All muxes now implements the ->sctl() callback function and are able to
return the stream ID. For the PT multiplexer, it is always 0. For the H1
multiplexer it is the request count for the current H1 connection (added for
this purpose). The FCGI, H2 and QUIC muxes, the stream ID is returned.
The stream ID is returned as a signed 64 bits integer.
Instead of the generic MUX_, we now use MUX_CTL_ prefix for all mux_ctl_type
value. This will avoid any ambiguities with other enums, especially with a
new one that will be added to get information on mux streams.
When a H2 stream is blocked during data fast-forwarding, we must take care
to remove H2_SF_NOTIFIED flag. This was only performed when data
fast-forward was attempted. However, if the H2 stream was blocked for any
reason, this flag was not removed. During our tests, we found it was
possible to infinitely block a connection because one of its streams was in
the send_list with the flag set. In this case, the stream was no longer
woken up to resume the sends, blocking all other streams.
No backport needed.
It's the exact same as commit 0a7ab7067 ("OPTIM: mux-h2: don't allocate
more buffers per connections than streams"), but for the zero-copy case
this time. Previously it was only done on the regular snd_buf() path, but
this one is needed as well. A transfer on 16 parallel streams now consumes
half of the memory, and a single stream consumes much less.
An alternate approach would be worth investigating in the future, based
on the same principle as the CF_STREAMER_FAST at the higher level: in
short, by monitoring how many mux buffers we write at once before refilling
them, we would get an idea of how much is worth keeping in buffers max,
given that anything beyond would just waste memory. Some tests show that
a single buffer already seems almost as good, except for single-stream
transfers, which is why it's worth spending more time on this.
Connection takeover was implemented for H2 in 2.2 by commit cd4159f03
("MEDIUM: mux_h2: Implement the takeover() method."). It does have one
corner case related to memory allocation failure: in case the task or
tasklet allocation fails, the connection gets released synchronously.
Unfortunately the situation is bad there, because the lower layers are
already switched to the new thread while the tasklet is either NULL or
still the old one, and calling h2_release() will also result in
h2_process() and h2_process_demux() that may process any possibly
pending frames. Even the session remains the old one on the old thread,
so that some sess_log() that are called when facing certain demux errors
will be associated with the previous thread, possibly accessing a number
of elements belonging to another thread. There are even code paths where
the thread will try to grab the lock of its own idle conns list, believing
the connection is there while it has no useful effect. However, if the
owner thread was doing the same at the same moment, and ended up trying
to pick from the current thread (which could happen if picking a connection
for a different name), the two could even deadlock.
The risk is extremely low, but Fred managed to reproduce use-after-free
errors in conn_backend_get() after a takeover() failed by playing with
-dMfail, indicating that h2_release() had been successfully called. In
practise it's sufficient to have h2 on the server side with reuse-always
and to inject lots of request on it with -dMfail.
This patch takes a simple but radically different approach. Instead of
starting to migrate the connection before risking to face allocation
failures, it first pre-allocates a new task and tasklet, then assigns
them to the connection if the migration succeeds, otherwise it just
frees them. This way it's no longer needed to manipulate the connection
until it's fully migrated, and as a bonus this means the connection will
continue to exist and the use-after-free condition is solved at the same
time.
This should be backported to 2.2. Thanks to Fred for the initial analysis
of the problem!
On passive reverse, H2 mux is responsible to insert the connection in
the server idle list. This is done via srv_add_to_idle_list(). However,
this function may fail for various reason, such as FD usage limit
reached.
Handle properly this error case. H2 mux flags the connection on error
which will cause its release. Prior to this patch, the connection was
only released on server timeout.
This bug was found inspecting server curr_used_conns counter. Indeed, on
connection reverse, this counter is first incremented. It is decremented
just after on srv_add_to_idle_list() if insertion is validated. However,
if insertion is rejected, the connection was not released which cause
curr_used_conns to remains positive. This has the major downside to
break the reusing of idle connection on rhttp causing spurrious 503
errors.
No need to backport.
When an H2 mux works with a slow downstream connection and without the
mux-mux mode, it is possible that a single stream will allocate all 32
buffers in the connection. This is not desirable at all because 1) it
brings no value, and 2) it allocates a lot of memory per connection,
which, in addition to using a lot of memory, tends to degrade performance
due to cache thrashing.
This patch improves the situation by refraining from sending data frames
over a connection when more mbufs than streams are allocated. On a test
featuring 10k connections each with a single stream reading from the
cache, this patch reduces the RAM usage from ~180k buffers to ~20k bufs,
and improves the bandwidth. This may even be backported later to recent
versions to improve memory usage. Note however that it is efficient only
when combined with e16762f8a ("OPTIM: mux-h2: call h2_send() directly
from h2_snd_buf()"), and tends to slightly reduce the single-stream
performance without it, so in case of a backport, the two need to be
considered together.
IOBUF_FL_EOI iobuf flag is now set by the producer to notify the consumer
that the end of input was reached. Thanks to this flag, we can remove the
ugly ack in h2_done_ff() to test the opposite SE flags.
Of course, for now, it works and it is good enough. But we must keep in mind
that EOI is always forwarded from the producer side to the consumer side in
this case. But if this change, a new CO_RFL_ flag will have to be added to
instruct the producer if it can forward EOI or not.
In the mux-to-mux data forwarding, we now try, as far as possible to send at
least a buffer. Of course, if the consumer side is congested or if nothing
more can be received, we leave. But the idea is to retry to fast-forward
data if less than a buffer was forwarded. It is only performed for buffer
fast-forwarding, not splicing.
The idea behind this patch is to optimise the forwarding, when a first
forward was performed to complete a buffer with some existing data. In this
case, the amount of data forwarded is artificially limited because we are
using a non-empty buffer. But without this limitation, it is highly probable
that a full buffer could have been sent. And indeed, with H2 client, a
significant improvement was observed during our test.
To do so, .done_fastfwd() callback function must be able to deal with
interim forwards. Especially for the H2 mux, to remove H2_SF_NOTIFIED flags
on the H2S on the last call only. Otherwise, the H2 stream can be blocked by
itself because it is in the send_list. IOBUF_FL_INTERIM_FF iobuf flag is
used to notify the consumer it is not the last call. This flag is then
removed on the last call.
When data are directly forwarded from a mux to the opposite one, we must not
forget to report send activity when data are successfully sent or report a
blocked send with data are blocked. It is important because otherwise, if
the transfer is quite long, longer than the client or server timeout, an
error may be triggered because the write timeout is reached.
H1, H2 and PT muxes are concerned. To fix the issue, The done_fastword()
callback now returns the amount of data consummed. This way it is possible
to update/reset the FSB data accordingly.
No backport needed.
This allows to eliminate full buffers very quickly and to recycle them
much faster, resulting in higher transfer rates and lower memory usage
at the same time. We just wake the tasklet up if it succeeded so that
h2_process() and friends are called to finalize what needs to.
For regular buffer sizes, the performance level becomes quite close to
the one obtained with the zero-copy mechanism (zero-copy remains much
faster with non-default buffer sizes). The memory savings are huge with
default buffer size: at 64c * 100 streams on a single thread, we used
to forward 4.4 Gbps of traffic using 10400 buffers. After the change,
the performance reaches 5.9 Gbps with only 22-24 buffers, since they
are quickly recycled. That's asaving of 160 MB of RAM.
A concern was an increase in the number of syscalls but this is not
the case, the numbers remained exactly the same before and after.
Some experimentations were made to try to cork data and not send
incomplete buffers, and that always voided these changes. One
explanation might be that keeping a first buffer with only headers
frames is sufficient to prevent a zero-copy of the data coming in
a next snd_buf() call. This still needs to be studied anyway.
By calling h2_process(), the code would theoretically make it possible
for a synchronous ->wake() call to provoke an indirect call to h2_snd_buf()
while we're in h2_done_ff(), which could be quite bad. The current
conditions do not permit it right now but this could easily break by
accident. Better use h2_send() and wake the task up if needed. Precise
performance tests showed no change.
Define a new function srv_add_to_avail_list(). This function is used to
centralize connection insertion in available tree. It reuses a BUG_ON()
statement to ensure the connection is not present in the idle list.
Originally H2 would transfer everything to H1 and parsing errors were
handled there, so that if there was a track-sc rule in effect, the
counters would be updated as well. As we started to add more and more
HTTP-compliance checks at the H2 layer, then switched to HTX, we
progressively lost this ability. It's a bit annoying because it means
we will not maintain accurate error counters for a given source, for
example.
This patch adds the calls to session_inc_http_req_ctr() and
session_inc_http_err_ctr() when needed (i.e. when failing to parse
an HTTP request since all other cases are handled by the stream),
just like mux-h1 does. The same should be done for mux-h3 by the
way.
This can be backported to recent stable versions. It's not exactly a
bug, rather a missing feature in that we had never updated this counter
for H2 till now, but it does make sense to do it especially based on
what the doc says about its usage.
The H2 spec says that a HEADERS frame turns an idle stream to the open
state, and it may then turn to half-closed(remote) on ES, then to close,
all at once, if we respond with RST (e.g. on error). Due to the fact that
we process a complete frame at once since h2_dec_hdrs() may reassemble
CONTINUATION frames until everything is complete, the state was only
committed after the frame was completley valid (otherwise multiple passes
could result in subsequent frames being rejected as the stream ID would
be equal to the highest one).
However this is not correct because it means that a client may retry on
the same ID as a previously failed one, which technically is forbidden
(for example the client couldn't know which of them a WINDOW_UPDATE or
RST_STREAM frame is for).
In practice, due to the error paths, this would only be possible when
failing to decode HPACK while leaving the HPACK stream intact, thus
when the valid decoded HPACK stream cannot be turned into a valid HTTP
representation, e.g. when the resulting headers are too large for example.
The solution to avoid this consists in committing the stream ID on this
error path as well. h2spec continues to be happy.
Thanks to Annika Wickert and Tim Windelschmidt for reporting this issue.
This fix must be backported to all stable versions.
In h2_frt_handle_headers() all failures lead to a generic message saying
"rejected H2 request". It's quite inexpressive while there are a few
distinct tests that are made before jumping there:
- trailers on closed stream
- unparsable request
- refused stream
Let's emit the traces from these call points instead so that we get more
info about what happened. Since these are user-level messages, we take
care of keeping them aligned as much as possible.
For example before it would say:
[04|h2|1|mux_h2.c:2859] rejected H2 request : h2c=0x7f5d58036fd0(F,FRE)
[04|h2|5|mux_h2.c:2860] h2c_frt_handle_headers(): leaving on error : h2c=0x7f5d58036fd0(F,FRE) dsi=1 h2s=0x9fdb60(0,CLO)
And now it says:
[04|h2|1|mux_h2.c:2817] rcvd unparsable H2 request : h2c=0x7f55f8037160(F,FRH) dsi=1 h2s=CLO
[04|h2|5|mux_h2.c:2875] h2c_frt_handle_headers(): leaving on error : h2c=0x7f55f8037160(F,FRE) dsi=1 h2s=CLO
Sometimes it's unclear whether a stream is still open or closed when
certain traces are emitted, for example when the stream was refused,
because the reported pointer and ID in fact correspond to the refused
stream. And for closed streams, no pointer/name is printed, leaving
some confusion about the state. This patch makes the situation easier
to analyse by explicitly reporting "h2s=CLO" on closed/error/refused
streams so that we don't waste time comparing pointers and we instantly
know the stream is closed. Now instead of emitting:
[03|h2|5|mux_h2.c:2874] h2c_frt_handle_headers(): leaving on error : h2c=0x7fdfa8026820(F,FRE) dsi=201 h2s=0x9fdb60(0,CLO)
It will emit:
[03|h2|5|mux_h2.c:2874] h2c_frt_handle_headers(): leaving on error : h2c=0x7fdfa8026820(F,FRE) dsi=201 h2s=CLO
Stefan Behte reported that since commit f279a2f14 ("BUG/MINOR: mux-h2:
refresh the idle_timer when the mux is empty"), the http-request and
http-keep-alive timeouts don't work anymore on H2. Before this patch,
and since 3e448b9b64 ("BUG/MEDIUM: mux-h2: make sure control frames do
not refresh the idle timeout"), they would only be refreshed after stream
frames were sent (HEADERS or DATA) but the patch above that adds more
refresh points broke these so they don't expire anymore as long as
there's some activity.
We cannot just revert the fix since it also addressed an isse by which
sometimes the timeout would trigger too early and provoque truncated
responses. The right approach here is in fact to only use refresh the
idle timer when the mux buffer was flushed from any such stream frames.
In order to achieve this, we're now setting a flag on the connection
whenever we write a stream frame, and we consider that flag when deciding
to refresh the buffer after it's emptied. This way we'll only clear that
flag once the buffer is empty and there were stream data in it, not if
there were no such stream data. In theory it remains possible to leave
the flag on if some control data is appended after the buffer and it's
never cleared, but in practice it's not a problem as a buffer will always
get sent in large blocks when the window opens. Even a large buffer should
be emptied once in a while as control frames will not fill it as much as
data frames could.
Given the patch above was backported as far as 2.6, this patch should
also be backported as far as 2.6.
Instead of speaking of an initialisation stage for each data
fast-forwarding, we now use the negociate term. Thus init_ff/init_fastfwd
functions were renamed nego_ff/nego_fastfwd.
The H2 multiplexer now implements callbacks to consume fast-forwarded
data. It is the most usful case: A H2 client getting data from a H1
server. It is also the easiest case to implement. The producer side is
trickier because of multiplexing. It is not obvious this case would be
improved with data fast-forwarding.
If a shutw is blocked because the mux is full or busy, we must defer the
shutr. In this case, the H2 stream is not in H2_SS_CLOSED state because the
shutw is also deferred. If the shutr is performed, this will lead to a
error.
Concretly, when the mux is unblocked, a RST_STREAM is sent while in some
cases, an empty DATA frame with ES flag set could be sent.
This patch should be backported to all stable versions.
An interesting issue was met when testing the mux-to-mux forwarding code.
In order to preserve fairness, in h2_snd_buf() if other streams are waiting
in send_list or fctl_list, the stream that is attempting to send also goes
to its list, and will be woken up by h2_process_mux() or h2_send() when
some space is released. But on rare occasions, there are only a few (or
even a single) streams waiting in this list, and these streams are just
quickly removed because of a timeout or a quick h2_detach() that calls
h2s_destroy(). In this case there's no even to wake up the other waiting
stream in its list, and this will possibly resume processing after some
client WINDOW_UPDATE frames or even new streams, so usually it doesn't
last too long and it not much noticeable, reason why it was left that
long. In addition, measures have shown that in heavy network-bound
benchmark, this exact situation happens on less than 1% of the streams
(reached 4% with mux-mux).
The fix here consists in replacing these LIST_DEL_INIT() calls on
h2s->list with a function call that checks if other streams were queued
to the send_list recently, and if so, which also tries to resume them
by calling h2_resume_each_sending_h2s(). The detection of late additions
is made via a new flag on the connection, H2_CF_WAIT_INLIST, which is set
when a stream is queued due to other streams being present, and which is
cleared when this is function is called.
It is particularly difficult to reproduce this case which is particularly
timing-dependent, but in a constrained environment, a test involving 32
conns of 20 streams each, all downloading a 10 MB object previously
showed a limitation of 17 Gbps with lots of idle CPU time, and now
filled the cable at 25 Gbps.
This should be backported to all versions where it applies.
Since commit 5afcb686b ("MAJOR: connection: purge idle conn by last usage")
in 2.9-dev4, the test on conn->toremove_list added to conn_get_idle_flag()
in 2.8 by commit 3a7b539b1 ("BUG/MEDIUM: connection: Preserve flags when a
conn is removed from an idle list") becomes misleading. Indeed, now both
toremove_list and idle_list are shared by a union since the presence in
these lists is mutually exclusive. However, in conn_get_idle_flag() we
check for the presence in the toremove_list to decide whether or not to
delete the connection from the tree. This test now fails because instead
it sees the presence in the idle or safe list via the union, and concludes
the element must not be removed. Thus the element remains in the tree and
can be found later after the connection is released, causing crashes that
Tristan reported in issue #2292.
The following config is sufficient to reproduce it with 2 threads:
defaults
mode http
timeout client 5s
timeout server 5s
timeout connect 1s
listen front
bind :8001
server next 127.0.0.1:8002
frontend next
bind :8002
timeout http-keep-alive 1
http-request redirect location /
Sending traffic with a few concurrent connections and some short timeouts
suffices to instantly crash it after ~10k reqs:
$ h2load -t 4 -c 16 -n 10000 -m 1 -w 1 http://0:8001/
With Amaury we analyzed the conditions in which the function is called
in order to figure a better condition for the test and concluded that
->toremove_list is never filled there so we can safely remove that part
from the test and just move the flag retrieval back to what it was prior
to the 2.8 patch above. Note that the patch is not reverted though, as
the parts that would drop the unexpected flags removal are unchanged.
This patch must NOT be backported. The code in 2.8 works correctly, it's
only the change in 2.9 that makes it misbehave.
Add a new MUX flag MX_FL_REVERSABLE. This value is used to indicate that
MUX instance supports connection reversal. For the moment, only HTTP/2
multiplexer is flagged with it.
This allows to dynamically check if reversal can be completed during MUX
installation. This will allow to relax requirement on config writing for
'tcp-request session attach-srv' which currently cannot be used mixed
with non-http/2 listener instances, even if used conditionnally with an
ACL.
If any DATA frame is received before all headers are fully received, a
protocol error must be reported. It is required by the HTTP/2 RFC but it is
also important because the HTTP analyzers expect the first HTX block is a
start-line. It leads to a crash if this statement is not respected.
For instance, it is possible to trigger a crash by sending an interim
message with a DATA frame (It may be an empty DATA frame with the ES
flag). AFAIK, only the server side is affected by this bug.
To fix the issue, an protocol error is reported for the stream.
This patch should fix the issue #2291. It must be backported as far as 2.2
(and probably to 2.0 too).
If the connection is closed in h2_release(), which is indicated by ret<0, we
must not dereference conn anymore. This was introduced in 2.9-dev4 by commit
5053e8914 ("MEDIUM: h2: prevent stream opening before connection reverse
completed") and detected after a few hours of runtime thanks to running with
pool integrity checks and caller enabled. No backport is needed.
Define a new function _srv_add_idle(). This is a simple wrapper to
insert a connection in the server idle tree. This is reserved for simple
usage and require to idle_conns lock. In most cases,
srv_add_to_idle_list() should be used.
This patch does not have any functional change. However, it will help
with the next patch as idle connection will be always inserted in a list
as secondary storage along with idle/safe trees.
Small change of API for conn_delete_from_tree(). Now the connection
instance is taken as argument instead of its inner node.
No functional change introduced with this commit. This simplifies
slightly invocation of conn_delete_from_tree(). The most useful changes
is that this function will be extended in the next patch to be able to
remove the connection from its new idle list at the same time as in its
idle tree.
h2c.task is not allocated in h2_init() if timeout client/server is not
defined depending on the connection side. This caused crash on
connection reverse due to systematic requeuing of h2c.task in
h2_conn_reverse().
To fix this, check h2c.task in h2_conn_reverse(). If old timeout was
undefined but new one is, h2c.task must be allocated as it was not in
h2_init(). On the opposite situation, if old timeout was defined and new
one is not, h2c.task is freed. In this case, or if neither timeout are
defined, skip the task requeuing.
This bug is easily reproduced by using reverse bind or server with
undefined timeout client/server depending on the connection reverse
direction.
This bug has been introduced by reverse connect support.
No need to backport it.
HTTP/2 demux must be handled with care for active reverse connection.
Until accept has been completed, it should be forbidden to handle
HEADERS frame as session is not yet ready to handle streams.
To implement this, use the flag H2_CF_DEM_TOOMANY which blocks demux
process. This flag is automatically set just after conn_reverse()
invocation. The flag is removed on rev_accept_conn() callback via a new
H2 ctl enum. H2 tasklet is woken up to restart demux process.
As a side-effect, reporting in H2 mux may be blocked as demux functions
are used to convert error status at the connection level with
CO_FL_ERROR. To ensure error is reported for a reverse connection, check
h2c_is_dead() specifically for this case in h2_wake(). This change also
has its own side-effect : h2c_is_dead() conditions have been adjusted to
always exclude !h2c->conn->owner condition which is always true for
reverse connection or else H2 mux may kill them unexpectedly.
Implement active reverse on h2_conn_reverse().
Only minimal steps are done here : HTTP version session counters are
incremented on the listener instance. Also, the connection is inserted
in the mux_stopping_list to ensure it will be actively closed on process
shutdown/listener suspend.
When an active reverse connection is initialized, it has no stream-conn
attached to it contrary to other backend connections. This forces to add
extra check on stream existence in conn_create_mux() and h2_init().
There is also extra checks required for session_accept_fd() after
reverse and accept is done. This is because contrary to other frontend
connections, reversed connections have already initialized their mux and
transport layers. This forces us to skip the majority of
session_accept_fd() initialization part.
Finally, if session_accept_fd() is interrupted due to an early error, a
reverse connection cannot be freed directly or else mux will remain
alone. Instead, the mux destroy callback is used to free all connection
elements properly.
Reverse connection after SETTINGS reception if it was set as reversable.
This operation is done in a new function h2_conn_reverse(). It regroups
common changes which are needed for both reversal direction :
H2_CF_IS_BACK is set or unset and timeouts are inverted.
For the moment, only passive reverse is fully implemented. Once done,
the connection instance is directly inserted in its targetted server
pool. It can then be used immediately for future transfers using this
server.
We're adding a new argument "relaxed" to h2_make_htx_request() so that
we can control its level of acceptance of certain invalid requests at
the proxy level with "option accept-invalid-http-request". The goal
will be to add deactivable checks that are still desirable to have by
default. For now no test is subject to it.
Historically the parsing error used to apply only to too large headers,
so this is what has been reported in traces. But nowadays we can also
reject invalid characters, and when this happens the trace is a bit
misleading, so let's mention "or invalid".
There is a mechanisme in the H1 and H2 multiplexer to skip the payload when
a response is returned to the client when it must not contain any payload
(response to a HEAD request or a 204/304 response). However, this does not
work when the splicing is used. The H2 multiplexer does not support the
splicing, so there is no issue. But with the mux-h1, when data are sent
using the kernel splicing, the mux on the server side is not aware the
client side should skip the payload. And once the data are put in a pipe,
there is no way to stop the sending.
It is a defect of the current design. This will be easier to deal with this
case when the mux-to-mux forwarding will be implemented. But for now, to fix
the issue, we should add an HTX flag on the start-line to pass the info from
the client side to the server side and be able to disable the splicing in
necessary.
The associated reg-test was improved to be sure it does not fail when the
splicing is configured.
This patch should be backported as far as 2.4..
There's a rare case where on long fat pipes, we can see the keep-alive
timeout trigger before the end of the transfer of the last large object,
and the connection closed a bit quickly after the end of the transfer
because a GOAWAY is queued. The data are not destroyed, except that
the WINDOW_UPDATES from the client arriving late while the last data
are being drained by the socket buffers may at some point trigger a
reset, and some clients might choke a bit too early on these. Let's
make sure we only arm the idle_start timestamp once the output buffer
is empty. Of course it will still not cover for the data pending in the
socket buffers but it will at least let those in the buffer leave in
peace. More elaborate options can be used to protect the data in the
kernel buffers, such as the one described in GH issue #5.
It's very likely that this old issue was emphasized by the following
commit in 2.6:
15a4733d5 ("BUG/MEDIUM: mux-h2: make use of http-request and keep-alive timeouts")
and the behavior probably changed again with this one in 2.8, which
was backported to 2.7 and scheduled for 2.6:
d38d8c6cc ("BUG/MEDIUM: mux-h2: make sure control frames do not refresh the idle timeout")
As such this patch should be backported to 2.6 after some observation
period.
We must evaluate if EOS/EOI/ERR_PENDING/ERROR flags must be set on the SE
when the frontend SC is created because the rxbuf is transferred to the
steeam at this stage. It means the call to h2_rcv_buf() may be skipped on
some circumstances.
And indeed, it happens when HAproxy quickly replies, for instance because of
a deny rule. In this case, depending on the scheduling, the abort may block
the receive attempt from the SC. In this case if SE flags were not properly
set earlier, there is no way to terminate the request and the session may be
freezed.
For now, I can't explain why there is no timeout when this happens but it
remains an issue because here we should not rely on timeouts to close the
stream.
This patch relies on following commits:
* MINOR: mux-h2: Add a function to propagate termination flags from h2s to SE
* MINOR: mux-h2: Set H2_SF_ES_RCVD flag when decoding the HEADERS frame
The issue was encountered on the 2.8 but it seems the bug exists since the
2.4. But it is probably a good idea to only backport the series to 2.7 only
and wait for a bug report on earlier versions.
This patch should solve the issue #2147.
The function h2s_propagate_term_flags() was added to check the H2S state and
evaluate when EOI/EOS/ERR_PENDING/ERROR flags must be set on the SE. It is
not the only place where those flags are set. But it centralizes the synchro
between the H2 stream and the SC.
For now, this function is only used at the end of h2_rcv_buf(). But it will
be used to fix a bug.
The flag H2_SF_ES_RCVD is set on the H2 stream when the ES flag is found in
a frame. On HEADERS frame, it was set in function processing the frame. It
is moved in the function decoding the frame. Fundamentally, this changes
nothing. But it will be useful to have this information earlier when a
client H2 stream is created.
In h2c_frt_stream_new(), H2_SF_BODY_TUNNEL flags was tested on demux frame
flags (h2c->dff) instead of the h2s flags. By chance, it is a noop test
becasue H2_SF_BODY_TUNNEL value, once converted to an int8_t, is 0.
It is a 2.8-specific issue. No backport needed.
Christopher found as part of the analysis of Tim's issue #1891 that commit
15a4733d5 ("BUG/MEDIUM: mux-h2: make use of http-request and keep-alive
timeouts") introduced in 2.6 incompletely addressed a timeout issue in the
H2 mux. The problem was that the http-keepalive and http-request timeouts
were not applied before it. With that commit they are now considered, but
if a GOAWAY is sent (or even attempted to be sent), then they are not used
anymore again, because the way the code is arranged consists in applying
the client-fin timeout (if set) to the current date, and falling back to
the client timeout, without considering the idle_start period. This means
that a config having a "timeout http-keepalive" would still not close the
connection quickly when facing a client that periodically sends PING,
PRIORITY or whatever other frame types.
In addition, after the GOAWAY was attempted to be sent, there was no check
for pending data in the output buffer, meaning that it would be possible
to truncate some responses in configs involving a very short client-fin
timeout.
Finally the spreading of the closures during the soft-stop brought in 2.6
by commit b5d968d9b ("MEDIUM: global: Add a "close-spread-time" option to
spread soft-stop on time window") didn't consider the particular case of
an idle "pre-connect" connection, which would also live long if a browser
failed to deliver a valid request for a long time.
All of this indicates that the conditions must be reworked so as not to
have that level of exclusion between conditions, but rather stick to the
rules from the doc that are already enforced on other muxes:
- timeout client always applies if there are data pending, and is
relative to each new I/O ;
- timeout http-request applies before the first complete request and
is relative to the entry in idle state ;
- timeout http-keepalive applies between idle and the next complete
request and is relative to the entry in idle state ;
- timeout client-fin applies when in idle after a shut was sent (here
the shut is the GOAWAY). The shut may only be considered as sent if
the buffer is empty and the flags indicate that it was successfully
sent (or failed) but not if it's still waiting for some room in the
output buffer for example. This implies that this timeout may then
lower the http-keepalive/http-request ones.
This is what this patch implements. Of course the client timeout still
applies as a fallback when all the ones above are not set or when their
conditions are not met.
It would seem reasoanble to backport this to 2.7 first, then only after
one or two releases to 2.6.
Implement a new HTX utility function htx_set_eom(). If the HTX message
is empty, it will first add a dummy EOT block. This is a small trick
needed to ensure readers will detect the HTX buffer as not empty and
retrieve the EOM flag.
Replace the H2 code related by a htx_set_eom() invocation. QUIC also has
the same code which will be replaced in the next commit.
This should be backported up to 2.7 before the related QUIC patch.
When a client H2 stream is waiting for a tunnel establishment, it must state
it expects data from server. It is the second fix that should fix
regressions of the commit 2722c04b ("MEDIUM: mux-h2: Don't expect data from
server as long as request is unfinished")
It is a 2.8-specific bug. No backport needed.
The commit 2722c04b ("MEDIUM: mux-h2: Don't expect data from server as long
as request is unfinished") introduced a regression in the H2 multiplexer.
The end of the request is not systematically handled to state a H2 stream on
client side now expexts data from the server.
Indeed, while the client is uploading its request, the H2 stream warns it
does not expect data from the server. This way, no server timeout is applied
at this stage. When end of the request is detected, the H2 stream must state
it now expects the server response. This enables the server timeout.
However, it was only performed at one place while the end of the request can
be handled at different places. First, during a zero-copy in
h2_rcv_buf(). Then, when the SC is created with the full request. Because of
this bug, it is possible to totally disable the server timeout for H2
streams.
In h2_rcv_buf(), we now rely on h2s flags to detect the end of the request,
but only when the rxbuf was emptied.
It is a 2.8-specific bug. No backport needed.
This puts an end to the occasional confusion between the "now" date
that is internal, monotonic and not synchronized with the system's
date, and "date" which is the system's date and not necessarily
monotonic. Variable "now" was removed and replaced with a 64-bit
integer "now_ns" which is a counter of nanoseconds. It wraps every
585 years, so if all goes well (i.e. if humanity does not need
haproxy anymore in 500 years), it will just never wrap. This implies
that now_ns is never nul and that the zero value can reliably be used
as "not set yet" for a timestamp if needed. This will also simplify
date checks where it becomes possible again to do "date1<date2".
All occurrences of "tv_to_ns(&now)" were simply replaced by "now_ns".
Due to the intricacies between now, global_now and now_offset, all 3
had to be turned to nanoseconds at once. It's not a problem since all
of them were solely used in 3 functions in clock.c, but they make the
patch look bigger than it really is.
The clock_update_local_date() and clock_update_global_date() functions
are now much simpler as there's no need anymore to perform conversions
nor to round the timeval up or down.
The wrapping continues to happen by presetting the internal offset in
the short future so that the 32-bit now_ms continues to wrap 20 seconds
after boot.
The start_time used to calculate uptime can still be turned to
nanoseconds now. One interrogation concerns global_now_ms which is used
only for the freq counters. It's unclear whether there's more value in
using two variables that need to be synchronized sequentially like today
or to just use global_now_ns divided by 1 million. Both approaches will
work equally well on modern systems, the difference might come from
smaller ones. Better not change anyhting for now.
One benefit of the new approach is that we now have an internal date
with a resolution of the nanosecond and the precision of the microsecond,
which can be useful to extend some measurements given that timestamps
also have this resolution.
Let's get rid of timeval in storage of internal timestamps so that they
are no longer mistaken for wall clock time. These were exclusively used
subtracted from each other or to/from "now" after being converted to ns,
so this patch removes the tv_to_ns() conversion to use them natively. Two
occurrences of tv_isge() were turned to a regular wrapping subtract.
Instead of operating on {sec, usec} now we convert both operands to
ns then subtract them and convert to ms. This is a first step towards
dropping timeval from these timestamps.
Interestingly, tv_ms_elapsed() and tv_ms_remain() are no longer used at
all and could be removed.