Since commit cc7a11ee3 ("MINOR: threads: set the tid, ltid and their bit
in thread_cfg") we ought not use (1UL << thr) to get the group mask for
thread <thr>, but (ha_thread_info[thr].ltid_bit). wdt_handler() needs
this.
Since commit cc7a11ee3 ("MINOR: threads: set the tid, ltid and their bit
in thread_cfg") we ought not use (1UL << thr) to get the group mask for
thread <thr>, but (ha_thread_info[thr].ltid_bit). ha_thread_dump() needs
this.
In order to replace the global "all_threads_mask" we'll need to have an
equivalent per group. Take this opportunity for calling it threads_enabled
and make sure which ones are counted there (in case in the future we allow
to stop some).
Now that the tgid is accessible from the thread, it's pointless to have
it in the group, and it was only set but never used. However we'll soon
frequently need the mask corresponding to the group ID and the risk of
getting it wrong with the +1 or to shift 1 instead of 1UL is important,
so let's store the tgid_bit there.
At several places we're dereferencing the thread group just to catch
the group number, and this will become even more required once we start
to use per-group contexts. Let's just add the tgid in the thread_info
struct to make this easier.
Every single place where sleeping_thread_mask was still used was to test
or set a single thread. We can now add a per-thread flag to indicate a
thread is sleeping, and remove this shared mask.
The wake_thread() function now always performs an atomic fetch-and-or
instead of a first load then an atomic OR. That's cleaner and more
reliable.
This is not easy to test, as broadcast FD events are rare. The good
way to test for this is to run a very low rate-limited frontend with
a listener that listens to the fewest possible threads (2), and to
send it only 1 connection at a time. The listener will periodically
pause and the wakeup task will sometimes wake up on a random thread
and will call wake_thread():
frontend test
bind :8888 maxconn 10 thread 1-2
rate-limit sessions 5
Alternately, disabling/enabling a frontend in loops via the CLI also
broadcasts such events, but they're more difficult to observe since
this is causing connection failures.
Right now when an inter-thread wakeup happens, we preliminary check if the
thread was asleep, and if so we wake the poller up and remove its bit from
the sleeping mask. That's not very clean since the sleeping mask cannot be
entirely trusted since a thread that's about to wake up will already have
its sleeping bit removed.
This patch adds a new per-thread flag (TH_FL_NOTIFIED) to remember that a
thread was notified to wake up. It's cleared before checking the task lists
last, so that new wakeups can be considered again (since wake_thread() is
only used to notify about task wakeups and FD polling changes). This way
we do not need to modify a remote thread's sleeping mask anymore. As such
wake_thread() now only tests and sets the TH_FL_NOTIFIED flag but doesn't
clear sleeping anymore.
When enabling an FD that's only bound to another thread, instead of
always picking the first one, let's pick a random one. This is rarely
used (enabling a frontend, or session rate-limiting period ending),
and has greater chances of avoiding that some obscure corner cases
could degenerate into a poorly distributed load.
Till now, update_fd_polling() used to check if all the target threads were
sleeping, and only then would wake an owning thread up. This causes several
problems among which the need for the sleeping_thread_mask and the fact that
by the time we wake one thread up, it has changed.
This commit changes this by leaving it to wake_thread() to perform this
check on the selected thread, since wake_thread() is already capable of
doing this now. Concretely speaking, for updt_fd_polling() it will mean
performing one computation of an ffsl() before knowing the sleeping status
on a global FD state change (which is very rare and not important here,
as it basically happens after relaxing a rate-limit (i.e. once a second
at beast) or after enabling a frontend from the CLI); thus we don't care.
When returning from the polling syscall, all pollers have a certain
dance to follow, made of wall clock updates, thread harmless updates,
idle time management and sleeping mask updates. Let's have a centralized
function to deal with all of this boring stuff: fd_leaving_poll(), and
make all the pollers use it.
The thread flags are touched a little bit by other threads, e.g. the STUCK
flag may be set by other ones, and they're watched a little bit. As such
we need to use atomic ops only to manipulate them. Most places were already
using them, but here we generalize the practice. Only ha_thread_dump() does
not change because it's run under isolation.
The thread flags were once believed to be local to the thread, but as
it stands, even the STUCK flag is shared since it's looked at by the
watchdog. As such we'll need to use atomic ops to manipulate them, and
likely to move them into the shared area.
This patch only moves the flag into the shared area so that we can later
decide whether it's best to leave them there or to move them back to the
local area. Interestingly, some tests have shown a 3% better performance
on dequeuing with this, while they're not used by other threads yet, so
there are definitely alignment effects that might change over time.
Almost every call place of wake_thread() checks for sleeping threads and
clears the sleeping mask itself, while the function is solely used for
there. Let's move the check and the clearing of the bit inside the function
itself. Note that updt_fd_polling() still performs the check because its
rules are a bit different.
Now that the inter-task wakeups are cheap, there's no point in using
task_instant_wakeup() anymore when dequeueing tasks. The use of the
regular task_wakeup() is sufficient there and will preserve a better
fairness: the test that went from 40k to 570k RPS now gives 580k RPS
(down from 585k RPS with previous commit). This essentially reverts
commit 27fab1dcb ("MEDIUM: queue: use tasklet_instant_wakeup() to
wake tasks").
Since we don't mix tasks from different threads in the run queues
anymore, we don't need to use the eb32sc_ trees and we can switch
to the regular eb32 ones. This uses cheaper lookup and insert code,
and a 16-thread test on the queues shows a performance increase
from 570k RPS to 585k RPS.
This bit field used to be a per-thread cache of the result of the last
lookup of the presence of a task for each thread in the shared cache.
Since we now know that each thread has its own shared cache, a test of
emptiness is now sufficient to decide whether or not the shared tree
has a task for the current thread. Let's just remove this mask.
grq_total was only used to know how many tasks were being queued in the
global runqueue for stats purposes, and that was transferred to the per
thread rq_total counter once assigned. We don't need this anymore since
we know where they are, so let's just directly update rq_total and drop
that one.
Since we only use the shared runqueue to put tasks only assigned to
known threads, let's move that runqueue to each of these threads. The
goal will be to arrange an N*(N-1) mesh instead of a central contention
point.
The global_rqueue_ticks had to be dropped (for good) since we'll now
use the per-thread rqueue_ticks counter for both trees.
A few points to note:
- the rq_lock stlil remains the global one for now so there should not
be any gain in doing this, but should this trigger any regression, it
is important to detect whether it's related to the lock or to the tree.
- there's no more reason for using the scope-based version of the ebtree
now, we could switch back to the regular eb32_tree.
- it's worth checking if we still need TASK_GLOBAL (probably only to
delete a task in one's own shared queue maybe).
The runqueue ticks counter is per-thread and wasn't initially meant to
be shared. We'll soon have to share it so let's make it atomic. It's
only updated when waking up a task, and no performance difference was
observed. It was moved in the thread_ctx struct so that it doesn't
pollute the local cache line when it's later updated by other threads.
This function stopped being used before 2.4 because either the task is
dequeued by the scheduler itself and it knows where to find it, or it's
killed by any thread, and task_kill() must be used for this as only this
one is safe.
It's difficult to say whether task_unlink_rq() is still safe, but once
the lock moves to a thread declared in the task itself, it will be even
more difficult to keep it safe.
Let's just remove it now before someone reuses it and causes trouble.
TASK_SHARED_WQ was set upon task creation and never changed afterwards.
Thus if a task was created to run anywhere (e.g. a check or a Lua task),
all its timers would always pass through the shared timers queue with a
lock. Now we know that tid<0 indicates a shared task, so we can use that
to decide whether or not to use the shared queue. The task might be
migrated using task_set_affinity() but it's always dequeued first so
the check will still be valid.
Not only this removes a flag that's difficult to keep synchronized with
the thread ID, but it should significantly lower the load on systems with
many checks. A quick test with 5000 servers and fast checks that were
saturating the CPU shows that the check rate increased by 20% (hence the
CPU usage dropped by 17%). It's worth noting that run_task_lists() almost
no longer appears in perf top now.
As previously advertised in comments, the mask-based task_new() is now
gone. The low-level function now is task_new_on() which takes a thread
number or a negative value for "any thread", which is turned to zero
for thread-less builds since there's no shared WQ in thiscase. The
task_new_here() and task_new_anywhere() functions were adjusted
accordingly.
This removes the mask-based variant so that from now on the low-level
function becomes appctx_new_on() and it takes either a thread number or
a negative value for "any thread". This way we can use task_new_on() and
task_new_anywhere() instead of task_new() which will soon disappear.
At a few places where the task's thread mask. Now we know that it's always
either one bit or all bits of all_threads_mask, so we can replace it with
either 1<<tid or all_threads_mask depending on what's expected.
It's worth noting that the global_tasks_mask is still set this way and
that it's reaching its limits. Similarly, the task_new() API would deserve
an update to stop using a thread mask and use a thread number instead.
Similarly, task_set_affinity() should be updated to directly take a
thread number.
At this point the task's thread mask is not used anymore.
At several places we need to figure the ID of the first thread allowed
to run a task. Till now this was performed using my_ffsl(t->thread_mask)
but since we now have the thread ID stored into the task, let's use it
instead. This is tagged major because it starts to assume that tid<0 is
strictly equivalent to atleast2(thread_mask), and that as such, among
the allowed threads are the current one.
The tasks currently rely on a mask but do not have an assigned thread ID,
contrary to tasklets. However, in practice they're either running on a
single thread or on any thread, so that it will be worth simplifying all
this in order to ease the transition to the thread groups.
This patch introduces a "tid" field in the task struct, that's either
the number of the thread the task is attached to, or a negative value
if the task is not bound to a thread, (i.e. its mask is all_threads_mask).
The new ID is only set and updated but not used yet.
The thread mask will not be used anymore, instead the thread id only
is used. Interestingly it was already implemented in the parsing but
not used. The single/multi thread argument is not needed anymore since
it's sufficient to pass tid<0 to get a multi-threaded task/tasklet.
This is in preparation for the removal of the thread_mask in tasks as
only this debug code was using it!
For now we still set tid_bit to (1UL << tid) because FDs will not
work with more than one group without this, but once FDs start to
adopt local masks this must change to thr->ltid_bit.
Before 2.3, after an async crypto processing or on session close, the engine
async file's descriptors were removed from the fdtab but not closed because
it is the engine which has created the file descriptor, and it is responsible
for closing it. In 2.3 the fd_remove() call was replaced by fd_stop_both()
which stops the polling but does not remove the fd from the fdtab and the
fd remains indefinitively in the fdtab.
A simple replacement by fd_delete() is not a valid fix because fd_delete()
removes the fd from the fdtab but also closes the fd. And the fd will be
closed twice: by the haproxy's core and by the engine itself.
Instead, let's set FD_DISOWN on the FD before calling fd_delete() which will
take care of not closing it.
This patch must be backported on branches >= 2.3, and it relies on this
previous patch:
MINOR: fd: add a new FD_DISOWN flag to prevent from closing a deleted FD
As mentioned in the patch above, a different flag will be needed in 2.3.
Some FDs might be offered to some external code (external libraries)
which will deal with them until they close them. As such we must not
close them upon fd_delete() but we need to delete them anyway so that
they do not appear anymore in the fdtab. This used to be handled by
fd_remove() before 2.3 but we don't have this anymore.
This patch introduces a new flag FD_DISOWN to let fd_delete() know that
the core doesn't own the fd and it must not be closed upon removal from
the fd_tab. This way it's totally unregistered from the poller but still
open.
This patch must be backported on branches >= 2.3 because it will be
needed to fix a bug affecting SSL async. it should be adapted on 2.3
because state flags were stored in a different way (via bits in the
structure).
Adjust FIN signal on Rx path for the application layer : ensure that the
receive buffer has no gap.
Without this extra condition, FIN was signalled as soon as the STREAM
frame with FIN was received, even if we were still waiting to receive
missing offsets.
This bug could have lead to incomplete requests read from the
application protocol. However, in practice this bug has very little
chance to happen as the application layer ensures that the demuxed frame
length is equivalent to the buffer data size. The only way to happen is
if to receive the FIN STREAM as the H3 demuxer is still processing on a
frame which is not the last one of the stream.
This must be backported up to 2.6. The previous patch on ncbuf is
required for the newly defined function ncb_is_fragmented().
MINOR: ncbuf: implement ncb_is_fragmented()
Implement a new status function for ncbuf. It allows to quickly report
if a buffer contains data in a fragmented way, i.e. with gaps in between
or at start of the buffer.
To summarize, a buffer is considered as non-fragmented in the following
cases :
- a null or empty buffer
- a full buffer
- a buffer containing exactly one data block at the beginning, following
by a gap until the end.
Since a previous refactoring, application protocol layer is not require
anymore to call qcs_consume(). This function is now automatically used
by the MUX itself.
With ~1500 bytes QUIC datagrams, we can handle less than 200 datagrams
which is less than the default maxpollevents value. This should reduce
the chances of fulfilling the connections RX buffers as reported by
Tristan in GH #1737.
Must be backported to 2.6.
First we add a loop around recfrom() into the most low level I/O handler
quic_sock_fd_iocb() to collect as most as possible datagrams before during
its tasklet wakeup with a limit: we recvfrom() at most "maxpollevents"
datagrams. Furthermore we add a local task list into the datagram handler
quic_lstnr_dghdlr() which is passed to the first datagrams parser qc_lstnr_pkt_rcv().
This latter parser only identifies the connection associated to the datagrams then
wakeup the highest level packet parser I/O handlers (quic_conn.*io_cb()) after
it is done, thanks to the call to tasklet_wakeup_after() which replaces from now on
the call to tasklet_wakeup(). This should reduce drastically the latency and the
chances to fulfil the RX buffers at the QUIC connections level as reported in
GH #1737 by Tritan.
These modifications depend on this commit:
"MINOR: task: Add tasklet_wakeup_after()"
Must be backported to 2.6 with the previous commit.
Remove the call to qc_list_all_rx_pkts() which print messages on stderr
during RX buffer overruns and add a new counter for the number of dropped packets
because of such events.
Must be backported to 2.6
When the connection RX buffer is full, the received packets are dropped.
Some of them were not taken into an account by the ->dropped_pkt counter.
This very simple patch has no impact at all on the packet handling workflow.
Must be backported to 2.6.
We want to be able to schedule a tasklet onto a thread after the current tasklet
is done. What we have to do is to insert this tasklet at the head of the thread
task list. Furthermore, we would like to serialize the tasklets. They must be
run in the same order as the order in which they have been scheduled. This is
implemented passing a list of tasklet as parameter (see <head> parameters) which
must be reused for subsequent calls.
_tasklet_wakeup_after_on() is implemented to accomplish this job.
tasklet_wakeup_after_on() and tasklet_wake_after() are only wrapper macros around
_tasklet_wakeup_after_on(). tasklet_wakeup_after_on() does exactly the same thing
as _tasklet_wakeup_after_on() without having to pass the filename and line in the
filename as parameters (usefull when DEBUG_TASK is enabled).
tasklet_wakeup_after() hides also the usage of the thread parameter which is
<tl> tasklet thread ID.
Return QPACK_DECOMPRESSION_FAILED error code when dealing with dynamic
table references. This is justified as for now haproxy does not
implement dynamic table support and advertizes a zero-sized table.
The H3 calling function will thus reuse this code in a CONNECTION_CLOSE
frame, in conformance with the QPACK RFC.
This proper error management allows to remove obsolete ABORT_NOW guards.
This is a complement to partial fix from commit
debaa04f9e
BUG/MINOR: qpack: abort on dynamic index field line decoding
The main objective is to fix coverity report about usage of
uninitialized variable when receiving dynamic table references. These
references are invalid as for the moment haproxy advertizes a 0-sized
dynamic table. An ABORT_NOW clause is present to catch this. A following
patch will clean up this in order to properly handle QPACK errors with
CONNECTION_CLOSE.
This should fix github issue #1753.
No need to backport as this was introduced in the current dev branch.
Emit a CONNECTION_CLOSE if HEADERS parsing function returns an error.
This is useful to remove previous ABORT_NOW guards.
For the moment, the whole connection is closed. In the future, it may be
justified to only reset the faulting stream in some cases. This requires
the implementation of RESET_STREAM emission.