Now pendconn_free() takes a stream, checks that pend_pos is set, clears
it, and uses pendconn_unlink() to complete the job. It's cleaner and
centralizes all the bookkeeping work in pendconn_unlink() only and
ensures that there's a single place where the stream's position in the
queue is manipulated.
For now the pendconns may be dequeued at two places :
- pendconn_unlink(), which operates on a locked queue
- pendconn_free(), which operates on an unlocked queue and frees
everything.
Some changes are coming to the queue and we'll need to be able to be a
bit stricter regarding the places where we dequeue to keep the accounting
accurate. This first step renames the locked function __pendconn_unlink()
as it's for use by those aware of it, and introduces a new general purpose
pendconn_unlink() function which automatically grabs the necessary locks
before calling the former, and pendconn_cond_unlink() which additionally
checks the pointer and the presence in the queue.
As __task_wakeup() is responsible for increasing
rqueue_local[tid]/global_rqueue_size, make __task_unlink_rq responsible for
decreasing it, as process_runnable_tasks() isn't the only one that removes
tasks from runqueues.
This function is generic and is able to automatically transfer data
from a conn_stream's rx buffer to the destination buffer. It does this
automatically if the mux doesn't define another rcv_buf() function.
In order to reorganize the connection layers, recv() operations will
need to be retryable and to support partial transfers. This requires
an intermediary buffer to hold the data coming from the mux. After a
few attempts, it turns out that this buffer is best placed inside the
conn_stream itself. For now it's only set to buf_empty and it will be
up to the caller to allocate it if required.
This new function wl_set_waitcb() prepopulates a wait_list with a tasklet
and a context and returns it so that it can be passed to ->subscribe() to
be added to a connection or conn_stream's wait_list. The caller doesn't
need to know all the insiders details anymore this way.
Totally nuke the "send" method, instead, the upper layer decides when it's
time to send data, and if it's not possible, uses the new subscribe() method
to be called when it can send data again.
Add a new "subscribe" method for connection, conn_stream and mux, so that
upper layer can subscribe to them, to be called when the event happens.
Right now, the only event implemented is "SUB_CAN_SEND", where the upper
layer can register to be called back when it is possible to send data.
The connection and conn_stream got a new "send_wait_list" entry, which
required to move a few struct members around to maintain an efficient
cache alignment (and actually this slightly improved performance).
Now all the code used to manipulate chunks uses a struct buffer instead.
The functions are still called "chunk*", and some of them will progressively
move to the generic buffer handling code as they are cleaned up.
Chunks are only a subset of a buffer (a non-wrapping version with no head
offset). Despite this we still carry a lot of duplicated code between
buffers and chunks. Replacing chunks with buffers would significantly
reduce the maintenance efforts. This first patch renames the chunk's
fields to match the name and types used by struct buffers, with the goal
of isolating the code changes from the declaration changes.
Most of the changes were made with spatch using this coccinelle script :
@rule_d1@
typedef chunk;
struct chunk chunk;
@@
- chunk.str
+ chunk.area
@rule_d2@
typedef chunk;
struct chunk chunk;
@@
- chunk.len
+ chunk.data
@rule_i1@
typedef chunk;
struct chunk *chunk;
@@
- chunk->str
+ chunk->area
@rule_i2@
typedef chunk;
struct chunk *chunk;
@@
- chunk->len
+ chunk->data
Some minor updates to 3 http functions had to be performed to take size_t
ints instead of ints in order to match the unsigned length here.
Now the buffers only contain the header and a pointer to the storage
area which can be anywhere. This will significantly simplify buffer
swapping and will make it possible to map chunks on buffers as well.
The buf_empty variable was removed, as now it's enough to have size==0
and area==NULL to designate the empty buffer (thus a non-allocated head
is the empty buffer by default). buf_wanted for now is indicated by
size==0 and area==(void *)1.
The channels and the checks now embed the buffer's head, and the only
pointer is to the storage area. This slightly increases the unallocated
buffer size (3 extra ints for the empty buffer) but considerably
simplifies dynamic buffer management. It will also later permit to
detach unused checks.
The way the struct buffer is arranged has proven quite efficient on a
number of tests, which makes sense given that size is always accessed
and often first, followed by the othe ones.
It used to be called 'len' during the reorganisation but strictly speaking
it's not a length since it wraps. Also we already use '_data' as the suffix
to count available data, and data is also what we use to indicate the amount
of data in a pipe so let's improve consistency here. It was important to do
this in two operations because data used to be the name of the pointer to
the storage area.
There was no point keeping that function in the buffer part since it's
exclusively used by HTTP at the channel level, since it also automatically
appends the CRLF. This further cleans up the buffer code.
Since we never access this field directly anymore, but only through the
channel's wrappers, it can now move to the channel. The buffers are now
completely free from the distinction between input and output data.
b_del() is used in :
- mux_h2 with the demux buffer : always processes input data
- checks with output data though output is not considered at all there
- b_eat() which is not used anywhere
- co_skip() where the len is always <= output
Thus the distinction for output data is not needed anymore and the
decrement can be made inconditionally in co_skip().
This is intentionally the minimal and safest set of changes, some cleanups
area still required. These changes are quite tricky and cannot be
independantly tested, so it's important to keep this patch as bisectable
as possible.
buf_empty and buf_wanted were changed and are now exactly similar since
there's no <p> member in the structure anymore. Given that no test is
ever made in the code to check that buf == &buf_wanted, it may be possible
that we don't need to have two anymore, unless some buf_empty tests have
precedence. This will have to be investigated.
A significant part of this commit affects the HTTP compression code,
which used to deeply manipulate the input and output buffers without
any reasonable solution for a better abstraction. For this reason, if
any regression is met and designates this patch as the culprit, it is
important to run tests which specifically involve compression or which
definitely don't use it in order to spot the issue.
Cc: Olivier Houchard <ohouchard@haproxy.com>
For the same consistency reasons, let's use b_empty() at the few places
where an empty buffer is expected, or c_empty() if it's done on a channel.
Some of these places were there to realign the buffer so
{b,c}_realign_if_empty() was used instead.
Now that there are no more users requiring to modify the buffer anymore,
switch these ones to const char and const buffer. This will make it more
obvious next time send functions are tempted to modify the buffer's output
count. Minor adaptations were necessary at a few call places which were
using char due to the function's previous prototype.
Till now the callers had to know which one to call for specific use cases.
Let's fuse them now since a single one will remain after the API migration.
Given that bi_del() may only be used where o==0, just combine the two tests
by first removing output data then only input.
This function was sometimes used from a channel and sometimes from a buffer.
In both cases it requires knowledge of the size of the output data (to skip
them). Here the split ensures the channel can deal with this point, and that
other places not having output data can continue to work.
These ones manipulate the output data count which will be specific to
the channel soon, so prepare the call points to use the channel only.
The b_* functions are now unused and were removed.
The few call places where it's used can use the trash as a swap buffer,
which is made for this exact purpose. This way we can rely on the
generic b_slow_realign() call.
Where relevant, the channel version is used instead. The buffer version
was ported to be more generic and now takes a swap buffer and the output
byte count to know where to set the alignment point. The H2 mux still
uses buffer_slow_realign() with buf->o but it will change later.
This adds :
- c_orig() : channel buffer's origin
- c_size() : channel buffer's size
- c_wrap() : channel buffer's wrapping location
- c_data() : channel buffer's total data count
- c_room() : room left in channel buffer's
- c_empty() : true if channel buffer is empty
- c_full() : true if channel buffer is full
- c_ptr() : pointer to an offset relative to input data in the buffer
- c_adv() : advances the channel's buffer (bytes become part of output)
- c_rew() : rewinds the channel's buffer (output bytes not output anymore)
- c_realign_if_empty() : realigns the buffer if it's empty
- co_data() : # of output data
- co_head() : beginning of output data
- co_tail() : end of output data
- ci_data() : # of input data
- ci_head() : beginning of input data
- ci_tail() : end of input data
- ci_stop() : location after ci_tail()
- ci_next() : pointer to next input byte
And for the ci_* / co_* functions above, the "__*" variants which disable
wrapping checks, and the "_ofs" variants which return an offset relative to
the buffer's origin instead.
Up until now, a tasklet couldn't be free'd while it was in the list, it is
no longer the case, so make sure we remove it from the list before freeing it.
To do so, we have to make sure we correctly initialize it, so use LIST_INIT,
instead of setting the pointers to NULL.
To make sure we don't inadvertently insert task in the global runqueue,
while only the local runqueue is used without threads, make its definition
and usage conditional on USE_THREAD.
When building without threads enabled, instead of just using the global
runqueue, just use the local runqueue associated with the only thread, as
that's what is now expected for a single thread in prcoess_runnable_tasks().
This should fix haproxy when built without threads.
When an applet is created, let's assign it the same nice value as the task
of the stream which owns it. It ensures that fairness is properly propagated
to applets, and that the CLI can regain a low latency behaviour again. Huge
differences have been seen under extreme loads, with the CLI being called
every 200 microseconds instead of 11 milliseconds.
This function returns true is some notifications are registered.
This function is usefull for the following patch
BUG/MEDIUM: lua/socket: Sheduling error on write: may dead-lock
It should be backported in 1.6, 1.7 and 1.8
Don't forget to increase tasks_run_queue when we're adding a task to the
tasklet list, and to decrease it when we remove a task from a runqueue,
or its value won't be accurate, and could lead to tasks not being executed
when put in the global run queue.
1.9-dev only, no backport is needed.
There's no real reason to have a specific scheduler for applets anymore, so
nuke it and just use tasks. This comes with some benefits, the first one
being that applets cannot induce high latencies anymore since they share
nice values with other tasks. Later it will be possible to configure the
applets' nice value. The second benefit is that the applet scheduler was
not very thread-friendly, having a big lock around it in prevision of this
change. Thus applet-intensive workloads should now scale much better with
threads.
Some more improvement is possible now : some applets also use a task to
handle timers and timeouts. These ones could now be simplified to use only
one task.
Introduce tasklets, lightweight tasks. They have no notion of priority,
they are just run as soon as possible, and will probably be used for I/O
later.
For the moment they're used to replace the temporary thread-local list
that was used in the scheduler. The first part of the struct is common
with tasks so that tasks can be cast to tasklets and queued in this list.
Once a task is in the tasklet list, it has its leaf_p set to 0x1 so that
it cannot accidently be confused as not in the queue.
Pure tasklets are identifiable by their nice value of -32768 (which is
normally not possible).
A lot of tasks are run on one thread only, so instead of having them all
in the global runqueue, create a per-thread runqueue which doesn't require
any locking, and add all tasks belonging to only one thread to the
corresponding runqueue.
The global runqueue is still used for non-local tasks, and is visited
by each thread when checking its own runqueue. The nice parameter is
thus used both in the global runqueue and in the local ones. The rare
tasks that are bound to multiple threads will have their nice value
used twice (once for the global queue, once for the thread-local one).