A few loops waiting for threads to synchronize such as thread_isolate()
rightfully filter the thread masks via the threads_enabled field that
contains the list of enabled threads. However, it doesn't use an atomic
load on it. Before 2.7, the equivalent variables were marked as volatile
and were always reloaded. In 2.7 they're fields in ha_tgroup_ctx[], and
the risk that the compiler keeps them in a register inside a loop is not
null at all. In practice when ha_thread_relax() calls sched_yield() or
an x86 PAUSE instruction, it could be verified that the variable is
always reloaded. If these are avoided (e.g. architecture providing
neither solution), it's visible in asm code that the variables are not
reloaded. In this case, if a thread exists just between the moment the
two values are read, the loop could spin forever.
This patch adds the required _HA_ATOMIC_LOAD() on the relevant
threads_enabled fields. It must be backported to 2.7.
In issue #1866 an issue was reported under docker, by which a user cannot
lower the number of FD needed. It looks like a restriction imposed in this
environment, but it results in an error while it ought not have to in the
case of shrinking.
This patch adds a new function raise_rlim_nofile() that takes the desired
new setting, compares it to the current one, and only calls setrlimit() if
one of the values in the new setting is larger than the older one. As such
it will continue to emit warnings and errors in case of failure to raise
the limit but will never shrink it.
This patch is only preliminary to another one, but will have to be
backported where relevant (likely only 2.6).
Since the API is still a bit young, let's make sure nobody tries to
assign and FD to a group not strictly 1..MAX_TGROUPS as that would
indicate a bug.
Note: some of these might be relaxed to BUG_ON_HOT() in the future
When a new fd is inserted in the fdtab array, its state is initialized. The
"newstate" variable is used to compute the right state (0 by default, but
FD_ET_POSSIBLE flag is set if edge-triggered is supported for the fd).
However, this variable is never used and the fd state is always set to 0.
Now, the fd state is initialized with "newstate" variable.
This bug was introduced by commit ddedc1662 ("MEDIUM: fd: make
fd_insert/fd_delete atomically update fd.tgid"). No backport needed.
At boot the pollers are allocated for each thread and they need to
reprogram updates for all FDs they will manage. This code is not
trivial, especially when trying to respect thread groups, so we'd
rather avoid duplicating it.
Let's centralize this into fd.c with this function. It avoids closed
FDs, those whose thread mask doesn't match the requested one or whose
thread group doesn't match the requested one, and performs the update
if required under thread-group protection.
These functions need to set/reset the FD's tgid but when they're called
there may still be wakeups on other threads that discover late updates
and have to touch the tgid at the same time. As such, it is not possible
to just read/write the tgid there. It must only be done using operations
that are compatible with what other threads may be doing.
As we're using inc/dec on the refcount, it's safe to AND the area to zero
the lower part when resetting the value. However, in order to set the
value, there's no other choice but fd_claim_tgid() which will assign it
only if possible (via a CAS). This is convenient in the end because it
protects the FD's masks from being modified by late threads, so while
we hold this refcount we can safely reset the thread_mask and a few other
elements. A debug test for non-null masks was added to fd_insert() as it
must not be possible to face this situation thanks to the protection
offered by the tgid.
With the change that was started on other masks, the thread mask was
still not fully converted, sometimes being used as a global mask and
sometimes as a local one. This finishes the code modifications so that
the mask is always considered as a group-local mask. This doesn't
change anything as long as there's a single group, but is necessary
for groups 2 and above since it's used against running_mask and so on.
It's an AND so it destroys information and due to this there's a call
place where we have to perform two reads to know the previous value
then to change it. With a fetch-and-and instead, in a single operation
we can know if the bit was previously present, which is more efficient.
From now on, the FD's running_mask only refers to local thread IDs. However,
there remains a limitation, in updt_fd_polling(), we temporarily have to
check and set shared FDs against .thread_mask, which still contains global
ones. As such, nbtgroups > 1 may break (but this is not yet supported without
special build options).
From now on, the FD's update_mask only refers to local thread IDs. However,
there remains a limitation, in updt_fd_polling(), we temporarily have to
check and set shared FDs against .thread_mask, which still contains global
ones. As such, nbtgroups > 1 may break (but this is not yet supported without
special build options).
The running mask is only valid if the tgid is the expected one. This
function takes a reference on the tgid before reading the running mask,
so that both are checked at once. It returns either the mask or zero if
the tgid differs, thus providing a simple way for a caller to check if
it still holds the FD.
The FD's tgid is refcounted and must be atomically manipulated. Function
fd_grab_tgid() will increase the refcount but only if the tgid matches the
one in argument (likely the current one). fd_claim_tgid() will be used to
self-assign the tgid after waiting for its refcount to reach zero.
fd_drop_tgid() will be used to drop a temporarily held tgid. All of these
are needed to prevent an FD from being reassigned to another group, either
when inspecting/modifying the running_mask, or when checking for updates,
in order to be certain that the mask being seen corresponds to the desired
group. Note that once at least one bit is set in the running mask of an
active FD, it cannot be closed, thus not migrated, thus the reference does
not need to be held long.
The file descriptors will need to know the thread group ID in addition
to the mask. This extends fd_insert() to take the tgid, and will store
it into the FD.
In the FD, the tgid is stored as a combination of tgid on the lower 16
bits and a refcount on the higher 16 bits. This allows to know when it's
really possible to trust the tgid and the running mask. If a refcount is
higher than 1 it indeed indicates another thread else might be in the
process of updating these values.
Since a closed FD must necessarily have a zero refcount, a test was
added to fd_insert() to make sure that it is the case.
It's a bit ugly to see that half of the callers of fd_insert() have to
apply all_threads_mask themselves to the bit field they're passing,
because usually it comes from a listener that may have other bits set.
Let's make the function apply the mask itself.
The update-list needs to be per-group because its inspection is based
on a mask and we need to be certain when scanning it if a mask is for
the same thread or another one. Once per-group there's no doubt about
it, even if the FD's polling changes, the entry remains valid. It will
be needed to check the tgid though.
Note that a soft-stop or pause/resume might not necessarily work here
with tgroups>1, because the operation might be delivered to a thread
that doesn't belong to the group and whoe update mask will not reflect
one that is interesting here. We can't do better at this stage.
Since commit d2494e048 ("BUG/MEDIUM: peers/config: properly set the
thread mask") there must not remain any single case of a receiver that
is bound nowhere, so there's no need anymore for thread_mask().
We're adding a test in fd_insert() to make sure this doesn't happen by
accident though, but the function was removed and its rare uses were
replaced with the original value of the bind_thread msak.
They were initially made to deal with both the cache and the update list
but there's no cache anymore and keeping them for the update list adds a
lot of obfuscation that is really not desired. Let's get rid of them now.
Their purpose was simply to get a pointer to fdtab[fd].update.{,next,prev}
in order to perform atomic tests and modifications. The offset passed in
argument to the functions (fd_add_to_fd_list() and fd_rm_from_fd_list())
was the offset of the ->update field in fdtab, and as it's not used anymore
it was removed. This also removes a number of casts, though those used by
the atomic ops have to remain since only scalars are supported.
This patch adds two BUG_ON on fd_insert() into the fdtab checking
if the fd has been correctly re-initialized into the fdtab
before a new insert.
It will raise a BUG if we try to insert the same fd multiple times
without an intermediate fd_delete().
First one checks that the owner for this fd in fdtab was reset to NULL.
Second one checks that the state flags for this fd in fdtab was reset
to 0.
This patch could be backported on version >= 2.4
Every single place where sleeping_thread_mask was still used was to test
or set a single thread. We can now add a per-thread flag to indicate a
thread is sleeping, and remove this shared mask.
The wake_thread() function now always performs an atomic fetch-and-or
instead of a first load then an atomic OR. That's cleaner and more
reliable.
This is not easy to test, as broadcast FD events are rare. The good
way to test for this is to run a very low rate-limited frontend with
a listener that listens to the fewest possible threads (2), and to
send it only 1 connection at a time. The listener will periodically
pause and the wakeup task will sometimes wake up on a random thread
and will call wake_thread():
frontend test
bind :8888 maxconn 10 thread 1-2
rate-limit sessions 5
Alternately, disabling/enabling a frontend in loops via the CLI also
broadcasts such events, but they're more difficult to observe since
this is causing connection failures.
Right now when an inter-thread wakeup happens, we preliminary check if the
thread was asleep, and if so we wake the poller up and remove its bit from
the sleeping mask. That's not very clean since the sleeping mask cannot be
entirely trusted since a thread that's about to wake up will already have
its sleeping bit removed.
This patch adds a new per-thread flag (TH_FL_NOTIFIED) to remember that a
thread was notified to wake up. It's cleared before checking the task lists
last, so that new wakeups can be considered again (since wake_thread() is
only used to notify about task wakeups and FD polling changes). This way
we do not need to modify a remote thread's sleeping mask anymore. As such
wake_thread() now only tests and sets the TH_FL_NOTIFIED flag but doesn't
clear sleeping anymore.
When returning from the polling syscall, all pollers have a certain
dance to follow, made of wall clock updates, thread harmless updates,
idle time management and sleeping mask updates. Let's have a centralized
function to deal with all of this boring stuff: fd_leaving_poll(), and
make all the pollers use it.
Almost every call place of wake_thread() checks for sleeping threads and
clears the sleeping mask itself, while the function is solely used for
there. Let's move the check and the clearing of the bit inside the function
itself. Note that updt_fd_polling() still performs the check because its
rules are a bit different.
Instead of seeing each location manipulate the fcntl() themselves and
often forget to check previous flags, let's centralize the functions to
do this. It also allows to drop fcntl.h from most call places and will
ease the adoption of different OS-specific mechanisms if needed. Note
that the fd_set_nonblock() function purposely doesn't check the previous
flags as it's meant to be used on new FDs only.
It's among the cases that would provoke memory corruption, let's add
some tests against negative FDs and those larger than the table. This
must never ever happen and would currently result in silent corruption
or a crash. Better have a noticeable one exhibiting the call chain if
that were to happen.
It's not needed to inline it at all (one call per loop) and it introduces
dependencies, let's move it to fd.c.
Removing the few remaining includes that came with it further reduced
by ~0.2% the LoC and the build time is now below 6s.
"f(void)" is the correct and preferred form for a function taking no
argument, while some places use the older "f()". These were reported
by clang's -Wmissing-prototypes, for example:
src/cpuset.c:111:5: warning: no previous prototype for function 'ha_cpuset_size' [-Wmissing-prototypes]
int ha_cpuset_size()
include/haproxy/cpuset.h:42:5: note: this declaration is not a prototype; add 'void' to make it a prototype for a zero-parameter function
int ha_cpuset_size();
^
void
This aggregate patch fixes this for the following functions:
ha_backtrace_to_stderr(), ha_cpuset_size(), ha_panic(), ha_random64(),
ha_thread_dump_all_to_trash(), get_exec_path(), check_config_validity(),
mworker_child_nb(), mworker_cli_proxy_(create|stop)(),
mworker_cleantasks(), mworker_cleanlisteners(), mworker_ext_launch_all(),
mworker_reload(), mworker_(env|proc_list)_to_(proc_list|env)(),
mworker_(un|)block_signals(), proxy_adjust_all_maxconn(),
proxy_destroy_all_defaults(), get_tainted(),
pool_total_(allocated|used)(), thread_isolate(_full|)(),
thread(_sync|)_release(), thread_harmless_till_end(),
thread_cpu_mask_forced(), dequeue_all_listeners(), next_timer_expiry(),
wake_expired_tasks(), process_runnable_tasks(), init_acl(),
init_buffer(), (de|)init_log_buffers(), (de|)init_pollers(),
fork_poller(), pool_destroy_all(), pool_evict_from_local_caches(),
pool_total_failures(), dump_pools_to_trash(), cfg_run_diagnostics(),
tv_init_(process|thread)_date(), __signal_process_queue(),
deinit_signals(), haproxy_unblock_signals()
This function already performs a number of checks prior to calling the
IOCB, and detects the change of thread (FD migration). Half of the
controls are still in each poller, and these pollers also maintain
activity counters for various cases.
Note that the unreliable test on thread_mask was removed so that only
the one performed by fd_set_running() is now used, since this one is
reliable.
Let's centralize all that fd-specific logic into the function and make
it return a status among:
FD_UPDT_DONE, // update done, nothing else to be done
FD_UPDT_DEAD, // FD was already dead, ignore it
FD_UPDT_CLOSED, // FD was closed
FD_UPDT_MIGRATED, // FD was migrated, ignore it now
Some pollers already used to call it last and have nothing to do after
it, regardless of the result. epoll has to delete the FD in case a
migration is detected. Overall this removes more code than it adds.
Since 2.4 with commit f50906519 ("MEDIUM: fd: merge fdtab[].ev and state
for FD_EV_* and FD_POLL_* into state") we can merge all flag updates at
once in fd_update_events(). Previously this was performed in 1 to 3 steps,
setting the polling state, then setting READY_R if in/err/hup, and setting
READY_W if out/err. But since the commit above, all flags are stored
together in the same structure field that is being updated with the new
flags, thus we can simply update the flags altogether and avoid multiple
atomic operations. This even removes the need for atomic ops for FDs that
are not shared.
There's a theoretical race (that we failed to trigger) in function
fd_update_events(), which could strike on idle connections. The "locked"
variable will most often be 0 as the FD is bound to the current thread
only. Another thread could take it over once "locked" is set, change
the thread and running masks. Then the first thread updates the FD's
state non-atomically and possibly overwrites what the other thread was
preparing. It still looks like the FD's state will ultimately converge
though.
The solution against this is to set the running flag earlier so that a
takeover() attempt cannot succeed, or that the fd_set_running() attempt
fails, indicating that nothing needs to be done on this FD.
While this is sufficient for a simple fix to be backported, it leaves
the FD actively polled in the calling thread, this will trigger a second
wakeup which will notice the absence of tid_bit in the thread_mask,
getting rid of it.
A more elaborate solution would consist in calling fd_set_running()
directly from the pollers before calling fd_update_events(), getting
rid of the thread_mask test and letting the caller eliminate that FD
from its list if needed.
Interestingly, this code also proves to be suboptimal in that it sets
the FD state twice instead of calculating the new state at once and
always using a CAS to set it. This is a leftover of a simplification
that went into 2.4 and which should be explored in a future patch.
This may be backported as far as 2.2.
With latest commit f50906519 ("MEDIUM: fd: merge fdtab[].ev and state
for FD_EV_* and FD_POLL_* into state") one occurrence of a pair of
chars was missed in fd_stop_both(), resulting in the operation to
fail if the upper flags were set. Interestingly it managed to fail
2 tests in all setups in the CI while all used to work fine on my
local machines. Probably that the reason is that the chars had enough
room above them for the CAS to fail then refill "old" overwriting the
upper parts of the stack, and that thanks to this the subsequent tests
worked. With ASAN being used on lots of tests, it very likely caught
it but used to only report failed tests with no more info.
No backport is needed, as this was never released nor backported.
This patch replaces roughly all occurrences of an HA_ATOMIC_ADD(&foo, 1)
or HA_ATOMIC_SUB(&foo, 1) with the equivalent HA_ATOMIC_INC(&foo) and
HA_ATOMIC_DEC(&foo) respectively. These are 507 changes over 45 files.
Currently our atomic ops return a value but it's never known whether
the fetch is done before or after the operation, which causes some
confusion each time the value is desired. Let's create an explicit
variant of these operations suffixed with _FETCH to explicitly mention
that the fetch occurs after the operation, and make use of it at the
few call places.
No need to keep this flag apart any more, let's merge it into the global
state. The CLI's output state was extended to 6 digits and the linger/cloned
flags moved inside the parenthesis.
For a long time we've had fdtab[].ev and fdtab[].state which contain two
arbitrary sets of information, one is mostly the configuration plus some
shutdown reports and the other one is the latest polling status report
which also contains some sticky error and shutdown reports.
These ones used to be stored into distinct chars, complicating certain
operations and not even allowing to clearly see concurrent accesses (e.g.
fd_delete_orphan() would set the state to zero while fd_insert() would
only set the event to zero).
This patch creates a single uint with the two sets in it, still delimited
at the byte level for better readability. The original FD_EV_* values
remained at the lowest bit levels as they are also known by their bit
value. The next step will consist in merging the remaining bits into it.
The whole bits are now cleared both in fd_insert() and _fd_delete_orphan()
because after a complete check, it is certain that in both cases these
functions are the only ones touching these areas. Indeed, for
_fd_delete_orphan(), the thread_mask has already been zeroed before a
poller can call fd_update_event() which would touch the state, so it
is certain that _fd_delete_orphan() is alone. Regarding fd_insert(),
only one thread will get an FD at any moment, and it as this FD has
already been released by _fd_delete_orphan() by definition it is certain
that previous users have definitely stopped touching it.
Strictly speaking there's no need for clearing the state again in
fd_insert() but it's cheap and will remove some doubts during some
troubleshooting sessions.
In preparation of merging FD_POLL* and FD_EV*, this only changes the
value of FD_POLL_* to use bits 8-15 (the second byte). The size of the
field has been temporarily extended to 32 bits already, as well as
the temporary variables that carry the new composite value inside
fd_update_events(). The resulting fdtab entry becomes temporarily
unaligned. All places making access to .ev or FD_POLL_* were carefully
inspected to make sure they were safe regarding this change. Only one
temporary update was needed for the "show fd" code. The code was only
slightly inflated at this step.
The former was not used and the second was used only as a positive mask
of the flags to keep instead of having the flags that are updated. Both
were removed in favor of a new FD_POLL_UPDT_MASK that only mentions the
updated flags. This will ease merging of state and ev later.
Christopher discovered an issue mostly affecting 2.2 and to a less extent
2.3 and above, which is that it's possible to deadlock a soft-stop when
several threads are using a same listener:
thread1 thread2
unbind_listener() fd_set_running()
lock(listener) listener_accept()
fd_delete() lock(listener)
while (running_mask); -----> deadlock
unlock(listener)
This simple case disappeared from 2.3 due to the removal of some locked
operations at the end of listener_accept() on the regular path, but the
architectural problem is still here and caused by a lock inversion built
around the loop on running_mask in fd_clr_running_excl(), because there
are situations where the caller of fd_delete() may hold a lock that is
preventing other threads from dropping their bit in running_mask.
The real need here is to make sure the last user deletes the FD. We have
all we need to know the last one, it's the one calling fd_clr_running()
last, or entering fd_delete() last, both of which can be summed up as
the last one calling fd_clr_running() if fd_delete() calls fd_clr_running()
at the end. And we can prevent new threads from appearing in running_mask
by removing their bits in thread_mask.
So what this patch does is that it sets the running_mask for the thread
in fd_delete(), clears the thread_mask, thus marking the FD as orphaned,
then clears the running mask again, and completes the deletion if it was
the last one. If it was not, another thread will pass through fd_clr_running
and will complete the deletion of the FD.
The bug is easily reproducible in 2.2 under high connection rates during
soft close. When the old process stops its listener, occasionally two
threads will deadlock and the old process will then be killed by the
watchdog. It's strongly believed that similar situations do exist in 2.3
and 2.4 (e.g. if the removal attempt happens during resume_listener()
called from listener_accept()) but if so, they should be much harder to
trigger.
This should be backported to 2.2 as the issue appeared with the FD
migration. It requires previous patches "fd: make fd_clr_running() return
the remaining running mask" and "MINOR: fd: remove the unneeded running
bit from fd_insert()".
Notes for backport: in 2.2, the fd_dodelete() function requires an extra
argument "do_close" indicating whether we want to remove and close the FD
(fd_delete) or just delete it (fd_remove). While this information is not
conveyed along the chain, we know that late calls always imply do_close=1
become do_close=0 exclusively results from fd_remove() which is only used
by the config parser and the master, both of which are single-threaded,
hence are always the last ones in the running_mask. Thus it is safe to
assume that a postponed FD deletion always implies do_close=1.
Thanks to Olivier for his help in designing this optimal solution.
There's no point taking the running bit in fd_insert() since by
definition there will never be more than one thread inserting the FD,
and that fd_insert() may only be done after the fd was allocated by
the system, indicating the end of use by any other thread.
This will need to be backported to 2.2 to fix an issue.
We'll need to know that a thread is the last one to use an fd, so let's
make fd_clr_running() return the remaining bits after removal. Note that
in practice we're only interested in knowing if it's zero but the compiler
doesn't make use of the clags after the AND and emits a CMPXCHG anyway :-/
This will need to be backported to 2.2 to fix an issue.
In fd_set_running_excl() we don't reset the old mask in the CAS loop,
so if we fail on the first round, we'll forcefully take the FD on the
next one.
In practice it's used bu fd_insert() and fd_delete() only, none of which
is supposed to be passed an FD which is still in use since in practice,
given that for now only listeners may be enabled on multiple threads at
once.
This can be backported to 2.2 but shouldn't result in fixing any user
visible bug for now.
conn_fd_handler() is 100% specific to socket code. It's about time
it moves to sock.c which manipulates socket FDs. With it comes
conn_fd_check() which tests for the socket's readiness. The ugly
connection status check at the end of the iocb was moved to an inlined
function in connection.h so that if we need it for other socket layers
it's not too hard to reuse.
The code was really only moved and not changed at all.