Define a set of functions to temporarily disable/reactivate tracing for
the current thread. This could be useful when wanting to quickly remove
tracing output for some code parts.
The API relies on a disable/resume set of functions, with a thread-local
counter. This counter is tested under __trace_enabled(). It is a
cumulative value so that the same count of resume must be issued after
several disable usage. There is also the possibility to force reset the
counter to 0 before restoring the old value.
This should be backported up to 3.1.
When using trace with -dt, the trace_parse_cmd() function is doing a
strtok which write \0 into the argv string.
When using the mworker mode, and reloading, argv was modified and the
trace won't work anymore because the first : is replaced by a '\0'.
This patch fixes the issue by allocating a temporary string so we don't
modify the source string directly. It also replace strtok by its
reentrant version strtok_r.
Must be backported as far as 2.9.
With "follow" from one source to another, it becomes possible for a
source to automatically follow another source's tracked pointer. The
best example is the session:
- the "session" source is enabled and has a "lockon session"
-> its lockon_ptr is equal to the session when valid
- other sources (h1,h2,h3 etc) are configured for "follow session"
and will then automatically check if session's lockon_ptr matches
its own session, in which case tracing will be enabled for that
trace (no state change).
It's not necessary to start/pause/stop traces when using this, only
"follow" followed by a source with lockon enabled is needed. Some
combinations might work better than others. At the moment the session
is almost never known from the backend, but this may improve.
The meta-source "all" is supported for the follower so that all sources
will follow the tracked one.
Add an optional argument for "-dt". This argument is interpreted as a
list of several trace statement separated by comma. For each statement,
a specific trace name can be specifed, or none to act on all sources.
Using double-colon separator, it is possible to add specifications on
the wanted level and verbosity.
Add '-dt' haproxy process argument. This will automatically activate all
trace sources on stderr with the error level. This could be useful to
troubleshoot issues such as protocol violations.
TRACE_PRINTF() can be used to produce arbitrary trace contents at any
trace level. It uses the exact same arguments as other TRACE_* macros,
but here they are mandatory since they are followed by the format-string,
though they may be filled with zeroes. The reason for the arguments is to
match tracking or filtering and not pollute other non-inspected objects.
It will probably be used inside loops, in which case there are two points
to be careful about:
- output atomicity is only per-message, so competing threads may see
their messages interleaved. As such, it is recommended that the
caller places a recognizable unique context at the beginning of the
message such as a connection pointer.
- iterating over arrays or lists for all requests could be very
expensive. In order to avoid this it is best to condition the call
via TRACE_ENABLED() with the same arguments, which will return the
same decision.
- messages longer than TRACE_MAX_MSG-1 (1023 by default) will be
truncated.
For example, in order to dump the list of HTTP headers between hpack
and h2:
if (outlen > 0 &&
TRACE_ENABLED(TRACE_LEVEL_DEVELOPER,
H2_EV_RX_FRAME|H2_EV_RX_HDR, h2c->conn, 0, 0, 0)) {
int i;
for (i = 0; list[i].n.len; i++)
TRACE_PRINTF(TRACE_LEVEL_DEVELOPER, H2_EV_RX_FRAME|H2_EV_RX_HDR,
h2c->conn, 0, 0, 0, "h2c=%p hdr[%d]=%s:%s", h2c, i,
list[i].n.ptr, list[i].v.ptr);
}
In addition, a lower-level TRACE_PRINTF_LOC() macro is provided, that takes
two extra arguments, the caller's location and the caller's function name.
This will allow to emit composite traces from central functions on the
behalf of another one.
By default, passing a NULL cb to the trace functions will result in the
source's default one to be used. For some cases we won't want to use any
callback at all, not event the default one. Let's define a trace_no_cb()
function for this, that does absolutely nothing.
Sometimes it would be necessary to prepare some messages, pre-process some
blocks or maybe duplicate some contents before they vanish for the purpose
of tracing them. However we don't want to do that for everything that is
submitted to the traces, it's important to do it only for what will really
be traced.
The __trace() function has all the knowledge for this, to the point of even
checking the lockon pointers. This commit splits the function in two, one
with the trace decision logic, and the other one for the trace production.
The first one is now usable through wrappers such as _trace_enabled() and
TRACE_ENABLED() which will indicate whether traces are going to be produced
for the current source, level, event mask, parameters and tracking.
This one is referenced in initcalls by its pointer, it makes no sense
to declare it inline. At best it causes function duplication, at worst
it doesn't build on older compilers.
The current "ADD" vs "ADDQ" is confusing because when thinking in terms
of appending at the end of a list, "ADD" naturally comes to mind, but
here it does the opposite, it inserts. Several times already it's been
incorrectly used where ADDQ was expected, the latest of which was a
fortunate accident explained in 6fa922562 ("CLEANUP: stream: explain
why we queue the stream at the head of the server list").
Let's use more explicit (but slightly longer) names now:
LIST_ADD -> LIST_INSERT
LIST_ADDQ -> LIST_APPEND
LIST_ADDED -> LIST_INLIST
LIST_DEL -> LIST_DELETE
The same is true for MT_LISTs, including their "TRY" variant.
LIST_DEL_INIT keeps its short name to encourage to use it instead of the
lazier LIST_DELETE which is often less safe.
The change is large (~674 non-comment entries) but is mechanical enough
to remain safe. No permutation was performed, so any out-of-tree code
can easily map older names to new ones.
The list doc was updated.
The trace() function is convenient to avoid calling trace() when traces
are not enabled, but there starts to be some callers which place complex
expressions in their trace calls, which results in all of them to be
evaluated before being passed as arguments to the trace() function. This
needlessly wastes precious CPU cycles.
Let's change the function for a macro, so that the arguments are now only
evaluated when the surce has traces enabled. However having a generic
macro being called "trace()" can easily cause conflicts with innocent
code so we rename it "_trace".
Just doing this has resulted in a 2.5% increase of the HTTP/1 request rate.
Sometimes it would be nice to be able to only trace abnormal events such
as protocol errors. Let's add a new "error" level below the "user" level
for this. This will allow to add TRACE_ERROR() at various error points
and only see them.
tcc supports variadic macros provided that there is always at least one
argument, like older gcc versions. Thus we need to always keep one and
define args as the remaining ones. It's not an issue at all and doesn't
change the way to use them, just the internal definitions.
Since these are used as type attributes or conditional clauses, they
are used about everywhere and should not require a dependency on
thread.h. Moving them to compiler.h along with other similar statements
like ALIGN() etc looks more logical; this way they become part of the
base API. This allowed to remove thread-t.h from ~12 files, one was
found to only require thread-t and not thread and dict.c was found to
require thread.h.
The current state of the logging is a real mess. The main problem is
that almost all files include log.h just in order to have access to
the alert/warning functions like ha_alert() etc, and don't care about
logs. But log.h also deals with real logging as well as log-format and
depends on stream.h and various other things. As such it forces a few
heavy files like stream.h to be loaded early and to hide missing
dependencies depending where it's loaded. Among the missing ones is
syslog.h which was often automatically included resulting in no less
than 3 users missing it.
Among 76 users, only 5 could be removed, and probably 70 don't need the
full set of dependencies.
A good approach would consist in splitting that file in 3 parts:
- one for error output ("errors" ?).
- one for log_format processing
- and one for actual logging.