The function returning the excess of events over the current period for a
target frequency (the overshoot) has a flaw if the inactivity period is too
long. In this case, the result may overflow. Instead to be negative, a very
high positive value is returned.
This function is used by the bandwidth limitation filter. It means after a
long inactivity period, a huge burst may be detected while it should not.
In fact, the problem arise from the moment we're past the current period. In
this case, we should not report any overshoot and just get the number of
remaining events as usual.
This patch should be backported as far as 2.7.
The function computing the excess of events of a frequency counter over the
current period for a target frequency must handle empty counters (no event
and no start date). In this case, no excess must be reported.
Because of this bug, long pauses may be experienced on the bandwith
limitation filter.
This patch must be backported to 2.7.
Right now when dealing with freq_ctr updates, we're using the process-
wide monotinic time, and accessing it is expensive since every thread
needs to update it, so this adds some contention. However we don't need
it all the time, the thread's local time is most of the time strictly
equal to the global time, and may be off by one millisecond when the
global time is switched to the next one by another thread, and in this
case we don't want to use the local time because it would risk to cause
a rotation of the counter. But that's precisely the condition we're
already relying on for the slow path!
What this patch does is to add a check for the period against the
local time prior to anything else, and immediately return after
updating the counter if still within the period, otherwise fall back
to the existing code. Given that the function starts to inflate a bit,
it was split between s very short inline part that does the hot path,
and the slower fallback that's in a cold function. It was measured that
on a 24-CPU machine it was called ~0.003% of the time.
The resulting improvement sits between 2 and 3% at 500k req/s tracking
an http_req_rate counter.
freq_ctr_overshoot_period() function may be used to retrieve the excess of
events over the current period for a givent frequency counter, ignoring the
history. It is a way compare the "current rate" (the number of events over
the current period) to a given rate and estimate the excess of events.
It may be used to safely add new events, especially at the begining of the
current period for a frequency counter with large period. This way, it is
possible to smoothly add events during the whole period without quickly
consuming all the quota at the beginning of the period and waiting for the
next one to be able to add new events.
update_freq_ctr_period() was using relaxed atomics without using barriers,
which usually works fine on x86 but not everywhere else. In addition, some
values were read without being enclosed by barriers, allowing the compiler
to possibly prefetch them a bit earlier. Finally, freq_ctr_total() was also
reading these without enough barriers. Let's make explicit use of atomic
loads and atomic stores to get rid of this situation. This required to
slightly rearrange the freq_ctr_total() loop, which could possibly slightly
improve performance under extreme contention by avoiding to reread all
fields.
A backport may be done to 2.4 if a problem is encountered, but last tests
on arm64 with LSE didn't show any issue so this can possibly stay as-is.
It remains cumbersome to preserve two versions of the freq counters and
two different internal clocks just for this. In addition, the savings
from using two different mechanisms are not that important as the only
saving is a divide that is replaced by a multiply, but now thanks to
the freq_ctr_total() unificaiton the code could also be simplified to
optimize it in case of constants.
This patch turns all non-period freq_ctr functions to static inlines
which call the period-based ones with a period of 1 second. A direct
benefit is that a single internal clock is now needed for any counter
and that they now all rely on ticks.
These 1-second counters are essentially used to report request rates
and to enforce a connection rate limitation in listeners. It was
verified that these continue to work like before.
Both structures are identical except the name of the field starting
the period and its description. Let's call them all freq_ctr and the
period's start "curr_tick" which is generic.
This is only a temporary change and fields are expected to remain
the same with no code change (verified).
This one is the easiest to implement, it just requires a call and a
divide of the result. Anti-flapping correction for low-rates was
preserved.
Now calls using a constant period will be able to use a reciprocal
multiply for the period instead of a divide.
Most of the functions designed to read a counter over a period go through
the same complex loop and only differ in the way they use the returned
values, so it was worth implementing all this into freq_ctr_total() which
returns the total number of events over a period so that the caller can
finish its operation using a divide or a remaining time calculation. As
a special case, read_freq_ctr_period() doesn't take pending events but
requires to enable an anti-flapping correction at very low frequencies.
Thus the function implements it when pend<0.
Thanks to this function it will be possible to reimplement the other ones
as inline and merge the per-second ones with the arbitrary period ones
without always adding the cost of a 64 bit divide.
In commit a1ecbca0a ("BUG/MINOR: freq_ctr/threads: make use of the last
updated global time"), for period-based counters, the millisecond part
of the global_now variable was used as the date for the new period. But
it's wrong, it only works with sub-second periods as it wraps every
second, and for other periods the counters never rotate anymore.
Let's make use of the newly introduced global_now_ms variable instead,
which contains the global monotonic time expressed in milliseconds.
This patch needs to be backported wherever the patch above is backported.
It depends on previous commit "MINOR: time: also provide a global,
monotonic global_now_ms timer".
The freq counters were using the thread's own time as the start of the
current period. The problem is that in case of contention, it was
occasionally possible to perform non-monotonic updates on the edge of
the next second, because if the upfront thread updates a counter first,
it causes a rotation, then the second thread loses the race from its
older time, and tries again, and detects a different time again, but
in the past so it only updates the counter, then a third thread on the
new date would detect a change again, thus provoking a rotation again.
The effect was triple:
- rare loss of stored values during certain transitions from one
period to the next one, causing counters to report 0
- half of the threads forced to go through the slow path every second
- difficult convergence when using many threads where the CAS can fail
a lot and we can observe N(N-1) attempts for N threads to complete
This patch fixes this issue in two ways:
- first, it now makes use og the monotonic global_now value which also
happens to be volatile and to carry the latest known time; this way
time will never jump backwards anymore and only the first thread
updates it on transition, the other ones do not need to.
- second, re-read the time in the loop after each failure, because
if the date changed in the counter, it means that one thread knows
a more recent one and we need to update. In this case if it matches
the new current second, the fast path is usable.
This patch relies on previous patch "MINOR: time: export the global_now
variable" and must be backported as far as 1.8.
The sleep time calculation in next_event_delay() was wrong because it
was dividing 999 by the number of pending events, and was directly
responsible for an observation made a long time ago that listeners
would eat all the CPU when hammered while globally rate-limited,
because the more the queued events, the least it would wait, and would
ignore the configured frequency to compute the delay.
This was addressed in various ways in listeners through the switch to
the FULL state and the wakeup of manage_global_listener_queue() that
avoids this fast loop, but the calculation made there remained wrong
nevertheless. It's even visible with this patch that the accept
frequency is much more accurate at low values now; for example,
configuring a maxconrate of 10 would give between 8.99 and 11.0 cps
before this patch and between 9.99 and 10.0 with it.
Better fix it now in case it's reused anywhere else and causes confusion
again. It maybe be backported but is probably not worth it.
This patch fixes all the leftovers from the include cleanup campaign. There
were not that many (~400 entries in ~150 files) but it was definitely worth
doing it as it revealed a few duplicates.
And also rename standard.c to tools.c. The original split between
tools.h and standard.h dates from version 1.3-dev and was mostly an
accident. This patch moves the files back to what they were expected
to be, and takes care of not changing anything else. However this
time tools.h was split between functions and types, because it contains
a small number of commonly used macros and structures (e.g. name_desc)
which in turn cause the massive list of includes of tools.h to conflict
with the callers.
They remain the ugliest files of the whole project and definitely need
to be cleaned and split apart. A few types are defined there only for
functions provided there, and some parts are even OS-specific and should
move somewhere else, such as the symbol resolution code.
types/freq_ctr.h was moved to haproxy/freq_ctr-t.h and proto/freq_ctr.h
was moved to haproxy/freq_ctr.h. Files were updated accordingly, no other
change was applied.
This one is included almost everywhere and used to rely on a few other
.h that are not needed (unistd, stdlib, standard.h). It could possibly
make sense to split it into multiple parts to distinguish operations
performed on timers and the internal time accounting, but at this point
it does not appear much important.
The hathreads.h file has quickly become a total mess because it contains
thread definitions, atomic operations and locking operations, all this for
multiple combinations of threads, debugging and architectures, and all this
done with random ordering!
This first patch extracts all the atomic ops code from hathreads.h to move
it to haproxy/atomic.h. The code there still contains several sections
based on non-thread vs thread, and GCC versions in the latter case. Each
section was arranged in the exact same order to ease finding.
The redundant HA_BARRIER() which was the same as __ha_compiler_barrier()
was dropped in favor of the latter which follows the naming convention
of all other barriers. It was only used in freq_ctr.c which was updated.
Additionally, __ha_compiler_barrier() was defined inconditionally but
used only for thread-related operations, so it was made thread-only like
HA_BARRIER() used to be. We'd still need to have two types of compiler
barriers, one for the general case (e.g. signals) and another one for
concurrency, but this was not addressed here.
Some comments were added at the beginning of each section to inform about
the use case and warn about the traps to avoid.
Some files which continue to include hathreads.h solely for atomic ops
should now be updated.
All files that were including one of the following include files have
been updated to only include haproxy/api.h or haproxy/api-t.h once instead:
- common/config.h
- common/compat.h
- common/compiler.h
- common/defaults.h
- common/initcall.h
- common/tools.h
The choice is simple: if the file only requires type definitions, it includes
api-t.h, otherwise it includes the full api.h.
In addition, in these files, explicit includes for inttypes.h and limits.h
were dropped since these are now covered by api.h and api-t.h.
No other change was performed, given that this patch is large and
affects 201 files. At least one (tools.h) was already freestanding and
didn't get the new one added.
commit 6e01286 (BUG/MAJOR: threads/freq_ctr: fix lock on freq counters)
attempted to fix the loop using volatile but that doesn't work depending
on the level of optimization, resulting in situations where the threads
could remain looping forever. Here we use memory barriers between reads
to enforce a strict ordering and the asm code produced does exactly what
the C code does and works perfectly, with a 3-digit measurement accuracy
observed during a test.
The wrong bit was set to keep the lock on freq counter update. And the read
functions were re-worked to use volatile.
Moreover, when a freq counter is updated, it is now rotated only if the current
counter is in the past (now.tv_sec > ctr->curr_sec). It is important with
threads because the current time (now) is thread-local. So, rounded to the
second, the time may vary by more or less 1 second. So a freq counter rotated by
one thread may be see 1 second in the future. In this case, it is updated but
not rotated.
When a frequency counter must be updated, we use the curr_sec/curr_tick fields
as a lock, by setting the MSB to 1 in a compare-and-swap to lock and by reseting
it to unlock. And when we need to read it, we loop until the counter is
unlocked. This way, the frequency counters are thread-safe without any external
lock. It is important to avoid increasing the size of many structures (global,
proxy, server, stick_table).
When a frontend is rate-limited to 1000 connections per second, the
effective rate measured from the client is 999/s, and connections
experience an average response time of 99.5 ms with a standard
deviation of 2 ms.
The reason for this inaccuracy is that when computing frequency
counters, we use one part of the previous value proportional to the
number of milliseconds remaining in the current second. But even the
last millisecond still uses a part of the past value, which is wrong :
since we have a 1ms resolution, the last millisecond must be dedicated
only to filling the current second.
So we slightly adjust the algorithm to use 999/1000 of the past value
during the first millisecond, and 0/1000 of the past value during the
last millisecond. We also slightly improve the computation by computing
the remaining time instead of the current time in tv_update_date(), so
that we don't have to negate the value in each frequency counter.
Now with the fix, the connection rate measured by both the client and
haproxy is a steady 1000/s, the average response time measured is 99.2ms
and more importantly, the standard deviation has been divided by 3 to
0.6 millisecond.
This fix should also be backported to 1.4 which has the same issue.
Some freq counters will have to work on periods different from 1 second.
The original freq counters rely on the period to be exactly one second.
The new ones (freq_ctr_period) let the user define the period in ticks,
and all computations are operated over that period. When reading a value,
it indicates the amount of events over that period too.
It's easier to take the counter's age into account when consulting it
than to rotate it first. It also saves some CPU cycles and avoids the
multiply for outdated counters, finally saving CPU cycles here too
when multiple operations need to read the same counter.
The freq_ctr code has also shrinked by one third consecutively to these
optimizations.
The rate-limit was applied to the smoothed value which does a special
case for frequencies below 2 events per period. This caused irregular
limitations when set to 1 session per second.
The proper way to handle this is to compute the number of remaining
events that can occur without reaching the limit. This is what has
been added. It also has the benefit that the frequency calculation
is now done once when entering event_accept(), before the accept()
loop, and not once per accept() loop anymore, thus saving a few CPU
cycles during very high loads.
With this fix, rate limits of 1/s are perfectly respected.
With this change, all frontends, backends, and servers maintain a session
counter and a timer to compute a session rate over the last second. This
value will be very useful because it varies instantly and can be used to
check thresholds. This value is also reported in the stats in a new "rate"
column.