state < HTTP_MSG_BODY)) goto missing_data; if (msg->msg_state < HTTP_MSG_100_SENT) { /* If we have HTTP/1.1 and Expect: 100-continue, then we must * send an HTTP/1.1 100 Continue intermediate response. */ if (msg->flags & HTTP_MSGF_VER_11) { struct hdr_ctx ctx; ctx.idx = 0; /* Expect is allowed in 1.1, look for it */ if (http_find_header2("Expect", 6, req->buf->p, &txn->hdr_idx, &ctx) && unlikely(ctx.vlen == 12 && strncasecmp(ctx.line+ctx.val, "100-continue", 12) == 0)) { bo_inject(s->rep, http_100_chunk.str, http_100_chunk.len); } } msg->msg_state = HTTP_MSG_100_SENT; } if (msg->msg_state < HTTP_MSG_CHUNK_SIZE) { /* we have msg->sov which points to the first byte of message body. * req->buf->p still points to the beginning of the message and msg->sol * is still null. We must save the body in msg->next because it * survives buffer re-alignments. */ msg->next = msg->sov; if (msg->flags & HTTP_MSGF_TE_CHNK) msg->msg_state = HTTP_MSG_CHUNK_SIZE; else msg->msg_state = HTTP_MSG_DATA; } if (msg->msg_state == HTTP_MSG_CHUNK_SIZE) { /* read the chunk size and assign it to ->chunk_len, then * set ->sov and ->next to point to the body and switch to DATA or * TRAILERS state. */ int ret = http_parse_chunk_size(msg); if (!ret) goto missing_data; else if (ret < 0) { session_inc_http_err_ctr(s); goto return_bad_req; } } /* Now we're in HTTP_MSG_DATA or HTTP_MSG_TRAILERS state. * We have the first data byte is in msg->sov. We're waiting for at * least bytes after msg->sov. */ if (msg->body_len < limit) limit = msg->body_len; if (req->buf->i - msg->sov >= limit) /* we have enough bytes now */ goto http_end; missing_data: /* we get here if we need to wait for more data */ if (buffer_full(req->buf, global.tune.maxrewrite)) { session_inc_http_err_ctr(s); goto return_bad_req; } if ((req->flags & CF_READ_TIMEOUT) || tick_is_expired(req->analyse_exp, now_ms)) { txn->status = 408; stream_int_retnclose(req->prod, http_error_message(s, HTTP_ERR_408)); if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_CLITO; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_D; goto return_err_msg; } /* we get here if we need to wait for more data */ if (!(req->flags & (CF_SHUTR | CF_READ_ERROR)) && !buffer_full(req->buf, global.tune.maxrewrite)) { /* Not enough data. We'll re-use the http-request * timeout here. Ideally, we should set the timeout * relative to the accept() date. We just set the * request timeout once at the beginning of the * request. */ channel_dont_connect(req); if (!tick_isset(req->analyse_exp)) req->analyse_exp = tick_add_ifset(now_ms, s->be->timeout.httpreq); return 0; } http_end: /* The situation will not evolve, so let's give up on the analysis. */ s->logs.tv_request = now; /* update the request timer to reflect full request */ req->analysers &= ~an_bit; req->analyse_exp = TICK_ETERNITY; return 1; return_bad_req: /* let's centralize all bad requests */ txn->req.msg_state = HTTP_MSG_ERROR; txn->status = 400; stream_int_retnclose(req->prod, http_error_message(s, HTTP_ERR_400)); if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_PRXCOND; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_R; return_err_msg: req->analysers = 0; s->fe->fe_counters.failed_req++; if (s->listener->counters) s->listener->counters->failed_req++; return 0; } /* send a server's name with an outgoing request over an established connection. * Note: this function is designed to be called once the request has been scheduled * for being forwarded. This is the reason why it rewinds the buffer before * proceeding. */ int http_send_name_header(struct http_txn *txn, struct proxy* be, const char* srv_name) { struct hdr_ctx ctx; char *hdr_name = be->server_id_hdr_name; int hdr_name_len = be->server_id_hdr_len; struct channel *chn = txn->req.chn; char *hdr_val; unsigned int old_o, old_i; ctx.idx = 0; old_o = chn->buf->o; if (old_o) { /* The request was already skipped, let's restore it */ b_rew(chn->buf, old_o); } old_i = chn->buf->i; while (http_find_header2(hdr_name, hdr_name_len, txn->req.chn->buf->p, &txn->hdr_idx, &ctx)) { /* remove any existing values from the header */ http_remove_header2(&txn->req, &txn->hdr_idx, &ctx); } /* Add the new header requested with the server value */ hdr_val = trash.str; memcpy(hdr_val, hdr_name, hdr_name_len); hdr_val += hdr_name_len; *hdr_val++ = ':'; *hdr_val++ = ' '; hdr_val += strlcpy2(hdr_val, srv_name, trash.str + trash.size - hdr_val); http_header_add_tail2(&txn->req, &txn->hdr_idx, trash.str, hdr_val - trash.str); if (old_o) { /* If this was a forwarded request, we must readjust the amount of * data to be forwarded in order to take into account the size * variations. Note that if the request was already scheduled for * forwarding, it had its req->sol pointing to the body, which * must then be updated too. */ txn->req.sol += chn->buf->i - old_i; b_adv(chn->buf, old_o + chn->buf->i - old_i); } return 0; } /* Terminate current transaction and prepare a new one. This is very tricky * right now but it works. */ void http_end_txn_clean_session(struct session *s) { /* FIXME: We need a more portable way of releasing a backend's and a * server's connections. We need a safer way to reinitialize buffer * flags. We also need a more accurate method for computing per-request * data. */ http_silent_debug(__LINE__, s); s->req->cons->flags |= SI_FL_NOLINGER | SI_FL_NOHALF; si_shutr(s->req->cons); si_shutw(s->req->cons); http_silent_debug(__LINE__, s); if (s->flags & SN_BE_ASSIGNED) { s->be->beconn--; if (unlikely(s->srv_conn)) sess_change_server(s, NULL); } s->logs.t_close = tv_ms_elapsed(&s->logs.tv_accept, &now); session_process_counters(s); session_stop_backend_counters(s); if (s->txn.status) { int n; n = s->txn.status / 100; if (n < 1 || n > 5) n = 0; if (s->fe->mode == PR_MODE_HTTP) { s->fe->fe_counters.p.http.rsp[n]++; if (s->comp_algo && (s->flags & SN_COMP_READY)) s->fe->fe_counters.p.http.comp_rsp++; } if ((s->flags & SN_BE_ASSIGNED) && (s->be->mode == PR_MODE_HTTP)) { s->be->be_counters.p.http.rsp[n]++; s->be->be_counters.p.http.cum_req++; if (s->comp_algo && (s->flags & SN_COMP_READY)) s->be->be_counters.p.http.comp_rsp++; } } /* don't count other requests' data */ s->logs.bytes_in -= s->req->buf->i; s->logs.bytes_out -= s->rep->buf->i; /* let's do a final log if we need it */ if (!LIST_ISEMPTY(&s->fe->logformat) && s->logs.logwait && !(s->flags & SN_MONITOR) && (!(s->fe->options & PR_O_NULLNOLOG) || s->req->total)) { s->do_log(s); } s->logs.accept_date = date; /* user-visible date for logging */ s->logs.tv_accept = now; /* corrected date for internal use */ tv_zero(&s->logs.tv_request); s->logs.t_queue = -1; s->logs.t_connect = -1; s->logs.t_data = -1; s->logs.t_close = 0; s->logs.prx_queue_size = 0; /* we get the number of pending conns before us */ s->logs.srv_queue_size = 0; /* we will get this number soon */ s->logs.bytes_in = s->req->total = s->req->buf->i; s->logs.bytes_out = s->rep->total = s->rep->buf->i; if (s->pend_pos) pendconn_free(s->pend_pos); if (objt_server(s->target)) { if (s->flags & SN_CURR_SESS) { s->flags &= ~SN_CURR_SESS; objt_server(s->target)->cur_sess--; } if (may_dequeue_tasks(objt_server(s->target), s->be)) process_srv_queue(objt_server(s->target)); } s->target = NULL; s->req->cons->state = s->req->cons->prev_state = SI_ST_INI; s->req->cons->conn->t.sock.fd = -1; /* just to help with debugging */ s->req->cons->conn->flags = CO_FL_NONE; s->req->cons->conn->err_code = CO_ER_NONE; s->req->cons->err_type = SI_ET_NONE; s->req->cons->conn_retries = 0; /* used for logging too */ s->req->cons->err_loc = NULL; s->req->cons->exp = TICK_ETERNITY; s->req->cons->flags = SI_FL_NONE; s->req->flags &= ~(CF_SHUTW|CF_SHUTW_NOW|CF_AUTO_CONNECT|CF_WRITE_ERROR|CF_STREAMER|CF_STREAMER_FAST|CF_NEVER_WAIT); s->rep->flags &= ~(CF_SHUTR|CF_SHUTR_NOW|CF_READ_ATTACHED|CF_READ_ERROR|CF_READ_NOEXP|CF_STREAMER|CF_STREAMER_FAST|CF_WRITE_PARTIAL|CF_NEVER_WAIT); s->flags &= ~(SN_DIRECT|SN_ASSIGNED|SN_ADDR_SET|SN_BE_ASSIGNED|SN_FORCE_PRST|SN_IGNORE_PRST); s->flags &= ~(SN_CURR_SESS|SN_REDIRECTABLE); if (s->flags & SN_COMP_READY) s->comp_algo->end(&s->comp_ctx); s->comp_algo = NULL; s->flags &= ~SN_COMP_READY; s->txn.meth = 0; http_reset_txn(s); s->txn.flags |= TX_NOT_FIRST | TX_WAIT_NEXT_RQ; if (s->fe->options2 & PR_O2_INDEPSTR) s->req->cons->flags |= SI_FL_INDEP_STR; if (s->fe->options2 & PR_O2_NODELAY) { s->req->flags |= CF_NEVER_WAIT; s->rep->flags |= CF_NEVER_WAIT; } /* if the request buffer is not empty, it means we're * about to process another request, so send pending * data with MSG_MORE to merge TCP packets when possible. * Just don't do this if the buffer is close to be full, * because the request will wait for it to flush a little * bit before proceeding. */ if (s->req->buf->i) { if (s->rep->buf->o && !buffer_full(s->rep->buf, global.tune.maxrewrite) && bi_end(s->rep->buf) <= s->rep->buf->data + s->rep->buf->size - global.tune.maxrewrite) s->rep->flags |= CF_EXPECT_MORE; } /* we're removing the analysers, we MUST re-enable events detection */ channel_auto_read(s->req); channel_auto_close(s->req); channel_auto_read(s->rep); channel_auto_close(s->rep); s->req->analysers = s->listener->analysers; s->rep->analysers = 0; http_silent_debug(__LINE__, s); } /* This function updates the request state machine according to the response * state machine and buffer flags. It returns 1 if it changes anything (flag * or state), otherwise zero. It ignores any state before HTTP_MSG_DONE, as * it is only used to find when a request/response couple is complete. Both * this function and its equivalent should loop until both return zero. It * can set its own state to DONE, CLOSING, CLOSED, TUNNEL, ERROR. */ int http_sync_req_state(struct session *s) { struct channel *chn = s->req; struct http_txn *txn = &s->txn; unsigned int old_flags = chn->flags; unsigned int old_state = txn->req.msg_state; http_silent_debug(__LINE__, s); if (unlikely(txn->req.msg_state < HTTP_MSG_BODY)) return 0; if (txn->req.msg_state == HTTP_MSG_DONE) { /* No need to read anymore, the request was completely parsed. * We can shut the read side unless we want to abort_on_close, * or we have a POST request. The issue with POST requests is * that some browsers still send a CRLF after the request, and * this CRLF must be read so that it does not remain in the kernel * buffers, otherwise a close could cause an RST on some systems * (eg: Linux). */ if (!(s->be->options & PR_O_ABRT_CLOSE) && txn->meth != HTTP_METH_POST) channel_dont_read(chn); /* if the server closes the connection, we want to immediately react * and close the socket to save packets and syscalls. */ chn->cons->flags |= SI_FL_NOHALF; if (txn->rsp.msg_state == HTTP_MSG_ERROR) goto wait_other_side; if (txn->rsp.msg_state < HTTP_MSG_DONE) { /* The server has not finished to respond, so we * don't want to move in order not to upset it. */ goto wait_other_side; } if (txn->rsp.msg_state == HTTP_MSG_TUNNEL) { /* if any side switches to tunnel mode, the other one does too */ channel_auto_read(chn); txn->req.msg_state = HTTP_MSG_TUNNEL; chn->flags |= CF_NEVER_WAIT; goto wait_other_side; } /* When we get here, it means that both the request and the * response have finished receiving. Depending on the connection * mode, we'll have to wait for the last bytes to leave in either * direction, and sometimes for a close to be effective. */ if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) { /* Server-close mode : queue a connection close to the server */ if (!(chn->flags & (CF_SHUTW|CF_SHUTW_NOW))) channel_shutw_now(chn); } else if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_CLO) { /* Option forceclose is set, or either side wants to close, * let's enforce it now that we're not expecting any new * data to come. The caller knows the session is complete * once both states are CLOSED. */ if (!(chn->flags & (CF_SHUTW|CF_SHUTW_NOW))) { channel_shutr_now(chn); channel_shutw_now(chn); } } else { /* The last possible modes are keep-alive and tunnel. Since tunnel * mode does not set the body analyser, we can't reach this place * in tunnel mode, so we're left with keep-alive only. * This mode is currently not implemented, we switch to tunnel mode. */ channel_auto_read(chn); txn->req.msg_state = HTTP_MSG_TUNNEL; chn->flags |= CF_NEVER_WAIT; } if (chn->flags & (CF_SHUTW|CF_SHUTW_NOW)) { /* if we've just closed an output, let's switch */ chn->cons->flags |= SI_FL_NOLINGER; /* we want to close ASAP */ if (!channel_is_empty(chn)) { txn->req.msg_state = HTTP_MSG_CLOSING; goto http_msg_closing; } else { txn->req.msg_state = HTTP_MSG_CLOSED; goto http_msg_closed; } } goto wait_other_side; } if (txn->req.msg_state == HTTP_MSG_CLOSING) { http_msg_closing: /* nothing else to forward, just waiting for the output buffer * to be empty and for the shutw_now to take effect. */ if (channel_is_empty(chn)) { txn->req.msg_state = HTTP_MSG_CLOSED; goto http_msg_closed; } else if (chn->flags & CF_SHUTW) { txn->req.msg_state = HTTP_MSG_ERROR; goto wait_other_side; } } if (txn->req.msg_state == HTTP_MSG_CLOSED) { http_msg_closed: goto wait_other_side; } wait_other_side: http_silent_debug(__LINE__, s); return txn->req.msg_state != old_state || chn->flags != old_flags; } /* This function updates the response state machine according to the request * state machine and buffer flags. It returns 1 if it changes anything (flag * or state), otherwise zero. It ignores any state before HTTP_MSG_DONE, as * it is only used to find when a request/response couple is complete. Both * this function and its equivalent should loop until both return zero. It * can set its own state to DONE, CLOSING, CLOSED, TUNNEL, ERROR. */ int http_sync_res_state(struct session *s) { struct channel *chn = s->rep; struct http_txn *txn = &s->txn; unsigned int old_flags = chn->flags; unsigned int old_state = txn->rsp.msg_state; http_silent_debug(__LINE__, s); if (unlikely(txn->rsp.msg_state < HTTP_MSG_BODY)) return 0; if (txn->rsp.msg_state == HTTP_MSG_DONE) { /* In theory, we don't need to read anymore, but we must * still monitor the server connection for a possible close * while the request is being uploaded, so we don't disable * reading. */ /* channel_dont_read(chn); */ if (txn->req.msg_state == HTTP_MSG_ERROR) goto wait_other_side; if (txn->req.msg_state < HTTP_MSG_DONE) { /* The client seems to still be sending data, probably * because we got an error response during an upload. * We have the choice of either breaking the connection * or letting it pass through. Let's do the later. */ goto wait_other_side; } if (txn->req.msg_state == HTTP_MSG_TUNNEL) { /* if any side switches to tunnel mode, the other one does too */ channel_auto_read(chn); txn->rsp.msg_state = HTTP_MSG_TUNNEL; chn->flags |= CF_NEVER_WAIT; goto wait_other_side; } /* When we get here, it means that both the request and the * response have finished receiving. Depending on the connection * mode, we'll have to wait for the last bytes to leave in either * direction, and sometimes for a close to be effective. */ if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) { /* Server-close mode : shut read and wait for the request * side to close its output buffer. The caller will detect * when we're in DONE and the other is in CLOSED and will * catch that for the final cleanup. */ if (!(chn->flags & (CF_SHUTR|CF_SHUTR_NOW))) channel_shutr_now(chn); } else if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_CLO) { /* Option forceclose is set, or either side wants to close, * let's enforce it now that we're not expecting any new * data to come. The caller knows the session is complete * once both states are CLOSED. */ if (!(chn->flags & (CF_SHUTW|CF_SHUTW_NOW))) { channel_shutr_now(chn); channel_shutw_now(chn); } } else { /* The last possible modes are keep-alive and tunnel. Since tunnel * mode does not set the body analyser, we can't reach this place * in tunnel mode, so we're left with keep-alive only. * This mode is currently not implemented, we switch to tunnel mode. */ channel_auto_read(chn); txn->rsp.msg_state = HTTP_MSG_TUNNEL; chn->flags |= CF_NEVER_WAIT; } if (chn->flags & (CF_SHUTW|CF_SHUTW_NOW)) { /* if we've just closed an output, let's switch */ if (!channel_is_empty(chn)) { txn->rsp.msg_state = HTTP_MSG_CLOSING; goto http_msg_closing; } else { txn->rsp.msg_state = HTTP_MSG_CLOSED; goto http_msg_closed; } } goto wait_other_side; } if (txn->rsp.msg_state == HTTP_MSG_CLOSING) { http_msg_closing: /* nothing else to forward, just waiting for the output buffer * to be empty and for the shutw_now to take effect. */ if (channel_is_empty(chn)) { txn->rsp.msg_state = HTTP_MSG_CLOSED; goto http_msg_closed; } else if (chn->flags & CF_SHUTW) { txn->rsp.msg_state = HTTP_MSG_ERROR; s->be->be_counters.cli_aborts++; if (objt_server(s->target)) objt_server(s->target)->counters.cli_aborts++; goto wait_other_side; } } if (txn->rsp.msg_state == HTTP_MSG_CLOSED) { http_msg_closed: /* drop any pending data */ bi_erase(chn); channel_auto_close(chn); channel_auto_read(chn); goto wait_other_side; } wait_other_side: http_silent_debug(__LINE__, s); /* We force the response to leave immediately if we're waiting for the * other side, since there is no pending shutdown to push it out. */ if (!channel_is_empty(chn)) chn->flags |= CF_SEND_DONTWAIT; return txn->rsp.msg_state != old_state || chn->flags != old_flags; } /* Resync the request and response state machines. Return 1 if either state * changes. */ int http_resync_states(struct session *s) { struct http_txn *txn = &s->txn; int old_req_state = txn->req.msg_state; int old_res_state = txn->rsp.msg_state; http_silent_debug(__LINE__, s); http_sync_req_state(s); while (1) { http_silent_debug(__LINE__, s); if (!http_sync_res_state(s)) break; http_silent_debug(__LINE__, s); if (!http_sync_req_state(s)) break; } http_silent_debug(__LINE__, s); /* OK, both state machines agree on a compatible state. * There are a few cases we're interested in : * - HTTP_MSG_TUNNEL on either means we have to disable both analysers * - HTTP_MSG_CLOSED on both sides means we've reached the end in both * directions, so let's simply disable both analysers. * - HTTP_MSG_CLOSED on the response only means we must abort the * request. * - HTTP_MSG_CLOSED on the request and HTTP_MSG_DONE on the response * with server-close mode means we've completed one request and we * must re-initialize the server connection. */ if (txn->req.msg_state == HTTP_MSG_TUNNEL || txn->rsp.msg_state == HTTP_MSG_TUNNEL || (txn->req.msg_state == HTTP_MSG_CLOSED && txn->rsp.msg_state == HTTP_MSG_CLOSED)) { s->req->analysers = 0; channel_auto_close(s->req); channel_auto_read(s->req); s->rep->analysers = 0; channel_auto_close(s->rep); channel_auto_read(s->rep); } else if ((txn->req.msg_state >= HTTP_MSG_DONE && (txn->rsp.msg_state == HTTP_MSG_CLOSED || (s->rep->flags & CF_SHUTW))) || txn->rsp.msg_state == HTTP_MSG_ERROR || txn->req.msg_state == HTTP_MSG_ERROR) { s->rep->analysers = 0; channel_auto_close(s->rep); channel_auto_read(s->rep); s->req->analysers = 0; channel_abort(s->req); channel_auto_close(s->req); channel_auto_read(s->req); bi_erase(s->req); } else if (txn->req.msg_state == HTTP_MSG_CLOSED && txn->rsp.msg_state == HTTP_MSG_DONE && ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL)) { /* server-close: terminate this server connection and * reinitialize a fresh-new transaction. */ http_end_txn_clean_session(s); } http_silent_debug(__LINE__, s); return txn->req.msg_state != old_req_state || txn->rsp.msg_state != old_res_state; } /* This function is an analyser which forwards request body (including chunk * sizes if any). It is called as soon as we must forward, even if we forward * zero byte. The only situation where it must not be called is when we're in * tunnel mode and we want to forward till the close. It's used both to forward * remaining data and to resync after end of body. It expects the msg_state to * be between MSG_BODY and MSG_DONE (inclusive). It returns zero if it needs to * read more data, or 1 once we can go on with next request or end the session. * When in MSG_DATA or MSG_TRAILERS, it will automatically forward chunk_len * bytes of pending data + the headers if not already done (between sol and sov). * It eventually adjusts sol to match sov after the data in between have been sent. */ int http_request_forward_body(struct session *s, struct channel *req, int an_bit) { struct http_txn *txn = &s->txn; struct http_msg *msg = &s->txn.req; if (unlikely(msg->msg_state < HTTP_MSG_BODY)) return 0; if ((req->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) || ((req->flags & CF_SHUTW) && (req->to_forward || req->buf->o))) { /* Output closed while we were sending data. We must abort and * wake the other side up. */ msg->msg_state = HTTP_MSG_ERROR; http_resync_states(s); return 1; } /* in most states, we should abort in case of early close */ channel_auto_close(req); /* Note that we don't have to send 100-continue back because we don't * need the data to complete our job, and it's up to the server to * decide whether to return 100, 417 or anything else in return of * an "Expect: 100-continue" header. */ if (msg->msg_state < HTTP_MSG_CHUNK_SIZE) { /* we have msg->sov which points to the first byte of message body. * req->buf->p still points to the beginning of the message and msg->sol * is still null. We must save the body in msg->next because it * survives buffer re-alignments. */ msg->next = msg->sov; if (msg->flags & HTTP_MSGF_TE_CHNK) msg->msg_state = HTTP_MSG_CHUNK_SIZE; else msg->msg_state = HTTP_MSG_DATA; } while (1) { unsigned int bytes; http_silent_debug(__LINE__, s); /* we may have some data pending between sol and sov */ bytes = msg->sov - msg->sol; if (msg->chunk_len || bytes) { msg->sol = msg->sov; msg->next -= bytes; /* will be forwarded */ msg->chunk_len += bytes; msg->chunk_len -= channel_forward(req, msg->chunk_len); } if (msg->msg_state == HTTP_MSG_DATA) { /* must still forward */ if (req->to_forward) goto missing_data; /* nothing left to forward */ if (msg->flags & HTTP_MSGF_TE_CHNK) msg->msg_state = HTTP_MSG_CHUNK_CRLF; else msg->msg_state = HTTP_MSG_DONE; } else if (msg->msg_state == HTTP_MSG_CHUNK_SIZE) { /* read the chunk size and assign it to ->chunk_len, then * set ->sov and ->next to point to the body and switch to DATA or * TRAILERS state. */ int ret = http_parse_chunk_size(msg); if (ret == 0) goto missing_data; else if (ret < 0) { session_inc_http_err_ctr(s); if (msg->err_pos >= 0) http_capture_bad_message(&s->fe->invalid_req, s, msg, HTTP_MSG_CHUNK_SIZE, s->be); goto return_bad_req; } /* otherwise we're in HTTP_MSG_DATA or HTTP_MSG_TRAILERS state */ } else if (msg->msg_state == HTTP_MSG_CHUNK_CRLF) { /* we want the CRLF after the data */ int ret = http_skip_chunk_crlf(msg); if (ret == 0) goto missing_data; else if (ret < 0) { session_inc_http_err_ctr(s); if (msg->err_pos >= 0) http_capture_bad_message(&s->fe->invalid_req, s, msg, HTTP_MSG_CHUNK_CRLF, s->be); goto return_bad_req; } /* we're in MSG_CHUNK_SIZE now */ } else if (msg->msg_state == HTTP_MSG_TRAILERS) { int ret = http_forward_trailers(msg); if (ret == 0) goto missing_data; else if (ret < 0) { session_inc_http_err_ctr(s); if (msg->err_pos >= 0) http_capture_bad_message(&s->fe->invalid_req, s, msg, HTTP_MSG_TRAILERS, s->be); goto return_bad_req; } /* we're in HTTP_MSG_DONE now */ } else { int old_state = msg->msg_state; /* other states, DONE...TUNNEL */ /* for keep-alive we don't want to forward closes on DONE */ if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL || (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) channel_dont_close(req); if (http_resync_states(s)) { /* some state changes occurred, maybe the analyser * was disabled too. */ if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) { if (req->flags & CF_SHUTW) { /* request errors are most likely due to * the server aborting the transfer. */ goto aborted_xfer; } if (msg->err_pos >= 0) http_capture_bad_message(&s->fe->invalid_req, s, msg, old_state, s->be); goto return_bad_req; } return 1; } /* If "option abortonclose" is set on the backend, we * want to monitor the client's connection and forward * any shutdown notification to the server, which will * decide whether to close or to go on processing the * request. */ if (s->be->options & PR_O_ABRT_CLOSE) { channel_auto_read(req); channel_auto_close(req); } else if (s->txn.meth == HTTP_METH_POST) { /* POST requests may require to read extra CRLF * sent by broken browsers and which could cause * an RST to be sent upon close on some systems * (eg: Linux). */ channel_auto_read(req); } return 0; } } missing_data: /* stop waiting for data if the input is closed before the end */ if (req->flags & CF_SHUTR) { if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_CLICL; if (!(s->flags & SN_FINST_MASK)) { if (txn->rsp.msg_state < HTTP_MSG_ERROR) s->flags |= SN_FINST_H; else s->flags |= SN_FINST_D; } s->fe->fe_counters.cli_aborts++; s->be->be_counters.cli_aborts++; if (objt_server(s->target)) objt_server(s->target)->counters.cli_aborts++; goto return_bad_req_stats_ok; } /* waiting for the last bits to leave the buffer */ if (req->flags & CF_SHUTW) goto aborted_xfer; /* When TE: chunked is used, we need to get there again to parse remaining * chunks even if the client has closed, so we don't want to set CF_DONTCLOSE. */ if (msg->flags & HTTP_MSGF_TE_CHNK) channel_dont_close(req); /* We know that more data are expected, but we couldn't send more that * what we did. So we always set the CF_EXPECT_MORE flag so that the * system knows it must not set a PUSH on this first part. Interactive * modes are already handled by the stream sock layer. We must not do * this in content-length mode because it could present the MSG_MORE * flag with the last block of forwarded data, which would cause an * additional delay to be observed by the receiver. */ if (msg->flags & HTTP_MSGF_TE_CHNK) req->flags |= CF_EXPECT_MORE; http_silent_debug(__LINE__, s); return 0; return_bad_req: /* let's centralize all bad requests */ s->fe->fe_counters.failed_req++; if (s->listener->counters) s->listener->counters->failed_req++; return_bad_req_stats_ok: txn->req.msg_state = HTTP_MSG_ERROR; if (txn->status) { /* Note: we don't send any error if some data were already sent */ stream_int_retnclose(req->prod, NULL); } else { txn->status = 400; stream_int_retnclose(req->prod, http_error_message(s, HTTP_ERR_400)); } req->analysers = 0; s->rep->analysers = 0; /* we're in data phase, we want to abort both directions */ if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_PRXCOND; if (!(s->flags & SN_FINST_MASK)) { if (txn->rsp.msg_state < HTTP_MSG_ERROR) s->flags |= SN_FINST_H; else s->flags |= SN_FINST_D; } return 0; aborted_xfer: txn->req.msg_state = HTTP_MSG_ERROR; if (txn->status) { /* Note: we don't send any error if some data were already sent */ stream_int_retnclose(req->prod, NULL); } else { txn->status = 502; stream_int_retnclose(req->prod, http_error_message(s, HTTP_ERR_502)); } req->analysers = 0; s->rep->analysers = 0; /* we're in data phase, we want to abort both directions */ s->fe->fe_counters.srv_aborts++; s->be->be_counters.srv_aborts++; if (objt_server(s->target)) objt_server(s->target)->counters.srv_aborts++; if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_SRVCL; if (!(s->flags & SN_FINST_MASK)) { if (txn->rsp.msg_state < HTTP_MSG_ERROR) s->flags |= SN_FINST_H; else s->flags |= SN_FINST_D; } return 0; } /* This stream analyser waits for a complete HTTP response. It returns 1 if the * processing can continue on next analysers, or zero if it either needs more * data or wants to immediately abort the response (eg: timeout, error, ...). It * is tied to AN_RES_WAIT_HTTP and may may remove itself from s->rep->analysers * when it has nothing left to do, and may remove any analyser when it wants to * abort. */ int http_wait_for_response(struct session *s, struct channel *rep, int an_bit) { struct http_txn *txn = &s->txn; struct http_msg *msg = &txn->rsp; struct hdr_ctx ctx; int use_close_only; int cur_idx; int n; DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n", now_ms, __FUNCTION__, s, rep, rep->rex, rep->wex, rep->flags, rep->buf->i, rep->analysers); /* * Now parse the partial (or complete) lines. * We will check the response syntax, and also join multi-line * headers. An index of all the lines will be elaborated while * parsing. * * For the parsing, we use a 28 states FSM. * * Here is the information we currently have : * rep->buf->p = beginning of response * rep->buf->p + msg->eoh = end of processed headers / start of current one * rep->buf->p + rep->buf->i = end of input data * msg->eol = end of current header or line (LF or CRLF) * msg->next = first non-visited byte */ /* There's a protected area at the end of the buffer for rewriting * purposes. We don't want to start to parse the request if the * protected area is affected, because we may have to move processed * data later, which is much more complicated. */ if (buffer_not_empty(rep->buf) && msg->msg_state < HTTP_MSG_ERROR) { if (unlikely(channel_full(rep) || bi_end(rep->buf) < b_ptr(rep->buf, msg->next) || bi_end(rep->buf) > rep->buf->data + rep->buf->size - global.tune.maxrewrite)) { if (rep->buf->o) { /* some data has still not left the buffer, wake us once that's done */ if (rep->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) goto abort_response; channel_dont_close(rep); rep->flags |= CF_READ_DONTWAIT; /* try to get back here ASAP */ return 0; } if (rep->buf->i <= rep->buf->size - global.tune.maxrewrite) buffer_slow_realign(msg->chn->buf); } if (likely(msg->next < rep->buf->i)) http_msg_analyzer(msg, &txn->hdr_idx); } /* 1: we might have to print this header in debug mode */ if (unlikely((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)) && (msg->msg_state >= HTTP_MSG_BODY || msg->msg_state == HTTP_MSG_ERROR))) { char *eol, *sol; sol = rep->buf->p; eol = sol + (msg->sl.st.l ? msg->sl.st.l : rep->buf->i); debug_hdr("srvrep", s, sol, eol); sol += hdr_idx_first_pos(&txn->hdr_idx); cur_idx = hdr_idx_first_idx(&txn->hdr_idx); while (cur_idx) { eol = sol + txn->hdr_idx.v[cur_idx].len; debug_hdr("srvhdr", s, sol, eol); sol = eol + txn->hdr_idx.v[cur_idx].cr + 1; cur_idx = txn->hdr_idx.v[cur_idx].next; } } /* * Now we quickly check if we have found a full valid response. * If not so, we check the FD and buffer states before leaving. * A full response is indicated by the fact that we have seen * the double LF/CRLF, so the state is >= HTTP_MSG_BODY. Invalid * responses are checked first. * * Depending on whether the client is still there or not, we * may send an error response back or not. Note that normally * we should only check for HTTP status there, and check I/O * errors somewhere else. */ if (unlikely(msg->msg_state < HTTP_MSG_BODY)) { /* Invalid response */ if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) { /* we detected a parsing error. We want to archive this response * in the dedicated proxy area for later troubleshooting. */ hdr_response_bad: if (msg->msg_state == HTTP_MSG_ERROR || msg->err_pos >= 0) http_capture_bad_message(&s->be->invalid_rep, s, msg, msg->msg_state, s->fe); s->be->be_counters.failed_resp++; if (objt_server(s->target)) { objt_server(s->target)->counters.failed_resp++; health_adjust(objt_server(s->target), HANA_STATUS_HTTP_HDRRSP); } abort_response: channel_auto_close(rep); rep->analysers = 0; txn->status = 502; rep->prod->flags |= SI_FL_NOLINGER; bi_erase(rep); stream_int_retnclose(rep->cons, http_error_message(s, HTTP_ERR_502)); if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_PRXCOND; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_H; return 0; } /* too large response does not fit in buffer. */ else if (buffer_full(rep->buf, global.tune.maxrewrite)) { if (msg->err_pos < 0) msg->err_pos = rep->buf->i; goto hdr_response_bad; } /* read error */ else if (rep->flags & CF_READ_ERROR) { if (msg->err_pos >= 0) http_capture_bad_message(&s->be->invalid_rep, s, msg, msg->msg_state, s->fe); s->be->be_counters.failed_resp++; if (objt_server(s->target)) { objt_server(s->target)->counters.failed_resp++; health_adjust(objt_server(s->target), HANA_STATUS_HTTP_READ_ERROR); } channel_auto_close(rep); rep->analysers = 0; txn->status = 502; rep->prod->flags |= SI_FL_NOLINGER; bi_erase(rep); stream_int_retnclose(rep->cons, http_error_message(s, HTTP_ERR_502)); if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_SRVCL; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_H; return 0; } /* read timeout : return a 504 to the client. */ else if (rep->flags & CF_READ_TIMEOUT) { if (msg->err_pos >= 0) http_capture_bad_message(&s->be->invalid_rep, s, msg, msg->msg_state, s->fe); s->be->be_counters.failed_resp++; if (objt_server(s->target)) { objt_server(s->target)->counters.failed_resp++; health_adjust(objt_server(s->target), HANA_STATUS_HTTP_READ_TIMEOUT); } channel_auto_close(rep); rep->analysers = 0; txn->status = 504; rep->prod->flags |= SI_FL_NOLINGER; bi_erase(rep); stream_int_retnclose(rep->cons, http_error_message(s, HTTP_ERR_504)); if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_SRVTO; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_H; return 0; } /* client abort with an abortonclose */ else if ((rep->flags & CF_SHUTR) && ((s->req->flags & (CF_SHUTR|CF_SHUTW)) == (CF_SHUTR|CF_SHUTW))) { s->fe->fe_counters.cli_aborts++; s->be->be_counters.cli_aborts++; if (objt_server(s->target)) objt_server(s->target)->counters.cli_aborts++; rep->analysers = 0; channel_auto_close(rep); txn->status = 400; bi_erase(rep); stream_int_retnclose(rep->cons, http_error_message(s, HTTP_ERR_400)); if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_CLICL; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_H; /* process_session() will take care of the error */ return 0; } /* close from server, capture the response if the server has started to respond */ else if (rep->flags & CF_SHUTR) { if (msg->msg_state >= HTTP_MSG_RPVER || msg->err_pos >= 0) http_capture_bad_message(&s->be->invalid_rep, s, msg, msg->msg_state, s->fe); s->be->be_counters.failed_resp++; if (objt_server(s->target)) { objt_server(s->target)->counters.failed_resp++; health_adjust(objt_server(s->target), HANA_STATUS_HTTP_BROKEN_PIPE); } channel_auto_close(rep); rep->analysers = 0; txn->status = 502; rep->prod->flags |= SI_FL_NOLINGER; bi_erase(rep); stream_int_retnclose(rep->cons, http_error_message(s, HTTP_ERR_502)); if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_SRVCL; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_H; return 0; } /* write error to client (we don't send any message then) */ else if (rep->flags & CF_WRITE_ERROR) { if (msg->err_pos >= 0) http_capture_bad_message(&s->be->invalid_rep, s, msg, msg->msg_state, s->fe); s->be->be_counters.failed_resp++; rep->analysers = 0; channel_auto_close(rep); if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_CLICL; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_H; /* process_session() will take care of the error */ return 0; } channel_dont_close(rep); return 0; } /* More interesting part now : we know that we have a complete * response which at least looks like HTTP. We have an indicator * of each header's length, so we can parse them quickly. */ if (unlikely(msg->err_pos >= 0)) http_capture_bad_message(&s->be->invalid_rep, s, msg, msg->msg_state, s->fe); /* * 1: get the status code */ n = rep->buf->p[msg->sl.st.c] - '0'; if (n < 1 || n > 5) n = 0; /* when the client triggers a 4xx from the server, it's most often due * to a missing object or permission. These events should be tracked * because if they happen often, it may indicate a brute force or a * vulnerability scan. */ if (n == 4) session_inc_http_err_ctr(s); if (objt_server(s->target)) objt_server(s->target)->counters.p.http.rsp[n]++; /* check if the response is HTTP/1.1 or above */ if ((msg->sl.st.v_l == 8) && ((rep->buf->p[5] > '1') || ((rep->buf->p[5] == '1') && (rep->buf->p[7] >= '1')))) msg->flags |= HTTP_MSGF_VER_11; /* "connection" has not been parsed yet */ txn->flags &= ~(TX_HDR_CONN_PRS|TX_HDR_CONN_CLO|TX_HDR_CONN_KAL|TX_HDR_CONN_UPG|TX_CON_CLO_SET|TX_CON_KAL_SET); /* transfer length unknown*/ msg->flags &= ~HTTP_MSGF_XFER_LEN; txn->status = strl2ui(rep->buf->p + msg->sl.st.c, msg->sl.st.c_l); /* Adjust server's health based on status code. Note: status codes 501 * and 505 are triggered on demand by client request, so we must not * count them as server failures. */ if (objt_server(s->target)) { if (txn->status >= 100 && (txn->status < 500 || txn->status == 501 || txn->status == 505)) health_adjust(objt_server(s->target), HANA_STATUS_HTTP_OK); else health_adjust(objt_server(s->target), HANA_STATUS_HTTP_STS); } /* * 2: check for cacheability. */ switch (txn->status) { case 200: case 203: case 206: case 300: case 301: case 410: /* RFC2616 @13.4: * "A response received with a status code of * 200, 203, 206, 300, 301 or 410 MAY be stored * by a cache (...) unless a cache-control * directive prohibits caching." * * RFC2616 @9.5: POST method : * "Responses to this method are not cacheable, * unless the response includes appropriate * Cache-Control or Expires header fields." */ if (likely(txn->meth != HTTP_METH_POST) && ((s->be->options & PR_O_CHK_CACHE) || (s->be->ck_opts & PR_CK_NOC))) txn->flags |= TX_CACHEABLE | TX_CACHE_COOK; break; default: break; } /* * 3: we may need to capture headers */ s->logs.logwait &= ~LW_RESP; if (unlikely((s->logs.logwait & LW_RSPHDR) && txn->rsp.cap)) capture_headers(rep->buf->p, &txn->hdr_idx, txn->rsp.cap, s->fe->rsp_cap); /* 4: determine the transfer-length. * According to RFC2616 #4.4, amended by the HTTPbis working group, * the presence of a message-body in a RESPONSE and its transfer length * must be determined that way : * * All responses to the HEAD request method MUST NOT include a * message-body, even though the presence of entity-header fields * might lead one to believe they do. All 1xx (informational), 204 * (No Content), and 304 (Not Modified) responses MUST NOT include a * message-body. All other responses do include a message-body, * although it MAY be of zero length. * * 1. Any response which "MUST NOT" include a message-body (such as the * 1xx, 204 and 304 responses and any response to a HEAD request) is * always terminated by the first empty line after the header fields, * regardless of the entity-header fields present in the message. * * 2. If a Transfer-Encoding header field (Section 9.7) is present and * the "chunked" transfer-coding (Section 6.2) is used, the * transfer-length is defined by the use of this transfer-coding. * If a Transfer-Encoding header field is present and the "chunked" * transfer-coding is not present, the transfer-length is defined by * the sender closing the connection. * * 3. If a Content-Length header field is present, its decimal value in * OCTETs represents both the entity-length and the transfer-length. * If a message is received with both a Transfer-Encoding header * field and a Content-Length header field, the latter MUST be ignored. * * 4. If the message uses the media type "multipart/byteranges", and * the transfer-length is not otherwise specified, then this self- * delimiting media type defines the transfer-length. This media * type MUST NOT be used unless the sender knows that the recipient * can parse it; the presence in a request of a Range header with * multiple byte-range specifiers from a 1.1 client implies that the * client can parse multipart/byteranges responses. * * 5. By the server closing the connection. */ /* Skip parsing if no content length is possible. The response flags * remain 0 as well as the chunk_len, which may or may not mirror * the real header value, and we note that we know the response's length. * FIXME: should we parse anyway and return an error on chunked encoding ? */ if (txn->meth == HTTP_METH_HEAD || (txn->status >= 100 && txn->status < 200) || txn->status == 204 || txn->status == 304) { msg->flags |= HTTP_MSGF_XFER_LEN; s->comp_algo = NULL; goto skip_content_length; } use_close_only = 0; ctx.idx = 0; while ((msg->flags & HTTP_MSGF_VER_11) && http_find_header2("Transfer-Encoding", 17, rep->buf->p, &txn->hdr_idx, &ctx)) { if (ctx.vlen == 7 && strncasecmp(ctx.line + ctx.val, "chunked", 7) == 0) msg->flags |= (HTTP_MSGF_TE_CHNK | HTTP_MSGF_XFER_LEN); else if (msg->flags & HTTP_MSGF_TE_CHNK) { /* bad transfer-encoding (chunked followed by something else) */ use_close_only = 1; msg->flags &= ~(HTTP_MSGF_TE_CHNK | HTTP_MSGF_XFER_LEN); break; } } /* FIXME: below we should remove the content-length header(s) in case of chunked encoding */ ctx.idx = 0; while (!(msg->flags & HTTP_MSGF_TE_CHNK) && !use_close_only && http_find_header2("Content-Length", 14, rep->buf->p, &txn->hdr_idx, &ctx)) { signed long long cl; if (!ctx.vlen) { msg->err_pos = ctx.line + ctx.val - rep->buf->p; goto hdr_response_bad; } if (strl2llrc(ctx.line + ctx.val, ctx.vlen, &cl)) { msg->err_pos = ctx.line + ctx.val - rep->buf->p; goto hdr_response_bad; /* parse failure */ } if (cl < 0) { msg->err_pos = ctx.line + ctx.val - rep->buf->p; goto hdr_response_bad; } if ((msg->flags & HTTP_MSGF_CNT_LEN) && (msg->chunk_len != cl)) { msg->err_pos = ctx.line + ctx.val - rep->buf->p; goto hdr_response_bad; /* already specified, was different */ } msg->flags |= HTTP_MSGF_CNT_LEN | HTTP_MSGF_XFER_LEN; msg->body_len = msg->chunk_len = cl; } if (s->fe->comp || s->be->comp) select_compression_response_header(s, rep->buf); /* FIXME: we should also implement the multipart/byterange method. * For now on, we resort to close mode in this case (unknown length). */ skip_content_length: /* end of job, return OK */ rep->analysers &= ~an_bit; rep->analyse_exp = TICK_ETERNITY; channel_auto_close(rep); return 1; } /* This function performs all the processing enabled for the current response. * It normally returns 1 unless it wants to break. It relies on buffers flags, * and updates t->rep->analysers. It might make sense to explode it into several * other functions. It works like process_request (see indications above). */ int http_process_res_common(struct session *t, struct channel *rep, int an_bit, struct proxy *px) { struct http_txn *txn = &t->txn; struct http_msg *msg = &txn->rsp; struct proxy *cur_proxy; struct cond_wordlist *wl; DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n", now_ms, __FUNCTION__, t, rep, rep->rex, rep->wex, rep->flags, rep->buf->i, rep->analysers); if (unlikely(msg->msg_state < HTTP_MSG_BODY)) /* we need more data */ return 0; rep->analysers &= ~an_bit; rep->analyse_exp = TICK_ETERNITY; /* Now we have to check if we need to modify the Connection header. * This is more difficult on the response than it is on the request, * because we can have two different HTTP versions and we don't know * how the client will interprete a response. For instance, let's say * that the client sends a keep-alive request in HTTP/1.0 and gets an * HTTP/1.1 response without any header. Maybe it will bound itself to * HTTP/1.0 because it only knows about it, and will consider the lack * of header as a close, or maybe it knows HTTP/1.1 and can consider * the lack of header as a keep-alive. Thus we will use two flags * indicating how a request MAY be understood by the client. In case * of multiple possibilities, we'll fix the header to be explicit. If * ambiguous cases such as both close and keepalive are seen, then we * will fall back to explicit close. Note that we won't take risks with * HTTP/1.0 clients which may not necessarily understand keep-alive. * See doc/internals/connection-header.txt for the complete matrix. */ if (unlikely((txn->meth == HTTP_METH_CONNECT && txn->status == 200) || txn->status == 101)) { /* Either we've established an explicit tunnel, or we're * switching the protocol. In both cases, we're very unlikely * to understand the next protocols. We have to switch to tunnel * mode, so that we transfer the request and responses then let * this protocol pass unmodified. When we later implement specific * parsers for such protocols, we'll want to check the Upgrade * header which contains information about that protocol for * responses with status 101 (eg: see RFC2817 about TLS). */ txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_TUN; } else if ((txn->status >= 200) && !(txn->flags & TX_HDR_CONN_PRS) && ((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN || ((t->fe->options|t->be->options) & PR_O_HTTP_CLOSE))) { int to_del = 0; /* on unknown transfer length, we must close */ if (!(msg->flags & HTTP_MSGF_XFER_LEN) && (txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN) txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_CLO; /* now adjust header transformations depending on current state */ if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_TUN || (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_CLO) { to_del |= 2; /* remove "keep-alive" on any response */ if (!(msg->flags & HTTP_MSGF_VER_11)) to_del |= 1; /* remove "close" for HTTP/1.0 responses */ } else { /* SCL / KAL */ to_del |= 1; /* remove "close" on any response */ if (txn->req.flags & msg->flags & HTTP_MSGF_VER_11) to_del |= 2; /* remove "keep-alive" on pure 1.1 responses */ } /* Parse and remove some headers from the connection header */ http_parse_connection_header(txn, msg, to_del); /* Some keep-alive responses are converted to Server-close if * the server wants to close. */ if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL) { if ((txn->flags & TX_HDR_CONN_CLO) || (!(txn->flags & TX_HDR_CONN_KAL) && !(msg->flags & HTTP_MSGF_VER_11))) txn->flags = (txn->flags & ~TX_CON_WANT_MSK) | TX_CON_WANT_SCL; } } if (1) { /* * 3: we will have to evaluate the filters. * As opposed to version 1.2, now they will be evaluated in the * filters order and not in the header order. This means that * each filter has to be validated among all headers. * * Filters are tried with ->be first, then with ->fe if it is * different from ->be. */ cur_proxy = t->be; while (1) { struct proxy *rule_set = cur_proxy; /* try headers filters */ if (rule_set->rsp_exp != NULL) { if (apply_filters_to_response(t, rep, rule_set) < 0) { return_bad_resp: if (objt_server(t->target)) { objt_server(t->target)->counters.failed_resp++; health_adjust(objt_server(t->target), HANA_STATUS_HTTP_RSP); } t->be->be_counters.failed_resp++; return_srv_prx_502: rep->analysers = 0; txn->status = 502; rep->prod->flags |= SI_FL_NOLINGER; bi_erase(rep); stream_int_retnclose(rep->cons, http_error_message(t, HTTP_ERR_502)); if (!(t->flags & SN_ERR_MASK)) t->flags |= SN_ERR_PRXCOND; if (!(t->flags & SN_FINST_MASK)) t->flags |= SN_FINST_H; return 0; } } /* has the response been denied ? */ if (txn->flags & TX_SVDENY) { if (objt_server(t->target)) objt_server(t->target)->counters.failed_secu++; t->be->be_counters.denied_resp++; t->fe->fe_counters.denied_resp++; if (t->listener->counters) t->listener->counters->denied_resp++; goto return_srv_prx_502; } /* add response headers from the rule sets in the same order */ list_for_each_entry(wl, &rule_set->rsp_add, list) { if (txn->status < 200) break; if (wl->cond) { int ret = acl_exec_cond(wl->cond, px, t, txn, SMP_OPT_DIR_RES|SMP_OPT_FINAL); ret = acl_pass(ret); if (((struct acl_cond *)wl->cond)->pol == ACL_COND_UNLESS) ret = !ret; if (!ret) continue; } if (unlikely(http_header_add_tail(&txn->rsp, &txn->hdr_idx, wl->s) < 0)) goto return_bad_resp; } /* check whether we're already working on the frontend */ if (cur_proxy == t->fe) break; cur_proxy = t->fe; } /* * We may be facing a 100-continue response, in which case this * is not the right response, and we're waiting for the next one. * Let's allow this response to go to the client and wait for the * next one. */ if (unlikely(txn->status == 100)) { hdr_idx_init(&txn->hdr_idx); msg->next -= channel_forward(rep, msg->next); msg->msg_state = HTTP_MSG_RPBEFORE; txn->status = 0; rep->analysers |= AN_RES_WAIT_HTTP | an_bit; return 1; } else if (unlikely(txn->status < 200)) goto skip_header_mangling; /* we don't have any 1xx status code now */ /* * 4: check for server cookie. */ if (t->be->cookie_name || t->be->appsession_name || t->fe->capture_name || (t->be->options & PR_O_CHK_CACHE)) manage_server_side_cookies(t, rep); /* * 5: check for cache-control or pragma headers if required. */ if ((t->be->options & PR_O_CHK_CACHE) || (t->be->ck_opts & PR_CK_NOC)) check_response_for_cacheability(t, rep); /* * 6: add server cookie in the response if needed */ if (objt_server(t->target) && (t->be->ck_opts & PR_CK_INS) && !((txn->flags & TX_SCK_FOUND) && (t->be->ck_opts & PR_CK_PSV)) && (!(t->flags & SN_DIRECT) || ((t->be->cookie_maxidle || txn->cookie_last_date) && (!txn->cookie_last_date || (txn->cookie_last_date - date.tv_sec) < 0)) || (t->be->cookie_maxlife && !txn->cookie_first_date) || // set the first_date (!t->be->cookie_maxlife && txn->cookie_first_date)) && // remove the first_date (!(t->be->ck_opts & PR_CK_POST) || (txn->meth == HTTP_METH_POST)) && !(t->flags & SN_IGNORE_PRST)) { /* the server is known, it's not the one the client requested, or the * cookie's last seen date needs to be refreshed. We have to * insert a set-cookie here, except if we want to insert only on POST * requests and this one isn't. Note that servers which don't have cookies * (eg: some backup servers) will return a full cookie removal request. */ if (!objt_server(t->target)->cookie) { chunk_printf(&trash, "Set-Cookie: %s=; Expires=Thu, 01-Jan-1970 00:00:01 GMT; path=/", t->be->cookie_name); } else { chunk_printf(&trash, "Set-Cookie: %s=%s", t->be->cookie_name, objt_server(t->target)->cookie); if (t->be->cookie_maxidle || t->be->cookie_maxlife) { /* emit last_date, which is mandatory */ trash.str[trash.len++] = COOKIE_DELIM_DATE; s30tob64((date.tv_sec+3) >> 2, trash.str + trash.len); trash.len += 5; if (t->be->cookie_maxlife) { /* emit first_date, which is either the original one or * the current date. */ trash.str[trash.len++] = COOKIE_DELIM_DATE; s30tob64(txn->cookie_first_date ? txn->cookie_first_date >> 2 : (date.tv_sec+3) >> 2, trash.str + trash.len); trash.len += 5; } } chunk_appendf(&trash, "; path=/"); } if (t->be->cookie_domain) chunk_appendf(&trash, "; domain=%s", t->be->cookie_domain); if (t->be->ck_opts & PR_CK_HTTPONLY) chunk_appendf(&trash, "; HttpOnly"); if (t->be->ck_opts & PR_CK_SECURE) chunk_appendf(&trash, "; Secure"); if (unlikely(http_header_add_tail2(&txn->rsp, &txn->hdr_idx, trash.str, trash.len) < 0)) goto return_bad_resp; txn->flags &= ~TX_SCK_MASK; if (objt_server(t->target)->cookie && (t->flags & SN_DIRECT)) /* the server did not change, only the date was updated */ txn->flags |= TX_SCK_UPDATED; else txn->flags |= TX_SCK_INSERTED; /* Here, we will tell an eventual cache on the client side that we don't * want it to cache this reply because HTTP/1.0 caches also cache cookies ! * Some caches understand the correct form: 'no-cache="set-cookie"', but * others don't (eg: apache <= 1.3.26). So we use 'private' instead. */ if ((t->be->ck_opts & PR_CK_NOC) && (txn->flags & TX_CACHEABLE)) { txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; if (unlikely(http_header_add_tail2(&txn->rsp, &txn->hdr_idx, "Cache-control: private", 22) < 0)) goto return_bad_resp; } } /* * 7: check if result will be cacheable with a cookie. * We'll block the response if security checks have caught * nasty things such as a cacheable cookie. */ if (((txn->flags & (TX_CACHEABLE | TX_CACHE_COOK | TX_SCK_PRESENT)) == (TX_CACHEABLE | TX_CACHE_COOK | TX_SCK_PRESENT)) && (t->be->options & PR_O_CHK_CACHE)) { /* we're in presence of a cacheable response containing * a set-cookie header. We'll block it as requested by * the 'checkcache' option, and send an alert. */ if (objt_server(t->target)) objt_server(t->target)->counters.failed_secu++; t->be->be_counters.denied_resp++; t->fe->fe_counters.denied_resp++; if (t->listener->counters) t->listener->counters->denied_resp++; Alert("Blocking cacheable cookie in response from instance %s, server %s.\n", t->be->id, objt_server(t->target) ? objt_server(t->target)->id : ""); send_log(t->be, LOG_ALERT, "Blocking cacheable cookie in response from instance %s, server %s.\n", t->be->id, objt_server(t->target) ? objt_server(t->target)->id : ""); goto return_srv_prx_502; } /* * 8: adjust "Connection: close" or "Connection: keep-alive" if needed. * If an "Upgrade" token is found, the header is left untouched in order * not to have to deal with some client bugs : some of them fail an upgrade * if anything but "Upgrade" is present in the Connection header. */ if (!(txn->flags & TX_HDR_CONN_UPG) && (((txn->flags & TX_CON_WANT_MSK) != TX_CON_WANT_TUN) || ((t->fe->options|t->be->options) & PR_O_HTTP_CLOSE))) { unsigned int want_flags = 0; if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL || (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) { /* we want a keep-alive response here. Keep-alive header * required if either side is not 1.1. */ if (!(txn->req.flags & msg->flags & HTTP_MSGF_VER_11)) want_flags |= TX_CON_KAL_SET; } else { /* we want a close response here. Close header required if * the server is 1.1, regardless of the client. */ if (msg->flags & HTTP_MSGF_VER_11) want_flags |= TX_CON_CLO_SET; } if (want_flags != (txn->flags & (TX_CON_CLO_SET|TX_CON_KAL_SET))) http_change_connection_header(txn, msg, want_flags); } skip_header_mangling: if ((msg->flags & HTTP_MSGF_XFER_LEN) || (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_TUN) rep->analysers |= AN_RES_HTTP_XFER_BODY; /************************************************************* * OK, that's finished for the headers. We have done what we * * could. Let's switch to the DATA state. * ************************************************************/ t->logs.t_data = tv_ms_elapsed(&t->logs.tv_accept, &now); /* if the user wants to log as soon as possible, without counting * bytes from the server, then this is the right moment. We have * to temporarily assign bytes_out to log what we currently have. */ if (!LIST_ISEMPTY(&t->fe->logformat) && !(t->logs.logwait & LW_BYTES)) { t->logs.t_close = t->logs.t_data; /* to get a valid end date */ t->logs.bytes_out = txn->rsp.eoh; t->do_log(t); t->logs.bytes_out = 0; } /* Note: we must not try to cheat by jumping directly to DATA, * otherwise we would not let the client side wake up. */ return 1; } return 1; } /* This function is an analyser which forwards response body (including chunk * sizes if any). It is called as soon as we must forward, even if we forward * zero byte. The only situation where it must not be called is when we're in * tunnel mode and we want to forward till the close. It's used both to forward * remaining data and to resync after end of body. It expects the msg_state to * be between MSG_BODY and MSG_DONE (inclusive). It returns zero if it needs to * read more data, or 1 once we can go on with next request or end the session. * When in MSG_DATA or MSG_TRAILERS, it will automatically forward chunk_len * bytes of pending data + the headers if not already done (between sol and sov). * It eventually adjusts sol to match sov after the data in between have been sent. */ int http_response_forward_body(struct session *s, struct channel *res, int an_bit) { struct http_txn *txn = &s->txn; struct http_msg *msg = &s->txn.rsp; unsigned int bytes; static struct buffer *tmpbuf = NULL; int compressing = 0; int consumed_data = 0; if (unlikely(msg->msg_state < HTTP_MSG_BODY)) return 0; if ((res->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) || ((res->flags & CF_SHUTW) && (res->to_forward || res->buf->o)) || !s->req->analysers) { /* Output closed while we were sending data. We must abort and * wake the other side up. */ msg->msg_state = HTTP_MSG_ERROR; http_resync_states(s); return 1; } /* in most states, we should abort in case of early close */ channel_auto_close(res); /* this is the first time we need the compression buffer */ if (s->comp_algo != NULL && tmpbuf == NULL) { if ((tmpbuf = pool_alloc2(pool2_buffer)) == NULL) goto aborted_xfer; /* no memory */ } if (msg->msg_state < HTTP_MSG_CHUNK_SIZE) { /* we have msg->sov which points to the first byte of message body. * rep->buf.p still points to the beginning of the message and msg->sol * is still null. We forward the headers, we don't need them. */ channel_forward(res, msg->sov); msg->next = 0; msg->sov = 0; if (msg->flags & HTTP_MSGF_TE_CHNK) msg->msg_state = HTTP_MSG_CHUNK_SIZE; else msg->msg_state = HTTP_MSG_DATA; } if (s->comp_algo != NULL) { int ret = http_compression_buffer_init(s, res->buf, tmpbuf); /* init a buffer with headers */ if (ret < 0) goto missing_data; /* not enough spaces in buffers */ compressing = 1; } while (1) { http_silent_debug(__LINE__, s); /* we may have some data pending between sol and sov */ if (s->comp_algo == NULL) { bytes = msg->sov - msg->sol; if (msg->chunk_len || bytes) { msg->sol = msg->sov; msg->next -= bytes; /* will be forwarded */ msg->chunk_len += bytes; msg->chunk_len -= channel_forward(res, msg->chunk_len); } } if (msg->msg_state == HTTP_MSG_DATA) { int ret; /* must still forward */ if (compressing) { consumed_data += ret = http_compression_buffer_add_data(s, res->buf, tmpbuf); if (ret < 0) goto aborted_xfer; } if (res->to_forward || msg->chunk_len) goto missing_data; /* nothing left to forward */ if (msg->flags & HTTP_MSGF_TE_CHNK) { msg->msg_state = HTTP_MSG_CHUNK_CRLF; } else { msg->msg_state = HTTP_MSG_DONE; if (compressing && consumed_data) { http_compression_buffer_end(s, &res->buf, &tmpbuf, 1); compressing = 0; } } } else if (msg->msg_state == HTTP_MSG_CHUNK_SIZE) { /* read the chunk size and assign it to ->chunk_len, then * set ->sov and ->next to point to the body and switch to DATA or * TRAILERS state. */ int ret = http_parse_chunk_size(msg); if (ret == 0) goto missing_data; else if (ret < 0) { if (msg->err_pos >= 0) http_capture_bad_message(&s->be->invalid_rep, s, msg, HTTP_MSG_CHUNK_SIZE, s->fe); goto return_bad_res; } if (compressing) { if (likely(msg->chunk_len > 0)) { /* skipping data if we are in compression mode */ b_adv(res->buf, msg->next); msg->next = 0; msg->sov = 0; msg->sol = 0; } else { if (consumed_data) { http_compression_buffer_end(s, &res->buf, &tmpbuf, 1); compressing = 0; } } } /* otherwise we're in HTTP_MSG_DATA or HTTP_MSG_TRAILERS state */ } else if (msg->msg_state == HTTP_MSG_CHUNK_CRLF) { /* we want the CRLF after the data */ int ret = http_skip_chunk_crlf(msg); if (ret == 0) goto missing_data; else if (ret < 0) { if (msg->err_pos >= 0) http_capture_bad_message(&s->be->invalid_rep, s, msg, HTTP_MSG_CHUNK_CRLF, s->fe); goto return_bad_res; } /* skipping data in buffer for compression */ if (compressing) { b_adv(res->buf, msg->next); msg->next = 0; msg->sov = 0; msg->sol = 0; } /* we're in MSG_CHUNK_SIZE now */ } else if (msg->msg_state == HTTP_MSG_TRAILERS) { int ret = http_forward_trailers(msg); if (ret == 0) goto missing_data; else if (ret < 0) { if (msg->err_pos >= 0) http_capture_bad_message(&s->be->invalid_rep, s, msg, HTTP_MSG_TRAILERS, s->fe); goto return_bad_res; } if (s->comp_algo != NULL) { /* forwarding trailers */ channel_forward(res, msg->next); msg->next = 0; } /* we're in HTTP_MSG_DONE now */ } else { int old_state = msg->msg_state; /* other states, DONE...TUNNEL */ /* for keep-alive we don't want to forward closes on DONE */ if ((txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL || (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) channel_dont_close(res); if (http_resync_states(s)) { http_silent_debug(__LINE__, s); /* some state changes occurred, maybe the analyser * was disabled too. */ if (unlikely(msg->msg_state == HTTP_MSG_ERROR)) { if (res->flags & CF_SHUTW) { /* response errors are most likely due to * the client aborting the transfer. */ goto aborted_xfer; } if (msg->err_pos >= 0) http_capture_bad_message(&s->be->invalid_rep, s, msg, old_state, s->fe); goto return_bad_res; } return 1; } return 0; } } missing_data: if (compressing && consumed_data) { http_compression_buffer_end(s, &res->buf, &tmpbuf, 0); compressing = 0; } if (res->flags & CF_SHUTW) goto aborted_xfer; /* stop waiting for data if the input is closed before the end. If the * client side was already closed, it means that the client has aborted, * so we don't want to count this as a server abort. Otherwise it's a * server abort. */ if (res->flags & CF_SHUTR) { if ((res->flags & CF_SHUTW_NOW) || (s->req->flags & CF_SHUTR)) goto aborted_xfer; if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_SRVCL; s->be->be_counters.srv_aborts++; if (objt_server(s->target)) objt_server(s->target)->counters.srv_aborts++; goto return_bad_res_stats_ok; } /* we need to obey the req analyser, so if it leaves, we must too */ if (!s->req->analysers) goto return_bad_res; /* forward any data pending between sol and sov */ if (s->comp_algo == NULL) { bytes = msg->sov - msg->sol; if (msg->chunk_len || bytes) { msg->sol = msg->sov; msg->next -= bytes; /* will be forwarded */ msg->chunk_len += bytes; msg->chunk_len -= channel_forward(res, msg->chunk_len); } } /* When TE: chunked is used, we need to get there again to parse remaining * chunks even if the server has closed, so we don't want to set CF_DONTCLOSE. * Similarly, with keep-alive on the client side, we don't want to forward a * close. */ if ((msg->flags & HTTP_MSGF_TE_CHNK) || s->comp_algo || (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_KAL || (txn->flags & TX_CON_WANT_MSK) == TX_CON_WANT_SCL) channel_dont_close(res); /* We know that more data are expected, but we couldn't send more that * what we did. So we always set the CF_EXPECT_MORE flag so that the * system knows it must not set a PUSH on this first part. Interactive * modes are already handled by the stream sock layer. We must not do * this in content-length mode because it could present the MSG_MORE * flag with the last block of forwarded data, which would cause an * additional delay to be observed by the receiver. */ if ((msg->flags & HTTP_MSGF_TE_CHNK) || s->comp_algo) res->flags |= CF_EXPECT_MORE; /* the session handler will take care of timeouts and errors */ http_silent_debug(__LINE__, s); return 0; return_bad_res: /* let's centralize all bad responses */ s->be->be_counters.failed_resp++; if (objt_server(s->target)) objt_server(s->target)->counters.failed_resp++; return_bad_res_stats_ok: txn->rsp.msg_state = HTTP_MSG_ERROR; /* don't send any error message as we're in the body */ stream_int_retnclose(res->cons, NULL); res->analysers = 0; s->req->analysers = 0; /* we're in data phase, we want to abort both directions */ if (objt_server(s->target)) health_adjust(objt_server(s->target), HANA_STATUS_HTTP_HDRRSP); if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_PRXCOND; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_D; return 0; aborted_xfer: txn->rsp.msg_state = HTTP_MSG_ERROR; /* don't send any error message as we're in the body */ stream_int_retnclose(res->cons, NULL); res->analysers = 0; s->req->analysers = 0; /* we're in data phase, we want to abort both directions */ s->fe->fe_counters.cli_aborts++; s->be->be_counters.cli_aborts++; if (objt_server(s->target)) objt_server(s->target)->counters.cli_aborts++; if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_CLICL; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_D; return 0; } /* Iterate the same filter through all request headers. * Returns 1 if this filter can be stopped upon return, otherwise 0. * Since it can manage the switch to another backend, it updates the per-proxy * DENY stats. */ int apply_filter_to_req_headers(struct session *t, struct channel *req, struct hdr_exp *exp) { char term; char *cur_ptr, *cur_end, *cur_next; int cur_idx, old_idx, last_hdr; struct http_txn *txn = &t->txn; struct hdr_idx_elem *cur_hdr; int delta; last_hdr = 0; cur_next = req->buf->p + hdr_idx_first_pos(&txn->hdr_idx); old_idx = 0; while (!last_hdr) { if (unlikely(txn->flags & (TX_CLDENY | TX_CLTARPIT))) return 1; else if (unlikely(txn->flags & TX_CLALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY || exp->action == ACT_TARPIT)) return 0; cur_idx = txn->hdr_idx.v[old_idx].next; if (!cur_idx) break; cur_hdr = &txn->hdr_idx.v[cur_idx]; cur_ptr = cur_next; cur_end = cur_ptr + cur_hdr->len; cur_next = cur_end + cur_hdr->cr + 1; /* Now we have one header between cur_ptr and cur_end, * and the next header starts at cur_next. */ /* The annoying part is that pattern matching needs * that we modify the contents to null-terminate all * strings before testing them. */ term = *cur_end; *cur_end = '\0'; if (regexec(exp->preg, cur_ptr, MAX_MATCH, pmatch, 0) == 0) { switch (exp->action) { case ACT_SETBE: /* It is not possible to jump a second time. * FIXME: should we return an HTTP/500 here so that * the admin knows there's a problem ? */ if (t->be != t->fe) break; /* Swithing Proxy */ session_set_backend(t, (struct proxy *)exp->replace); last_hdr = 1; break; case ACT_ALLOW: txn->flags |= TX_CLALLOW; last_hdr = 1; break; case ACT_DENY: txn->flags |= TX_CLDENY; last_hdr = 1; t->fe->fe_counters.denied_req++; if (t->fe != t->be) t->be->be_counters.denied_req++; if (t->listener->counters) t->listener->counters->denied_req++; break; case ACT_TARPIT: txn->flags |= TX_CLTARPIT; last_hdr = 1; t->fe->fe_counters.denied_req++; if (t->fe != t->be) t->be->be_counters.denied_req++; if (t->listener->counters) t->listener->counters->denied_req++; break; case ACT_REPLACE: trash.len = exp_replace(trash.str, cur_ptr, exp->replace, pmatch); delta = buffer_replace2(req->buf, cur_ptr, cur_end, trash.str, trash.len); /* FIXME: if the user adds a newline in the replacement, the * index will not be recalculated for now, and the new line * will not be counted as a new header. */ cur_end += delta; cur_next += delta; cur_hdr->len += delta; http_msg_move_end(&txn->req, delta); break; case ACT_REMOVE: delta = buffer_replace2(req->buf, cur_ptr, cur_next, NULL, 0); cur_next += delta; http_msg_move_end(&txn->req, delta); txn->hdr_idx.v[old_idx].next = cur_hdr->next; txn->hdr_idx.used--; cur_hdr->len = 0; cur_end = NULL; /* null-term has been rewritten */ cur_idx = old_idx; break; } } if (cur_end) *cur_end = term; /* restore the string terminator */ /* keep the link from this header to next one in case of later * removal of next header. */ old_idx = cur_idx; } return 0; } /* Apply the filter to the request line. * Returns 0 if nothing has been done, 1 if the filter has been applied, * or -1 if a replacement resulted in an invalid request line. * Since it can manage the switch to another backend, it updates the per-proxy * DENY stats. */ int apply_filter_to_req_line(struct session *t, struct channel *req, struct hdr_exp *exp) { char term; char *cur_ptr, *cur_end; int done; struct http_txn *txn = &t->txn; int delta; if (unlikely(txn->flags & (TX_CLDENY | TX_CLTARPIT))) return 1; else if (unlikely(txn->flags & TX_CLALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY || exp->action == ACT_TARPIT)) return 0; else if (exp->action == ACT_REMOVE) return 0; done = 0; cur_ptr = req->buf->p; cur_end = cur_ptr + txn->req.sl.rq.l; /* Now we have the request line between cur_ptr and cur_end */ /* The annoying part is that pattern matching needs * that we modify the contents to null-terminate all * strings before testing them. */ term = *cur_end; *cur_end = '\0'; if (regexec(exp->preg, cur_ptr, MAX_MATCH, pmatch, 0) == 0) { switch (exp->action) { case ACT_SETBE: /* It is not possible to jump a second time. * FIXME: should we return an HTTP/500 here so that * the admin knows there's a problem ? */ if (t->be != t->fe) break; /* Swithing Proxy */ session_set_backend(t, (struct proxy *)exp->replace); done = 1; break; case ACT_ALLOW: txn->flags |= TX_CLALLOW; done = 1; break; case ACT_DENY: txn->flags |= TX_CLDENY; t->fe->fe_counters.denied_req++; if (t->fe != t->be) t->be->be_counters.denied_req++; if (t->listener->counters) t->listener->counters->denied_req++; done = 1; break; case ACT_TARPIT: txn->flags |= TX_CLTARPIT; t->fe->fe_counters.denied_req++; if (t->fe != t->be) t->be->be_counters.denied_req++; if (t->listener->counters) t->listener->counters->denied_req++; done = 1; break; case ACT_REPLACE: *cur_end = term; /* restore the string terminator */ trash.len = exp_replace(trash.str, cur_ptr, exp->replace, pmatch); delta = buffer_replace2(req->buf, cur_ptr, cur_end, trash.str, trash.len); /* FIXME: if the user adds a newline in the replacement, the * index will not be recalculated for now, and the new line * will not be counted as a new header. */ http_msg_move_end(&txn->req, delta); cur_end += delta; cur_end = (char *)http_parse_reqline(&txn->req, HTTP_MSG_RQMETH, cur_ptr, cur_end + 1, NULL, NULL); if (unlikely(!cur_end)) return -1; /* we have a full request and we know that we have either a CR * or an LF at . */ txn->meth = find_http_meth(cur_ptr, txn->req.sl.rq.m_l); hdr_idx_set_start(&txn->hdr_idx, txn->req.sl.rq.l, *cur_end == '\r'); /* there is no point trying this regex on headers */ return 1; } } *cur_end = term; /* restore the string terminator */ return done; } /* * Apply all the req filters of proxy to all headers in buffer of session . * Returns 0 if everything is alright, or -1 in case a replacement lead to an * unparsable request. Since it can manage the switch to another backend, it * updates the per-proxy DENY stats. */ int apply_filters_to_request(struct session *s, struct channel *req, struct proxy *px) { struct http_txn *txn = &s->txn; struct hdr_exp *exp; for (exp = px->req_exp; exp; exp = exp->next) { int ret; /* * The interleaving of transformations and verdicts * makes it difficult to decide to continue or stop * the evaluation. */ if (txn->flags & (TX_CLDENY|TX_CLTARPIT)) break; if ((txn->flags & TX_CLALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY || exp->action == ACT_TARPIT || exp->action == ACT_PASS)) continue; /* if this filter had a condition, evaluate it now and skip to * next filter if the condition does not match. */ if (exp->cond) { ret = acl_exec_cond(exp->cond, px, s, txn, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (((struct acl_cond *)exp->cond)->pol == ACL_COND_UNLESS) ret = !ret; if (!ret) continue; } /* Apply the filter to the request line. */ ret = apply_filter_to_req_line(s, req, exp); if (unlikely(ret < 0)) return -1; if (likely(ret == 0)) { /* The filter did not match the request, it can be * iterated through all headers. */ apply_filter_to_req_headers(s, req, exp); } } return 0; } /* * Try to retrieve the server associated to the appsession. * If the server is found, it's assigned to the session. */ void manage_client_side_appsession(struct session *t, const char *buf, int len) { struct http_txn *txn = &t->txn; appsess *asession = NULL; char *sessid_temp = NULL; if (len > t->be->appsession_len) { len = t->be->appsession_len; } if (t->be->options2 & PR_O2_AS_REQL) { /* request-learn option is enabled : store the sessid in the session for future use */ if (txn->sessid != NULL) { /* free previously allocated memory as we don't need the session id found in the URL anymore */ pool_free2(apools.sessid, txn->sessid); } if ((txn->sessid = pool_alloc2(apools.sessid)) == NULL) { Alert("Not enough memory process_cli():asession->sessid:malloc().\n"); send_log(t->be, LOG_ALERT, "Not enough memory process_cli():asession->sessid:malloc().\n"); return; } memcpy(txn->sessid, buf, len); txn->sessid[len] = 0; } if ((sessid_temp = pool_alloc2(apools.sessid)) == NULL) { Alert("Not enough memory process_cli():asession->sessid:malloc().\n"); send_log(t->be, LOG_ALERT, "Not enough memory process_cli():asession->sessid:malloc().\n"); return; } memcpy(sessid_temp, buf, len); sessid_temp[len] = 0; asession = appsession_hash_lookup(&(t->be->htbl_proxy), sessid_temp); /* free previously allocated memory */ pool_free2(apools.sessid, sessid_temp); if (asession != NULL) { asession->expire = tick_add_ifset(now_ms, t->be->timeout.appsession); if (!(t->be->options2 & PR_O2_AS_REQL)) asession->request_count++; if (asession->serverid != NULL) { struct server *srv = t->be->srv; while (srv) { if (strcmp(srv->id, asession->serverid) == 0) { if ((srv->state & SRV_RUNNING) || (t->be->options & PR_O_PERSIST) || (t->flags & SN_FORCE_PRST)) { /* we found the server and it's usable */ txn->flags &= ~TX_CK_MASK; txn->flags |= (srv->state & SRV_RUNNING) ? TX_CK_VALID : TX_CK_DOWN; t->flags |= SN_DIRECT | SN_ASSIGNED; t->target = &srv->obj_type; break; } else { txn->flags &= ~TX_CK_MASK; txn->flags |= TX_CK_DOWN; } } srv = srv->next; } } } } /* Find the end of a cookie value contained between and . It works the * same way as with headers above except that the semi-colon also ends a token. * See RFC2965 for more information. Note that it requires a valid header to * return a valid result. */ char *find_cookie_value_end(char *s, const char *e) { int quoted, qdpair; quoted = qdpair = 0; for (; s < e; s++) { if (qdpair) qdpair = 0; else if (quoted) { if (*s == '\\') qdpair = 1; else if (*s == '"') quoted = 0; } else if (*s == '"') quoted = 1; else if (*s == ',' || *s == ';') return s; } return s; } /* Delete a value in a header between delimiters and in buffer * . The number of characters displaced is returned, and the pointer to * the first delimiter is updated if required. The function tries as much as * possible to respect the following principles : * - replace delimiter by the one unless points to a * colon, in which case is simply removed * - set exactly one space character after the new first delimiter, unless * there are not enough characters in the block being moved to do so. * - remove unneeded spaces before the previous delimiter and after the new * one. * * It is the caller's responsibility to ensure that : * - points to a valid delimiter or the colon ; * - points to a valid delimiter or the final CR/LF ; * - there are non-space chars before ; * - there is a CR/LF at or after . */ int del_hdr_value(struct buffer *buf, char **from, char *next) { char *prev = *from; if (*prev == ':') { /* We're removing the first value, preserve the colon and add a * space if possible. */ if (!http_is_crlf[(unsigned char)*next]) next++; prev++; if (prev < next) *prev++ = ' '; while (http_is_spht[(unsigned char)*next]) next++; } else { /* Remove useless spaces before the old delimiter. */ while (http_is_spht[(unsigned char)*(prev-1)]) prev--; *from = prev; /* copy the delimiter and if possible a space if we're * not at the end of the line. */ if (!http_is_crlf[(unsigned char)*next]) { *prev++ = *next++; if (prev + 1 < next) *prev++ = ' '; while (http_is_spht[(unsigned char)*next]) next++; } } return buffer_replace2(buf, prev, next, NULL, 0); } /* * Manage client-side cookie. It can impact performance by about 2% so it is * desirable to call it only when needed. This code is quite complex because * of the multiple very crappy and ambiguous syntaxes we have to support. it * highly recommended not to touch this part without a good reason ! */ void manage_client_side_cookies(struct session *t, struct channel *req) { struct http_txn *txn = &t->txn; int preserve_hdr; int cur_idx, old_idx; char *hdr_beg, *hdr_end, *hdr_next, *del_from; char *prev, *att_beg, *att_end, *equal, *val_beg, *val_end, *next; /* Iterate through the headers, we start with the start line. */ old_idx = 0; hdr_next = req->buf->p + hdr_idx_first_pos(&txn->hdr_idx); while ((cur_idx = txn->hdr_idx.v[old_idx].next)) { struct hdr_idx_elem *cur_hdr; int val; cur_hdr = &txn->hdr_idx.v[cur_idx]; hdr_beg = hdr_next; hdr_end = hdr_beg + cur_hdr->len; hdr_next = hdr_end + cur_hdr->cr + 1; /* We have one full header between hdr_beg and hdr_end, and the * next header starts at hdr_next. We're only interested in * "Cookie:" headers. */ val = http_header_match2(hdr_beg, hdr_end, "Cookie", 6); if (!val) { old_idx = cur_idx; continue; } del_from = NULL; /* nothing to be deleted */ preserve_hdr = 0; /* assume we may kill the whole header */ /* Now look for cookies. Conforming to RFC2109, we have to support * attributes whose name begin with a '$', and associate them with * the right cookie, if we want to delete this cookie. * So there are 3 cases for each cookie read : * 1) it's a special attribute, beginning with a '$' : ignore it. * 2) it's a server id cookie that we *MAY* want to delete : save * some pointers on it (last semi-colon, beginning of cookie...) * 3) it's an application cookie : we *MAY* have to delete a previous * "special" cookie. * At the end of loop, if a "special" cookie remains, we may have to * remove it. If no application cookie persists in the header, we * *MUST* delete it. * * Note: RFC2965 is unclear about the processing of spaces around * the equal sign in the ATTR=VALUE form. A careful inspection of * the RFC explicitly allows spaces before it, and not within the * tokens (attrs or values). An inspection of RFC2109 allows that * too but section 10.1.3 lets one think that spaces may be allowed * after the equal sign too, resulting in some (rare) buggy * implementations trying to do that. So let's do what servers do. * Latest ietf draft forbids spaces all around. Also, earlier RFCs * allowed quoted strings in values, with any possible character * after a backslash, including control chars and delimitors, which * causes parsing to become ambiguous. Browsers also allow spaces * within values even without quotes. * * We have to keep multiple pointers in order to support cookie * removal at the beginning, middle or end of header without * corrupting the header. All of these headers are valid : * * Cookie:NAME1=VALUE1;NAME2=VALUE2;NAME3=VALUE3\r\n * Cookie:NAME1=VALUE1;NAME2_ONLY ;NAME3=VALUE3\r\n * Cookie: NAME1 = VALUE 1 ; NAME2 = VALUE2 ; NAME3 = VALUE3\r\n * | | | | | | | | | * | | | | | | | | hdr_end <--+ * | | | | | | | +--> next * | | | | | | +----> val_end * | | | | | +-----------> val_beg * | | | | +--------------> equal * | | | +----------------> att_end * | | +---------------------> att_beg * | +--------------------------> prev * +--------------------------------> hdr_beg */ for (prev = hdr_beg + 6; prev < hdr_end; prev = next) { /* Iterate through all cookies on this line */ /* find att_beg */ att_beg = prev + 1; while (att_beg < hdr_end && http_is_spht[(unsigned char)*att_beg]) att_beg++; /* find att_end : this is the first character after the last non * space before the equal. It may be equal to hdr_end. */ equal = att_end = att_beg; while (equal < hdr_end) { if (*equal == '=' || *equal == ',' || *equal == ';') break; if (http_is_spht[(unsigned char)*equal++]) continue; att_end = equal; } /* here, points to '=', a delimitor or the end. * is between and , both may be identical. */ /* look for end of cookie if there is an equal sign */ if (equal < hdr_end && *equal == '=') { /* look for the beginning of the value */ val_beg = equal + 1; while (val_beg < hdr_end && http_is_spht[(unsigned char)*val_beg]) val_beg++; /* find the end of the value, respecting quotes */ next = find_cookie_value_end(val_beg, hdr_end); /* make val_end point to the first white space or delimitor after the value */ val_end = next; while (val_end > val_beg && http_is_spht[(unsigned char)*(val_end - 1)]) val_end--; } else { val_beg = val_end = next = equal; } /* We have nothing to do with attributes beginning with '$'. However, * they will automatically be removed if a header before them is removed, * since they're supposed to be linked together. */ if (*att_beg == '$') continue; /* Ignore cookies with no equal sign */ if (equal == next) { /* This is not our cookie, so we must preserve it. But if we already * scheduled another cookie for removal, we cannot remove the * complete header, but we can remove the previous block itself. */ preserve_hdr = 1; if (del_from != NULL) { int delta = del_hdr_value(req->buf, &del_from, prev); val_end += delta; next += delta; hdr_end += delta; hdr_next += delta; cur_hdr->len += delta; http_msg_move_end(&txn->req, delta); prev = del_from; del_from = NULL; } continue; } /* if there are spaces around the equal sign, we need to * strip them otherwise we'll get trouble for cookie captures, * or even for rewrites. Since this happens extremely rarely, * it does not hurt performance. */ if (unlikely(att_end != equal || val_beg > equal + 1)) { int stripped_before = 0; int stripped_after = 0; if (att_end != equal) { stripped_before = buffer_replace2(req->buf, att_end, equal, NULL, 0); equal += stripped_before; val_beg += stripped_before; } if (val_beg > equal + 1) { stripped_after = buffer_replace2(req->buf, equal + 1, val_beg, NULL, 0); val_beg += stripped_after; stripped_before += stripped_after; } val_end += stripped_before; next += stripped_before; hdr_end += stripped_before; hdr_next += stripped_before; cur_hdr->len += stripped_before; http_msg_move_end(&txn->req, stripped_before); } /* now everything is as on the diagram above */ /* First, let's see if we want to capture this cookie. We check * that we don't already have a client side cookie, because we * can only capture one. Also as an optimisation, we ignore * cookies shorter than the declared name. */ if (t->fe->capture_name != NULL && txn->cli_cookie == NULL && (val_end - att_beg >= t->fe->capture_namelen) && memcmp(att_beg, t->fe->capture_name, t->fe->capture_namelen) == 0) { int log_len = val_end - att_beg; if ((txn->cli_cookie = pool_alloc2(pool2_capture)) == NULL) { Alert("HTTP logging : out of memory.\n"); } else { if (log_len > t->fe->capture_len) log_len = t->fe->capture_len; memcpy(txn->cli_cookie, att_beg, log_len); txn->cli_cookie[log_len] = 0; } } /* Persistence cookies in passive, rewrite or insert mode have the * following form : * * Cookie: NAME=SRV[|[|]] * * For cookies in prefix mode, the form is : * * Cookie: NAME=SRV~VALUE */ if ((att_end - att_beg == t->be->cookie_len) && (t->be->cookie_name != NULL) && (memcmp(att_beg, t->be->cookie_name, att_end - att_beg) == 0)) { struct server *srv = t->be->srv; char *delim; /* if we're in cookie prefix mode, we'll search the delimitor so that we * have the server ID between val_beg and delim, and the original cookie between * delim+1 and val_end. Otherwise, delim==val_end : * * Cookie: NAME=SRV; # in all but prefix modes * Cookie: NAME=SRV~OPAQUE ; # in prefix mode * | || || | |+-> next * | || || | +--> val_end * | || || +---------> delim * | || |+------------> val_beg * | || +-------------> att_end = equal * | |+-----------------> att_beg * | +------------------> prev * +-------------------------> hdr_beg */ if (t->be->ck_opts & PR_CK_PFX) { for (delim = val_beg; delim < val_end; delim++) if (*delim == COOKIE_DELIM) break; } else { char *vbar1; delim = val_end; /* Now check if the cookie contains a date field, which would * appear after a vertical bar ('|') just after the server name * and before the delimiter. */ vbar1 = memchr(val_beg, COOKIE_DELIM_DATE, val_end - val_beg); if (vbar1) { /* OK, so left of the bar is the server's cookie and * right is the last seen date. It is a base64 encoded * 30-bit value representing the UNIX date since the * epoch in 4-second quantities. */ int val; delim = vbar1++; if (val_end - vbar1 >= 5) { val = b64tos30(vbar1); if (val > 0) txn->cookie_last_date = val << 2; } /* look for a second vertical bar */ vbar1 = memchr(vbar1, COOKIE_DELIM_DATE, val_end - vbar1); if (vbar1 && (val_end - vbar1 > 5)) { val = b64tos30(vbar1 + 1); if (val > 0) txn->cookie_first_date = val << 2; } } } /* if the cookie has an expiration date and the proxy wants to check * it, then we do that now. We first check if the cookie is too old, * then only if it has expired. We detect strict overflow because the * time resolution here is not great (4 seconds). Cookies with dates * in the future are ignored if their offset is beyond one day. This * allows an admin to fix timezone issues without expiring everyone * and at the same time avoids keeping unwanted side effects for too * long. */ if (txn->cookie_first_date && t->be->cookie_maxlife && (((signed)(date.tv_sec - txn->cookie_first_date) > (signed)t->be->cookie_maxlife) || ((signed)(txn->cookie_first_date - date.tv_sec) > 86400))) { txn->flags &= ~TX_CK_MASK; txn->flags |= TX_CK_OLD; delim = val_beg; // let's pretend we have not found the cookie txn->cookie_first_date = 0; txn->cookie_last_date = 0; } else if (txn->cookie_last_date && t->be->cookie_maxidle && (((signed)(date.tv_sec - txn->cookie_last_date) > (signed)t->be->cookie_maxidle) || ((signed)(txn->cookie_last_date - date.tv_sec) > 86400))) { txn->flags &= ~TX_CK_MASK; txn->flags |= TX_CK_EXPIRED; delim = val_beg; // let's pretend we have not found the cookie txn->cookie_first_date = 0; txn->cookie_last_date = 0; } /* Here, we'll look for the first running server which supports the cookie. * This allows to share a same cookie between several servers, for example * to dedicate backup servers to specific servers only. * However, to prevent clients from sticking to cookie-less backup server * when they have incidentely learned an empty cookie, we simply ignore * empty cookies and mark them as invalid. * The same behaviour is applied when persistence must be ignored. */ if ((delim == val_beg) || (t->flags & (SN_IGNORE_PRST | SN_ASSIGNED))) srv = NULL; while (srv) { if (srv->cookie && (srv->cklen == delim - val_beg) && !memcmp(val_beg, srv->cookie, delim - val_beg)) { if ((srv->state & SRV_RUNNING) || (t->be->options & PR_O_PERSIST) || (t->flags & SN_FORCE_PRST)) { /* we found the server and we can use it */ txn->flags &= ~TX_CK_MASK; txn->flags |= (srv->state & SRV_RUNNING) ? TX_CK_VALID : TX_CK_DOWN; t->flags |= SN_DIRECT | SN_ASSIGNED; t->target = &srv->obj_type; break; } else { /* we found a server, but it's down, * mark it as such and go on in case * another one is available. */ txn->flags &= ~TX_CK_MASK; txn->flags |= TX_CK_DOWN; } } srv = srv->next; } if (!srv && !(txn->flags & (TX_CK_DOWN|TX_CK_EXPIRED|TX_CK_OLD))) { /* no server matched this cookie or we deliberately skipped it */ txn->flags &= ~TX_CK_MASK; if ((t->flags & (SN_IGNORE_PRST | SN_ASSIGNED))) txn->flags |= TX_CK_UNUSED; else txn->flags |= TX_CK_INVALID; } /* depending on the cookie mode, we may have to either : * - delete the complete cookie if we're in insert+indirect mode, so that * the server never sees it ; * - remove the server id from the cookie value, and tag the cookie as an * application cookie so that it does not get accidentely removed later, * if we're in cookie prefix mode */ if ((t->be->ck_opts & PR_CK_PFX) && (delim != val_end)) { int delta; /* negative */ delta = buffer_replace2(req->buf, val_beg, delim + 1, NULL, 0); val_end += delta; next += delta; hdr_end += delta; hdr_next += delta; cur_hdr->len += delta; http_msg_move_end(&txn->req, delta); del_from = NULL; preserve_hdr = 1; /* we want to keep this cookie */ } else if (del_from == NULL && (t->be->ck_opts & (PR_CK_INS | PR_CK_IND)) == (PR_CK_INS | PR_CK_IND)) { del_from = prev; } } else { /* This is not our cookie, so we must preserve it. But if we already * scheduled another cookie for removal, we cannot remove the * complete header, but we can remove the previous block itself. */ preserve_hdr = 1; if (del_from != NULL) { int delta = del_hdr_value(req->buf, &del_from, prev); if (att_beg >= del_from) att_beg += delta; if (att_end >= del_from) att_end += delta; val_beg += delta; val_end += delta; next += delta; hdr_end += delta; hdr_next += delta; cur_hdr->len += delta; http_msg_move_end(&txn->req, delta); prev = del_from; del_from = NULL; } } /* Look for the appsession cookie unless persistence must be ignored */ if (!(t->flags & SN_IGNORE_PRST) && (t->be->appsession_name != NULL)) { int cmp_len, value_len; char *value_begin; if (t->be->options2 & PR_O2_AS_PFX) { cmp_len = MIN(val_end - att_beg, t->be->appsession_name_len); value_begin = att_beg + t->be->appsession_name_len; value_len = val_end - att_beg - t->be->appsession_name_len; } else { cmp_len = att_end - att_beg; value_begin = val_beg; value_len = val_end - val_beg; } /* let's see if the cookie is our appcookie */ if (cmp_len == t->be->appsession_name_len && memcmp(att_beg, t->be->appsession_name, cmp_len) == 0) { manage_client_side_appsession(t, value_begin, value_len); } } /* continue with next cookie on this header line */ att_beg = next; } /* for each cookie */ /* There are no more cookies on this line. * We may still have one (or several) marked for deletion at the * end of the line. We must do this now in two ways : * - if some cookies must be preserved, we only delete from the * mark to the end of line ; * - if nothing needs to be preserved, simply delete the whole header */ if (del_from) { int delta; if (preserve_hdr) { delta = del_hdr_value(req->buf, &del_from, hdr_end); hdr_end = del_from; cur_hdr->len += delta; } else { delta = buffer_replace2(req->buf, hdr_beg, hdr_next, NULL, 0); /* FIXME: this should be a separate function */ txn->hdr_idx.v[old_idx].next = cur_hdr->next; txn->hdr_idx.used--; cur_hdr->len = 0; cur_idx = old_idx; } hdr_next += delta; http_msg_move_end(&txn->req, delta); } /* check next header */ old_idx = cur_idx; } } /* Iterate the same filter through all response headers contained in . * Returns 1 if this filter can be stopped upon return, otherwise 0. */ int apply_filter_to_resp_headers(struct session *t, struct channel *rtr, struct hdr_exp *exp) { char term; char *cur_ptr, *cur_end, *cur_next; int cur_idx, old_idx, last_hdr; struct http_txn *txn = &t->txn; struct hdr_idx_elem *cur_hdr; int delta; last_hdr = 0; cur_next = rtr->buf->p + hdr_idx_first_pos(&txn->hdr_idx); old_idx = 0; while (!last_hdr) { if (unlikely(txn->flags & TX_SVDENY)) return 1; else if (unlikely(txn->flags & TX_SVALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY)) return 0; cur_idx = txn->hdr_idx.v[old_idx].next; if (!cur_idx) break; cur_hdr = &txn->hdr_idx.v[cur_idx]; cur_ptr = cur_next; cur_end = cur_ptr + cur_hdr->len; cur_next = cur_end + cur_hdr->cr + 1; /* Now we have one header between cur_ptr and cur_end, * and the next header starts at cur_next. */ /* The annoying part is that pattern matching needs * that we modify the contents to null-terminate all * strings before testing them. */ term = *cur_end; *cur_end = '\0'; if (regexec(exp->preg, cur_ptr, MAX_MATCH, pmatch, 0) == 0) { switch (exp->action) { case ACT_ALLOW: txn->flags |= TX_SVALLOW; last_hdr = 1; break; case ACT_DENY: txn->flags |= TX_SVDENY; last_hdr = 1; break; case ACT_REPLACE: trash.len = exp_replace(trash.str, cur_ptr, exp->replace, pmatch); delta = buffer_replace2(rtr->buf, cur_ptr, cur_end, trash.str, trash.len); /* FIXME: if the user adds a newline in the replacement, the * index will not be recalculated for now, and the new line * will not be counted as a new header. */ cur_end += delta; cur_next += delta; cur_hdr->len += delta; http_msg_move_end(&txn->rsp, delta); break; case ACT_REMOVE: delta = buffer_replace2(rtr->buf, cur_ptr, cur_next, NULL, 0); cur_next += delta; http_msg_move_end(&txn->rsp, delta); txn->hdr_idx.v[old_idx].next = cur_hdr->next; txn->hdr_idx.used--; cur_hdr->len = 0; cur_end = NULL; /* null-term has been rewritten */ cur_idx = old_idx; break; } } if (cur_end) *cur_end = term; /* restore the string terminator */ /* keep the link from this header to next one in case of later * removal of next header. */ old_idx = cur_idx; } return 0; } /* Apply the filter to the status line in the response buffer . * Returns 0 if nothing has been done, 1 if the filter has been applied, * or -1 if a replacement resulted in an invalid status line. */ int apply_filter_to_sts_line(struct session *t, struct channel *rtr, struct hdr_exp *exp) { char term; char *cur_ptr, *cur_end; int done; struct http_txn *txn = &t->txn; int delta; if (unlikely(txn->flags & TX_SVDENY)) return 1; else if (unlikely(txn->flags & TX_SVALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY)) return 0; else if (exp->action == ACT_REMOVE) return 0; done = 0; cur_ptr = rtr->buf->p; cur_end = cur_ptr + txn->rsp.sl.st.l; /* Now we have the status line between cur_ptr and cur_end */ /* The annoying part is that pattern matching needs * that we modify the contents to null-terminate all * strings before testing them. */ term = *cur_end; *cur_end = '\0'; if (regexec(exp->preg, cur_ptr, MAX_MATCH, pmatch, 0) == 0) { switch (exp->action) { case ACT_ALLOW: txn->flags |= TX_SVALLOW; done = 1; break; case ACT_DENY: txn->flags |= TX_SVDENY; done = 1; break; case ACT_REPLACE: *cur_end = term; /* restore the string terminator */ trash.len = exp_replace(trash.str, cur_ptr, exp->replace, pmatch); delta = buffer_replace2(rtr->buf, cur_ptr, cur_end, trash.str, trash.len); /* FIXME: if the user adds a newline in the replacement, the * index will not be recalculated for now, and the new line * will not be counted as a new header. */ http_msg_move_end(&txn->rsp, delta); cur_end += delta; cur_end = (char *)http_parse_stsline(&txn->rsp, HTTP_MSG_RPVER, cur_ptr, cur_end + 1, NULL, NULL); if (unlikely(!cur_end)) return -1; /* we have a full respnse and we know that we have either a CR * or an LF at . */ txn->status = strl2ui(rtr->buf->p + txn->rsp.sl.st.c, txn->rsp.sl.st.c_l); hdr_idx_set_start(&txn->hdr_idx, txn->rsp.sl.st.l, *cur_end == '\r'); /* there is no point trying this regex on headers */ return 1; } } *cur_end = term; /* restore the string terminator */ return done; } /* * Apply all the resp filters of proxy to all headers in buffer of session . * Returns 0 if everything is alright, or -1 in case a replacement lead to an * unparsable response. */ int apply_filters_to_response(struct session *s, struct channel *rtr, struct proxy *px) { struct http_txn *txn = &s->txn; struct hdr_exp *exp; for (exp = px->rsp_exp; exp; exp = exp->next) { int ret; /* * The interleaving of transformations and verdicts * makes it difficult to decide to continue or stop * the evaluation. */ if (txn->flags & TX_SVDENY) break; if ((txn->flags & TX_SVALLOW) && (exp->action == ACT_ALLOW || exp->action == ACT_DENY || exp->action == ACT_PASS)) { exp = exp->next; continue; } /* if this filter had a condition, evaluate it now and skip to * next filter if the condition does not match. */ if (exp->cond) { ret = acl_exec_cond(exp->cond, px, s, txn, SMP_OPT_DIR_RES|SMP_OPT_FINAL); ret = acl_pass(ret); if (((struct acl_cond *)exp->cond)->pol == ACL_COND_UNLESS) ret = !ret; if (!ret) continue; } /* Apply the filter to the status line. */ ret = apply_filter_to_sts_line(s, rtr, exp); if (unlikely(ret < 0)) return -1; if (likely(ret == 0)) { /* The filter did not match the response, it can be * iterated through all headers. */ apply_filter_to_resp_headers(s, rtr, exp); } } return 0; } /* * Manage server-side cookies. It can impact performance by about 2% so it is * desirable to call it only when needed. This function is also used when we * just need to know if there is a cookie (eg: for check-cache). */ void manage_server_side_cookies(struct session *t, struct channel *res) { struct http_txn *txn = &t->txn; struct server *srv; int is_cookie2; int cur_idx, old_idx, delta; char *hdr_beg, *hdr_end, *hdr_next; char *prev, *att_beg, *att_end, *equal, *val_beg, *val_end, *next; /* Iterate through the headers. * we start with the start line. */ old_idx = 0; hdr_next = res->buf->p + hdr_idx_first_pos(&txn->hdr_idx); while ((cur_idx = txn->hdr_idx.v[old_idx].next)) { struct hdr_idx_elem *cur_hdr; int val; cur_hdr = &txn->hdr_idx.v[cur_idx]; hdr_beg = hdr_next; hdr_end = hdr_beg + cur_hdr->len; hdr_next = hdr_end + cur_hdr->cr + 1; /* We have one full header between hdr_beg and hdr_end, and the * next header starts at hdr_next. We're only interested in * "Set-Cookie" and "Set-Cookie2" headers. */ is_cookie2 = 0; prev = hdr_beg + 10; val = http_header_match2(hdr_beg, hdr_end, "Set-Cookie", 10); if (!val) { val = http_header_match2(hdr_beg, hdr_end, "Set-Cookie2", 11); if (!val) { old_idx = cur_idx; continue; } is_cookie2 = 1; prev = hdr_beg + 11; } /* OK, right now we know we have a Set-Cookie* at hdr_beg, and * points to the colon. */ txn->flags |= TX_SCK_PRESENT; /* Maybe we only wanted to see if there was a Set-Cookie (eg: * check-cache is enabled) and we are not interested in checking * them. Warning, the cookie capture is declared in the frontend. */ if (t->be->cookie_name == NULL && t->be->appsession_name == NULL && t->fe->capture_name == NULL) return; /* OK so now we know we have to process this response cookie. * The format of the Set-Cookie header is slightly different * from the format of the Cookie header in that it does not * support the comma as a cookie delimiter (thus the header * cannot be folded) because the Expires attribute described in * the original Netscape's spec may contain an unquoted date * with a comma inside. We have to live with this because * many browsers don't support Max-Age and some browsers don't * support quoted strings. However the Set-Cookie2 header is * clean. * * We have to keep multiple pointers in order to support cookie * removal at the beginning, middle or end of header without * corrupting the header (in case of set-cookie2). A special * pointer, points to the beginning of the set-cookie-av * fields after the first semi-colon. The pointer points * either to the end of line (set-cookie) or next unquoted comma * (set-cookie2). All of these headers are valid : * * Set-Cookie: NAME1 = VALUE 1 ; Secure; Path="/"\r\n * Set-Cookie:NAME=VALUE; Secure; Expires=Thu, 01-Jan-1970 00:00:01 GMT\r\n * Set-Cookie: NAME = VALUE ; Secure; Expires=Thu, 01-Jan-1970 00:00:01 GMT\r\n * Set-Cookie2: NAME1 = VALUE 1 ; Max-Age=0, NAME2=VALUE2; Discard\r\n * | | | | | | | | | | * | | | | | | | | +-> next hdr_end <--+ * | | | | | | | +------------> scav * | | | | | | +--------------> val_end * | | | | | +--------------------> val_beg * | | | | +----------------------> equal * | | | +------------------------> att_end * | | +----------------------------> att_beg * | +------------------------------> prev * +-----------------------------------------> hdr_beg */ for (; prev < hdr_end; prev = next) { /* Iterate through all cookies on this line */ /* find att_beg */ att_beg = prev + 1; while (att_beg < hdr_end && http_is_spht[(unsigned char)*att_beg]) att_beg++; /* find att_end : this is the first character after the last non * space before the equal. It may be equal to hdr_end. */ equal = att_end = att_beg; while (equal < hdr_end) { if (*equal == '=' || *equal == ';' || (is_cookie2 && *equal == ',')) break; if (http_is_spht[(unsigned char)*equal++]) continue; att_end = equal; } /* here, points to '=', a delimitor or the end. * is between and , both may be identical. */ /* look for end of cookie if there is an equal sign */ if (equal < hdr_end && *equal == '=') { /* look for the beginning of the value */ val_beg = equal + 1; while (val_beg < hdr_end && http_is_spht[(unsigned char)*val_beg]) val_beg++; /* find the end of the value, respecting quotes */ next = find_cookie_value_end(val_beg, hdr_end); /* make val_end point to the first white space or delimitor after the value */ val_end = next; while (val_end > val_beg && http_is_spht[(unsigned char)*(val_end - 1)]) val_end--; } else { /* points to next comma, semi-colon or EOL */ val_beg = val_end = next = equal; } if (next < hdr_end) { /* Set-Cookie2 supports multiple cookies, and points to * a colon or semi-colon before the end. So skip all attr-value * pairs and look for the next comma. For Set-Cookie, since * commas are permitted in values, skip to the end. */ if (is_cookie2) next = find_hdr_value_end(next, hdr_end); else next = hdr_end; } /* Now everything is as on the diagram above */ /* Ignore cookies with no equal sign */ if (equal == val_end) continue; /* If there are spaces around the equal sign, we need to * strip them otherwise we'll get trouble for cookie captures, * or even for rewrites. Since this happens extremely rarely, * it does not hurt performance. */ if (unlikely(att_end != equal || val_beg > equal + 1)) { int stripped_before = 0; int stripped_after = 0; if (att_end != equal) { stripped_before = buffer_replace2(res->buf, att_end, equal, NULL, 0); equal += stripped_before; val_beg += stripped_before; } if (val_beg > equal + 1) { stripped_after = buffer_replace2(res->buf, equal + 1, val_beg, NULL, 0); val_beg += stripped_after; stripped_before += stripped_after; } val_end += stripped_before; next += stripped_before; hdr_end += stripped_before; hdr_next += stripped_before; cur_hdr->len += stripped_before; http_msg_move_end(&txn->rsp, stripped_before); } /* First, let's see if we want to capture this cookie. We check * that we don't already have a server side cookie, because we * can only capture one. Also as an optimisation, we ignore * cookies shorter than the declared name. */ if (t->fe->capture_name != NULL && txn->srv_cookie == NULL && (val_end - att_beg >= t->fe->capture_namelen) && memcmp(att_beg, t->fe->capture_name, t->fe->capture_namelen) == 0) { int log_len = val_end - att_beg; if ((txn->srv_cookie = pool_alloc2(pool2_capture)) == NULL) { Alert("HTTP logging : out of memory.\n"); } else { if (log_len > t->fe->capture_len) log_len = t->fe->capture_len; memcpy(txn->srv_cookie, att_beg, log_len); txn->srv_cookie[log_len] = 0; } } srv = objt_server(t->target); /* now check if we need to process it for persistence */ if (!(t->flags & SN_IGNORE_PRST) && (att_end - att_beg == t->be->cookie_len) && (t->be->cookie_name != NULL) && (memcmp(att_beg, t->be->cookie_name, att_end - att_beg) == 0)) { /* assume passive cookie by default */ txn->flags &= ~TX_SCK_MASK; txn->flags |= TX_SCK_FOUND; /* If the cookie is in insert mode on a known server, we'll delete * this occurrence because we'll insert another one later. * We'll delete it too if the "indirect" option is set and we're in * a direct access. */ if (t->be->ck_opts & PR_CK_PSV) { /* The "preserve" flag was set, we don't want to touch the * server's cookie. */ } else if ((srv && (t->be->ck_opts & PR_CK_INS)) || ((t->flags & SN_DIRECT) && (t->be->ck_opts & PR_CK_IND))) { /* this cookie must be deleted */ if (*prev == ':' && next == hdr_end) { /* whole header */ delta = buffer_replace2(res->buf, hdr_beg, hdr_next, NULL, 0); txn->hdr_idx.v[old_idx].next = cur_hdr->next; txn->hdr_idx.used--; cur_hdr->len = 0; cur_idx = old_idx; hdr_next += delta; http_msg_move_end(&txn->rsp, delta); /* note: while both invalid now, and * are still equal, so the for() will stop as expected. */ } else { /* just remove the value */ int delta = del_hdr_value(res->buf, &prev, next); next = prev; hdr_end += delta; hdr_next += delta; cur_hdr->len += delta; http_msg_move_end(&txn->rsp, delta); } txn->flags &= ~TX_SCK_MASK; txn->flags |= TX_SCK_DELETED; /* and go on with next cookie */ } else if (srv && srv->cookie && (t->be->ck_opts & PR_CK_RW)) { /* replace bytes val_beg->val_end with the cookie name associated * with this server since we know it. */ delta = buffer_replace2(res->buf, val_beg, val_end, srv->cookie, srv->cklen); next += delta; hdr_end += delta; hdr_next += delta; cur_hdr->len += delta; http_msg_move_end(&txn->rsp, delta); txn->flags &= ~TX_SCK_MASK; txn->flags |= TX_SCK_REPLACED; } else if (srv && srv->cookie && (t->be->ck_opts & PR_CK_PFX)) { /* insert the cookie name associated with this server * before existing cookie, and insert a delimiter between them.. */ delta = buffer_replace2(res->buf, val_beg, val_beg, srv->cookie, srv->cklen + 1); next += delta; hdr_end += delta; hdr_next += delta; cur_hdr->len += delta; http_msg_move_end(&txn->rsp, delta); val_beg[srv->cklen] = COOKIE_DELIM; txn->flags &= ~TX_SCK_MASK; txn->flags |= TX_SCK_REPLACED; } } /* next, let's see if the cookie is our appcookie, unless persistence must be ignored */ else if (!(t->flags & SN_IGNORE_PRST) && (t->be->appsession_name != NULL)) { int cmp_len, value_len; char *value_begin; if (t->be->options2 & PR_O2_AS_PFX) { cmp_len = MIN(val_end - att_beg, t->be->appsession_name_len); value_begin = att_beg + t->be->appsession_name_len; value_len = MIN(t->be->appsession_len, val_end - att_beg - t->be->appsession_name_len); } else { cmp_len = att_end - att_beg; value_begin = val_beg; value_len = MIN(t->be->appsession_len, val_end - val_beg); } if ((cmp_len == t->be->appsession_name_len) && (memcmp(att_beg, t->be->appsession_name, t->be->appsession_name_len) == 0)) { /* free a possibly previously allocated memory */ pool_free2(apools.sessid, txn->sessid); /* Store the sessid in the session for future use */ if ((txn->sessid = pool_alloc2(apools.sessid)) == NULL) { Alert("Not enough Memory process_srv():asession->sessid:malloc().\n"); send_log(t->be, LOG_ALERT, "Not enough Memory process_srv():asession->sessid:malloc().\n"); return; } memcpy(txn->sessid, value_begin, value_len); txn->sessid[value_len] = 0; } } /* that's done for this cookie, check the next one on the same * line when next != hdr_end (only if is_cookie2). */ } /* check next header */ old_idx = cur_idx; } if (txn->sessid != NULL) { appsess *asession = NULL; /* only do insert, if lookup fails */ asession = appsession_hash_lookup(&(t->be->htbl_proxy), txn->sessid); if (asession == NULL) { size_t server_id_len; if ((asession = pool_alloc2(pool2_appsess)) == NULL) { Alert("Not enough Memory process_srv():asession:calloc().\n"); send_log(t->be, LOG_ALERT, "Not enough Memory process_srv():asession:calloc().\n"); return; } asession->serverid = NULL; /* to avoid a double free in case of allocation error */ if ((asession->sessid = pool_alloc2(apools.sessid)) == NULL) { Alert("Not enough Memory process_srv():asession->sessid:malloc().\n"); send_log(t->be, LOG_ALERT, "Not enough Memory process_srv():asession->sessid:malloc().\n"); t->be->htbl_proxy.destroy(asession); return; } memcpy(asession->sessid, txn->sessid, t->be->appsession_len); asession->sessid[t->be->appsession_len] = 0; server_id_len = strlen(objt_server(t->target)->id) + 1; if ((asession->serverid = pool_alloc2(apools.serverid)) == NULL) { Alert("Not enough Memory process_srv():asession->serverid:malloc().\n"); send_log(t->be, LOG_ALERT, "Not enough Memory process_srv():asession->sessid:malloc().\n"); t->be->htbl_proxy.destroy(asession); return; } asession->serverid[0] = '\0'; memcpy(asession->serverid, objt_server(t->target)->id, server_id_len); asession->request_count = 0; appsession_hash_insert(&(t->be->htbl_proxy), asession); } asession->expire = tick_add_ifset(now_ms, t->be->timeout.appsession); asession->request_count++; } } /* * Check if response is cacheable or not. Updates t->flags. */ void check_response_for_cacheability(struct session *t, struct channel *rtr) { struct http_txn *txn = &t->txn; char *p1, *p2; char *cur_ptr, *cur_end, *cur_next; int cur_idx; if (!(txn->flags & TX_CACHEABLE)) return; /* Iterate through the headers. * we start with the start line. */ cur_idx = 0; cur_next = rtr->buf->p + hdr_idx_first_pos(&txn->hdr_idx); while ((cur_idx = txn->hdr_idx.v[cur_idx].next)) { struct hdr_idx_elem *cur_hdr; int val; cur_hdr = &txn->hdr_idx.v[cur_idx]; cur_ptr = cur_next; cur_end = cur_ptr + cur_hdr->len; cur_next = cur_end + cur_hdr->cr + 1; /* We have one full header between cur_ptr and cur_end, and the * next header starts at cur_next. We're only interested in * "Cookie:" headers. */ val = http_header_match2(cur_ptr, cur_end, "Pragma", 6); if (val) { if ((cur_end - (cur_ptr + val) >= 8) && strncasecmp(cur_ptr + val, "no-cache", 8) == 0) { txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; return; } } val = http_header_match2(cur_ptr, cur_end, "Cache-control", 13); if (!val) continue; /* OK, right now we know we have a cache-control header at cur_ptr */ p1 = cur_ptr + val; /* first non-space char after 'cache-control:' */ if (p1 >= cur_end) /* no more info */ continue; /* p1 is at the beginning of the value */ p2 = p1; while (p2 < cur_end && *p2 != '=' && *p2 != ',' && !isspace((unsigned char)*p2)) p2++; /* we have a complete value between p1 and p2 */ if (p2 < cur_end && *p2 == '=') { /* we have something of the form no-cache="set-cookie" */ if ((cur_end - p1 >= 21) && strncasecmp(p1, "no-cache=\"set-cookie", 20) == 0 && (p1[20] == '"' || p1[20] == ',')) txn->flags &= ~TX_CACHE_COOK; continue; } /* OK, so we know that either p2 points to the end of string or to a comma */ if (((p2 - p1 == 7) && strncasecmp(p1, "private", 7) == 0) || ((p2 - p1 == 8) && strncasecmp(p1, "no-store", 8) == 0) || ((p2 - p1 == 9) && strncasecmp(p1, "max-age=0", 9) == 0) || ((p2 - p1 == 10) && strncasecmp(p1, "s-maxage=0", 10) == 0)) { txn->flags &= ~TX_CACHEABLE & ~TX_CACHE_COOK; return; } if ((p2 - p1 == 6) && strncasecmp(p1, "public", 6) == 0) { txn->flags |= TX_CACHEABLE | TX_CACHE_COOK; continue; } } } /* * Try to retrieve a known appsession in the URI, then the associated server. * If the server is found, it's assigned to the session. */ void get_srv_from_appsession(struct session *t, const char *begin, int len) { char *end_params, *first_param, *cur_param, *next_param; char separator; int value_len; int mode = t->be->options2 & PR_O2_AS_M_ANY; if (t->be->appsession_name == NULL || (t->txn.meth != HTTP_METH_GET && t->txn.meth != HTTP_METH_POST && t->txn.meth != HTTP_METH_HEAD)) { return; } first_param = NULL; switch (mode) { case PR_O2_AS_M_PP: first_param = memchr(begin, ';', len); break; case PR_O2_AS_M_QS: first_param = memchr(begin, '?', len); break; } if (first_param == NULL) { return; } switch (mode) { case PR_O2_AS_M_PP: if ((end_params = memchr(first_param, '?', len - (begin - first_param))) == NULL) { end_params = (char *) begin + len; } separator = ';'; break; case PR_O2_AS_M_QS: end_params = (char *) begin + len; separator = '&'; break; default: /* unknown mode, shouldn't happen */ return; } cur_param = next_param = end_params; while (cur_param > first_param) { cur_param--; if ((cur_param[0] == separator) || (cur_param == first_param)) { /* let's see if this is the appsession parameter */ if ((cur_param + t->be->appsession_name_len + 1 < next_param) && ((t->be->options2 & PR_O2_AS_PFX) || cur_param[t->be->appsession_name_len + 1] == '=') && (strncasecmp(cur_param + 1, t->be->appsession_name, t->be->appsession_name_len) == 0)) { /* Cool... it's the right one */ cur_param += t->be->appsession_name_len + (t->be->options2 & PR_O2_AS_PFX ? 1 : 2); value_len = MIN(t->be->appsession_len, next_param - cur_param); if (value_len > 0) { manage_client_side_appsession(t, cur_param, value_len); } break; } next_param = cur_param; } } #if defined(DEBUG_HASH) Alert("get_srv_from_appsession\n"); appsession_hash_dump(&(t->be->htbl_proxy)); #endif } /* * In a GET, HEAD or POST request, check if the requested URI matches the stats uri * for the current backend. * * It is assumed that the request is either a HEAD, GET, or POST and that the * uri_auth field is valid. * * Returns 1 if stats should be provided, otherwise 0. */ int stats_check_uri(struct stream_interface *si, struct http_txn *txn, struct proxy *backend) { struct uri_auth *uri_auth = backend->uri_auth; struct http_msg *msg = &txn->req; const char *uri = msg->chn->buf->p+ msg->sl.rq.u; const char *h; if (!uri_auth) return 0; if (txn->meth != HTTP_METH_GET && txn->meth != HTTP_METH_HEAD && txn->meth != HTTP_METH_POST) return 0; memset(&si->applet.ctx.stats, 0, sizeof(si->applet.ctx.stats)); si->applet.ctx.stats.st_code = STAT_STATUS_INIT; si->applet.ctx.stats.flags |= STAT_FMT_HTML; /* assume HTML mode by default */ /* check URI size */ if (uri_auth->uri_len > msg->sl.rq.u_l) return 0; h = uri; if (memcmp(h, uri_auth->uri_prefix, uri_auth->uri_len) != 0) return 0; h += uri_auth->uri_len; while (h <= uri + msg->sl.rq.u_l - 3) { if (memcmp(h, ";up", 3) == 0) { si->applet.ctx.stats.flags |= STAT_HIDE_DOWN; break; } h++; } if (uri_auth->refresh) { h = uri + uri_auth->uri_len; while (h <= uri + msg->sl.rq.u_l - 10) { if (memcmp(h, ";norefresh", 10) == 0) { si->applet.ctx.stats.flags |= STAT_NO_REFRESH; break; } h++; } } h = uri + uri_auth->uri_len; while (h <= uri + msg->sl.rq.u_l - 4) { if (memcmp(h, ";csv", 4) == 0) { si->applet.ctx.stats.flags &= ~STAT_FMT_HTML; break; } h++; } h = uri + uri_auth->uri_len; while (h <= uri + msg->sl.rq.u_l - 8) { if (memcmp(h, ";st=", 4) == 0) { int i; h += 4; si->applet.ctx.stats.st_code = STAT_STATUS_UNKN; for (i = STAT_STATUS_INIT + 1; i < STAT_STATUS_SIZE; i++) { if (strncmp(stat_status_codes[i], h, 4) == 0) { si->applet.ctx.stats.st_code = i; break; } } break; } h++; } return 1; } /* * Capture a bad request or response and archive it in the proxy's structure. * By default it tries to report the error position as msg->err_pos. However if * this one is not set, it will then report msg->next, which is the last known * parsing point. The function is able to deal with wrapping buffers. It always * displays buffers as a contiguous area starting at buf->p. */ void http_capture_bad_message(struct error_snapshot *es, struct session *s, struct http_msg *msg, int state, struct proxy *other_end) { struct channel *chn = msg->chn; int len1, len2; es->len = MIN(chn->buf->i, sizeof(es->buf)); len1 = chn->buf->data + chn->buf->size - chn->buf->p; len1 = MIN(len1, es->len); len2 = es->len - len1; /* remaining data if buffer wraps */ memcpy(es->buf, chn->buf->p, len1); if (len2) memcpy(es->buf + len1, chn->buf->data, len2); if (msg->err_pos >= 0) es->pos = msg->err_pos; else es->pos = msg->next; es->when = date; // user-visible date es->sid = s->uniq_id; es->srv = objt_server(s->target); es->oe = other_end; es->src = s->req->prod->conn->addr.from; es->state = state; es->ev_id = error_snapshot_id++; es->b_flags = chn->flags; es->s_flags = s->flags; es->t_flags = s->txn.flags; es->m_flags = msg->flags; es->b_out = chn->buf->o; es->b_wrap = chn->buf->data + chn->buf->size - chn->buf->p; es->b_tot = chn->total; es->m_clen = msg->chunk_len; es->m_blen = msg->body_len; } /* Return in and the pointer and length of occurrence of * header whose name is of length . If is null, lookup is * performed over the whole headers. Otherwise it must contain a valid header * context, initialised with ctx->idx=0 for the first lookup in a series. If * is positive or null, occurrence #occ from the beginning (or last ctx) * is returned. Occ #0 and #1 are equivalent. If is negative (and no less * than -MAX_HDR_HISTORY), the occurrence is counted from the last one which is * -1. * The return value is 0 if nothing was found, or non-zero otherwise. */ unsigned int http_get_hdr(const struct http_msg *msg, const char *hname, int hlen, struct hdr_idx *idx, int occ, struct hdr_ctx *ctx, char **vptr, int *vlen) { struct hdr_ctx local_ctx; char *ptr_hist[MAX_HDR_HISTORY]; int len_hist[MAX_HDR_HISTORY]; unsigned int hist_ptr; int found; if (!ctx) { local_ctx.idx = 0; ctx = &local_ctx; } if (occ >= 0) { /* search from the beginning */ while (http_find_header2(hname, hlen, msg->chn->buf->p, idx, ctx)) { occ--; if (occ <= 0) { *vptr = ctx->line + ctx->val; *vlen = ctx->vlen; return 1; } } return 0; } /* negative occurrence, we scan all the list then walk back */ if (-occ > MAX_HDR_HISTORY) return 0; found = hist_ptr = 0; while (http_find_header2(hname, hlen, msg->chn->buf->p, idx, ctx)) { ptr_hist[hist_ptr] = ctx->line + ctx->val; len_hist[hist_ptr] = ctx->vlen; if (++hist_ptr >= MAX_HDR_HISTORY) hist_ptr = 0; found++; } if (-occ > found) return 0; /* OK now we have the last occurrence in [hist_ptr-1], and we need to * find occurrence -occ, so we have to check [hist_ptr+occ]. */ hist_ptr += occ; if (hist_ptr >= MAX_HDR_HISTORY) hist_ptr -= MAX_HDR_HISTORY; *vptr = ptr_hist[hist_ptr]; *vlen = len_hist[hist_ptr]; return 1; } /* * Print a debug line with a header. Always stop at the first CR or LF char, * so it is safe to pass it a full buffer if needed. If is not NULL, an * arrow is printed after the line which contains the pointer. */ void debug_hdr(const char *dir, struct session *t, const char *start, const char *end) { int max; chunk_printf(&trash, "%08x:%s.%s[%04x:%04x]: ", t->uniq_id, t->be->id, dir, (unsigned short)t->req->prod->conn->t.sock.fd, (unsigned short)t->req->cons->conn->t.sock.fd); for (max = 0; start + max < end; max++) if (start[max] == '\r' || start[max] == '\n') break; UBOUND(max, trash.size - trash.len - 3); trash.len += strlcpy2(trash.str + trash.len, start, max + 1); trash.str[trash.len++] = '\n'; if (write(1, trash.str, trash.len) < 0) /* shut gcc warning */; } /* * Initialize a new HTTP transaction for session . It is assumed that all * the required fields are properly allocated and that we only need to (re)init * them. This should be used before processing any new request. */ void http_init_txn(struct session *s) { struct http_txn *txn = &s->txn; struct proxy *fe = s->fe; txn->flags = 0; txn->status = -1; global.req_count++; txn->cookie_first_date = 0; txn->cookie_last_date = 0; txn->req.flags = 0; txn->req.sol = txn->req.eol = txn->req.eoh = 0; /* relative to the buffer */ txn->req.next = 0; txn->rsp.flags = 0; txn->rsp.sol = txn->rsp.eol = txn->rsp.eoh = 0; /* relative to the buffer */ txn->rsp.next = 0; txn->req.chunk_len = 0LL; txn->req.body_len = 0LL; txn->rsp.chunk_len = 0LL; txn->rsp.body_len = 0LL; txn->req.msg_state = HTTP_MSG_RQBEFORE; /* at the very beginning of the request */ txn->rsp.msg_state = HTTP_MSG_RPBEFORE; /* at the very beginning of the response */ txn->req.chn = s->req; txn->rsp.chn = s->rep; txn->auth.method = HTTP_AUTH_UNKNOWN; txn->req.err_pos = txn->rsp.err_pos = -2; /* block buggy requests/responses */ if (fe->options2 & PR_O2_REQBUG_OK) txn->req.err_pos = -1; /* let buggy requests pass */ if (txn->req.cap) memset(txn->req.cap, 0, fe->nb_req_cap * sizeof(void *)); if (txn->rsp.cap) memset(txn->rsp.cap, 0, fe->nb_rsp_cap * sizeof(void *)); if (txn->hdr_idx.v) hdr_idx_init(&txn->hdr_idx); } /* to be used at the end of a transaction */ void http_end_txn(struct session *s) { struct http_txn *txn = &s->txn; /* these ones will have been dynamically allocated */ pool_free2(pool2_requri, txn->uri); pool_free2(pool2_capture, txn->cli_cookie); pool_free2(pool2_capture, txn->srv_cookie); pool_free2(apools.sessid, txn->sessid); pool_free2(pool2_uniqueid, s->unique_id); s->unique_id = NULL; txn->sessid = NULL; txn->uri = NULL; txn->srv_cookie = NULL; txn->cli_cookie = NULL; if (txn->req.cap) { struct cap_hdr *h; for (h = s->fe->req_cap; h; h = h->next) pool_free2(h->pool, txn->req.cap[h->index]); memset(txn->req.cap, 0, s->fe->nb_req_cap * sizeof(void *)); } if (txn->rsp.cap) { struct cap_hdr *h; for (h = s->fe->rsp_cap; h; h = h->next) pool_free2(h->pool, txn->rsp.cap[h->index]); memset(txn->rsp.cap, 0, s->fe->nb_rsp_cap * sizeof(void *)); } } /* to be used at the end of a transaction to prepare a new one */ void http_reset_txn(struct session *s) { http_end_txn(s); http_init_txn(s); s->be = s->fe; s->logs.logwait = s->fe->to_log; session_del_srv_conn(s); s->target = NULL; /* re-init store persistence */ s->store_count = 0; s->pend_pos = NULL; s->req->flags |= CF_READ_DONTWAIT; /* one read is usually enough */ /* We must trim any excess data from the response buffer, because we * may have blocked an invalid response from a server that we don't * want to accidentely forward once we disable the analysers, nor do * we want those data to come along with next response. A typical * example of such data would be from a buggy server responding to * a HEAD with some data, or sending more than the advertised * content-length. */ if (unlikely(s->rep->buf->i)) s->rep->buf->i = 0; s->req->rto = s->fe->timeout.client; s->req->wto = TICK_ETERNITY; s->rep->rto = TICK_ETERNITY; s->rep->wto = s->fe->timeout.client; s->req->rex = TICK_ETERNITY; s->req->wex = TICK_ETERNITY; s->req->analyse_exp = TICK_ETERNITY; s->rep->rex = TICK_ETERNITY; s->rep->wex = TICK_ETERNITY; s->rep->analyse_exp = TICK_ETERNITY; } void free_http_req_rules(struct list *r) { struct http_req_rule *tr, *pr; list_for_each_entry_safe(pr, tr, r, list) { LIST_DEL(&pr->list); if (pr->action == HTTP_REQ_ACT_AUTH) free(pr->arg.auth.realm); free(pr); } } struct http_req_rule *parse_http_req_cond(const char **args, const char *file, int linenum, struct proxy *proxy) { struct http_req_rule *rule; int cur_arg; rule = (struct http_req_rule*)calloc(1, sizeof(struct http_req_rule)); if (!rule) { Alert("parsing [%s:%d]: out of memory.\n", file, linenum); goto out_err; } if (!strcmp(args[0], "allow")) { rule->action = HTTP_REQ_ACT_ALLOW; cur_arg = 1; } else if (!strcmp(args[0], "deny")) { rule->action = HTTP_REQ_ACT_DENY; cur_arg = 1; } else if (!strcmp(args[0], "tarpit")) { rule->action = HTTP_REQ_ACT_TARPIT; cur_arg = 1; } else if (!strcmp(args[0], "auth")) { rule->action = HTTP_REQ_ACT_AUTH; cur_arg = 1; while(*args[cur_arg]) { if (!strcmp(args[cur_arg], "realm")) { rule->arg.auth.realm = strdup(args[cur_arg + 1]); cur_arg+=2; continue; } else break; } } else if (strcmp(args[0], "add-header") == 0 || strcmp(args[0], "set-header") == 0) { rule->action = *args[0] == 'a' ? HTTP_REQ_ACT_ADD_HDR : HTTP_REQ_ACT_SET_HDR; cur_arg = 1; if (!*args[cur_arg] || !*args[cur_arg+1] || *args[cur_arg+2]) { Alert("parsing [%s:%d]: 'http-request %s' expects exactly 2 arguments.\n", file, linenum, args[0]); goto out_err; } rule->arg.hdr_add.name = strdup(args[cur_arg]); rule->arg.hdr_add.name_len = strlen(rule->arg.hdr_add.name); LIST_INIT(&rule->arg.hdr_add.fmt); parse_logformat_string(args[cur_arg + 1], proxy, &rule->arg.hdr_add.fmt, 0); cur_arg += 2; } else if (strcmp(args[0], "redirect") == 0) { struct redirect_rule *redir; char *errmsg; if ((redir = http_parse_redirect_rule(file, linenum, proxy, (const char **)args + 1, &errmsg)) == NULL) { Alert("parsing [%s:%d] : error detected in %s '%s' while parsing 'http-request %s' rule : %s.\n", file, linenum, proxy_type_str(proxy), proxy->id, args[0], errmsg); goto out_err; } /* this redirect rule might already contain a parsed condition which * we'll pass to the http-request rule. */ rule->action = HTTP_REQ_ACT_REDIR; rule->arg.redir = redir; rule->cond = redir->cond; redir->cond = NULL; cur_arg = 2; return rule; } else { Alert("parsing [%s:%d]: 'http-request' expects 'allow', 'deny', 'auth', 'redirect', 'tarpit', 'add-header', 'set-header', but got '%s'%s.\n", file, linenum, args[0], *args[0] ? "" : " (missing argument)"); goto out_err; } if (strcmp(args[cur_arg], "if") == 0 || strcmp(args[cur_arg], "unless") == 0) { struct acl_cond *cond; char *errmsg = NULL; if ((cond = build_acl_cond(file, linenum, proxy, args+cur_arg, &errmsg)) == NULL) { Alert("parsing [%s:%d] : error detected while parsing an 'http-request %s' condition : %s.\n", file, linenum, args[0], errmsg); free(errmsg); goto out_err; } rule->cond = cond; } else if (*args[cur_arg]) { Alert("parsing [%s:%d]: 'http-request %s' expects 'realm' for 'auth' or" " either 'if' or 'unless' followed by a condition but found '%s'.\n", file, linenum, args[0], args[cur_arg]); goto out_err; } return rule; out_err: free(rule); return NULL; } /* Parses a redirect rule. Returns the redirect rule on success or NULL on error, * with filled with the error message. */ struct redirect_rule *http_parse_redirect_rule(const char *file, int linenum, struct proxy *curproxy, const char **args, char **errmsg) { struct redirect_rule *rule; int cur_arg; int type = REDIRECT_TYPE_NONE; int code = 302; const char *destination = NULL; const char *cookie = NULL; int cookie_set = 0; unsigned int flags = REDIRECT_FLAG_NONE; struct acl_cond *cond = NULL; cur_arg = 0; while (*(args[cur_arg])) { if (strcmp(args[cur_arg], "location") == 0) { if (!*args[cur_arg + 1]) goto missing_arg; type = REDIRECT_TYPE_LOCATION; cur_arg++; destination = args[cur_arg]; } else if (strcmp(args[cur_arg], "prefix") == 0) { if (!*args[cur_arg + 1]) goto missing_arg; type = REDIRECT_TYPE_PREFIX; cur_arg++; destination = args[cur_arg]; } else if (strcmp(args[cur_arg], "scheme") == 0) { if (!*args[cur_arg + 1]) goto missing_arg; type = REDIRECT_TYPE_SCHEME; cur_arg++; destination = args[cur_arg]; } else if (strcmp(args[cur_arg], "set-cookie") == 0) { if (!*args[cur_arg + 1]) goto missing_arg; cur_arg++; cookie = args[cur_arg]; cookie_set = 1; } else if (strcmp(args[cur_arg], "clear-cookie") == 0) { if (!*args[cur_arg + 1]) goto missing_arg; cur_arg++; cookie = args[cur_arg]; cookie_set = 0; } else if (strcmp(args[cur_arg], "code") == 0) { if (!*args[cur_arg + 1]) goto missing_arg; cur_arg++; code = atol(args[cur_arg]); if (code < 301 || code > 308 || (code > 303 && code < 307)) { memprintf(errmsg, "'%s': unsupported HTTP code '%s' (must be one of 301, 302, 303, 307 or 308)", args[cur_arg - 1], args[cur_arg]); return NULL; } } else if (!strcmp(args[cur_arg],"drop-query")) { flags |= REDIRECT_FLAG_DROP_QS; } else if (!strcmp(args[cur_arg],"append-slash")) { flags |= REDIRECT_FLAG_APPEND_SLASH; } else if (strcmp(args[cur_arg], "if") == 0 || strcmp(args[cur_arg], "unless") == 0) { cond = build_acl_cond(file, linenum, curproxy, (const char **)args + cur_arg, errmsg); if (!cond) { memprintf(errmsg, "error in condition: %s", *errmsg); return NULL; } break; } else { memprintf(errmsg, "expects 'code', 'prefix', 'location', 'scheme', 'set-cookie', 'clear-cookie', 'drop-query' or 'append-slash' (was '%s')", args[cur_arg]); return NULL; } cur_arg++; } if (type == REDIRECT_TYPE_NONE) { memprintf(errmsg, "redirection type expected ('prefix', 'location', or 'scheme')"); return NULL; } rule = (struct redirect_rule *)calloc(1, sizeof(*rule)); rule->cond = cond; rule->rdr_str = strdup(destination); rule->rdr_len = strlen(destination); if (cookie) { /* depending on cookie_set, either we want to set the cookie, or to clear it. * a clear consists in appending "; path=/; Max-Age=0;" at the end. */ rule->cookie_len = strlen(cookie); if (cookie_set) { rule->cookie_str = malloc(rule->cookie_len + 10); memcpy(rule->cookie_str, cookie, rule->cookie_len); memcpy(rule->cookie_str + rule->cookie_len, "; path=/;", 10); rule->cookie_len += 9; } else { rule->cookie_str = malloc(rule->cookie_len + 21); memcpy(rule->cookie_str, cookie, rule->cookie_len); memcpy(rule->cookie_str + rule->cookie_len, "; path=/; Max-Age=0;", 21); rule->cookie_len += 20; } } rule->type = type; rule->code = code; rule->flags = flags; LIST_INIT(&rule->list); return rule; missing_arg: memprintf(errmsg, "missing argument for '%s'", args[cur_arg]); return NULL; } /************************************************************************/ /* The code below is dedicated to ACL parsing and matching */ /************************************************************************/ /* This function ensures that the prerequisites for an L7 fetch are ready, * which means that a request or response is ready. If some data is missing, * a parsing attempt is made. This is useful in TCP-based ACLs which are able * to extract data from L7. If is non-null during a request prefetch, * another test is made to ensure the required information is not gone. * * The function returns : * 0 if some data is missing or if the requested data cannot be fetched * -1 if it is certain that we'll never have any HTTP message there * 1 if an HTTP message is ready */ static int acl_prefetch_http(struct proxy *px, struct session *s, void *l7, unsigned int opt, const struct arg *args, struct sample *smp, int req_vol) { struct http_txn *txn = l7; struct http_msg *msg = &txn->req; /* Note: hdr_idx.v cannot be NULL in this ACL because the ACL is tagged * as a layer7 ACL, which involves automatic allocation of hdr_idx. */ if (unlikely(!s || !txn)) return 0; /* Check for a dependency on a request */ smp->type = SMP_T_BOOL; if ((opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) { if (unlikely(!s->req)) return 0; if (unlikely(txn->req.msg_state < HTTP_MSG_BODY)) { if ((msg->msg_state == HTTP_MSG_ERROR) || buffer_full(s->req->buf, global.tune.maxrewrite)) { smp->data.uint = 0; return -1; } /* Try to decode HTTP request */ if (likely(msg->next < s->req->buf->i)) http_msg_analyzer(msg, &txn->hdr_idx); /* Still no valid request ? */ if (unlikely(msg->msg_state < HTTP_MSG_BODY)) { if ((msg->msg_state == HTTP_MSG_ERROR) || buffer_full(s->req->buf, global.tune.maxrewrite)) { smp->data.uint = 0; return -1; } /* wait for final state */ smp->flags |= SMP_F_MAY_CHANGE; return 0; } /* OK we just got a valid HTTP request. We have some minor * preparation to perform so that further checks can rely * on HTTP tests. */ txn->meth = find_http_meth(msg->chn->buf->p, msg->sl.rq.m_l); if (txn->meth == HTTP_METH_GET || txn->meth == HTTP_METH_HEAD) s->flags |= SN_REDIRECTABLE; if (unlikely(msg->sl.rq.v_l == 0) && !http_upgrade_v09_to_v10(txn)) { smp->data.uint = 0; return -1; } } if (req_vol && txn->rsp.msg_state != HTTP_MSG_RPBEFORE) return 0; /* data might have moved and indexes changed */ /* otherwise everything's ready for the request */ } else { /* Check for a dependency on a response */ if (txn->rsp.msg_state < HTTP_MSG_BODY) return 0; } /* everything's OK */ return 1; } #define CHECK_HTTP_MESSAGE_FIRST() \ do { int r = acl_prefetch_http(px, l4, l7, opt, args, smp, 1); if (r <= 0) return r; } while (0) #define CHECK_HTTP_MESSAGE_FIRST_PERM() \ do { int r = acl_prefetch_http(px, l4, l7, opt, args, smp, 0); if (r <= 0) return r; } while (0) /* 1. Check on METHOD * We use the pre-parsed method if it is known, and store its number as an * integer. If it is unknown, we use the pointer and the length. */ static int acl_parse_meth(const char **text, struct acl_pattern *pattern, int *opaque, char **err) { int len, meth; len = strlen(*text); meth = find_http_meth(*text, len); pattern->val.i = meth; if (meth == HTTP_METH_OTHER) { pattern->ptr.str = strdup(*text); if (!pattern->ptr.str) { memprintf(err, "out of memory while loading pattern"); return 0; } pattern->len = len; } return 1; } /* This function fetches the method of current HTTP request and stores * it in the global pattern struct as a chunk. There are two possibilities : * - if the method is known (not HTTP_METH_OTHER), its identifier is stored * in and is NULL ; * - if the method is unknown (HTTP_METH_OTHER), points to the text and * to its length. * This is intended to be used with acl_match_meth() only. */ static int acl_fetch_meth(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp) { int meth; struct http_txn *txn = l7; CHECK_HTTP_MESSAGE_FIRST_PERM(); meth = txn->meth; smp->type = SMP_T_UINT; smp->data.uint = meth; if (meth == HTTP_METH_OTHER) { if (txn->rsp.msg_state != HTTP_MSG_RPBEFORE) /* ensure the indexes are not affected */ return 0; smp->type = SMP_T_CSTR; smp->data.str.len = txn->req.sl.rq.m_l; smp->data.str.str = txn->req.chn->buf->p; } smp->flags = SMP_F_VOL_1ST; return 1; } /* See above how the method is stored in the global pattern */ static int acl_match_meth(struct sample *smp, struct acl_pattern *pattern) { int icase; if (smp->type == SMP_T_UINT) { /* well-known method */ if (smp->data.uint == pattern->val.i) return ACL_PAT_PASS; return ACL_PAT_FAIL; } /* Uncommon method, only HTTP_METH_OTHER is accepted now */ if (pattern->val.i != HTTP_METH_OTHER) return ACL_PAT_FAIL; /* Other method, we must compare the strings */ if (pattern->len != smp->data.str.len) return ACL_PAT_FAIL; icase = pattern->flags & ACL_PAT_F_IGNORE_CASE; if ((icase && strncasecmp(pattern->ptr.str, smp->data.str.str, smp->data.str.len) != 0) || (!icase && strncmp(pattern->ptr.str, smp->data.str.str, smp->data.str.len) != 0)) return ACL_PAT_FAIL; return ACL_PAT_PASS; } /* 2. Check on Request/Status Version * We simply compare strings here. */ static int acl_parse_ver(const char **text, struct acl_pattern *pattern, int *opaque, char **err) { pattern->ptr.str = strdup(*text); if (!pattern->ptr.str) { memprintf(err, "out of memory while loading pattern"); return 0; } pattern->len = strlen(*text); return 1; } static int acl_fetch_rqver(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp) { struct http_txn *txn = l7; char *ptr; int len; CHECK_HTTP_MESSAGE_FIRST(); len = txn->req.sl.rq.v_l; ptr = txn->req.chn->buf->p + txn->req.sl.rq.v; while ((len-- > 0) && (*ptr++ != '/')); if (len <= 0) return 0; smp->type = SMP_T_CSTR; smp->data.str.str = ptr; smp->data.str.len = len; smp->flags = SMP_F_VOL_1ST; return 1; } static int acl_fetch_stver(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp) { struct http_txn *txn = l7; char *ptr; int len; CHECK_HTTP_MESSAGE_FIRST(); if (txn->rsp.msg_state < HTTP_MSG_BODY) return 0; len = txn->rsp.sl.st.v_l; ptr = txn->rsp.chn->buf->p; while ((len-- > 0) && (*ptr++ != '/')); if (len <= 0) return 0; smp->type = SMP_T_CSTR; smp->data.str.str = ptr; smp->data.str.len = len; smp->flags = SMP_F_VOL_1ST; return 1; } /* 3. Check on Status Code. We manipulate integers here. */ static int acl_fetch_stcode(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp) { struct http_txn *txn = l7; char *ptr; int len; CHECK_HTTP_MESSAGE_FIRST(); if (txn->rsp.msg_state < HTTP_MSG_BODY) return 0; len = txn->rsp.sl.st.c_l; ptr = txn->rsp.chn->buf->p + txn->rsp.sl.st.c; smp->type = SMP_T_UINT; smp->data.uint = __strl2ui(ptr, len); smp->flags = SMP_F_VOL_1ST; return 1; } /* 4. Check on URL/URI. A pointer to the URI is stored. */ static int smp_fetch_url(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp) { struct http_txn *txn = l7; CHECK_HTTP_MESSAGE_FIRST(); smp->type = SMP_T_CSTR; smp->data.str.len = txn->req.sl.rq.u_l; smp->data.str.str = txn->req.chn->buf->p + txn->req.sl.rq.u; smp->flags = SMP_F_VOL_1ST; return 1; } static int smp_fetch_url_ip(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp) { struct http_txn *txn = l7; CHECK_HTTP_MESSAGE_FIRST(); /* Parse HTTP request */ url2sa(txn->req.chn->buf->p + txn->req.sl.rq.u, txn->req.sl.rq.u_l, &l4->req->cons->conn->addr.to); if (((struct sockaddr_in *)&l4->req->cons->conn->addr.to)->sin_family != AF_INET) return 0; smp->type = SMP_T_IPV4; smp->data.ipv4 = ((struct sockaddr_in *)&l4->req->cons->conn->addr.to)->sin_addr; /* * If we are parsing url in frontend space, we prepare backend stage * to not parse again the same url ! optimization lazyness... */ if (px->options & PR_O_HTTP_PROXY) l4->flags |= SN_ADDR_SET; smp->flags = 0; return 1; } static int smp_fetch_url_port(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp) { struct http_txn *txn = l7; CHECK_HTTP_MESSAGE_FIRST(); /* Same optimization as url_ip */ url2sa(txn->req.chn->buf->p + txn->req.sl.rq.u, txn->req.sl.rq.u_l, &l4->req->cons->conn->addr.to); smp->type = SMP_T_UINT; smp->data.uint = ntohs(((struct sockaddr_in *)&l4->req->cons->conn->addr.to)->sin_port); if (px->options & PR_O_HTTP_PROXY) l4->flags |= SN_ADDR_SET; smp->flags = 0; return 1; } /* Fetch an HTTP header. A pointer to the beginning of the value is returned. * Accepts an optional argument of type string containing the header field name, * and an optional argument of type signed or unsigned integer to request an * explicit occurrence of the header. Note that in the event of a missing name, * headers are considered from the first one. */ static int smp_fetch_hdr(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp) { struct http_txn *txn = l7; struct hdr_idx *idx = &txn->hdr_idx; struct hdr_ctx *ctx = (struct hdr_ctx *)smp->ctx.a; const struct http_msg *msg = ((opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) ? &txn->req : &txn->rsp; int occ = 0; const char *name_str = NULL; int name_len = 0; if (args) { if (args[0].type != ARGT_STR) return 0; name_str = args[0].data.str.str; name_len = args[0].data.str.len; if (args[1].type == ARGT_UINT || args[1].type == ARGT_SINT) occ = args[1].data.uint; } CHECK_HTTP_MESSAGE_FIRST(); if (ctx && !(smp->flags & SMP_F_NOT_LAST)) /* search for header from the beginning */ ctx->idx = 0; if (!occ && !(opt & SMP_OPT_ITERATE)) /* no explicit occurrence and single fetch => last header by default */ occ = -1; if (!occ) /* prepare to report multiple occurrences for ACL fetches */ smp->flags |= SMP_F_NOT_LAST; smp->type = SMP_T_CSTR; smp->flags |= SMP_F_VOL_HDR; if (http_get_hdr(msg, name_str, name_len, idx, occ, ctx, &smp->data.str.str, &smp->data.str.len)) return 1; smp->flags &= ~SMP_F_NOT_LAST; return 0; } /* 6. Check on HTTP header count. The number of occurrences is returned. * Accepts exactly 1 argument of type string. */ static int smp_fetch_hdr_cnt(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp) { struct http_txn *txn = l7; struct hdr_idx *idx = &txn->hdr_idx; struct hdr_ctx ctx; const struct http_msg *msg = ((opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) ? &txn->req : &txn->rsp; int cnt; if (!args || args->type != ARGT_STR) return 0; CHECK_HTTP_MESSAGE_FIRST(); ctx.idx = 0; cnt = 0; while (http_find_header2(args->data.str.str, args->data.str.len, msg->chn->buf->p, idx, &ctx)) cnt++; smp->type = SMP_T_UINT; smp->data.uint = cnt; smp->flags = SMP_F_VOL_HDR; return 1; } /* Fetch an HTTP header's integer value. The integer value is returned. It * takes a mandatory argument of type string and an optional one of type int * to designate a specific occurrence. It returns an unsigned integer, which * may or may not be appropriate for everything. */ static int smp_fetch_hdr_val(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp) { int ret = smp_fetch_hdr(px, l4, l7, opt, args, smp); if (ret > 0) { smp->type = SMP_T_UINT; smp->data.uint = strl2ic(smp->data.str.str, smp->data.str.len); } return ret; } /* Fetch an HTTP header's IP value. takes a mandatory argument of type string * and an optional one of type int to designate a specific occurrence. * It returns an IPv4 or IPv6 address. */ static int smp_fetch_hdr_ip(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp) { int ret; while ((ret = smp_fetch_hdr(px, l4, l7, opt, args, smp)) > 0) { if (url2ipv4((char *)smp->data.str.str, &smp->data.ipv4)) { smp->type = SMP_T_IPV4; break; } else { struct chunk *temp = get_trash_chunk(); if (smp->data.str.len < temp->size - 1) { memcpy(temp->str, smp->data.str.str, smp->data.str.len); temp->str[smp->data.str.len] = '\0'; if (inet_pton(AF_INET6, temp->str, &smp->data.ipv6)) { smp->type = SMP_T_IPV6; break; } } } /* if the header doesn't match an IP address, fetch next one */ if (!(smp->flags & SMP_F_NOT_LAST)) return 0; } return ret; } /* 8. Check on URI PATH. A pointer to the PATH is stored. The path starts at * the first '/' after the possible hostname, and ends before the possible '?'. */ static int smp_fetch_path(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp) { struct http_txn *txn = l7; char *ptr, *end; CHECK_HTTP_MESSAGE_FIRST(); end = txn->req.chn->buf->p + txn->req.sl.rq.u + txn->req.sl.rq.u_l; ptr = http_get_path(txn); if (!ptr) return 0; /* OK, we got the '/' ! */ smp->type = SMP_T_CSTR; smp->data.str.str = ptr; while (ptr < end && *ptr != '?') ptr++; smp->data.str.len = ptr - smp->data.str.str; smp->flags = SMP_F_VOL_1ST; return 1; } /* This produces a concatenation of the first occurrence of the Host header * followed by the path component if it begins with a slash ('/'). This means * that '*' will not be added, resulting in exactly the first Host entry. * If no Host header is found, then the path is returned as-is. The returned * value is stored in the trash so it does not need to be marked constant. */ static int smp_fetch_base(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp) { struct http_txn *txn = l7; char *ptr, *end, *beg; struct hdr_ctx ctx; CHECK_HTTP_MESSAGE_FIRST(); ctx.idx = 0; if (!http_find_header2("Host", 4, txn->req.chn->buf->p + txn->req.sol, &txn->hdr_idx, &ctx) || !ctx.vlen) return smp_fetch_path(px, l4, l7, opt, args, smp); /* OK we have the header value in ctx.line+ctx.val for ctx.vlen bytes */ memcpy(trash.str, ctx.line + ctx.val, ctx.vlen); smp->type = SMP_T_STR; smp->data.str.str = trash.str; smp->data.str.len = ctx.vlen; /* now retrieve the path */ end = txn->req.chn->buf->p + txn->req.sol + txn->req.sl.rq.u + txn->req.sl.rq.u_l; beg = http_get_path(txn); if (!beg) beg = end; for (ptr = beg; ptr < end && *ptr != '?'; ptr++); if (beg < ptr && *beg == '/') { memcpy(smp->data.str.str + smp->data.str.len, beg, ptr - beg); smp->data.str.len += ptr - beg; } smp->flags = SMP_F_VOL_1ST; return 1; } /* This produces a 32-bit hash of the concatenation of the first occurrence of * the Host header followed by the path component if it begins with a slash ('/'). * This means that '*' will not be added, resulting in exactly the first Host * entry. If no Host header is found, then the path is used. The resulting value * is hashed using the url hash followed by a full avalanche hash and provides a * 32-bit integer value. This fetch is useful for tracking per-URL activity on * high-traffic sites without having to store whole paths. */ static int smp_fetch_base32(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp) { struct http_txn *txn = l7; struct hdr_ctx ctx; unsigned int hash = 0; char *ptr, *beg, *end; int len; CHECK_HTTP_MESSAGE_FIRST(); ctx.idx = 0; if (http_find_header2("Host", 4, txn->req.chn->buf->p + txn->req.sol, &txn->hdr_idx, &ctx)) { /* OK we have the header value in ctx.line+ctx.val for ctx.vlen bytes */ ptr = ctx.line + ctx.val; len = ctx.vlen; while (len--) hash = *(ptr++) + (hash << 6) + (hash << 16) - hash; } /* now retrieve the path */ end = txn->req.chn->buf->p + txn->req.sol + txn->req.sl.rq.u + txn->req.sl.rq.u_l; beg = http_get_path(txn); if (!beg) beg = end; for (ptr = beg; ptr < end && *ptr != '?'; ptr++); if (beg < ptr && *beg == '/') { while (beg < ptr) hash = *(beg++) + (hash << 6) + (hash << 16) - hash; } hash = full_hash(hash); smp->type = SMP_T_UINT; smp->data.uint = hash; smp->flags = SMP_F_VOL_1ST; return 1; } /* This concatenates the source address with the 32-bit hash of the Host and * URL as returned by smp_fetch_base32(). The idea is to have per-source and * per-url counters. The result is a binary block from 8 to 20 bytes depending * on the source address length. The URL hash is stored before the address so * that in environments where IPv6 is insignificant, truncating the output to * 8 bytes would still work. */ static int smp_fetch_base32_src(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp) { struct chunk *temp; if (!smp_fetch_base32(px, l4, l7, opt, args, smp)) return 0; temp = get_trash_chunk(); memcpy(temp->str + temp->len, &smp->data.uint, sizeof(smp->data.uint)); temp->len += sizeof(smp->data.uint); switch (l4->si[0].conn->addr.from.ss_family) { case AF_INET: memcpy(temp->str + temp->len, &((struct sockaddr_in *)&l4->si[0].conn->addr.from)->sin_addr, 4); temp->len += 4; break; case AF_INET6: memcpy(temp->str + temp->len, &((struct sockaddr_in6 *)(&l4->si[0].conn->addr.from))->sin6_addr, 16); temp->len += 16; break; default: return 0; } smp->data.str = *temp; smp->type = SMP_T_BIN; return 1; } static int acl_fetch_proto_http(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp) { /* Note: hdr_idx.v cannot be NULL in this ACL because the ACL is tagged * as a layer7 ACL, which involves automatic allocation of hdr_idx. */ CHECK_HTTP_MESSAGE_FIRST_PERM(); smp->type = SMP_T_BOOL; smp->data.uint = 1; return 1; } /* return a valid test if the current request is the first one on the connection */ static int acl_fetch_http_first_req(struct proxy *px, struct session *s, void *l7, unsigned int opt, const struct arg *args, struct sample *smp) { if (!s) return 0; smp->type = SMP_T_BOOL; smp->data.uint = !(s->txn.flags & TX_NOT_FIRST); return 1; } /* Accepts exactly 1 argument of type userlist */ static int acl_fetch_http_auth(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp) { if (!args || args->type != ARGT_USR) return 0; CHECK_HTTP_MESSAGE_FIRST(); if (!get_http_auth(l4)) return 0; smp->type = SMP_T_BOOL; smp->data.uint = check_user(args->data.usr, 0, l4->txn.auth.user, l4->txn.auth.pass); return 1; } /* Accepts exactly 1 argument of type userlist */ static int acl_fetch_http_auth_grp(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp) { if (!args || args->type != ARGT_USR) return 0; CHECK_HTTP_MESSAGE_FIRST(); if (!get_http_auth(l4)) return 0; /* acl_match_auth() will need several information at once */ smp->ctx.a[0] = args->data.usr; /* user list */ smp->ctx.a[1] = l4->txn.auth.user; /* user name */ smp->ctx.a[2] = l4->txn.auth.pass; /* password */ /* if the user does not belong to the userlist or has a wrong password, * report that it unconditionally does not match. Otherwise we return * a non-zero integer which will be ignored anyway since all the params * that acl_match_auth() will use are in test->ctx.a[0,1,2]. */ smp->type = SMP_T_BOOL; smp->data.uint = check_user(args->data.usr, 0, l4->txn.auth.user, l4->txn.auth.pass); if (smp->data.uint) smp->type = SMP_T_UINT; return 1; } /* Try to find the next occurrence of a cookie name in a cookie header value. * The lookup begins at . The pointer and size of the next occurrence of * the cookie value is returned into *value and *value_l, and the function * returns a pointer to the next pointer to search from if the value was found. * Otherwise if the cookie was not found, NULL is returned and neither value * nor value_l are touched. The input string should first point to the * header's value, and the pointer must point to the first character * not part of the value. must be non-zero if value may represent a list * of values (cookie headers). This makes it faster to abort parsing when no * list is expected. */ static char * extract_cookie_value(char *hdr, const char *hdr_end, char *cookie_name, size_t cookie_name_l, int list, char **value, int *value_l) { char *equal, *att_end, *att_beg, *val_beg, *val_end; char *next; /* we search at least a cookie name followed by an equal, and more * generally something like this : * Cookie: NAME1 = VALUE 1 ; NAME2 = VALUE2 ; NAME3 = VALUE3\r\n */ for (att_beg = hdr; att_beg + cookie_name_l + 1 < hdr_end; att_beg = next + 1) { /* Iterate through all cookies on this line */ while (att_beg < hdr_end && http_is_spht[(unsigned char)*att_beg]) att_beg++; /* find att_end : this is the first character after the last non * space before the equal. It may be equal to hdr_end. */ equal = att_end = att_beg; while (equal < hdr_end) { if (*equal == '=' || *equal == ';' || (list && *equal == ',')) break; if (http_is_spht[(unsigned char)*equal++]) continue; att_end = equal; } /* here, points to '=', a delimitor or the end. * is between and , both may be identical. */ /* look for end of cookie if there is an equal sign */ if (equal < hdr_end && *equal == '=') { /* look for the beginning of the value */ val_beg = equal + 1; while (val_beg < hdr_end && http_is_spht[(unsigned char)*val_beg]) val_beg++; /* find the end of the value, respecting quotes */ next = find_cookie_value_end(val_beg, hdr_end); /* make val_end point to the first white space or delimitor after the value */ val_end = next; while (val_end > val_beg && http_is_spht[(unsigned char)*(val_end - 1)]) val_end--; } else { val_beg = val_end = next = equal; } /* We have nothing to do with attributes beginning with '$'. However, * they will automatically be removed if a header before them is removed, * since they're supposed to be linked together. */ if (*att_beg == '$') continue; /* Ignore cookies with no equal sign */ if (equal == next) continue; /* Now we have the cookie name between att_beg and att_end, and * its value between val_beg and val_end. */ if (att_end - att_beg == cookie_name_l && memcmp(att_beg, cookie_name, cookie_name_l) == 0) { /* let's return this value and indicate where to go on from */ *value = val_beg; *value_l = val_end - val_beg; return next + 1; } /* Set-Cookie headers only have the name in the first attr=value part */ if (!list) break; } return NULL; } /* Iterate over all cookies present in a message. The context is stored in * smp->ctx.a[0] for the in-header position, smp->ctx.a[1] for the * end-of-header-value, and smp->ctx.a[2] for the hdr_idx. Depending on * the direction, multiple cookies may be parsed on the same line or not. * The cookie name is in args and the name length in args->data.str.len. * Accepts exactly 1 argument of type string. If the input options indicate * that no iterating is desired, then only last value is fetched if any. */ static int smp_fetch_cookie(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp) { struct http_txn *txn = l7; struct hdr_idx *idx = &txn->hdr_idx; struct hdr_ctx *ctx = (struct hdr_ctx *)&smp->ctx.a[2]; const struct http_msg *msg; const char *hdr_name; int hdr_name_len; char *sol; int occ = 0; int found = 0; if (!args || args->type != ARGT_STR) return 0; CHECK_HTTP_MESSAGE_FIRST(); if ((opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) { msg = &txn->req; hdr_name = "Cookie"; hdr_name_len = 6; } else { msg = &txn->rsp; hdr_name = "Set-Cookie"; hdr_name_len = 10; } if (!occ && !(opt & SMP_OPT_ITERATE)) /* no explicit occurrence and single fetch => last cookie by default */ occ = -1; /* OK so basically here, either we want only one value and it's the * last one, or we want to iterate over all of them and we fetch the * next one. */ sol = msg->chn->buf->p; if (!(smp->flags & SMP_F_NOT_LAST)) { /* search for the header from the beginning, we must first initialize * the search parameters. */ smp->ctx.a[0] = NULL; ctx->idx = 0; } smp->flags |= SMP_F_VOL_HDR; while (1) { /* Note: smp->ctx.a[0] == NULL every time we need to fetch a new header */ if (!smp->ctx.a[0]) { if (!http_find_header2(hdr_name, hdr_name_len, sol, idx, ctx)) goto out; if (ctx->vlen < args->data.str.len + 1) continue; smp->ctx.a[0] = ctx->line + ctx->val; smp->ctx.a[1] = smp->ctx.a[0] + ctx->vlen; } smp->type = SMP_T_CSTR; smp->ctx.a[0] = extract_cookie_value(smp->ctx.a[0], smp->ctx.a[1], args->data.str.str, args->data.str.len, (opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ, &smp->data.str.str, &smp->data.str.len); if (smp->ctx.a[0]) { found = 1; if (occ >= 0) { /* one value was returned into smp->data.str.{str,len} */ smp->flags |= SMP_F_NOT_LAST; return 1; } } /* if we're looking for last occurrence, let's loop */ } /* all cookie headers and values were scanned. If we're looking for the * last occurrence, we may return it now. */ out: smp->flags &= ~SMP_F_NOT_LAST; return found; } /* Iterate over all cookies present in a request to count how many occurrences * match the name in args and args->data.str.len. If is non-null, then * multiple cookies may be parsed on the same line. * Accepts exactly 1 argument of type string. */ static int acl_fetch_cookie_cnt(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp) { struct http_txn *txn = l7; struct hdr_idx *idx = &txn->hdr_idx; struct hdr_ctx ctx; const struct http_msg *msg; const char *hdr_name; int hdr_name_len; int cnt; char *val_beg, *val_end; char *sol; if (!args || args->type != ARGT_STR) return 0; CHECK_HTTP_MESSAGE_FIRST(); if ((opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ) { msg = &txn->req; hdr_name = "Cookie"; hdr_name_len = 6; } else { msg = &txn->rsp; hdr_name = "Set-Cookie"; hdr_name_len = 10; } sol = msg->chn->buf->p; val_end = val_beg = NULL; ctx.idx = 0; cnt = 0; while (1) { /* Note: val_beg == NULL every time we need to fetch a new header */ if (!val_beg) { if (!http_find_header2(hdr_name, hdr_name_len, sol, idx, &ctx)) break; if (ctx.vlen < args->data.str.len + 1) continue; val_beg = ctx.line + ctx.val; val_end = val_beg + ctx.vlen; } smp->type = SMP_T_CSTR; while ((val_beg = extract_cookie_value(val_beg, val_end, args->data.str.str, args->data.str.len, (opt & SMP_OPT_DIR) == SMP_OPT_DIR_REQ, &smp->data.str.str, &smp->data.str.len))) { cnt++; } } smp->data.uint = cnt; smp->flags |= SMP_F_VOL_HDR; return 1; } /* Fetch an cookie's integer value. The integer value is returned. It * takes a mandatory argument of type string. It relies on smp_fetch_cookie(). */ static int smp_fetch_cookie_val(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp) { int ret = smp_fetch_cookie(px, l4, l7, opt, args, smp); if (ret > 0) { smp->type = SMP_T_UINT; smp->data.uint = strl2ic(smp->data.str.str, smp->data.str.len); } return ret; } /************************************************************************/ /* The code below is dedicated to sample fetches */ /************************************************************************/ /* * Given a path string and its length, find the position of beginning of the * query string. Returns NULL if no query string is found in the path. * * Example: if path = "/foo/bar/fubar?yo=mama;ye=daddy", and n = 22: * * find_query_string(path, n) points to "yo=mama;ye=daddy" string. */ static inline char *find_param_list(char *path, size_t path_l, char delim) { char *p; p = memchr(path, delim, path_l); return p ? p + 1 : NULL; } static inline int is_param_delimiter(char c, char delim) { return c == '&' || c == ';' || c == delim; } /* * Given a url parameter, find the starting position of the first occurence, * or NULL if the parameter is not found. * * Example: if query_string is "yo=mama;ye=daddy" and url_param_name is "ye", * the function will return query_string+8. */ static char* find_url_param_pos(char* query_string, size_t query_string_l, char* url_param_name, size_t url_param_name_l, char delim) { char *pos, *last; pos = query_string; last = query_string + query_string_l - url_param_name_l - 1; while (pos <= last) { if (pos[url_param_name_l] == '=') { if (memcmp(pos, url_param_name, url_param_name_l) == 0) return pos; pos += url_param_name_l + 1; } while (pos <= last && !is_param_delimiter(*pos, delim)) pos++; pos++; } return NULL; } /* * Given a url parameter name, returns its value and size into *value and * *value_l respectively, and returns non-zero. If the parameter is not found, * zero is returned and value/value_l are not touched. */ static int find_url_param_value(char* path, size_t path_l, char* url_param_name, size_t url_param_name_l, char** value, int* value_l, char delim) { char *query_string, *qs_end; char *arg_start; char *value_start, *value_end; query_string = find_param_list(path, path_l, delim); if (!query_string) return 0; qs_end = path + path_l; arg_start = find_url_param_pos(query_string, qs_end - query_string, url_param_name, url_param_name_l, delim); if (!arg_start) return 0; value_start = arg_start + url_param_name_l + 1; value_end = value_start; while ((value_end < qs_end) && !is_param_delimiter(*value_end, delim)) value_end++; *value = value_start; *value_l = value_end - value_start; return value_end != value_start; } static int smp_fetch_url_param(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp) { char delim = '?'; struct http_txn *txn = l7; struct http_msg *msg = &txn->req; if (!args || args[0].type != ARGT_STR || (args[1].type && args[1].type != ARGT_STR)) return 0; CHECK_HTTP_MESSAGE_FIRST(); if (args[1].type) delim = *args[1].data.str.str; if (!find_url_param_value(msg->chn->buf->p + msg->sl.rq.u, msg->sl.rq.u_l, args->data.str.str, args->data.str.len, &smp->data.str.str, &smp->data.str.len, delim)) return 0; smp->type = SMP_T_CSTR; smp->flags = SMP_F_VOL_1ST; return 1; } /* Return the signed integer value for the specified url parameter (see url_param * above). */ static int smp_fetch_url_param_val(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp) { int ret = smp_fetch_url_param(px, l4, l7, opt, args, smp); if (ret > 0) { smp->type = SMP_T_UINT; smp->data.uint = strl2ic(smp->data.str.str, smp->data.str.len); } return ret; } /* This function is used to validate the arguments passed to any "hdr" fetch * keyword. These keywords support an optional positive or negative occurrence * number. We must ensure that the number is greater than -MAX_HDR_HISTORY. It * is assumed that the types are already the correct ones. Returns 0 on error, * non-zero if OK. If is not NULL, it will be filled with a pointer to an * error message in case of error, that the caller is responsible for freeing. * The initial location must either be freeable or NULL. */ static int val_hdr(struct arg *arg, char **err_msg) { if (arg && arg[1].type == ARGT_SINT && arg[1].data.sint < -MAX_HDR_HISTORY) { memprintf(err_msg, "header occurrence must be >= %d", -MAX_HDR_HISTORY); return 0; } return 1; } /************************************************************************/ /* All supported ACL keywords must be declared here. */ /************************************************************************/ /* Note: must not be declared as its list will be overwritten. * Please take care of keeping this list alphabetically sorted. */ static struct acl_kw_list acl_kws = {{ },{ { "base", acl_parse_str, smp_fetch_base, acl_match_str, ACL_USE_L7REQ_VOLATILE|ACL_MAY_LOOKUP, 0 }, { "base_beg", acl_parse_str, smp_fetch_base, acl_match_beg, ACL_USE_L7REQ_VOLATILE, 0 }, { "base_dir", acl_parse_str, smp_fetch_base, acl_match_dir, ACL_USE_L7REQ_VOLATILE, 0 }, { "base_dom", acl_parse_str, smp_fetch_base, acl_match_dom, ACL_USE_L7REQ_VOLATILE, 0 }, { "base_end", acl_parse_str, smp_fetch_base, acl_match_end, ACL_USE_L7REQ_VOLATILE, 0 }, { "base_len", acl_parse_int, smp_fetch_base, acl_match_len, ACL_USE_L7REQ_VOLATILE, 0 }, { "base_reg", acl_parse_reg, smp_fetch_base, acl_match_reg, ACL_USE_L7REQ_VOLATILE, 0 }, { "base_sub", acl_parse_str, smp_fetch_base, acl_match_sub, ACL_USE_L7REQ_VOLATILE, 0 }, { "cook", acl_parse_str, smp_fetch_cookie, acl_match_str, ACL_USE_L7REQ_VOLATILE|ACL_MAY_LOOKUP, ARG1(0,STR) }, { "cook_beg", acl_parse_str, smp_fetch_cookie, acl_match_beg, ACL_USE_L7REQ_VOLATILE, ARG1(0,STR) }, { "cook_cnt", acl_parse_int, acl_fetch_cookie_cnt, acl_match_int, ACL_USE_L7REQ_VOLATILE, ARG1(0,STR) }, { "cook_dir", acl_parse_str, smp_fetch_cookie, acl_match_dir, ACL_USE_L7REQ_VOLATILE, ARG1(0,STR) }, { "cook_dom", acl_parse_str, smp_fetch_cookie, acl_match_dom, ACL_USE_L7REQ_VOLATILE, ARG1(0,STR) }, { "cook_end", acl_parse_str, smp_fetch_cookie, acl_match_end, ACL_USE_L7REQ_VOLATILE, ARG1(0,STR) }, { "cook_len", acl_parse_int, smp_fetch_cookie, acl_match_len, ACL_USE_L7REQ_VOLATILE, ARG1(0,STR) }, { "cook_reg", acl_parse_reg, smp_fetch_cookie, acl_match_reg, ACL_USE_L7REQ_VOLATILE, ARG1(0,STR) }, { "cook_sub", acl_parse_str, smp_fetch_cookie, acl_match_sub, ACL_USE_L7REQ_VOLATILE, ARG1(0,STR) }, { "cook_val", acl_parse_int, smp_fetch_cookie_val, acl_match_int, ACL_USE_L7REQ_VOLATILE, ARG1(0,STR) }, { "hdr", acl_parse_str, smp_fetch_hdr, acl_match_str, ACL_USE_L7REQ_VOLATILE|ACL_MAY_LOOKUP, ARG2(0,STR,SINT), val_hdr }, { "hdr_beg", acl_parse_str, smp_fetch_hdr, acl_match_beg, ACL_USE_L7REQ_VOLATILE, ARG2(0,STR,SINT), val_hdr }, { "hdr_cnt", acl_parse_int, smp_fetch_hdr_cnt, acl_match_int, ACL_USE_L7REQ_VOLATILE, ARG1(0,STR) }, { "hdr_dir", acl_parse_str, smp_fetch_hdr, acl_match_dir, ACL_USE_L7REQ_VOLATILE, ARG2(0,STR,SINT), val_hdr }, { "hdr_dom", acl_parse_str, smp_fetch_hdr, acl_match_dom, ACL_USE_L7REQ_VOLATILE, ARG2(0,STR,SINT), val_hdr }, { "hdr_end", acl_parse_str, smp_fetch_hdr, acl_match_end, ACL_USE_L7REQ_VOLATILE, ARG2(0,STR,SINT), val_hdr }, { "hdr_ip", acl_parse_ip, smp_fetch_hdr_ip, acl_match_ip, ACL_USE_L7REQ_VOLATILE|ACL_MAY_LOOKUP, ARG2(0,STR,SINT), val_hdr }, { "hdr_len", acl_parse_int, smp_fetch_hdr, acl_match_len, ACL_USE_L7REQ_VOLATILE, ARG2(0,STR,SINT), val_hdr }, { "hdr_reg", acl_parse_reg, smp_fetch_hdr, acl_match_reg, ACL_USE_L7REQ_VOLATILE, ARG2(0,STR,SINT), val_hdr }, { "hdr_sub", acl_parse_str, smp_fetch_hdr, acl_match_sub, ACL_USE_L7REQ_VOLATILE, ARG2(0,STR,SINT), val_hdr }, { "hdr_val", acl_parse_int, smp_fetch_hdr_val, acl_match_int, ACL_USE_L7REQ_VOLATILE, ARG2(0,STR,SINT), val_hdr }, { "http_auth", acl_parse_nothing, acl_fetch_http_auth, acl_match_nothing, ACL_USE_L7REQ_VOLATILE, ARG1(0,USR) }, { "http_auth_group", acl_parse_strcat, acl_fetch_http_auth_grp, acl_match_auth, ACL_USE_L7REQ_VOLATILE, ARG1(0,USR) }, { "http_first_req", acl_parse_nothing, acl_fetch_http_first_req, acl_match_nothing, ACL_USE_L7REQ_PERMANENT, 0 }, { "method", acl_parse_meth, acl_fetch_meth, acl_match_meth, ACL_USE_L7REQ_PERMANENT, 0 }, { "path", acl_parse_str, smp_fetch_path, acl_match_str, ACL_USE_L7REQ_VOLATILE|ACL_MAY_LOOKUP, 0 }, { "path_beg", acl_parse_str, smp_fetch_path, acl_match_beg, ACL_USE_L7REQ_VOLATILE, 0 }, { "path_dir", acl_parse_str, smp_fetch_path, acl_match_dir, ACL_USE_L7REQ_VOLATILE, 0 }, { "path_dom", acl_parse_str, smp_fetch_path, acl_match_dom, ACL_USE_L7REQ_VOLATILE, 0 }, { "path_end", acl_parse_str, smp_fetch_path, acl_match_end, ACL_USE_L7REQ_VOLATILE, 0 }, { "path_len", acl_parse_int, smp_fetch_path, acl_match_len, ACL_USE_L7REQ_VOLATILE, 0 }, { "path_reg", acl_parse_reg, smp_fetch_path, acl_match_reg, ACL_USE_L7REQ_VOLATILE, 0 }, { "path_sub", acl_parse_str, smp_fetch_path, acl_match_sub, ACL_USE_L7REQ_VOLATILE, 0 }, { "req_proto_http", acl_parse_nothing, acl_fetch_proto_http, acl_match_nothing, ACL_USE_L7REQ_PERMANENT, 0 }, { "req_ver", acl_parse_ver, acl_fetch_rqver, acl_match_str, ACL_USE_L7REQ_VOLATILE|ACL_MAY_LOOKUP, 0 }, { "resp_ver", acl_parse_ver, acl_fetch_stver, acl_match_str, ACL_USE_L7RTR_VOLATILE|ACL_MAY_LOOKUP, 0 }, { "scook", acl_parse_str, smp_fetch_cookie, acl_match_str, ACL_USE_L7RTR_VOLATILE|ACL_MAY_LOOKUP, ARG1(0,STR) }, { "scook_beg", acl_parse_str, smp_fetch_cookie, acl_match_beg, ACL_USE_L7RTR_VOLATILE, ARG1(0,STR) }, { "scook_cnt", acl_parse_int, acl_fetch_cookie_cnt, acl_match_int, ACL_USE_L7RTR_VOLATILE, ARG1(0,STR) }, { "scook_dir", acl_parse_str, smp_fetch_cookie, acl_match_dir, ACL_USE_L7RTR_VOLATILE, ARG1(0,STR) }, { "scook_dom", acl_parse_str, smp_fetch_cookie, acl_match_dom, ACL_USE_L7RTR_VOLATILE, ARG1(0,STR) }, { "scook_end", acl_parse_str, smp_fetch_cookie, acl_match_end, ACL_USE_L7RTR_VOLATILE, ARG1(0,STR) }, { "scook_len", acl_parse_int, smp_fetch_cookie, acl_match_len, ACL_USE_L7RTR_VOLATILE, ARG1(0,STR) }, { "scook_reg", acl_parse_reg, smp_fetch_cookie, acl_match_reg, ACL_USE_L7RTR_VOLATILE, ARG1(0,STR) }, { "scook_sub", acl_parse_str, smp_fetch_cookie, acl_match_sub, ACL_USE_L7RTR_VOLATILE, ARG1(0,STR) }, { "scook_val", acl_parse_int, smp_fetch_cookie_val, acl_match_int, ACL_USE_L7RTR_VOLATILE, ARG1(0,STR) }, { "shdr", acl_parse_str, smp_fetch_hdr, acl_match_str, ACL_USE_L7RTR_VOLATILE|ACL_MAY_LOOKUP, ARG2(0,STR,SINT), val_hdr }, { "shdr_beg", acl_parse_str, smp_fetch_hdr, acl_match_beg, ACL_USE_L7RTR_VOLATILE, ARG2(0,STR,SINT), val_hdr }, { "shdr_cnt", acl_parse_int, smp_fetch_hdr_cnt, acl_match_int, ACL_USE_L7RTR_VOLATILE, ARG1(0,STR) }, { "shdr_dir", acl_parse_str, smp_fetch_hdr, acl_match_dir, ACL_USE_L7RTR_VOLATILE, ARG2(0,STR,SINT), val_hdr }, { "shdr_dom", acl_parse_str, smp_fetch_hdr, acl_match_dom, ACL_USE_L7RTR_VOLATILE, ARG2(0,STR,SINT), val_hdr }, { "shdr_end", acl_parse_str, smp_fetch_hdr, acl_match_end, ACL_USE_L7RTR_VOLATILE, ARG2(0,STR,SINT), val_hdr }, { "shdr_ip", acl_parse_ip, smp_fetch_hdr_ip, acl_match_ip, ACL_USE_L7RTR_VOLATILE|ACL_MAY_LOOKUP, ARG2(0,STR,SINT), val_hdr }, { "shdr_len", acl_parse_int, smp_fetch_hdr, acl_match_len, ACL_USE_L7RTR_VOLATILE, ARG2(0,STR,SINT), val_hdr }, { "shdr_reg", acl_parse_reg, smp_fetch_hdr, acl_match_reg, ACL_USE_L7RTR_VOLATILE, ARG2(0,STR,SINT), val_hdr }, { "shdr_sub", acl_parse_str, smp_fetch_hdr, acl_match_sub, ACL_USE_L7RTR_VOLATILE, ARG2(0,STR,SINT), val_hdr }, { "shdr_val", acl_parse_int, smp_fetch_hdr_val, acl_match_int, ACL_USE_L7RTR_VOLATILE, ARG2(0,STR,SINT), val_hdr }, { "status", acl_parse_int, acl_fetch_stcode, acl_match_int, ACL_USE_L7RTR_PERMANENT, 0 }, { "url", acl_parse_str, smp_fetch_url, acl_match_str, ACL_USE_L7REQ_VOLATILE|ACL_MAY_LOOKUP, 0 }, { "url_beg", acl_parse_str, smp_fetch_url, acl_match_beg, ACL_USE_L7REQ_VOLATILE, 0 }, { "url_dir", acl_parse_str, smp_fetch_url, acl_match_dir, ACL_USE_L7REQ_VOLATILE, 0 }, { "url_dom", acl_parse_str, smp_fetch_url, acl_match_dom, ACL_USE_L7REQ_VOLATILE, 0 }, { "url_end", acl_parse_str, smp_fetch_url, acl_match_end, ACL_USE_L7REQ_VOLATILE, 0 }, { "url_ip", acl_parse_ip, smp_fetch_url_ip, acl_match_ip, ACL_USE_L7REQ_VOLATILE|ACL_MAY_LOOKUP, 0 }, { "url_len", acl_parse_int, smp_fetch_url, acl_match_len, ACL_USE_L7REQ_VOLATILE, 0 }, { "url_port", acl_parse_int, smp_fetch_url_port, acl_match_int, ACL_USE_L7REQ_VOLATILE, 0 }, { "url_reg", acl_parse_reg, smp_fetch_url, acl_match_reg, ACL_USE_L7REQ_VOLATILE, 0 }, { "url_sub", acl_parse_str, smp_fetch_url, acl_match_sub, ACL_USE_L7REQ_VOLATILE, 0 }, { "urlp", acl_parse_str, smp_fetch_url_param, acl_match_str, ACL_USE_L7REQ_VOLATILE|ACL_MAY_LOOKUP, ARG1(1,STR) }, { "urlp_beg", acl_parse_str, smp_fetch_url_param, acl_match_beg, ACL_USE_L7REQ_VOLATILE, ARG1(1,STR) }, { "urlp_dir", acl_parse_str, smp_fetch_url_param, acl_match_dir, ACL_USE_L7REQ_VOLATILE, ARG1(1,STR) }, { "urlp_dom", acl_parse_str, smp_fetch_url_param, acl_match_dom, ACL_USE_L7REQ_VOLATILE, ARG1(1,STR) }, { "urlp_end", acl_parse_str, smp_fetch_url_param, acl_match_end, ACL_USE_L7REQ_VOLATILE, ARG1(1,STR) }, { "urlp_ip", acl_parse_ip, smp_fetch_url_param, acl_match_ip, ACL_USE_L7REQ_VOLATILE|ACL_MAY_LOOKUP, ARG1(1,STR) }, { "urlp_len", acl_parse_int, smp_fetch_url_param, acl_match_len, ACL_USE_L7REQ_VOLATILE, ARG1(1,STR) }, { "urlp_reg", acl_parse_reg, smp_fetch_url_param, acl_match_reg, ACL_USE_L7REQ_VOLATILE, ARG1(1,STR) }, { "urlp_sub", acl_parse_str, smp_fetch_url_param, acl_match_sub, ACL_USE_L7REQ_VOLATILE, ARG1(1,STR) }, { "urlp_val", acl_parse_int, smp_fetch_url_param_val, acl_match_int, ACL_USE_L7REQ_VOLATILE, ARG1(1,STR) }, { NULL, NULL, NULL, NULL }, }}; /************************************************************************/ /* All supported pattern keywords must be declared here. */ /************************************************************************/ /* Note: must not be declared as its list will be overwritten */ static struct sample_fetch_kw_list sample_fetch_keywords = {{ },{ { "hdr", smp_fetch_hdr, ARG2(1,STR,SINT), val_hdr, SMP_T_CSTR, SMP_CAP_L7|SMP_CAP_REQ }, { "base", smp_fetch_base, 0, NULL, SMP_T_CSTR, SMP_CAP_L7|SMP_CAP_REQ }, { "base32", smp_fetch_base32, 0, NULL, SMP_T_UINT, SMP_CAP_L7|SMP_CAP_REQ }, { "base32+src", smp_fetch_base32_src, 0, NULL, SMP_T_BIN, SMP_CAP_L7|SMP_CAP_REQ }, { "path", smp_fetch_path, 0, NULL, SMP_T_CSTR, SMP_CAP_L7|SMP_CAP_REQ }, { "url", smp_fetch_url, 0, NULL, SMP_T_CSTR, SMP_CAP_L7|SMP_CAP_REQ }, { "url_ip", smp_fetch_url_ip, 0, NULL, SMP_T_IPV4, SMP_CAP_L7|SMP_CAP_REQ }, { "url_port", smp_fetch_url_port, 0, NULL, SMP_T_UINT, SMP_CAP_L7|SMP_CAP_REQ }, { "url_param", smp_fetch_url_param, ARG2(1,STR,STR), NULL, SMP_T_CSTR, SMP_CAP_L7|SMP_CAP_REQ }, { "cookie", smp_fetch_cookie, ARG1(1,STR), NULL, SMP_T_CSTR, SMP_CAP_L7|SMP_CAP_REQ|SMP_CAP_RES }, { "set-cookie", smp_fetch_cookie, ARG1(1,STR), NULL, SMP_T_CSTR, SMP_CAP_L7|SMP_CAP_RES }, /* deprecated */ { NULL, NULL, 0, 0, 0 }, }}; __attribute__((constructor)) static void __http_protocol_init(void) { acl_register_keywords(&acl_kws); sample_register_fetches(&sample_fetch_keywords); } /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */