Contrary to 64-bits libCs where size_t type size is 8, on systems with 32-bits
size of size_t is 4 (the size of a long) which does not equal to size of uint64_t type.
This was revealed by such GCC warnings on 32bits systems:
src/flt_spoe.c:2259:40: warning: passing argument 4 of spoe_decode_buffer from
incompatible pointer type
if (spoe_decode_buffer(&p, end, &str, &sz) == -1)
^
As the already existing code using spoe_decode_buffer() already use such pointers to
uint64_t, in place of pointer to size_t ;), most of this code is in contrib directory,
this simple patch modifies the prototype of spoe_decode_buffer() so that to use a
pointer to uint64_t in place of a pointer to size_t, uint64_t type being the type
finally required for decode_varint().
The two macros EXPECT_LF_HERE and EAT_AND_JUMP_OR_RETURN were exported
for use outside the HTTP parser. They now take extra arguments to avoid
implicit pointers and jump labels. These will be used to reimplement a
minimalist HTTP/1 parser in the H1->H2 gateway.
Edns extensions may be used to negotiate some settings between a DNS
client and a server.
For now we only use it to announce the maximum response payload size accpeted
by HAProxy.
This size can be set through a configuration parameter in the resolvers
section. If not set, it defaults to 512 bytes.
Commit 48a8332a introduce SSL_CTX_get0_privatekey in openssl-compat.h but
SSL_CTX_get0_privatekey access internal structure and can't be a candidate
to openssl-compat.h. The workaround with openssl < 1.0.2 is to use SSL_new
then SSL_get_privatekey.
Make it so for each server, instead of specifying a hostname, one can use
a SRV label.
When doing so, haproxy will first resolve the SRV label, then use the
resulting hostnames, as well as port and weight (priority is ignored right
now), to each server using the SRV label.
It is resolved periodically, and any server disappearing from the SRV records
will be removed, and any server appearing will be added, assuming there're
free servers in haproxy.
As DNS servers may not return all IPs in one answer, we want to cache the
previous entries. Those entries are removed when considered obsolete, which
happens when the IP hasn't been returned by the DNS server for a time
defined in the "hold obsolete" parameter of the resolver section. The default
is 30s.
Since the commit f6b37c67 ["BUG/MEDIUM: ssl: in bind line, ssl-options after
'crt' are ignored."], the certificates generation is broken.
To generate a certificate, we retrieved the private key of the default
certificate using the SSL object. But since the commit f6b37c67, the SSL object
is created with a dummy certificate (initial_ctx).
So to fix the bug, we use directly the default certificate in the bind_conf
structure. We use SSL_CTX_get0_privatekey function to do so. Because this
function does not exist for OpenSSL < 1.0.2 and for LibreSSL, it has been added
in openssl-compat.h with the right #ifdef.
If a server presents an unexpected certificate to haproxy, that is, a
certificate that doesn't match the expected name as configured in
verifyhost or as requested using SNI, we want to store that precious
information. Fortunately we have access to the connection in the
verification callback so it's possible to store an error code there.
For this purpose we use CO_ER_SSL_MISMATCH_SNI (for when the cert name
didn't match the one requested using SNI) and CO_ER_SSL_MISMATCH for
when it doesn't match verifyhost.
This patch fixes the commit 2ab8867 ("MINOR: ssl: compare server certificate
names to the SNI on outgoing connections")
When we check the certificate sent by a server, in the verify callback, we get
the SNI from the session (SSL_SESSION object). In OpenSSL, tlsext_hostname value
for this session is copied from the ssl connection (SSL object). But the copy is
done only if the "server_name" extension is found in the server hello
message. This means the server has found a certificate matching the client's
SNI.
When the server returns a default certificate not matching the client's SNI, it
doesn't set any "server_name" extension in the server hello message. So no SNI
is set on the SSL session and SSL_SESSION_get0_hostname always returns NULL.
To fix the problemn, we get the SNI directly from the SSL connection. It is
always defined with the value set by the client.
If the commit 2ab8867 is backported in 1.7 and/or 1.6, this one must be
backported too.
Note: it's worth mentionning that by making the SNI check work, we
introduce another problem by which failed SNI checks can cause
long connection retries on the server, and in certain cases the
SNI value used comes from the client. So this patch series must
not be backported until this issue is resolved.
task_init() is called exclusively by task_new() which is the only way
to create a task. Most callers set t->expire to TICK_ETERNITY, some set
it to another value and a few like Lua don't set it at all as they don't
need a timeout, causing random values to be used in case the task gets
queued.
Let's always set t->expire to TICK_ETERNITY in task_init() so that all
tasks are now initialized in a clean state.
This patch can be backported as it will definitely make the code more
robust (at least the Lua code, possibly other places).
Functions hdr_idx_first_idx() and hdr_idx_first_pos() were missing a
"const" qualifier on their arguments which are not modified, causing
a warning in some experimental H2 code.
When support for passing SNI to the server was added in 1.6-dev3, there
was no way to validate that the certificate presented by the server would
really match the name requested in the SNI, which is quite a problem as
it allows other (valid) certificates to be presented instead (when hitting
the wrong server or due to a man in the middle).
This patch adds the missing check against the value passed in the SNI.
The "verifyhost" value keeps precedence if set. If no SNI is used and
no verifyhost directive is specified, then the certificate name is not
checked (this is unchanged).
In order to extract the SNI value, it was necessary to make use of
SSL_SESSION_get0_hostname(), which appeared in openssl 1.1.0. This is
a trivial function which returns the value of s->tlsext_hostname, so
it was provided in the compat layer for older versions. After some
refinements from Emmanuel, it now builds with openssl 1.0.2, openssl
1.1.0 and boringssl. A test file was provided to ease testing all cases.
After some careful observation period it may make sense to backport
this to 1.7 and 1.6 as some users rightfully consider this limitation
as a bug.
Cc: Emmanuel Hocdet <manu@gandi.net>
Signed-off-by: Willy Tarreau <w@1wt.eu>
The bug: Maps/ACLs using the same file/id can mistakenly inherit
their flags from the last declared one.
i.e.
$ cat haproxy.conf
listen mylistener
mode http
bind 0.0.0.0:8080
acl myacl1 url -i -f mine.acl
acl myacl2 url -f mine.acl
acl myacl3 url -i -f mine.acl
redirect location / if myacl2
$ cat mine.acl
foobar
Shows an unexpected redirect for request 'GET /FOObAR HTTP/1.0\n\n'.
This fix should be backported on mainline branches v1.6 and v1.7.
In order to authorize call of appctx_wakeup on running task:
- from within the task handler itself.
- in futur, from another thread.
The appctx is considered paused as default after running the handler.
The handler should explicitly call appctx_wakeup to be re-called.
When the appctx_free is called on a running handler. The real
free is postponed at the end of the handler process.
This will be used to retrieve the ALPN negociated over SSL (or possibly
via the proxy protocol later). It's likely that this information should
be stored in the connection itself, but it requires adding an extra
pointer and an extra integer. Thus better rely on the transport layer
to pass this info for now.
In order to authorize call of task_wakeup on running task:
- from within the task handler itself.
- in futur, from another thread.
The lookups on runqueue and waitqueue are re-worked
to prepare multithread stuff.
If task_wakeup is called on a running task, the woken
message flags are savec in the 'pending_state' attribute of
the state. The real wakeup is postponed at the end of the handler
process and the woken messages are copied from pending_state
to the state attribute of the task.
It's important to note that this change will cause a very minor
(though measurable) performance loss but it is necessary to make
forward progress on a multi-threaded scheduler. Most users won't
ever notice.
Under certain circumstances, if a stream's task is first woken up
(eg: I/O event) then notified of the availability of a buffer it
was waiting for via stream_res_wakeup(), this second event is lost
because the flags are only merged after seeing that the task is
running. At the moment it seems that the TASK_WOKEN_RES event is
not explicitly checked for, but better fix this before getting
reports of lost events.
This fix removes this "task running" test which is properly
performed in task_wakeup(), while the flags are properly merged.
It must be backported to 1.7 and 1.6.
Very early in the connection rework process leading to v1.5-dev12, commit
56a77e5 ("MEDIUM: connection: complete the polling cleanups") marked the
end of use for this flag which since was never set anymore, but it continues
to be tested. Let's kill it now.
This patch is a major upgrade of the internal run-time DNS resolver in
HAProxy and it brings the following 2 main changes:
1. DNS resolution task
Up to now, DNS resolution was triggered by the health check task.
From now, DNS resolution task is autonomous. It is started by HAProxy
right after the scheduler is available and it is woken either when a
network IO occurs for one of its nameserver or when a timeout is
matched.
From now, this means we can enable DNS resolution for a server without
enabling health checking.
2. Introduction of a dns_requester structure
Up to now, DNS resolution was purposely made for resolving server
hostnames.
The idea, is to ensure that any HAProxy internal object should be able
to trigger a DNS resolution. For this purpose, 2 things has to be done:
- clean up the DNS code from the server structure (this was already
quite clean actually) and clean up the server's callbacks from
manipulating too much DNS resolution
- create an agnostic structure which allows linking a DNS resolution
and a requester of any type (using obj_type enum)
3. Manage requesters through queues
Up to now, there was an uniq relationship between a resolution and it's
owner (aka the requester now). It's a shame, because in some cases,
multiple objects may share the same hostname and may benefit from a
resolution being performed by a third party.
This patch introduces the notion of queues, which are basically lists of
either currently running resolution or waiting ones.
The resolutions are now available as a pool, which belongs to the resolvers.
The pool has has a default size of 64 resolutions per resolvers and is
allocated at configuration parsing.
Introduction of a DNS response LRU cache in HAProxy.
When a positive response is received from a DNS server, HAProxy stores
it in the struct resolution and then also populates a LRU cache with the
response.
For now, the key in the cache is a XXHASH64 of the hostname in the
domain name format concatened to the query type in string format.
Prior this patch, the DNS responses were stored in a pre-allocated
memory area (allocated at HAProxy's startup).
The problem is that this memory is erased for each new DNS responses
received and processed.
This patch removes the global memory allocation (which was not thread
safe by the way) and introduces a storage of the dns response in the
struct
resolution.
The memory in the struct resolution is also reserved at start up and is
thread safe, since each resolution structure will have its own memory
area.
For now, we simply store the response and use it atomically per
response per server.
In the process of breaking links between dns_* functions and other
structures (mainly server and a bit of resolution), the function
dns_get_ip_from_response needs to be reworked: it now can call
"callback" functions based on resolution's owner type to allow modifying
the way the response is processed.
For now, main purpose of the callback function is to check that an IP
address is not already affected to an element of the same type.
For now, only server type has a callback.
This patch introduces a some re-organisation around the DNS code in
HAProxy.
1. make the dns_* functions less dependent on 'struct server' and 'struct resolution'.
With this in mind, the following changes were performed:
- 'struct dns_options' has been removed from 'struct resolution' (well,
we might need it back at some point later, we'll see)
==> we'll use the 'struct dns_options' from the owner of the resolution
- dns_get_ip_from_response(): takes a 'struct dns_options' instead of
'struct resolution'
==> so the caller can pass its own dns options to get the most
appropriate IP from the response
- dns_process_resolve(): struct dns_option is deduced from new
resolution->requester_type parameter
2. add hostname_dn and hostname_dn_len into struct server
In order to avoid recomputing a server's hostname into its domain name
format (and use a trash buffer to store the result), it is safer to
compute it once at configuration parsing and to store it into the struct
server.
In the mean time, the struct resolution linked to the server doesn't
need anymore to store the hostname in domain name format. A simple
pointer to the server one will make the trick.
The function srv_alloc_dns_resolution() properly manages everything for
us: memory allocation, pointer updates, etc...
3. move resolvers pointer into struct server
This patch makes the pointer to struct dns_resolvers from struct
dns_resolution obsolete.
Purpose is to make the resolution as "neutral" as possible and since the
requester is already linked to the resolvers, then we don't need this
information anymore in the resolution itself.
A couple of new functions to allocate and free memory for a DNS
resolution structure. Main purpose is to to make the code related to DNS
more consistent.
They allocate or free memory for the structure itself. Later, if needed,
they should also allocate / free the buffers, etc, used by this structure.
They don't set/unset any parameters, this is the role of the caller.
This patch also implement calls to these function eveywhere it is
required.
This patch adds the support of a maximum of 32 engines
in async mode.
Some tests have been done using 2 engines simultaneously.
This patch also removes specific 'async' attribute from the connection
structure. All the code relies only on Openssl functions.
ssl-mode-async is a global configuration parameter which enables
asynchronous processing in OPENSSL for all SSL connections haproxy
handles. With SSL_MODE_ASYNC set, TLS I/O operations may indicate a
retry with SSL_ERROR_WANT_ASYNC with this mode set if an asynchronous
capable engine is used to perform cryptographic operations. Currently
async mode only supports one async-capable engine.
This is the latest version of the patchset which includes Emeric's
updates :
- improved async fd cleaning when openssl reports an fd to delete
- prevent conn_fd_handler from calling SSL_{read,write,handshake} until
the async fd is ready, as these operations are very slow and waste CPU
- postpone of SSL_free to ensure the async operation can complete and
does not cause a dereference a released SSL.
- proper removal of async fd from the fdtab and removal of the unused async
flag.
This patch adds the global 'ssl-engine' keyword. First arg is an engine
identifier followed by a list of default_algorithms the engine will
operate.
If the openssl version is too old, an error is reported when the option
is used.
These encoding functions does general stuff and can be used in
other context than spoe. This patch moves the function spoe_encode_varint
and spoe_decode_varint from spoe to common. It also remove the prefix spoe.
These functions will be used for encoding values in new binary sample fetch.
When we include the header proto/spoe.h in other files in the same
project, the compilator claim that the symbol have multiple definitions:
src/flt_spoe.o: In function `spoe_encode_varint':
~/git/haproxy/include/proto/spoe.h:45: multiple definition of `spoe_encode_varint'
src/proto_http.o:~/git/haproxy/include/proto/spoe.h:45: first defined here
When running with multiple process, if some proxies are just assigned
to some processes, the other processes will just close the file descriptors
for the listening sockets. However, we may still have to provide those
sockets when reloading, so instead we just try hard to pretend those proxies
are dead, while keeping the sockets opened.
A new global option, no-reused-socket", has been added, to restore the old
behavior of closing the sockets not bound to this process.
Add the "-x" flag, that takes a path to a unix socket as an argument. If
used, haproxy will connect to the socket, and asks to get all the
listening sockets from the old process. Any failure is fatal.
This is needed to get seamless reloads on linux.
"sample-fetch which captures the cipherlist" patch introduce #define
do deal with trace functions only available in openssl > 1.0.2.
Add this #define to libressl and boringssl environment.
Thanks to Piotr Kubaj for postponing and testing with libressl.
SSL_CTX_set_ecdh_auto is declared (when present) with #define. A simple #ifdef
avoid to list all cases of ssllibs. It's a placebo in new ssllibs. It's ok with
openssl 1.0.1, 1.0.2, 1.1.0, libressl and boringssl.
Thanks to Piotr Kubaj for postponing and testing with libressl.
This adds 3 new commands to the cli :
enable dynamic-cookie backend <backend> that enables dynamic cookies for a
specified backend
disable dynamic-cookie backend <backend> that disables dynamic cookies for a
specified backend
set dynamic-cookie-key backend <backend> that lets one change the dynamic
cookie secret key, for a specified backend.
This adds a new "dynamic" keyword for the cookie option. If set, a cookie
will be generated for each server (assuming one isn't already provided on
the "server" line), from the IP of the server, the TCP port, and a secret
key provided. To provide the secret key, a new keyword as been added,
"dynamic-cookie-key", for backends.
Example :
backend bk_web
balance roundrobin
dynamic-cookie-key "bla"
cookie WEBSRV insert dynamic
server s1 127.0.0.1:80 check
server s2 192.168.56.1:80 check
This is a first step to be able to dynamically add and remove servers,
without modifying the configuration file, and still have all the load
balancers redirect the traffic to the right server.
Provide a way to generate session cookies, based on the IP address of the
server, the TCP port, and a secret key provided.
This commit removes second argument(msgnum) from http_error_message and
changes http_error_message to use s->txn->status/http_get_status_idx for
mapping status code from 200..504 to HTTP_ERR_200..HTTP_ERR_504(enum).
This is needed for http-request tarpit deny_status commit.
This is like the nbsrv() sample fetch function except that it works as
a converter so it can count the number of available servers of a backend
name retrieved using a sample fetch or an environment variable.
Signed-off-by: Nenad Merdanovic <nmerdan@haproxy.com>
The function dns_init_resolvers() is used to initialize socket used to
send DNS queries.
This patch gives the function the ability to close a socket before
re-opening it.
[wt: this needs to be backported to 1.7 for next fix]
A recent patch to support BoringSSL caused this warning to appear on
OpenSSL 1.1.0 :
src/ssl_sock.c:3062:4: warning: statement with no effect [-Wunused-value]
It's caused by SSL_CTX_set_ecdh_auto() which is now only a macro testing
that the last argument is zero, and the result is not used here. Let's
just kill it for both versions.
Tested with 0.9.8, 1.0.0, 1.0.1, 1.0.2, 1.1.0. This fix may be backported
to 1.7 if the boringssl fix is as well.
This function was deprecated in 1.1.0 causing this warning :
src/ssl_sock.c:551:3: warning: 'RAND_pseudo_bytes' is deprecated (declared at /opt/openssl-1.1.0/include/openssl/rand.h:47) [-Wdeprecated-declarations]
The man suggests to use RAND_bytes() instead. While the return codes
differ, it turns out that the function was already misused and was
relying on RAND_bytes() return code instead.
The patch was tested on 0.9.8, 1.0.0, 1.0.1, 1.0.2 and 1.1.0.
This fix must be backported to 1.7 and the return code check should
be backported to earlier versions if relevant.
In 1.0.0, this function was replaced with ERR_remove_thread_state().
As of openssl 1.1.0, both are now deprecated and do nothing at all.
Thus we simply make this call do nothing in 1.1.0 to silence the
warning.
The change was tested with 0.9.8, 1.0.0, 1.0.1, 1.0.2 and 1.1.0.
This kills the following warning on 1.1.0 :
src/ssl_sock.c:7266:9: warning: 'ERR_remove_state' is deprecated (declared at /dev/shm/openssl-1.1.0b/include/openssl/err.h:247) [-Wdeprecated-declarations]
This fix should be backported to 1.7.
After the code was ported to support 1.1.0, this one broke on 1.0.0 :
src/shctx.c:406: undefined reference to `SSL_SESSION_set1_id_context'
The function was indeed introduced only in 1.0.1. The build was validated
with 0.9.8, 1.0.0, 1.0.1, 1.0.2 and 1.1.0.
This fix must be backported to 1.7.
Limitations:
. disable force-ssl/tls (need more work)
should be set earlier with SSL_CTX_new (SSL_CTX_set_ssl_version is removed)
. disable generate-certificates (need more work)
introduce SSL_NO_GENERATE_CERTIFICATES to disable generate-certificates.
Cleanup some #ifdef and type related to boringssl env.
crt-list is extend to support ssl configuration. You can now have
such line in crt-list <file>:
mycert.pem [npn h2,http/1.1]
Support include "npn", "alpn", "verify", "ca_file", "crl_file",
"ecdhe", "ciphers" configuration and ssl options.
"crt-base" is also supported to fetch certificates.
The older 'rsprep' directive allows modification of the status reason.
Extend 'http-response set-status' to take an optional string of the new
status reason.
http-response set-status 418 reason "I'm a coffeepot"
Matching updates in Lua code:
- AppletHTTP.set_status
- HTTP.res_set_status
Signed-off-by: Robin H. Johnson <robbat2@gentoo.org>
tlskeys_finalize_config() was the only reason for haproxy.c to still
require ifdef and includes for ssl_sock. This one fits perfectly well
in the late initializers so it was changed to be registered with
hap_register_post_check().
There are still a lot of #ifdef USE_OPENSSL in the code (still 43
occurences) because we never know if we can directly access ssl_sock
or not. This patch attacks the problem differently by providing a
way for transport layers to register themselves and for users to
retrieve the pointer. Unregistered transport layers will point to NULL
so it will be easy to check if SSL is registered or not. The mechanism
is very inexpensive as it relies on a two-entries array of pointers,
so the performance will not be affected.
Instead of hard-coding all SSL preparation in cfgparse.c, we now register
this new function as the transport layer's prepare_bind_conf() and call it
only when definied. This removes some non-obvious SSL-specific code from
cfgparse.c as well as a #ifdef.
Most of the SSL functions used to have a proxy argument which was mostly
used to be able to emit clean errors using Alert(). First, many of them
were converted to memprintf() and don't require this pointer anymore.
Second, the rare which still need it also have either a bind_conf argument
or a server argument, both of which carry a pointer to the relevant proxy.
So let's now get rid of it, it needlessly complicates the API and certain
functions already have many arguments.
Historically, all listeners have a pointer to the frontend. But since
the introduction of SSL, we now have an intermediary layer called
bind_conf corresponding to a "bind" line. It makes no sense to have
the frontend on each listener given that it's the same for all
listeners belonging to a same bind_conf. Also certain parts like
SSL can only operate on bind_conf and need the frontend.
This patch fixes this by moving the frontend pointer from the listener
to the bind_conf. The extra indirection is quite cheap given and the
places were this is used are very scarce.
A mistake was made when the socket layer was cut into proto and
transport, the transport was attached to the listener while all
listeners in a single "bind" line always have exactly the same
transport. It doesn't seem obvious but this is the reason why there
are so many #ifdefs USE_OPENSSL in cfgparse : a lot of operations
have to be open-coded because cfgparse only manipulates bind_conf
and we don't have the information of the transport layer here.
Very little code makes use of the transport layer, mainly session
setup and log. These places can afford an extra pointer indirection
(the listener points to the bind_conf). This change is thus very small,
it saves a little bit of memory (8B per listener) and makes the code
more flexible.
By registering the deinit function we avoid another #ifdef in haproxy.c.
The ha_wurfl_deinit() function has been made static and unexported. Now
proto/wurfl.h is totally empty, the code being self-contained in wurfl.c,
so the useless .h has been removed.
This removes some #ifdefs from the main haproxy code path and enables
error checking. The current code only makes use of warnings even for
some errors that look serious. While this choice is questionnable, it
has been kept as-is, and only the return codes were adapted to ERR_WARN
to at least report that some warnings were emitted. ha_wurfl_init() was
unexported as it's not needed anymore.
Instead of calling the checks directly from the init code, we now
register the start_checks() function to be run at this point. This
also allows to unexport the check init function and to remove one
include from haproxy.c.
Fixing the build using LibreSSL as OpenSSL implementation.
Currently, LibreSSL 2.4.4 provides the same API of OpenSSL 1.0.1x,
but it redefine the OpenSSL version number as 2.0.x, breaking all
checks with OpenSSL 1.1.x.
The patch solves the issue checking the definition of the symbol
LIBRESSL_VERSION_NUMBER when Openssl 1.1.x features are requested.
When an entity tries to get a buffer, if it cannot be allocted, for example
because the number of buffers which may be allocated per process is limited,
this entity is added in a list (called <buffer_wq>) and wait for an available
buffer.
Historically, the <buffer_wq> list was logically attached to streams because it
were the only entities likely to be added in it. Now, applets can also be
waiting for a free buffer. And with filters, we could imagine to have more other
entities waiting for a buffer. So it make sense to have a generic list.
Anyway, with the current design there is a bug. When an applet failed to get a
buffer, it will wait. But we add the stream attached to the applet in
<buffer_wq>, instead of the applet itself. So when a buffer is available, we
wake up the stream and not the waiting applet. So, it is possible to have
waiting applets and never awakened.
So, now, <buffer_wq> is independant from streams. And we really add the waiting
entity in <buffer_wq>. To be generic, the entity is responsible to define the
callback used to awaken it.
In addition, applets will still request an input buffer when they become
active. But they will not be sleeped anymore if no buffer are available. So this
is the responsibility to the applet I/O handler to check if this buffer is
allocated or not. This way, an applet can decide if this buffer is required or
not and can do additional processing if not.
[wt: backport to 1.7 and 1.6]
<run_queue> is used to track the number of task in the run queue and
<run_queue_cur> is a copy used for the reporting purpose. These counters has
been renamed, respectively, <tasks_run_queue> and <tasks_run_queue_cur>. So the
naming is consistent between tasks and applets.
[wt: needed for next fixes, backport to 1.7 and 1.6]
As for tasks, 2 counters has been added to track :
* the total number of applets : nb_applets
* the number of active applets : applets_active_queue
[wt: needed for next fixes, to backport to 1.7 and 1.6]
Commit 5fddab0 ("OPTIM: stream_interface: disable reading when
CF_READ_DONTWAIT is set") improved the connection layer's efficiency
back in 1.5-dev13 by avoiding successive read attempts on an active
FD. But by disabling this on a polled FD, it causes an unpleasant
side effect which is that the FD that was subscribed to polling is
suddenly stopped and may need to be re-enabled once the kernel
starts to slow down on data eviction (eg: saturated server at the
other end, bursty traffic caused by too large maxpollevents).
This behaviour is observable with persistent connections when there
is a large enough connection count so that there's no data in the
early connection and polling is required, because there are then
up to 4 epoll_ctl() calls per request. It's important that the
server is slower than haproxy to cause some delays when reading
response.
The current connection layer as designed in 1.6 with the FD cache
doesn't require this trick anymore, though it still benefits from
it when it saves an FD from being uselessly polled. But compared
to the increased cost of enabling and disabling poll all the time,
it's still better to disable it. In some cases it's possible to
observe a performance increase as high as 30% by avoiding this
epoll_ctl() dance.
In the end we only want to disable it when the FD is speculatively
read and not when it's polled. For this we introduce a new function
__conn_data_done_recv() which is used to indicate that we're done
with recv() and not interested in new attempts. If/when we later
support event-triggered epoll, this function will have to change
a bit to do the same even in the polled case.
A quick test with keep-alive requests run on a dual-core / dual-
thread Atom shows a significant improvement :
single process, 0 bytes :
before: Requests per second: 12243.20 [#/sec] (mean)
after: Requests per second: 13354.54 [#/sec] (mean)
single process, 4k :
before: Requests per second: 9639.81 [#/sec] (mean)
after: Requests per second: 10991.89 [#/sec] (mean)
dual process, 0 bytes (unstable) :
before: Requests per second: 16900-19800 ~ 17600 [#/sec] (mean)
after: Requests per second: 18600-21400 ~ 20500 [#/sec] (mean)
It already returns an empty string when the field is empty, but as a
preventive measure we should do the same when the string itself is a
NULL. While it is not supposed to happen, it will make the code more
resistant against failed allocations and unexpected results.
This fix should be backported to 1.7.
Historically we used to have the stick counters processing put into
session.c which became stream.c. But a big part of it is now in
stick-table.c (eg: converters) but despite this we still have all
the sample fetch functions in stream.c
These parts do not depend on the stream anymore, so let's move the
remaining chunks to stick-table.c and have cleaner files.
What remains in stream.c is everything needed to attach/detach
trackers to the stream and to update the counters while the stream
is being processed.
There's no more reason to keep tcp rules processing inside proto_tcp.c
given that there is nothing in common there except these 3 letters : tcp.
The tcp rules are in fact connection, session and content processing rules.
Let's move them to "tcp-rules" and let them live their life there.
Reinhard Vicinus reported that the reported average response times cannot
be larger than 16s due to the double multiply being performed by
swrate_add() which causes an overflow very quickly. Indeed, with N=512,
the highest average value is 16448.
One solution proposed by Reinhard is to turn to long long, but this
involves 64x64 multiplies and 64->32 divides, which are extremely
expensive on 32-bit platforms.
There is in fact another way to avoid the overflow without using larger
integers, it consists in avoiding the multiply using the fact that
x*(n-1)/N = x-(x/N).
Now it becomes possible to store average values as large as 8.4 millions,
which is around 2h18mn.
Interestingly, this improvement also makes the code cheaper to execute
both on 32 and on 64 bit platforms :
Before :
00000000 <swrate_add>:
0: 8b 54 24 04 mov 0x4(%esp),%edx
4: 8b 0a mov (%edx),%ecx
6: 89 c8 mov %ecx,%eax
8: c1 e0 09 shl $0x9,%eax
b: 29 c8 sub %ecx,%eax
d: 8b 4c 24 0c mov 0xc(%esp),%ecx
11: c1 e8 09 shr $0x9,%eax
14: 01 c8 add %ecx,%eax
16: 89 02 mov %eax,(%edx)
After :
00000020 <swrate_add>:
20: 8b 4c 24 04 mov 0x4(%esp),%ecx
24: 8b 44 24 0c mov 0xc(%esp),%eax
28: 8b 11 mov (%ecx),%edx
2a: 01 d0 add %edx,%eax
2c: 81 c2 ff 01 00 00 add $0x1ff,%edx
32: c1 ea 09 shr $0x9,%edx
35: 29 d0 sub %edx,%eax
37: 89 01 mov %eax,(%ecx)
This fix may be backported to 1.6.
The function log format emit its own error message using Alert(). This
patch replaces this behavior and uses the standard HAProxy error system
(with memprintf).
The benefits are:
- cleaning the log system
- the logformat can ignore the caller (actually the caller must set
a flag designing the caller function).
- Make the usage of the logformat function easy for future components.
Commit 1866d6d ("MEDIUM: ssl: Add support for OpenSSL 1.1.0")
introduced support for openssl 1.1.0 and temporarily broke 0.9.8.
In the end the port was not very hard given that the only cause of
build failures were functions supposedly absent from 0.9.8 that in
fact did exist.
Thus, adding a new #if to move these functions for versions older
than 0.9.8 was enough to fix the trouble. It received very light
testing, basically only an SSL bridge decrypting and re-encrypting
traffic, and checking that everything looks right. That said, the
functions specific to 0.9.8 here compared to 1.0.x are only
SSL_SESSION_set1_id_context(), EVP_PKEY_base_id(), and
X509_PUBKEY_get0_param().
Until now, the function parse_logformat_string() never fails. It
send warnings when it parses bad format, and returns expression in
best effort.
This patch replaces warnings by alert and returns a fail code.
Maybe the warning mode is designed for a compatibility with old
configuration versions. If it is the case, now this compatibility
is broken.
[wt: no, the reason is that an alert must cause a startup failure,
but this will be OK with next patch]
The log-format function parse_logformat_string() takes file and line
for building parsing logs. These two parameters are embedded in the
struct proxy curproxy, which is the current parsing context.
This patch removes these two unused arguments.
Remove export of the fucntion parse_logformat_var_args() and
parse_logformat_var(). These functions are a part of the
logformat parser, and this export is useless.
We get this when Lua is disabled, just a missing include.
In file included from src/queue.c:18:0:
include/proto/server.h:51:39: warning: 'struct appctx' declared inside parameter list [enabled by default]
Move the "show stat" command to stats.c using the CLI keyword API
to register it on the CLI. The stats_dump_stat_to_buffer() function
is now static again.
Several CLI commands require a frontend, so let's have a function to
look this one up and prepare the appropriate error message and the
appctx's state in case of failure.
Several CLI commands require a server, so let's have a function to
look this one up and prepare the appropriate error message and the
appctx's state in case of failure.
proto/dumpstats.h has been split in 4 files:
* proto/cli.h contains protypes for the CLI
* proto/stats.h contains prototypes for the stats
* types/cli.h contains definition for the CLI
* types/stats.h contains definition for the stats
These functions will be needed by "show sess" on the CLI, let's make them
globally available. It's important to note that due to the fact that we
still do not set the data and transport layers' names in the structures,
we still have to rely on some exports just to match the pointers. This is
ugly but is preferable to adding many includes since the short-term goal
is to get rid of these tests by having proper names in place.
Setting an FD to -1 when closed isn't the most easily noticeable thing
to do when we're chasing accidental reuse of a stale file descriptor.
Instead set it to that large a negative value that it will overflow the
fdtab and provide an analysable core at the moment the issue happens.
Care was taken to ensure it doesn't overflow nor change sign on 32-bit
machines when multiplied by fdtab, and that it also remains negative for
the various checks that exist. The value equals 0xFDDEADFD which happens
to be easily spotted in a debugger.
The bug described in commit 568743a ("BUG/MEDIUM: stream-int: completely
detach connection on connect error") was not a stream-interface layer bug
but a connection layer bug. There was exactly one place in the code where
we could change a file descriptor's status without first checking whether
it is valid or not, it was in conn_stop_polling(). This one is called when
the polling status is changed after an update, and calls fd_stop_both even
if we had already closed the file descriptor :
1479388298.484240 ->->->->-> conn_fd_handler > conn_cond_update_polling
1479388298.484240 ->->->->->-> conn_cond_update_polling > conn_stop_polling
1479388298.484241 ->->->->->->-> conn_stop_polling > conn_ctrl_ready
1479388298.484241 conn_stop_polling < conn_ctrl_ready
1479388298.484241 ->->->->->->-> conn_stop_polling > fd_stop_both
1479388298.484242 ->->->->->->->-> fd_stop_both > fd_update_cache
1479388298.484242 ->->->->->->->->-> fd_update_cache > fd_release_cache_entry
1479388298.484242 fd_update_cache < fd_release_cache_entry
1479388298.484243 fd_stop_both < fd_update_cache
1479388298.484243 conn_stop_polling < fd_stop_both
1479388298.484243 conn_cond_update_polling < conn_stop_polling
1479388298.484243 conn_fd_handler < conn_cond_update_polling
The problem with the previous fix above is that it break the http_proxy mode
and possibly even some Lua parts and peers to a certain extent ; all outgoing
connections where the target address is initially copied into the outgoing
connection which experience a retry would use a random outgoing address after
the retry because closing and detaching the connection causes the target
address to be lost. This was attempted to be addressed by commit 0857d7a
("BUG/MAJOR: stream: properly mark the server address as unset on connect
retry") but it used to only solve the most visible effect and not the root
cause.
Prior to this fix, it was possible to cause this config to keep CLOSE_WAIT
for as long as it takes to expire a client or server timeout (note the
missing client timeout) :
listen test
mode http
bind :8002
server s1 127.0.0.1:8001
$ tcploop 8001 L0 W N20 A R P100 S:"HTTP/1.1 200 OK\r\nContent-length: 0\r\n\r\n" &
$ tcploop 8002 N200 C T W S:"GET / HTTP/1.0\r\n\r\n" O P10000 K
With this patch, these CLOSE_WAIT properly vanish when both processes leave.
This commit reverts the two fixes above and replaces them with the proper
fix in connection.h. It must be backported to 1.6 and 1.5. Thanks to
Robson Roberto Souza Peixoto for providing very detailed traces showing
some obvious inconsistencies leading to finding this bug.
This pointer will be used for storing private context. With this,
the same executed function can handle more than one keyword. This
will be very useful for creation Lua cli bindings.
The release function is called when the command is terminated (give
back the hand to the prompt) or when the session is broken (timeout
or client closed).
A new "option spop-check" statement has been added to enable server health
checks based on SPOP HELLO handshake. SPOP is the protocol used by SPOE filters
to talk to servers.
It does the opposite of 'set-var' action/converter. It is really useful for
per-process variables. But, it can be used for any scope.
The lua function 'unset_var' has also been added.
This function, unsurprisingly, sets a variable value only if it already
exists. In other words, this function will succeed only if the variable was
found somewhere in the configuration during HAProxy startup.
It will be used by SPOE filter. So an agent will be able to set a value only for
existing variables. This prevents an agent to create a very large number of
unused variables to flood HAProxy and exhaust the memory reserved to variables..
This code has been moved from haproxy.c to sample.c and the function
release_sample_expr can now be called from anywhere to release a sample
expression. This function will be used by the stream processing offload engine
(SPOE).
This new setting supports a comma-delimited list of methods used to
resolve the server's FQDN to an IP address. Currently supported methods
are "libc" (use the regular libc's resolver) and "last" (use the last
known valid address found in the state file).
The list is implemented in a 32-bit integer, because each init-addr
method only requires 3 bits. The last one must always be SRV_IADDR_END
(0), allowing to store up to 10 methods in a single 32 bit integer.
Note: the doc is provided at the end of this series.
It will be important to help debugging some DNS resolution issues to
know why a server was marked down, so let's make the function support
a 3rd argument with an indication of the reason. Passing NULL will keep
the message as-is.
Server addresses are not resolved anymore upon the first pass so that we
don't fail if an address cannot be resolved by the libc. Instead they are
processed all at once after the configuration is fully loaded, by the new
function srv_init_addr(). This function only acts on the server's address
if this address uses an FQDN, which appears in server->hostname.
For now the function does two things, to followup with HAProxy's historical
default behavior:
1. apply server IP address found in server-state file if runtime DNS
resolution is enabled for this server
2. use the DNS resolver provided by the libc
If none of the 2 options above can find an IP address, then an error is
returned.
All of this will be needed to support the new server parameter "init-addr".
For now, the biggest user-visible change is that all server resolution errors
are dumped at once instead of causing a startup failure one by one.
In the last release a lot of the structures have become opaque for an
end user. This means the code using these needs to be changed to use the
proper functions to interact with these structures instead of trying to
manipulate them directly.
This does not fix any deprecations yet that are part of 1.1.0, it only
ensures that it can be compiled against that version and is still
compatible with older ones.
[wt: openssl-0.9.8 doesn't build with it, there are conflicts on certain
function prototypes which we declare as inline here and which are
defined differently there. But openssl-0.9.8 is not supported anymore
so probably it's OK to go without it for now and we'll see later if
some users still need it. Emeric has reviewed this change and didn't
spot anything obvious which requires special care. Let's try it for
real now]
The only reason wurfl/wurfl.h was needed outside of wurfl.c was to expose
wurfl_handle which is a pointer to a structure, referenced by global.h.
By just storing a void* there instead, we can confine all wurfl code to
wurfl.c, which is really nice.
Right now there is an issue with the way the maintenance flags are
propagated upon startup. They are not propagate, just copied from the
tracked server. This implies that depending on the server's order, some
tracking servers may not be marked down. For example this configuration
does not work as expected :
server s1 1.1.1.1:8000 track s2
server s2 1.1.1.1:8000 track s3
server s3 1.1.1.1:8000 track s4
server s4 wtap:8000 check inter 1s disabled
It results in s1/s2 being up, and s3/s4 being down, while all of them
should be down.
The only clean way to process this is to run through all "root" servers
(those not tracking any other server), and to propagate their state down
to all their trackers. This is the same algorithm used to propagate the
state changes. It has to be done both to compute the IDRAIN flag and the
IMAINT flag. However, doing so requires that tracking servers are not
marked as inherited maintenance anymore while parsing the configuration
(and given that it is wrong, better drop it).
This fix also addresses another side effect of the bug above which is
that the IDRAIN/IMAINT flags are stored in the state files, and if
restored while the tracked server doesn't have the equivalent flag,
the servers may end up in a situation where it's impossible to remove
these flags. For example in the configuration above, after removing
"disabled" on server s4, the other servers would have remained down,
and not anymore with this fix. Similarly, the combination of IMAINT
or IDRAIN with their respective forced modes was not accepted on
reload, which is wrong as well.
This bug has been present at least since 1.5, maybe even 1.4 (it came
with tracking support). The fix needs to be backported there, though
the srv-state parts are irrelevant.
This commit relies on previous patch to silence warnings on startup.
We used to have 7 different character classes, each was 256 bytes long,
resulting in almost 2kB being used in the L1 cache. It's as cheap to
test a bit than to check the byte is not null, so let's store a 7-bit
composite value and check for the respective bits there instead.
The executable is now 4 kB smaller and the performance on small
objects increased by about 1% to 222k requests/second with a config
involving 4 http-request rules including 1 header lookup, one header
replacement, and 2 variable assignments.
This commit introduces "tcp-request session" rules. These are very
much like "tcp-request connection" rules except that they're processed
after the handshake, so it is possible to consider SSL information and
addresses rewritten by the proxy protocol header in actions. This is
particularly useful to track proxied sources as this was not possible
before, given that tcp-request content rules are processed after each
HTTP request. Similarly it is possible to assign the proxied source
address or the client's cert to a variable.
This is in order to make integration of tcp-request-session cleaner :
- tcp_exec_req_rules() was renamed tcp_exec_l4_rules()
- LI_O_TCP_RULES was renamed LI_O_TCP_L4_RULES
(LI_O_*'s horrible indent was also fixed and a provision was left
for L5 rules).
These are denied conns. Strangely this wasn't emitted while it used to be
available for a while. It corresponds to the number of connections blocked
by "tcp-request connection reject".
To register a new cli keyword, you need to declare a cli_kw_list
structure in your source file:
static struct cli_kw_list cli_kws = {{ },{
{ { "test", "list", NULL }, "test list : do some tests on the cli", test_parsing, NULL },
{ { NULL }, NULL, NULL, NULL, NULL }
}};
And then register it:
cli_register_kw(&cli_kws);
The first field is an array of 5 elements, where you declare the
keywords combination which will match, it must be ended by a NULL
element.
The second field is used as a usage message, it will appear in the help
of the cli, you can set it to NULL if you don't want to show it, it's a
good idea if you want to overwrite some existing keywords.
The two last fields are callbacks.
The first one is used at parsing time, you can use it to parse the
arguments of your keywords and print small messages. The function must
return 1 in case of a failure, otherwise 0:
#include <proto/dumpstats.h>
static int test_parsing(char **args, struct appctx *appctx)
{
struct chunk out;
if (!*args[2]) {
appctx->ctx.cli.msg = "Error: the 3rd argument is mandatory !";
appctx->st0 = STAT_CLI_PRINT;
return 1;
}
chunk_reset(&trash);
chunk_printf(&trash, "arg[3]: %s\n", args[2]);
chunk_init(&out, NULL, 0);
chunk_dup(&out, &trash);
appctx->ctx.cli.err = out.str;
appctx->st0 = STAT_CLI_PRINT_FREE; /* print and free in the default cli_io_handler */
return 0;
}
The last field is the IO handler callback, it can be set to NULL if you
want to use the default cli_io_handler() otherwise you can write your
own. You can use the private pointer in the appctx if you need to store
a context or some data. stats_dump_sess_to_buffer() is a good example of
IO handler, IO handlers often use the appctx->st2 variable for the state
machine. The handler must return 0 in case it have to be recall later
otherwise 1.
During the stick-table teaching process which occurs at reloading/restart time,
expiration dates of stick-tables entries were not synchronized between peers.
This patch adds two new stick-table messages to provide such a synchronization feature.
As these new messages are not supported by older haproxy peers protocol versions,
this patch increments peers protol version, from 2.0 to 2.1, to help in detecting/supporting
such older peers protocol implementations so that new versions might still be able
to transparently communicate with a newer one.
[wt: technically speaking it would be nice to have this backported into 1.6
as some people who reload often are affected by this design limitation, but
it's not a totally transparent change that may make certain users feel
reluctant to upgrade older versions. Let's let it cook in 1.7 first and
decide later]
New DNS response parser function which turn the DNS response from a
network buffer into a DNS structure, much easier for later analysis
by upper layer.
Memory is pre-allocated at start-up in a chunk dedicated to DNS
response store.
New error code to report a wrong number of queries in a DNS response.
This function can replace update_server_addr() where the need to change the
server's port as well as the IP address is required.
It performs some validation before performing each type of change.
HAProxy used to deduce port used for health checks when parsing configuration
at startup time.
Because of this way of working, it makes it complicated to change the port at
run time.
The current patch changes this behavior and makes HAProxy to choose the
port used for health checking when preparing the check task itself.
A new type of error is introduced and reported when no port can be found.
There won't be any impact on performance, since the process to find out the
port value is made of a few 'if' statements.
This patch also introduces a new check state CHK_ST_PORT_MISS: this flag is
used to report an error in the case when HAProxy needs to establish a TCP
connection to a server, to perform a health check but no TCP ports can be
found for it.
And last, it also introduces a new stream termination condition:
SF_ERR_CHK_PORT. Purpose of this flag is to report an error in the event when
HAProxy has to run a health check but no port can be found to perform it.
At some places, smp_dup() is inappropriately called to ensure a modification
is possible while in fact we only need to ensure the sample may be modified
in place. Let's provide smp_is_rw() to check for this capability and
smp_make_rw() to perform the smp_dup() when it is not the case.
Note that smp_is_rw() will also try to add the trailing zero on strings when
needed if possible, to avoid a useless duplication.
These functions ensure that the designated sample is "safe for use",
which means that its size is known, its length is correct regarding its
size, and that strings are properly zero-terminated.
smp_is_safe() only checks (and optionally sets the trailing zero when
needed and possible). smp_make_safe() will call smp_dup() after
smp_is_safe() fails.
This enables tracking of sticky counters from current response. The only
difference from "http-request track-sc" is the <key> sample expression
can only make use of samples in response (eg. res.*, status etc.) and
samples below Layer 6.
When NetScaler application switch is used as L3+ switch, informations
regarding the original IP and TCP headers are lost as a new TCP
connection is created between the NetScaler and the backend server.
NetScaler provides a feature to insert in the TCP data the original data
that can then be consumed by the backend server.
Specifications and documentations from NetScaler:
https://support.citrix.com/article/CTX205670https://www.citrix.com/blogs/2016/04/25/how-to-enable-client-ip-in-tcpip-option-of-netscaler/
When CIP is enabled on the NetScaler, then a TCP packet is inserted just after
the TCP handshake. This is composed as:
- CIP magic number : 4 bytes
Both sender and receiver have to agree on a magic number so that
they both handle the incoming data as a NetScaler Client IP insertion
packet.
- Header length : 4 bytes
Defines the length on the remaining data.
- IP header : >= 20 bytes if IPv4, 40 bytes if IPv6
Contains the header of the last IP packet sent by the client during TCP
handshake.
- TCP header : >= 20 bytes
Contains the header of the last TCP packet sent by the client during TCP
handshake.
When compiled with GCC 6, the IP address specified for a frontend was
ignored and HAProxy was listening on all addresses instead. This is
caused by an incomplete copy of a "struct sockaddr_storage".
With the GNU Libc, "struct sockaddr_storage" is defined as this:
struct sockaddr_storage
{
sa_family_t ss_family;
unsigned long int __ss_align;
char __ss_padding[(128 - (2 * sizeof (unsigned long int)))];
};
Doing an aggregate copy (ss1 = ss2) is different than using memcpy():
only members of the aggregate have to be copied. Notably, padding can be
or not be copied. In GCC 6, some optimizations use this fact and if a
"struct sockaddr_storage" contains a "struct sockaddr_in", the port and
the address are part of the padding (between sa_family and __ss_align)
and can be not copied over.
Therefore, we replace any aggregate copy by a memcpy(). There is another
place using the same pattern. We also fix a function receiving a "struct
sockaddr_storage" by copy instead of by reference. Since it only needs a
read-only copy, the function is converted to request a reference.
'channel_analyze' callback has been removed. Now, there are 2 callbacks to
surround calls to analyzers:
* channel_pre_analyze: Called BEFORE all filterable analyzers. it can be
called many times for the same analyzer, once at each loop until the
analyzer finishes its processing. This callback is resumable, it returns a
negative value if an error occurs, 0 if it needs to wait, any other value
otherwise.
* channel_post_analyze: Called AFTER all filterable analyzers. Here, AFTER
means when an analyzer finishes its processing. This callback is NOT
resumable, it returns a negative value if an error occurs, any other value
otherwise.
Pre and post analyzer callbacks are not automatically called. 'pre_analyzers'
and 'post_analyzers' bit fields in the filter structure must be set to the right
value using AN_* flags (see include/types/channel.h).
The flag AN_RES_ALL has been added (AN_REQ_ALL already exists) to ease the life
of filter developers. AN_REQ_ALL and AN_RES_ALL include all filterable
analyzers.
Now, to call an analyzer in 'process_stream' function, we should use
FLT_ANALAYZE or ANALYZE macros, depending if this is a filterable analyzer or
not.
In 1.4-dev3, commit 31971e5 ("[MEDIUM] add support for infinite forwarding")
made it possible to configure the lower layer to forward data indefinitely
by setting the forward size to CHN_INFINITE_FORWARD (4GB-1). By then larger
chunk sizes were not supported so there was no confusion in the usage of the
function.
Since 1.5 we support 64-bit content-lengths and chunk sizes and the function
has grown to support 64-bit arguments, though it still limits a single pass
to 32-bit quantities (what fit in the channel's to_forward field). The issue
now becomes that a 4GB-1 content-length can be confused with infinite
forwarding (in fact it's 4GB-1+what was already in the buffer). It causes a
visible effect when transferring this exact size because the transfer rate
is lower than with other sizes due in part to the disabling of the Nagle
algorithm on the sendto() call.
In theory with keep-alive it should prevent a second request from being
processed after such a transfer, but since the analysers are still present,
the forwarding analyser properly counts down the remaining size to transfer
and ultimately the transaction gets correctly reset so there is no visible
effect.
Since the root cause of the issue is an API problem (lack of distinction
between a real valid length and a magic value), this patch modifies the API
to have a new dedicated function called channel_forward_forever() to program
a permanent forwarding. The existing function __channel_forward() was modified
to properly take care of the requested sizes and ensure it 1) never overflows
and 2) never reaches CHN_INFINITE_FORWARD by accident.
It is worth noting that the function used to have a bug causing a 2GB
forward to be scheduled if it was called with less data than what is present
in buf->i. Fortunately this bug couldn't be triggered with existing code.
This fix should be backported to 1.6 and 1.5. While it also theorically
affects 1.4, it's better not to backport it there, as the risk of breaking
large object transfers due to significant API differences is high, compared
to the fact that the largest supported objects (4GB-1) are just slower to
transfer.
Unfortunately, commit 169c470 ("BUG/MEDIUM: channel: fix miscalculation of
available buffer space (3rd try)") was still not enough to completely
address the issue. It fell into an integer comparison trap. Contrary to
expectations, chn->to_forward may also have the sign bit set when
forwarding regular data having a large content-length, resulting in
an incomplete check of the result and of the reserve because the with
to_forward very large, to_forward+o could become very small and also
the reserve could become positive again and make channel_recv_limit()
return a negative value.
One way to reproduce this situation is to transfer a large file (> 2GB)
with http-keep-alive or http-server-close, without splicing, and ensure
that the server uses content-length instead of chunks. The transfer
should stall very early after the first buffer has been transferred
to the client.
This fix now properly checks 1) for an overflow caused by summing o and
to_forward, and 2) for o+to_forward being smaller or larger than maxrw
before performing the subtract, so that all sensitive operations are
properly performed on 33-bit arithmetics.
The code was subjected again to a series of tests using inject+httpterm
scanning a wide range of object sizes (+10MB after each new request) :
$ printf "new page 1\nget 127.0.0.1:8002 / s=%%s0m\n" | \
inject64 -o 1 -u 1 -f /dev/stdin
With previous fix, the transfer would suddenly stop when reaching 2GB :
hits ^hits hits/s ^h/s bytes kB/s last errs tout htime sdht ptime
203 1 2 1 216816173354 2710202 3144892 0 0 685.0 0.0 685.0
205 2 2 2 219257283186 2706880 2441109 0 0 679.5 6.5 679.5
205 0 2 0 219257283186 2673836 0 0 0 0.0 0.0 0.0
205 0 2 0 219257283186 2641622 0 0 0 0.0 0.0 0.0
205 0 2 0 219257283186 2610174 0 0 0 0.0 0.0 0.0
Now it's fine even past 4 GB.
Many thanks to Vedran Furac for reporting this issue early with a common
access pattern helping to troubleshoot this.
This fix must be backported to 1.6 and 1.5 where the commit above was
already backported.
This function returns non-zero if the channel is congested with data in
transit waiting for leaving, indicating to the caller that it should wait
for the reserve to be released before starting to process new data in
case it needs the ability to append data. This is meant to be used while
waiting for a clean response buffer before processing a request.
This is very useful in complex architecture systems where HAproxy
is balancing DB connections for example. We want to keep the maxconn
high in order to avoid issues with queueing on the LB level when
there is slowness on another part of the system. Example is a case of
an architecture where each thread opens multiple DB connections, which
if get stuck in queue cause a snowball effect (old connections aren't
closed, new ones cannot be established). These connections are mostly
idle and the DB server has no problem handling thousands of them.
Allowing us to dynamically set maxconn depending on the backend usage
(LA, CPU, memory, etc.) enables us to have high maxconn for situations
like above, but lowering it in case there are real issues where the
backend servers become overloaded (cache issues, DB gets hit hard).
Latest fix 8a32106 ("BUG/MEDIUM: channel: fix miscalculation of available
buffer space (2nd try)") did happen to fix some observable issues but not
all of them in fact, some corner cases still remained and at least one user
reported a busy loop that appeared possible, though not easily reproducible
under experimental conditions.
The remaining issue is that we still consider min(i, to_fwd) as the number
of bytes in transit, but in fact <i> is not relevant here. Indeed, what
matters is that we can read everything we want at once provided that at
the end, <i> cannot be larger than <size-maxrw> (if it was not already).
This is visible in two cases :
- let's have i=o=max/2 and to_fwd=0. Then i+o >= max indicates that the
buffer is already full, while it is not since once <o> is forwarded,
some space remains.
- when to_fwd is much larger than i, it's obvious that we can fill the
buffer.
The only relevant part in fact is o + to_fwd. to_fwd will ensure that at
least this many bytes will be moved from <i> to <o> hence will leave the
buffer, whatever the number of rounds it takes.
Interestingly, the fix applied here ensures that channel_recv_max() will
now equal (size - maxrw - i + to_fwd), which is indeed what remains
available below maxrw after to_fwd bytes are forwarded from i to o and
leave the buffer.
Additionally, the latest fix made it possible to meet an integer overflow
that was not caught by the range test when forwarding in TCP or tunnel
mode due to to_forward being added to an existing value, causing the
buffer size to be limited when it should not have been, resulting in 2
to 3 recv() calls when a single one was enough. The first one was limited
to the unreserved buffer size, the second one to the size of the reserve
minus 1, and the last one to the last byte. Eg with a 2kB buffer :
recvfrom(22, "HTTP/1.1 200\r\nConnection: close\r"..., 1024, 0, NULL, NULL) = 1024
recvfrom(22, "23456789.123456789.123456789.123"..., 1023, 0, NULL, NULL) = 1023
recvfrom(22, "5", 1, 0, NULL, NULL) = 1
This bug is still present in 1.6 and 1.5 so the fix should be backported
there.
The condition to poll for receive as implemented in channel_may_recv()
is still incorrect. If buf->o is null and buf->i is slightly larger than
chn->to_forward and at least as large as buf->size - maxrewrite, then
reading will be disabled. It may slightly delay some data delivery by
having first to forward pending bytes, but may also cause some random
issues with analysers that wait for some data before starting to forward
what they correctly parsed. For instance, a body analyser may be prevented
from seeing the data that only fits in the reserve.
This bug may also prevent an applet's chk_rcv() function from being called
when part of a buffer is released. It is possible (though not verified)
that this participated to some peers frozen session issues some people
have been facing.
This fix should be backported to 1.6 and 1.5 to ensure better coherency
with channel_recv_limit().
Commit 9c06ee4 ("BUG/MEDIUM: channel: don't schedule data in transit for
leaving until connected") took care of an issue involving POST in conjunction
with http-send-name-header, where we absolutely never want to touch the
reserve until we're sure not to touch the buffer contents anymore, which
is indicated by the output stream-interface being connected.
But channel_may_recv() was not equipped with such a test, so in some
situations it might decide that it is possible to poll for reads, and
later channel_recv_limit() will decide it's not possible to read,
causing a loop. So we must add a similar test there.
Since the fix above was backported to 1.6 and 1.5, this fix must as well.
There's quite some inconsistency in the internal API. listener_accept()
which is the main accept() function returns void but is declared as int
in the include file. It's assigned to proto->accept() for all stream
protocols where an int is expected but the result is never checked (nor
is it documented by the way). This proto->accept() is in turn assigned
to fd->iocb() which is supposed to return an int composed of FD_WAIT_*
flags, but which is never checked either.
So let's fix all this mess :
- nobody checks accept()'s return
- nobody checks iocb()'s return
- nobody sets a return value
=> let's mark all these functions void and keep the current ones intact.
Additionally we now include listener.h from listener.c to ensure we won't
silently hide this incoherency in the future.
Note that this patch could/should be backported to 1.6 and even 1.5 to
simplify debugging sessions.
Commit 999f643 ("BUG/MEDIUM: channel: fix miscalculation of available buffer
space.") introduced a bug which made output data to be ignored when computing
the remaining room in a buffer. The problem is that channel_may_recv()
properly considers them and may declare that the FD may be polled for read
events, but once the even strikes, channel_recv_limit() called before recv()
says the opposite. In 1.6 and later this case is automatically caught by
polling loop detection at the connection level and is harmless. But the
backport in 1.5 ends up with a busy polling loop as soon as it becomes
possible to have a buffer with this conflict. In order to reproduce it, it
is necessary to have less than [maxrewrite] bytes available in a buffer, no
forwarding enabled (end of transfer) and [buf->o >= maxrewrite - free space].
Since this heavily depends on socket buffers, it will randomly strike users.
On 1.5 with 8kB buffers it was possible to reproduce it with httpterm using
the following command line :
$ (printf "GET /?s=675000 HTTP/1.0\r\n\r\n"; sleep 60) | \
nc6 --rcvbuf-size 1 --send-only 127.0.0.1 8002
This bug is only medium in 1.6 and later but is major in the 1.5 backport,
so it must be backported there.
Thanks to Nenad Merdanovic and Janusz Dziemidowicz for reporting this issue
with enough elements to help understand it.
This patch splits the function stats_dump_be_stats() in two parts. The
part is called stats_fill_be_stats(), and just fill the stats buffer.
This split allows the usage of preformated stats in other parts of HAProxy
like the Lua.
This patch splits the function stats_dump_sv_stats() in two parts. The
extracted part is called stats_fill_sv_stats(), and just fill the stats buffer.
This split allows the usage of preformated stats in other parts of HAProxy
like the Lua.
This patch splits the function stats_dump_li_stats() in two parts. The
extracted part is called stats_fill_li_stats(), and just fill the stats buffer.
This split allows the usage of preformated stats in other parts of HAProxy
like the Lua.
This patch splits the function stats_dump_fe_stats() in two parts. The
extracted part is called stats_fill_fe_stats(), and just fill the stats buffer.
This split allows the usage of preformated stats in other parts of HAProxy
like the Lua.
This patch splits the function stats_dump_info_to_buffer() in two parts. The
extracted part is called stats_fill_info(), and just fill the stats buffer.
This split allows the usage of preformated stats in other parts of HAProxy
like the Lua.
This patch adds a Lua post initialisation wrapper. It already exists for
pure Lua function, now it executes also C. It is useful for doing things
when the configuration is ready to use. For example we can can browse and
register all the proxies.
All the HAProxy Lua object are declared with the same pattern:
- Add the function __tosting which dumps the object name
- Register the name in the Lua REGISTRY
- Register the reference ID
These action are refactored in on function. This remove some
lines of code.
The functions
- hlua_class_const_int()
- hlua_class_const_str()
- hlua_class_function()
are use for common class registration actions.
The function 'hlua_dump_object()' is generic dump name function.
These functions can be used by all the HAProxy objects, so I move
it into the safe functions file.
This emits the field positions, names and types. It is more convenient
than the default output for a parser that doesn't know all the fields. It
simply relies on stats_emit_typed_data_field() and stats_emit_field_tags()
added by previous patch for the output. A new stats format flag was added,
STAT_FMT_TYPED, which is set when the "typed" keyword is specified on the
CLI.
New function stats_emit_typed_data_field() does exactly like
stats_emit_raw_data_field() except that it also prints the data
type after a colon. This will be used to print using the typed
format.
And function stats_emit_field_tags() appends a 3-letter code
describing the origin, nature, and scope, followed by an optional
delimiter. This will be particularly convenient to dump typed
data.
We're preparing for various data types for each stats field as they
appear in the CSV output. For now we only cover the regular types handled
by printf, so we have 32 and 64 bit ints and counters, strings, and of
course "empty" to indicate that there's nothing in the field and which
guarantees that any accessed entry will return 0.
More types will surely come later so that some fields are properly
represented. For example, we could see limits where only the value 0
doesn't show up, or human time, etc.
This is the continuation of previous patch called "BUG/MAJOR: samples:
check smp->strm before using it".
It happens that variables may have a session-wide scope, and that their
session is retrieved by dereferencing the stream. But nothing prevents them
from being used from a streamless context such as tcp-request connection,
thus crashing the process. Example :
tcp-request connection accept if { src,set-var(sess.foo) -m found }
In order to fix this, we have to always ensure that variable manipulation
only happens via the sample, which contains the correct owner and context,
and that we never use one from a different source. This results in quite a
large change since a lot of functions are inderctly involved in the call
chain, but the change is easy to follow.
This fix must be backported to 1.6, and requires the last two patches.
Since commit 6879ad3 ("MEDIUM: sample: fill the struct sample with the
session, proxy and stream pointers") merged in 1.6-dev2, the sample
contains the pointer to the stream and sample fetch functions as well
as converters use it heavily. This requires from a lot of call places
to initialize 4 fields, and it was even forgotten at a few places.
This patch provides a convenient helper to initialize all these fields
at once, making it easy to prepare a new sample from a previous one for
example.
A few call places were cleaned up to make use of it. It will be needed
by further fixes.
At one place in the Lua code, it was moved earlier because we used to
call sample casts with a non completely initialized sample, which is
not clean eventhough at the moment there are no consequences.
the function server_parse_addr_change_request() contain an hardcoded
updater source "stats command". this function can be called from other
sources than the "stats command", so this patch make this argument
generic.
The commit 87b096 renames the functions srv_shutdown_backup_sessions()
and srv_shutdown_sessions() to srv_shutdown_backup_streams() and
srv_shutdown_streams().
The header file <proto/servers.h> does not repport these changes.
This bug should be repported in the 1.6 branch, even if it is useless
because new dev are frozen.
DNS selection preferences are actually declared inline in the
struct server. There are copied from the server struct to the
dns_resolution struct for each resolution.
Next patchs adds new preferences options, and it is not a good
way to copy all the configuration information before each dns
resolution.
This patch extract the configuration preference from the struct
server and declares a new dedicated struct. Only a pointer to this
new striuict will be copied before each dns resolution.
The +E mode escapes characters '"', '\' and ']' with '\' as prefix. It
mostly makes sense to use it in the RFC5424 structured-data log formats.
Example:
log-format-sd %{+Q,+E}o\ [exampleSDID@1234\ header=%[capture.req.hdr(0)]]
This patch moves the function hlua_checkudata which check that
an object contains the expected class_reference as metatable.
This function is commonly used by all the lua functions.
The function hlua_metatype is also moved.
When Lua executes functions from its API, these can throws an error.
These function must be executed in a special environment which catch
these error, otherwise a critical error (like segfault) can raise.
This patch add a c file called "hlua_fcn.c" which collect all the
Lua/c function needing safe environment for its execution.
Now, filter's configuration (.id, .conf and .ops fields) is stored in the
structure 'flt_conf'. So proxies own a flt_conf list instead of a filter
list. When a filter is attached to a stream, it gets a pointer on its
configuration. This avoids mixing the filter's context (owns by a stream) and
its configuration (owns by a proxy). It also saves 2 pointers per filter
instance.
Before, functions to filter HTTP body (and TCP data) were called from the moment
at least one filter was attached to the stream. If no filter is interested by
these data, this uselessly slows data parsing.
A good example is the HTTP compression filter. Depending of request and response
headers, the response compression can be enabled or not. So it could be really
nice to call it only when enabled.
So, now, to filter HTTP/TCP data, a filter must use the function
register_data_filter. For TCP streams, this function can be called only
once. But for HTTP streams, when needed, it must be called for each HTTP request
or HTTP response.
Only registered filters will be called during data parsing. At any time, a
filter can be unregistered by calling the function unregister_data_filter.
From the stream point of view, this new structure is opaque. it hides filters
implementation details. So, impact for future optimizations will be reduced
(well, we hope so...).
Some small improvements has been made in filters.c to avoid useless checks.
This new analyzer will be called for each HTTP request/response, before the
parsing of the body. It is identified by AN_FLT_HTTP_HDRS.
Special care was taken about the following condition :
* the frontend is a TCP proxy
* filters are defined in the frontend section
* the selected backend is a HTTP proxy
So, this patch explicitly add AN_FLT_HTTP_HDRS analyzer on the request and the
response channels when the backend is a HTTP proxy and when there are filters
attatched on the stream.
This patch simplifies http_request_forward_body and http_response_forward_body
functions.
For Chunked HTTP request/response, the body filtering can be really
expensive. In the worse case (many chunks of 1 bytes), the filters overhead is
of 3 calls per chunk. If http_data callback is useful, others are just
informative.
So these callbacks has been removed. Of course, existing filters (trace and
compression) has beeen updated accordingly. For the HTTP compression filter, the
update is quite huge. Its implementation is closer to the old one.
When no filter is attached to the stream, the CPU footprint due to the calls to
filters_* functions is huge, especially for chunk-encoded messages. Using macros
to check if we have some filters or not is a great improvement.
Furthermore, instead of checking the filter list emptiness, we introduce a flag
to know if filters are attached or not to a stream.
HTTP compression has been rewritten to use the filter API. This is more a PoC
than other thing for now. It allocates memory to work. So, if only for that, it
should be rewritten.
In the mean time, the implementation has been refactored to allow its use with
other filters. However, there are limitations that should be respected:
- No filter placed after the compression one is allowed to change input data
(in 'http_data' callback).
- No filter placed before the compression one is allowed to change forwarded
data (in 'http_forward_data' callback).
For now, these limitations are informal, so you should be careful when you use
several filters.
About the configuration, 'compression' keywords are still supported and must be
used to configure the HTTP compression behavior. In absence of a 'filter' line
for the compression filter, it is added in the filter chain when the first
compression' line is parsed. This is an easy way to do when you do not use other
filters. But another filter exists, an error is reported so that the user must
explicitly declare the filter.
For example:
listen tst
...
compression algo gzip
compression offload
...
filter flt_1
filter compression
filter flt_2
...
HTTP compression will be moved in a true filter. To prepare the ground, some
functions have been moved in a dedicated file. Idea is to keep everything about
compression algos in compression.c and everything related to the filtering in
flt_http_comp.c.
For now, a header has been added to help during the transition. It will be
removed later.
Unused empty ACL keyword list was removed. The "compression" keyword
parser was moved from cfgparse.c to flt_http_comp.c.
This patch adds the support of filters in HAProxy. The main idea is to have a
way to "easely" extend HAProxy by adding some "modules", called filters, that
will be able to change HAProxy behavior in a programmatic way.
To do so, many entry points has been added in code to let filters to hook up to
different steps of the processing. A filter must define a flt_ops sutrctures
(see include/types/filters.h for details). This structure contains all available
callbacks that a filter can define:
struct flt_ops {
/*
* Callbacks to manage the filter lifecycle
*/
int (*init) (struct proxy *p);
void (*deinit)(struct proxy *p);
int (*check) (struct proxy *p);
/*
* Stream callbacks
*/
void (*stream_start) (struct stream *s);
void (*stream_accept) (struct stream *s);
void (*session_establish)(struct stream *s);
void (*stream_stop) (struct stream *s);
/*
* HTTP callbacks
*/
int (*http_start) (struct stream *s, struct http_msg *msg);
int (*http_start_body) (struct stream *s, struct http_msg *msg);
int (*http_start_chunk) (struct stream *s, struct http_msg *msg);
int (*http_data) (struct stream *s, struct http_msg *msg);
int (*http_last_chunk) (struct stream *s, struct http_msg *msg);
int (*http_end_chunk) (struct stream *s, struct http_msg *msg);
int (*http_chunk_trailers)(struct stream *s, struct http_msg *msg);
int (*http_end_body) (struct stream *s, struct http_msg *msg);
void (*http_end) (struct stream *s, struct http_msg *msg);
void (*http_reset) (struct stream *s, struct http_msg *msg);
int (*http_pre_process) (struct stream *s, struct http_msg *msg);
int (*http_post_process) (struct stream *s, struct http_msg *msg);
void (*http_reply) (struct stream *s, short status,
const struct chunk *msg);
};
To declare and use a filter, in the configuration, the "filter" keyword must be
used in a listener/frontend section:
frontend test
...
filter <FILTER-NAME> [OPTIONS...]
The filter referenced by the <FILTER-NAME> must declare a configuration parser
on its own name to fill flt_ops and filter_conf field in the proxy's
structure. An exemple will be provided later to make it perfectly clear.
For now, filters cannot be used in backend section. But this is only a matter of
time. Documentation will also be added later. This is the first commit of a long
list about filters.
It is possible to have several filters on the same listener/frontend. These
filters are stored in an array of at most MAX_FILTERS elements (define in
include/types/filters.h). Again, this will be replaced later by a list of
filters.
The filter API has been highly refactored. Main changes are:
* Now, HA supports an infinite number of filters per proxy. To do so, filters
are stored in list.
* Because filters are stored in list, filters state has been moved from the
channel structure to the filter structure. This is cleaner because there is no
more info about filters in channel structure.
* It is possible to defined filters on backends only. For such filters,
stream_start/stream_stop callbacks are not called. Of course, it is possible
to mix frontend and backend filters.
* Now, TCP streams are also filtered. All callbacks without the 'http_' prefix
are called for all kind of streams. In addition, 2 new callbacks were added to
filter data exchanged through a TCP stream:
- tcp_data: it is called when new data are available or when old unprocessed
data are still waiting.
- tcp_forward_data: it is called when some data can be consumed.
* New callbacks attached to channel were added:
- channel_start_analyze: it is called when a filter is ready to process data
exchanged through a channel. 2 new analyzers (a frontend and a backend)
are attached to channels to call this callback. For a frontend filter, it
is called before any other analyzer. For a backend filter, it is called
when a backend is attached to a stream. So some processing cannot be
filtered in that case.
- channel_analyze: it is called before each analyzer attached to a channel,
expects analyzers responsible for data sending.
- channel_end_analyze: it is called when all other analyzers have finished
their processing. A new analyzers is attached to channels to call this
callback. For a TCP stream, this is always the last one called. For a HTTP
one, the callback is called when a request/response ends, so it is called
one time for each request/response.
* 'session_established' callback has been removed. Everything that is done in
this callback can be handled by 'channel_start_analyze' on the response
channel.
* 'http_pre_process' and 'http_post_process' callbacks have been replaced by
'channel_analyze'.
* 'http_start' callback has been replaced by 'http_headers'. This new one is
called just before headers sending and parsing of the body.
* 'http_end' callback has been replaced by 'channel_end_analyze'.
* It is possible to set a forwarder for TCP channels. It was already possible to
do it for HTTP ones.
* Forwarders can partially consumed forwardable data. For this reason a new
HTTP message state was added before HTTP_MSG_DONE : HTTP_MSG_ENDING.
Now all filters can define corresponding callbacks (http_forward_data
and tcp_forward_data). Each filter owns 2 offsets relative to buf->p, next and
forward, to track, respectively, input data already parsed but not forwarded yet
by the filter and parsed data considered as forwarded by the filter. A any time,
we have the warranty that a filter cannot parse or forward more input than
previous ones. And, of course, it cannot forward more input than it has
parsed. 2 macros has been added to retrieve these offets: FLT_NXT and FLT_FWD.
In addition, 2 functions has been added to change the 'next size' and the
'forward size' of a filter. When a filter parses input data, it can alter these
data, so the size of these data can vary. This action has an effet on all
previous filters that must be handled. To do so, the function
'filter_change_next_size' must be called, passing the size variation. In the
same spirit, if a filter alter forwarded data, it must call the function
'filter_change_forward_size'. 'filter_change_next_size' can be called in
'http_data' and 'tcp_data' callbacks and only these ones. And
'filter_change_forward_size' can be called in 'http_forward_data' and
'tcp_forward_data' callbacks and only these ones. The data changes are the
filter responsability, but with some limitation. It must not change already
parsed/forwarded data or data that previous filters have not parsed/forwarded
yet.
Because filters can be used on backends, when we the backend is set for a
stream, we add filters defined for this backend in the filter list of the
stream. But we must only do that when the backend and the frontend of the stream
are not the same. Else same filters are added a second time leading to undefined
behavior.
The HTTP compression code had to be moved.
So it simplifies http_response_forward_body function. To do so, the way the data
are forwarded has changed. Now, a filter (and only one) can forward data. In a
commit to come, this limitation will be removed to let all filters take part to
data forwarding. There are 2 new functions that filters should use to deal with
this feature:
* flt_set_http_data_forwarder: This function sets the filter (using its id)
that will forward data for the specified HTTP message. It is possible if it
was not already set by another filter _AND_ if no data was yet forwarded
(msg->msg_state <= HTTP_MSG_BODY). It returns -1 if an error occurs.
* flt_http_data_forwarder: This function returns the filter id that will
forward data for the specified HTTP message. If there is no forwarder set, it
returns -1.
When an HTTP data forwarder is set for the response, the HTTP compression is
disabled. Of course, this is not definitive.
The serial number for a generated certificate was computed using the requested
servername, without any variable/random part. It is not a problem from the
moment it is not regenerated.
But if the cache is disabled or when the certificate is evicted from the cache,
we may need to regenerate it. It is important to not reuse the same serial
number for the new certificate. Else clients (especially browsers) trigger a
warning because 2 certificates issued by the same CA have the same serial
number.
So now, the serial is a static variable initialized with now_ms (internal date
in milliseconds) and incremented at each new certificate generation.
(Ref MPS-2031)
in function 'si_connect', an existing connection is reused (and considered as
established) only when there are some pending data in the output channel.
This can be problem when filters are used, because a filter can choose to not
forward data immediatly. So when we try to initiate a connection to a server,
the output channel can be empty. In this situation, if the connection already
exists, it is not considered as established and nothing happens. If the stream
interface is in the state SI_ST_ASS, this leads to an infinite loop in
process_stream because it remains in this state.
This patch fixes this problem. Now, in 'si_connect', we always reuse an existing
connection, whether or not there are pending data in the output channel.
The function channel_recv_limit() relies on channel_reserved() which
itself relies on channel_in_transit(). Individually they're OK but
combined they're doing the wrong thing.
The problem is that we refrain from filling buffers while to_forward
is even much larger than the buffer because of a semantic issue along
the call chain. This is particularly visible when offloading SSL on
moderately large files (1 MB), though it is also visible on clear text.
Twice the number of recv() calls are made compared to what is needed,
and the typical performance drops by 15-20% in SSL in 1.6 and later,
and no directly measurable drop in 1.5 except when using strace.
There's no need for all these intermediate functions, so let's get
rid of them and reimplement channel_recv_limit() from scratch in a
safer way.
This fix needs to be backported to 1.6 and 1.5 (at least). Note that in
1.5 the function is called buffer_recv_limit() and it may differ a bit.
This function should return a 16-bit type as that is the type for
dns header id.
Also because it is doing an uint16 unpack big-endian operation.
Backport: can be backported to 1.6
Signed-off-by: Thiago Farina <tfarina@chromium.org>
Signed-off-by: Baptiste Assmann <bedis9@gmail.com>
The function http_reply_and_close has been added in proto_http.c to wrap calls
to stream_int_retnclose. This functions will be modified when the filters will
be added.
It is possible to create a http capture rule which points to a capture slot
id which does not exist.
Current patch prevent this when parsing configuration and prevent running
configuration which contains such rules.
This configuration is now invalid:
frontend f
bind :8080
http-request capture req.hdr(User-Agent) id 0
default_backend b
this one as well:
frontend f
bind :8080
declare capture request len 32 # implicit id is 0 here
http-request capture req.hdr(User-Agent) id 1
default_backend b
It applies of course to both http-request and http-response rules.
This is done by adding EVP_PKEY_EC type in supported types for the CA private
key when we get the message digest used to sign a generated X509 certificate.
So now, we support DSA, RSA and EC private keys.
And to be sure, when the type of the private key is not directly supported, we
get its default message digest using the function
'EVP_PKEY_get_default_digest_nid'.
We also use the key of the default certificate instead of generated it. So we
are sure to use the same key type instead of always using a RSA key.
First, the LRU cache must be initialized after the configuration parsing to
correctly set its size.
Next, the function 'ssl_sock_set_generated_cert' returns -1 when an error occurs
(0 if success). In that case, the caller is responsible to free the memory
allocated for the certificate.
Finally, when a SSL certificate is generated by HAProxy but cannot be inserted
in the cache, it must be freed when the SSL connection is closed. This happens
when 'tune.ssl.ssl-ctx-cache-size' is set to 0.
Michael Ezzell reported a bug causing haproxy to segfault during startup
when trying to send syslog message from Lua. The function __send_log() can
be called with *p that is NULL and/or when the configuration is not fully
parsed, as is the case with Lua.
This patch fixes this problem by using individual vectors instead of the
pre-generated strings log_htp and log_htp_rfc5424.
Also, this patch fixes a problem causing haproxy to write the wrong pid in
the logs -- the log_htp(_rfc5424) strings were generated at the haproxy
start, but "pid" value would be changed after haproxy is started in
daemon/systemd mode.
This patch adds a new RFC5424-specific log-format for the structured-data
that is automatically send by __send_log() when the sender is in RFC5424
mode.
A new statement "log-format-sd" should be used in order to set log-format
for the structured-data part in RFC5424 formatted syslog messages.
Example:
log-format-sd [exampleSDID@1234\ bytes=\"%B\"\ status=\"%ST\"]
The function __send_log() iterates over senders and passes the header as
the first vector to sendmsg(), thus it can send a logger-specific header
in each message.
A new logger arguments "format rfc5424" should be used in order to enable
RFC5424 header format. For example:
log 10.2.3.4:1234 len 2048 format rfc5424 local2 info
At the moment we have to call snprintf() for every log line just to
rebuild a constant. Thanks to sendmsg(), we send the message in 3 parts:
time-based header, proxy-specific hostname+log-tag+pid, session-specific
message.
This new target can be called from the frontend or the backend. It
is evaluated just before the backend choice and just before the server
choice. So, the input stream or HTTP request can be forwarded to a
server or to an internal service.
While the SI_ST_DIS state is set *after* doing the close on a connection,
it was set *before* calling release on an applet. Applets have no internal
flags contrary to connections, so they have no way to detect they were
already released. Because of this it happened that applets were closed
twice, once via si_applet_release() and once via si_release_endpoint() at
the end of a transaction. The CLI applet could perform a double free in
this case, though the situation to cause it is quite hard because it
requires that the applet is stuck on output in states that produce very
few data.
In order to solve this, we now assign the SI_ST_DIS state *after* calling
->release, and we refrain from doing so if the state is already assigned.
This makes applets work much more like connections and definitely avoids
this double release.
In the future it might be worth making applets have their own flags like
connections to carry their own state regardless of the stream interface's
state, especially when dealing with connection reuse.
No backport is needed since this issue was caused by the rearchitecture
in 1.6.
This function is a callback made only for calls from the applet handler.
Rename it to remove confusion. It's currently called from the Lua code
but that's not correct, we should call the notify and update functions
instead otherwise it will not enable the applet again.
This one is not needed anymore as what it used to do is either
completely covered by the new stream_int_notify() function, or undesired
and inherited from the past as a side effect of introducing the
connections.
This update is theorically never called since it's assigned only when
nothing is connected to the stream interface. However a test has been
added to si_update() to stay safe if some foreign code decides to call
si_update() in unsafe situations.
stream_int_notify() was taken from the common part between si_conn_wake_cb()
and si_applet_done(). It is designed to report activity to a stream from
outside its handler. It'll generally be used by lower layers to report I/O
completion but may also be used by remote streams if the buffer processing
is shared.
Now the call to stream_int_update() is moved to si_update(), which
is exclusively called from the stream, so that the socket layer may
be updated without updating the stream layer. This will later permit
to call it individually from other places (other tasks or applets for
example).
This function is designed to be called from within the stream handler to
update the channels' expiration timers and the stream interface's flags
based on the channels' flags. It needs to be called only once after the
channels' flags have settled down, and before they are cleared, though it
doesn't harm to call it as often as desired (it just slightly hurts
performance). It must not be called from outside of the stream handler,
as what it does will be used to compute the stream task's expiration.
The code was taken directly from stream_int_update_applet() and
stream_int_update_conn() which had exactly the same one except for
applet-specific or connection-specific status update.
This is not a real run queue and we're facing ugly bugs because
if this : if a an applet removes another applet from the queue,
typically the next one after itself, the list iterator loops
forever because the list's backup pointer is not valid anymore.
Before creating a run queue, let's rename this list.
Mailing list participant "mlist" reported negative conn_cur values in
stick tables as the result of "tcp-request connection track-sc". The
reason is that after the stick entry it copied from the session to the
stream, both the session and the stream grab a reference to the entry
and when the stream ends, it decrements one reference and one connection,
then the same is done for the session.
In fact this problem was already encountered slightly differently in the
past and addressed by Thierry using the patch below as it was believed by
then to be only a refcount issue since it was the observable symptom :
827752e "BUG/MEDIUM: stick-tables: refcount error after copying SC..."
In reality the problem is that the stream must touch neither the refcount
nor the connection count for entries it inherits from the session. While
we have no way to tell whether a track entry was inherited from the session
(since they're simply memcpy'd), it is possible to prevent the stream from
touching an entry that already exists in the session because that's a
guarantee that it was inherited from it.
Note that it may be a temporary fix. Maybe in the future when a session
gives birth to multiple streams we'll face a situation where a session may
be updated to add more tracked entries after instanciating some streams.
The correct long-term fix is to mark some tracked entries as shared or
private (or RO/RW). That will allow the session to track more entries
even after the same trackers are being used by early streams.
No backport is needed, this is only caused by the session/stream split in 1.6.
Added the definition of CHECK_HTTP_MESSAGE_FIRST and the declaration of
smp_prefetch_http to the header.
Changed smp_prefetch_http implementation to remove the static qualifier.
This directive gives HAProxy the ability to use the either the global
server-state-file directive or a local one using server-state-file-name to
load server states.
The state can be saved right before the reload by the init script, using
the "show servers state" command on the stats socket redirecting output into
a file.
This patch is inspired by Bowen Ni's proposal and it is based on his first
implementation:
With Lua integration in HAProxy 1.6, one can change the request method,
path, uri, header, response header etc except response line.
I'd like to contribute the following methods to allow modification of the
response line.
[...]
There are two new keywords in 'http-response' that allows you to rewrite
them in the native HAProxy config. There are also two new APIs in Lua that
allows you to do the same rewriting in your Lua script.
Example:
Use it in HAProxy config:
*http-response set-code 404*
Or use it in Lua script:
*txn.http:res_set_reason("Redirect")*
I dont take the full patch because the manipulation of the "reason" is useless.
standard reason are associated with each returned code, and unknown code can
take generic reason.
So, this patch can set the status code, and the reason is automatically adapted.
This was the first transparent proxy technology supported by haproxy
circa 2005 but it was obsoleted in 2007 by Tproxy 4.0 which removed a
lot of the earlier versions' shortcomings and was finally merged into
the kernel. Since nobody has been using cttproxy for many years now
and nobody has even just tried to compile the files, it's time to
remove it. The doc was updated as well.
This patch removes the special stick tables types names and
use the standard sample type names. This avoid the maintainance
of two types and remove the switch/case for matching a sample
type for each stick table type.
This patch is the first step for sample integration. Actually
the stick tables uses her own data type, and some converters
must be called to convert sample type to stick-tables types.
This patch removes the stick-table types and replace it by
the sample types. This prevent:
- Maintenance of two types of converters
- reduce the code using the samples converters
Each (http|tcp)-(request|response) action use the same method
for looking up the action keyword during the cofiguration parsing.
This patch mutualize the code.
This patch merges the conguration keyword struct. Each declared configuration
keyword struct are similar with the others. This patch simplify the code.
For performances considerations, some actions are not processed by remote
function. They are directly processed by the function. Some of these actions
does the same things but for different processing part (request / response).
This patch give the same name for the same actions, and change the normalization
of the other actions names.
This patch is ONLY a rename, it doesn't modify the code.
This patch is the first of a serie which merge all the action structs. The
function "tcp-request content", "tcp-response-content", "http-request" and
"http-response" have the same values and the same process for some defined
actions, but the struct and the prototype of the declared function are
different.
This patch try to unify all of these entries.
This patch remove the struct information stored both in the struct
sample_data and in the striuct sample. Now, only thestruct sample_data
contains data, and the struct sample use the struct sample_data for storing
his own data.
appsessions started to be deprecated with the introduction of stick
tables, and the latter are much more powerful and flexible, and in
addition they are replicated between nodes and maintained across
reloads. Let's now remove appsession completely.
This function is now dedicated to idle connections only, which means
that it must not be used without any endpoint nor anything not a
connection. The connection remains attached to the stream interface.
This list member will be used to attach a connection to a list of
idle, reusable or queued connections. It's unused for now. Given
that it's not expected to be used more than a few times per session,
the member was put after the target, in the area starting at the
second cache line of the structure.
This function only detaches the endpoint from the stream-int and
optionally returns the original pointer. This will be needed to
steal idle connections from other connections.
Since we now always call this function with the reuse parameter cleared,
let's simplify the function's logic as it cannot return the existing
connection anymore. The savings on this inline function are appreciable
(240 bytes) :
$ size haproxy.old haproxy.new
text data bss dec hex filename
1020383 40816 36928 1098127 10c18f haproxy.old
1020143 40816 36928 1097887 10c09f haproxy.new
This patch introduces three new functions which can be used to find a
server in a farm using different server information:
- server unique id (srv->puid)
- server name
- find best match using either name or unique id
When performing best matching, the following applies:
- use the server name first (if provided)
- use the server id if provided
in any case, the function can update the caller about mismatches
encountered.
Change si_alloc_conn() to call si_release_endpoint() instead of
open-coding the connection releasing code when reuse is disabled.
This fuses the code with the one already dealing with applets, makes
it shorter and helps centralizing the connection freeing logic at a
single place.
ssl_sock_set_servername() is used to set the SNI hostname on an
outgoing connection. This function comes from code originally
provided by Christopher Faulet of Qualys.
This modification makes possible to use sample_fetch_string() in more places,
where we might need to fetch sample values which are not plain strings. This
way we don't need to fetch string, and convert it into another type afterwards.
When using aliased types, the caller should explicitly check which exact type
was returned (e.g. SMP_T_IPV4 or SMP_T_IPV6 for SMP_T_ADDR).
All usages of sample_fetch_string() are converted to use new function.
When Lua is disabled, the alternate functions must have the same
prototype as the original ones, otherwise we get such warnings :
src/stream.c:278:27: warning: too many arguments in call to 'hlua_ctx_destroy'
hlua_ctx_destroy(&s->hlua);
~~~~~~~~~~~~~~~~ ^
No backport is needed.
This patch adds two functions used for variable acces using the
variable full name. If the variable doesn't exists in the variable
pool name, it is created.
This patch adds support of variables during the processing of each stream. The
variables scope can be set as 'session', 'transaction', 'request' or 'response'.
The variable type is the type returned by the assignment expression. The type
can change while the processing.
The allocated memory can be controlled for each scope and each request, and for
the global process.
Implementation of a DNS client in HAProxy to perform name resolution to
IP addresses.
It relies on the freshly created UDP client to perform the DNS
resolution. For now, all UDP socket calls are performed in the
DNS layer, but this might change later when the protocols are
extended to be more suited to datagram mode.
A new section called 'resolvers' is introduced thanks to this patch. It
is used to describe DNS servers IP address and also many parameters.
Basic introduction of a UDP layer in HAProxy. It can be used as a
client only and manages UDP exchanges with servers.
It can't be used to load-balance UDP protocols, but only used by
internal features such as DNS resolution.
Ability to change a server IP address during HAProxy run time.
For now this is provided via function update_server_addr() which
currently is not called.
A log is emitted on each change. For now we do it inconditionally,
but later we'll want to do it only on certain circumstances, which
explains why the logging block is enclosed in if(1).
Following functions are now available in the SSL public API:
* ssl_sock_create_cert
* ssl_sock_get_generated_cert
* ssl_sock_set_generated_cert
* ssl_sock_generated_cert_serial
These functions could be used to create a certificate by hand, set it in the
cache used to store generated certificates and retrieve it. Here is an example
(pseudo code):
X509 *cacert = ...;
EVP_PKEY *capkey = ...;
char *servername = ...;
unsigned int serial;
serial = ssl_sock_generated_cert_serial(servername, strlen(servername));
if (!ssl_sock_get_generated_cert(serial, cacert)) {
SSL_CTX *ctx = ssl_sock_create_cert(servername, serial, cacert, capkey);
ssl_sock_set_generated_cert(ctx, serial, cacert);
}
With this patch, it is possible to configure HAProxy to forge the SSL
certificate sent to a client using the SNI servername. We do it in the SNI
callback.
To enable this feature, you must pass following BIND options:
* ca-sign-file <FILE> : This is the PEM file containing the CA certitifacte and
the CA private key to create and sign server's certificates.
* (optionally) ca-sign-pass <PASS>: This is the CA private key passphrase, if
any.
* generate-certificates: Enable the dynamic generation of certificates for a
listener.
Because generating certificates is expensive, there is a LRU cache to store
them. Its size can be customized by setting the global parameter
'tune.ssl.ssl-ctx-cache-size'.
This patch adds the ssl-dh-param-file global setting. It sets the
default DH parameters that will be used during the SSL/TLS handshake when
ephemeral Diffie-Hellman (DHE) key exchange is used, for all "bind" lines
which do not explicitely define theirs.
This patch does'nt add any new feature: the functional behavior
is the same than version 1.0.
Technical differences:
In this version all updates on different stick tables are
multiplexed on the same tcp session. There is only one established
tcp session per peer whereas in first version there was one established
tcp session per peer and per stick table.
Messages format was reviewed to be more evolutive and to support
further types of data exchange such as SSL sessions or other sticktable's
data types (currently only the sticktable's server id is supported).
In order to support http-response redirect, the parsing needs to be
adapted a little bit to only support the "location" type, and to
adjust the log-format parser so that it knows the direction of the
sample fetch calls.
This function tries to spot a proxy by its name, ID and type, and
in case some elements don't match, it tries to determine which ones
could be ignored and reports which ones were ignored so that the
caller can decide whether or not it wants to pick this proxy. This
will be used for maintaining the status across reloads where the
config might have changed a bit.
It does the same as the other one except that it only focuses on the
numeric ID and the capabilities. It's used by proxy_find_by_name()
for numeric names.
First, findproxy() was renamed proxy_find_by_name() so that its explicit
that a name is required for the lookup. Second, we give this function
the ability to search for tables if needed. Third we now provide inline
wrappers to pass the appropriate PR_CAP_* flags and to explicitly look
up a frontend, backend or table.
Until now, HAproxy needed to be restarted to change the TLS ticket
keys. With this patch, the TLS keys can be updated on a per-file
basis using the admin socket. Two new socket commands have been
introduced: "show tls-keys" and "set ssl tls-keys".
Signed-off-by: Nenad Merdanovic <nmerdan@anine.io>
This patch removes the structs "session", "stream" and "proxy" from
the sample-fetches and converters function prototypes.
This permits to remove some weight in the prototype call.
Currently we have a problem. There are some cases where a sleeping applet
is not woken up (eg: show sess during an injection). The reason is that
the applet is marked WAIT_DATA and is not woken up when WAIT_ROOM leaves,
because we wait for both flags to be cleared in order to call it.
And if we wait for either flag, then we have the opposite situation, which
is that we're not waiting for room in the output buffer so we're spinning
calling the applet to do nothing.
What is missing is an indication of what the applet needs. Since it only
manipulates the WAIT_ROOM/WAIT_DATA which are overwritten later, that cannot
work. In the case of connections, the problem doesn't happen because the
connection maintains these extra states. Ideally we'd need to have similar
states for each appctx and to store those information there. But it would
be overcomplicated given that an applet doesn't exist alone without a
stream-int, so we can safely put these information into the stream int and
make the code simpler.
With this patch we introduce two new flags in the stream interface :
- SI_FL_WANT_PUT : the applet wants to put something into the buffer
- SI_FL_WANT_GET : the applet wants to get something from the buffer
We also have the new functions si_applet_{stop|want|cant}_{get|put}
to make the code look similar to the connection code.
For now these flags are not used yet.
This is the equivalent of si_conn_wake() but for applets. It will be
called after changes to the stream interface are brought by the applet
I/O handler. Ultimately it will release buffers and may be even wake
the stream's task up if some important changes are detected.
It would be nice to be able to merge it with the connection's wake
function since it mostly manipulates the stream interface, but there
are minor differences (such as how to enable/disable polling on a fd
vs applet) and some specificities to applets (eg: don't wake the
applet up until the output is empty) which would require abstract
functions which would slow down everything.
The new function is called for each round of polling in order to call any
active appctx. For now we pick the stream interface from the appctx's
owner. At the moment there's no appctx queued yet, but we have everything
needed to queue them and remove them.
Now that applet's functions only take an appctx in argument, not a
stream interface. This slightly simplifies the code and will be needed
to take the appctx out of the stream interface.
It happened after changing the stream interface deinitialization
sequence that we got random crashes with si_shutw() being called
on NULL si->end. The reason was that si->ops was not reset after
a call to si_release_endpoint() which is sometimes called directly.
Thus we now move the resetting of si->ops just after any si->end
assignment. It happens that si_detach() is now just the same as
si_release_endpoint() and stream_int_unregister_handler(). Some
cleanup will have to be performed there.
It's not sure whether this problem can impact 1.5 since in 1.5
applets are part of the default embedded stream handler. The only
way it could cause some trouble is if it's used with a connection,
which doesn't seem possible at first glance.
We don't pass sess->origin anymore but the pointer to the previous step. Now
it should be much easier to chain elements together once applets are moved out
of streams. Indeed, the session is only used for configuration and not for the
dynamic chaining anymore.
This patch cretes a new Map class that permits to do some lookup in
HAProxy maps. This Map class is integration in the HAProxy update
system, so we can modify the map throught the socket.
The function was called stream_accept_session(), let's rename it
stream_new() and make it return the newly allocated pointer. It's
more convenient for some callers who need it.
This concerns everythins related to accepting a new session and
expiring the embryonic session. There's still a hard-coded call
to stream_accept_session() which could be set somewhere in the
frontend, but for now it's not a problem.
It passes a NULL wherever a stream was needed (acl_exec_cond() and
action_ptr mainly). It can still track the connection rate correctly
and block based on ACLs.
In order to support sessions tracking counters, we first ensure that there
is no overlap between streams' stkctr and sessions', and we allow an
automatic lookup into the session's counters when the stream doesn't
have a counter or when the stream doesn't exist during an access via
a sample fetch. The functions used to update the stream counters only
update them and not the session counters however.
Many such function need a session, and till now they used to dereference
the stream. Once we remove the stream from the embryonic session, this
will not be possible anymore.
So as of now, sample fetch functions will be called with this :
- sess = NULL, strm = NULL : never
- sess = valid, strm = NULL : tcp-req connection
- sess = valid, strm = valid, strm->txn = NULL : tcp-req content
- sess = valid, strm = valid, strm->txn = valid : http-req / http-res
The registerable http_req_rules / http_res_rules used to require a
struct http_txn at the end. It's redundant with struct stream and
propagates very deep into some parts (ie: it was the reason for lua
requiring l7). Let's remove it now.
All of them can now retrieve the HTTP transaction *if it exists* from
the stream and be sure to get NULL there when called with an embryonic
session.
The patch is a bit large because many locations were touched (all fetch
functions had to have their prototype adjusted). The opportunity was
taken to also uniformize the call names (the stream is now always "strm"
instead of "l4") and to fix indent where it was broken. This way when
we later introduce the session here there will be less confusion.
Now this one is dynamically allocated. It means that 280 bytes of memory
are saved per TCP stream, but more importantly that it will become
possible to remove the l7 pointer from fetches and converters since
it will be deduced from the stream and will support being null.
A lot of care was taken because it's easy to forget a test somewhere,
and the previous code used to always trust s->txn for being valid, but
all places seem to have been visited.
All HTTP fetch functions check the txn first so we shouldn't have any
issue there even when called from TCP. When branching from a TCP frontend
to an HTTP backend, the txn is properly allocated at the same time as the
hdr_idx.
There is now a pointer to the session in the stream, which is NULL
for now. The session pool is created as well. Some parts will move
from the stream to the session now.
With HTTP/2, we'll have to support multiplexed streams. A stream is in
fact the largest part of what we currently call a session, it has buffers,
logs, etc.
In order to catch any error, this commit removes any reference to the
struct session and tries to rename most "session" occurrences in function
names to "stream" and "sess" to "strm" when that's related to a session.
The files stream.{c,h} were added and session.{c,h} removed.
The session will be reintroduced later and a few parts of the stream
will progressively be moved overthere. It will more or less contain
only what we need in an embryonic session.
Sample fetch functions and converters will have to change a bit so
that they'll use an L5 (session) instead of what's currently called
"L4" which is in fact L6 for now.
Once all changes are completed, we should see approximately this :
L7 - http_txn
L6 - stream
L5 - session
L4 - connection | applet
There will be at most one http_txn per stream, and a same session will
possibly be referenced by multiple streams. A connection will point to
a session and to a stream. The session will hold all the information
we need to keep even when we don't yet have a stream.
Some more cleanup is needed because some code was already far from
being clean. The server queue management still refers to sessions at
many places while comments talk about connections. This will have to
be cleaned up once we have a server-side connection pool manager.
Stream flags "SN_*" still need to be renamed, it doesn't seem like
any of them will need to move to the session.
There's no reason for exporting identity_* nor deflate_*, they're only
used in the same file. Mark them static, it will make it easier to add
other algorithms.
Till now we used to rely on a fixed maximum chunk size. Thanks to last
commit we're now free to adjust the chunk's length before sending the
data, so we don't have to use 6 digits all the time anymore, and if
one wants buffers larger than 16 MB it is now possible.
This function is a callback for HTTP actions. This function
creates the replacement string from a build_logline() format
and transform the header.
This patch split this function in two part. With this modification,
the header transformation and the replacement string are separed.
We can now transform the header with another replacement string
source than a build_logline() format.
The first part is the replacement engine. It take a replacement action
number and a replacement string and process the action.
The second part is the function which is called by the 'http-request
action' to replace a request line part. This function makes the
string used as replacement.
This split permits to use the replacement engine in other parts of the
code than the request action. The Lua use it for his own http action.
It's now called conn_sock_drain() to make it clear that it only reads
at the sock layer and not at the data layer. The function was too big
to remain inlined and it's used at a few places where size counts.
Currently si_idle_conn_null_cb() has to perform some low-level checks
over the file descriptor and the connection configuration that should
only belong to conn_drain(). Let's move these controls there. The
function now automatically checks for errors and hangups on the file
descriptor for example, and disables recv polling if there's no drain
function at the control layer.
This function is an equivalent to send() which operates over a connection
instead of a file descriptor. It checks that the control layer is ready
and that it's allowed to send. If automatically enables polling if it
cannot send. It simplifies the return checks by returning zero in all
cases where it cannot send so that the caller only has to care about
negative values indicating errors.
This will save callers from having to care about conn->xprt and xprt->shutw.
Note that shutw() takes a second argument indicating whether it's a clean or
a hard shutw. This is used by SSL which tries to close cleanly in most cases.
Here we provide two versions, conn_data_shutw() which performs the clean
close, and conn_data_shutw_hard() which does the unclean one.
This function was not used yet and was only supposed to mark the connection
as shutdown for write. Unfortunately at other places in stream_interface.c,
we're seeing a bit of layering violations with attempts to perform the shutdown
on the fd directly. Let's make this function call shutdown() itself so that
the callers only have to care about the connection.
Now that we can get the session from the channel, let's simplify the
prototype of session_alloc_recv_buffer() to only require the channel.
Both the caller and the function are now simplified.
The purpose of these two macros will be to pass via the session to
find the relevant stream interfaces so that we don't need to store
the ->cons nor ->prod pointers anymore. Currently they're only defined
so that all references could be removed.
Note that many places need a second pass of clean up so that we don't
have any chn_prod(&s->req) anymore and only &s->si[0] instead, and
conversely for the 3 other cases.
At a few places we need to find one stream interface from the other one.
Instead of passing via the channel, we simply use the session as an
intermediary, which simply results in applying an offset to the pointer.
We go back to the session to get the owner. Here again it's very easy
and is just a matter of relative offsets. Since the owner always exists
and always points to the session's task, we can remove some unneeded
tests.
In order to plan removal of si->ib / si->ob, we now check the side of the
stream interface and find the session, then the requested channel. In
practice it's just an offset applied to the pointer based on the flag.
This new flag "SI_FL_ISBACK" is set only on the back SI and is cleared
on the front SI. That way it's possible only by looking at the SI to
know what side it is.
We'll soon remove direct references to the channels from the stream
interface since everything belongs to the same session, so let's
first not dereference si->ib / si->ob anymore and use macros instead.
If we are writing in the request buffer, we are not waked up
when the data are forwarded because it is useles. The request
analyzers are waked up only when data is incoming. So, if the
request buffer is full, we set the WAKE_ON_WRITE flag.
Before this patch, each yield in a Lua action set a flags to be
waked up when some activity were detected on the response channel.
This behavior causes loop in the analyzer process.
This patch set the wake up on response buffer activity only if we
really want to be waked up on this activity.
This flag indicate that the current yield is returned by the Lua
execution task control. If this flag is set, the current task may
quit but will be set in the run queue to be re-executed immediatly.
This patch modify the "hlua_yieldk()" function, it adds an argument
that contain a field containing yield options.
In the future, the lua execution must return scheduling informations.
We want more than one flag, so I convert an integer used with an
enum into an interer used as bitfield.
This system permits to execute some lua function after than HAProxy
complete his initialisation. These functions are executed between
the end of the configuration parsing and check and the begin of the
scheduler.
This is the first step of the lua integration. We add the useful
files in the HAProxy project. These files contains the main
includes, the Makefile options and empty initialisation function.
Is is the LUA skeleton.
We now have functions to retrieve one block and one line from
either the input or the output part of a buffer. They return
up to two (pointer,length) values in case the buffer wraps.
This patch introduces an action keyword registration system for TCP
rulesets similar to what is available for HTTP rulesets. This sytem
will be useful with lua.
These modifications are done for resolving cross-dependent
includes in the upcoming LUA code.
<proto/channel.h> misses <types/channel.h>.
<types/acl.h> doesn't use <types/session.h> because the session
is already declared in the file as undefined pointer.
appsession.c misses <unistd.h> to use "write()".
Declare undefined pointer "struct session" for <types/proxy.h>
and <types/queue.h>. These includes dont need the detail of this
struct.
The functions "val_payload_lv" and "val_hdr" are useful with
lua. The lua automatic binding for sample fetchs needs to
compare check functions.
The "arg_type_names" permit to display error messages.
Actually, HAProxy uses the function "process_runnable_tasks" and
"wake_expired_tasks" to get the next task which can expires.
If a task is added with "task_schedule" or other method during
the execution of an other task, the expiration of this new task
is not taken into account, and the execution of this task can be
too late.
Actualy, HAProxy seems to be no sensitive to this bug.
This fix moves the call to process_runnable_tasks() before the timeout
calculation and ensures that all wakeups are processed together. Only
wake_expired_tasks() needs to return a timeout now.
As found by Thierry Fournier, if a task manages to kill another one and
if this other task is the next one in the run queue, we can do whatever
including crashing, because the scheduler restarts from the saved next
task. For now, there is no such concept of a task killing another one,
but with Lua it will come.
A solution consists in always performing the lookup of the first task in
the scheduler's loop, but it's expensive and costs around 2% of the
performance.
Another solution consists in keeping a global next run queue node and
ensuring that when this task gets removed, it updates this pointer to
the next one. This allows to simplify the code a bit and in the end to
slightly increase the performance (0.3-0.5%). The mechanism might still
be usable if we later migrate to a multi-threaded scheduler.
The patch "MEDIUM: args: increase arg type to 5 bits and limit arg count
to 5" (dbc79d0a) increased the number of types supported, but forgot to
remove the ARG6/ARG7 macros.
This patch adds a new option which allows configuration of the maximum
log level of messages for which email alerts will be sent.
The default is alert which is more restrictive than
the current code which sends email alerts for all priorities.
That behaviour may be configured using the new configuration
option to set the maximum level to notice or greater.
email-alert level notice
Signed-off-by: Simon Horman <horms@verge.net.au>
Refactor init_check so that an error string is returned
rather than alerts being printed by it. Also
init_check to checks.c and provide a prototype to allow
it to be used from multiple C files.
Signed-off-by: Simon Horman <horms@verge.net.au>
This is in order to add new types. This patch does not change anything
else. Two remaining (harmless) occurrences of a count of 8 instead of 7
were fixed by this patch : empty_arg_list[] and the for() loop counting
args.
It applies to the channel and it doesn't erase outgoing data, only
pending unread data, which is strictly equivalent to what recv()
does with MSG_TRUNC, so that new name is more accurate and intuitive.
This name more accurately reminds that it applies to a channel and not
to a buffer, and that what is returned may be used as a max number of
bytes to pass to recv().
This applies to the channel, not the buffer, so let's fix this name.
Warning, the function's name happens to be the same as the old one
which was mistakenly used during 1.5.
This function's name was poorly chosen and is confusing to the point of
being suspiciously used at some places. The operations it does always
consider the ability to forward pending input data before receiving new
data. This is not obvious at all, especially at some places where it was
used when consuming outgoing data to know if the buffer has any chance
to ever get the missing data. The code needs to be re-audited with that
in mind. Care must be taken with existing code since the polarity of the
function was switched with the renaming.
channel_reserved is confusingly named. It is used to know whether or
not the rewrite area is left intact for situations where we want to
ensure we can use it before proceeding. Let's rename it to fix this
confusion.
Option http-send-name-header is still hurting. If a POST request has to be
redispatched when this option is used, and the next server's name is larger
than the initial one, and the POST body fills the buffer, it becomes
impossible to rewrite the server's name in the buffer when redispatching.
In 1.4, this is worse, the process may crash because of a negative size
computation for the memmove().
The only solution to fix this is to refrain from eating the reserve before
we're certain that we won't modify the buffer anymore. And the condition for
that is that the connection is established.
This patch introduces "channel_may_send()" which helps to detect whether it's
safe to eat the reserve or not. This condition is used by channel_in_transit()
introduced by recent patches.
This patch series must be backported into 1.5, and a simpler version must be
backported into 1.4 where fixing the bug is much easier since there were no
channels by then. Note that in 1.4 the severity is major.
This function returns the amount of bytes in transit in a channel's buffer,
which is the amount of outgoing data plus the amount of incoming data bound
to the forward limit.
We know that all incoming data are going to be purged if to_forward
is greater than them, not only if greater than the buffer size. This
buf has no direct impact on this version, but it participates to some
bugs affecting http-send-name-header since 1.4. This fix will have to
be backported down to 1.4 albeit in a different form.
The buffer_max_len() function is subject to an integer overflow in this
calculus :
int ret = global.tune.maxrewrite - chn->to_forward - chn->buf->o;
- chn->to_forward may be up to 2^31 - 1
- chn->buf->o may be up to chn->buf->size
- global.tune.maxrewrite is by definition smaller than chn->buf->size
Thus here we can subtract (2^31 + buf->o) (highly negative) from something
slightly positive, and result in ret being larger than expected.
Fortunately in 1.5 and 1.6, this is only used by bi_avail() which itself
is used by applets which do not set high values for to_forward so this
problem does not happen there. However in 1.4 the equivalent computation
was used to limit the size of a read and can result in a read overflow
when combined with the nasty http-send-name-header feature.
This fix must be backported to 1.5 and 1.4.
Since commit 3dd6a25 ("MINOR: stream-int: retrieve session pointer from
stream-int"), we can get the session from the task, so let's get rid of
this less obvious function.
bi_swpbuf() swaps the buffer passed in argument with the one attached to
the channel, but only if this last one is empty. The idea is to avoid a
copy when buffers can simply be swapped.
We've already experimented with three wake up algorithms when releasing
buffers : the first naive one used to wake up far too many sessions,
causing many of them not to get any buffer. The second approach which
was still in use prior to this patch consisted in waking up either 1
or 2 sessions depending on the number of FDs we had released. And this
was still inaccurate. The third one tried to cover the accuracy issues
of the second and took into consideration the number of FDs the sessions
would be willing to use, but most of the time we ended up waking up too
many of them for nothing, or deadlocking by lack of buffers.
This patch completely removes the need to allocate two buffers at once.
Instead it splits allocations into critical and non-critical ones and
implements a reserve in the pool for this. The deadlock situation happens
when all buffers are be allocated for requests pending in a maxconn-limited
server queue, because then there's no more way to allocate buffers for
responses, and these responses are critical to release the servers's
connection in order to release the pending requests. In fact maxconn on
a server creates a dependence between sessions and particularly between
oldest session's responses and latest session's requests. Thus, it is
mandatory to get a free buffer for a response in order to release a
server connection which will permit to release a request buffer.
Since we definitely have non-symmetrical buffers, we need to implement
this logic in the buffer allocation mechanism. What this commit does is
implement a reserve of buffers which can only be allocated for responses
and that will never be allocated for requests. This is made possible by
the requester indicating how much margin it wants to leave after the
allocation succeeds. Thus it is a cooperative allocation mechanism : the
requester (process_session() in general) prefers not to get a buffer in
order to respect other's need for response buffers. The session management
code always knows if a buffer will be used for requests or responses, so
that is not difficult :
- either there's an applet on the initiator side and we really need
the request buffer (since currently the applet is called in the
context of the session)
- or we have a connection and we really need the response buffer (in
order to support building and sending an error message back)
This reserve ensures that we don't take all allocatable buffers for
requests waiting in a queue. The downside is that all the extra buffers
are really allocated to ensure they can be allocated. But with small
values it is not an issue.
With this change, we don't observe any more deadlocks even when running
with maxconn 1 on a server under severely constrained memory conditions.
The code becomes a bit tricky, it relies on the scheduler's run queue to
estimate how many sessions are already expected to run so that it doesn't
wake up everyone with too few resources. A better solution would probably
consist in having two queues, one for urgent requests and one for normal
requests. A failed allocation for a session dealing with an error, a
connection event, or the need for a response (or request when there's an
applet on the left) would go to the urgent request queue, while other
requests would go to the other queue. Urgent requests would be served
from 1 entry in the pool, while the regular ones would be served only
according to the reserve. Despite not yet having this, it works
remarkably well.
This mechanism is quite efficient, we don't perform too many wake up calls
anymore. For 1 million sessions elapsed during massive memory contention,
we observe about 4.5M calls to process_session() compared to 4.0M without
memory constraints. Previously we used to observe up to 16M calls, which
rougly means 12M failures.
During a test run under high memory constraints (limit enforced to 27 MB
instead of the 58 MB normally needed), performance used to drop by 53% prior
to this patch. Now with this patch instead it *increases* by about 1.5%.
The best effect of this change is that by limiting the memory usage to about
2/3 to 3/4 of what is needed by default, it's possible to increase performance
by up to about 18% mainly due to the fact that pools are reused more often
and remain hot in the CPU cache (observed on regular HTTP traffic with 20k
objects, buffers.limit = maxconn/10, buffers.reserve = limit/2).
Below is an example of scenario which used to cause a deadlock previously :
- connection is received
- two buffers are allocated in process_session() then released
- one is allocated when receiving an HTTP request
- the second buffer is allocated then released in process_session()
for request parsing then connection establishment.
- poll() says we can send, so the request buffer is sent and released
- process session gets notified that the connection is now established
and allocates two buffers then releases them
- all other sessions do the same till one cannot get the request buffer
without hitting the margin
- and now the server responds. stream_interface allocates the response
buffer and manages to get it since it's higher priority being for a
response.
- but process_session() cannot allocate the request buffer anymore
=> We could end up with all buffers used by responses so that none may
be allocated for a request in process_session().
When the applet processing leaves the session context, the test will have
to be changed so that we always allocate a response buffer regardless of
the left side (eg: H2->H1 gateway). A final improvement would consists in
being able to only retry the failed I/O operation without waking up a
task, but to date all experiments to achieve this have proven not to be
reliable enough.
When a session_alloc_buffers() fails to allocate one or two buffers,
it subscribes the session to buffer_wq, and waits for another session
to release buffers. It's then removed from the queue and woken up with
TASK_WAKE_RES, and can attempt its allocation again.
We decide to try to wake as many waiters as we release buffers so
that if we release 2 and two waiters need only once, they both have
their chance. We must never come to the situation where we don't wake
enough tasks up.
It's common to release buffers after the completion of an I/O callback,
which can happen even if the I/O could not be performed due to half a
failure on memory allocation. In this situation, we don't want to move
out of the wait queue the session that was just added, otherwise it
will never get any buffer. Thus, we only force ourselves out of the
queue when freeing the session.
Note: at the moment, since session_alloc_buffers() is not used, no task
is subscribed to the wait queue.
This patch introduces session_alloc_recv_buffer(), session_alloc_buffers()
and session_release_buffers() whose purpose will be to allocate missing
buffers and release unneeded ones around the process_session() and during
I/O operations.
I/O callbacks only need a single buffer for recv operations and none
for send. However we still want to ensure that we don't pick the last
buffer. That's what session_alloc_recv_buffer() is for.
This allocator is atomic in that it always ensures we can get 2 buffers
or fails. Here, if any of the buffers is not ready and cannot be
allocated, the operation is cancelled. The purpose is to guarantee that
we don't enter into the deadlock where all buffers are allocated by the
same size of all sessions.
A queue will have to be implemented for failed allocations. For now
they're just reported as failures.
Till now we'd consider a buffer full even if it had size==0 due to pointing
to buf.size. Now we change this : if buf_wanted is present, it means that we
have already tried to allocate a buffer but failed. Thus the buffer must be
considered full so that we stop trying to poll for reads on it. Otherwise if
it's empty, it's buf_empty and we report !full since we may allocate it on
the fly.
Channels are now created with a valid pointer to a buffer before the
buffer is allocated. This buffer is a global one called "buf_empty" and
of size zero. Thus it prevents any activity from being performed on
the buffer and still ensures that chn->buf may always be dereferenced.
b_free() also resets the buffer to &buf_empty, and was split into
b_drop() which does not reset the buffer.
We'll soon need to be able to switch buffers without touching the
channel, so let's move buffer initialization out of channel_init().
We had the same in compressoin.c.
Since commit 656c5fa7e8 ("BUILD: ssl: disable OCSP when using
boringssl) the OCSP code is bypassed when OPENSSL_IS_BORINGSSL
is defined. The correct thing to do here is to use OPENSSL_NO_OCSP
instead, which is defined for this exact purpose in
openssl/opensslfeatures.h.
This makes haproxy forward compatible if boringssl ever introduces
full OCSP support with the additional benefit that it links fine
against a OCSP-disabled openssl.
Signed-off-by: Lukas Tribus <luky-37@hotmail.com>
A memory optimization can use the same pattern expression for many
equal pattern list (same parse method, index method and index_smp
method).
The pattern expression is returned by "pattern_new_expr", but this
function dont indicate if the returned pattern is already in use.
So, the caller function reload the list of patterns in addition with
the existing patterns. This behavior is not a problem with tree indexed
pattern, but it grows the lists indexed patterns.
This fix add a "reuse" flag in return of the function "pattern_new_expr".
If the flag is set, I suppose that the patterns are already loaded.
This fix must be backported into 1.5.
In order for HTTP/2 not to eat too much memory, we'll have to support
on-the-fly buffer allocation, since most streams will have an empty
request buffer at some point. Supporting allocation on the fly means
being able to sleep inside I/O callbacks if a buffer is not available.
Till now, the I/O callbacks were called from two locations :
- when processing the cached events
- when processing the polled events from the poller
This change cleans up the design a bit further than what was started in
1.5. It now ensures that we never call any iocb from the poller itself
and that instead, events learned by the poller are put into the cache.
The benefit is important in terms of stability : we don't have to care
anymore about the risk that new events are added into the poller while
processing its events, and we're certain that updates are processed at
a single location.
To achieve this, we now modify all the fd_* functions so that instead of
creating updates, they add/remove the fd to/from the cache depending on
its state, and only create an update when the polling status reaches a
state where it will have to change. Since the pollers make use of these
functions to notify readiness (using fd_may_recv/fd_may_send), the cache
is always up to date with the poller.
Creating updates only when the polling status needs to change saves a
significant amount of work for the pollers : a benchmark showed that on
a typical TCP proxy test, the amount of updates per connection dropped
from 11 to 1 on average. This also means that the update list is smaller
and has more chances of not thrashing too many CPU cache lines. The first
observed benefit is a net 2% performance gain on the connection rate.
A second benefit is that when a connection is accepted, it's only when
we're processing the cache, and the recv event is automatically added
into the cache *after* the current one, resulting in this event to be
processed immediately during the same loop. Previously we used to have
a second run over the updates to detect if new events were added to
catch them before waking up tasks.
The next gain will be offered by the next steps on this subject consisting
in implementing an I/O queue containing all cached events ordered by priority
just like the run queue, and to be able to leave some events pending there
as long as needed. That will allow us *not* to perform some FD processing
if it's not the proper time for this (typically keep waiting for a buffer
to be allocated if none is available for an recv()). And by only processing
a small bunch of them, we'll allow priorities to take place even at the I/O
level.
As a result of this change, functions fd_alloc_or_release_cache_entry()
and fd_process_polled_events() have disappeared, and the code dedicated
to checking for new fd events after the callback during the poll() loop
was removed as well. Despite the patch looking large, it's mostly a
change of what function is falled upon fd_*() and almost nothing was
added.
This patch makes it possible to create binds and servers in separate
namespaces. This can be used to proxy between multiple completely independent
virtual networks (with possibly overlapping IP addresses) and a
non-namespace-aware proxy implementation that supports the proxy protocol (v2).
The setup is something like this:
net1 on VLAN 1 (namespace 1) -\
net2 on VLAN 2 (namespace 2) -- haproxy ==== proxy (namespace 0)
net3 on VLAN 3 (namespace 3) -/
The proxy is configured to make server connections through haproxy and sending
the expected source/target addresses to haproxy using the proxy protocol.
The network namespace setup on the haproxy node is something like this:
= 8< =
$ cat setup.sh
ip netns add 1
ip link add link eth1 type vlan id 1
ip link set eth1.1 netns 1
ip netns exec 1 ip addr add 192.168.91.2/24 dev eth1.1
ip netns exec 1 ip link set eth1.$id up
...
= 8< =
= 8< =
$ cat haproxy.cfg
frontend clients
bind 127.0.0.1:50022 namespace 1 transparent
default_backend scb
backend server
mode tcp
server server1 192.168.122.4:2222 namespace 2 send-proxy-v2
= 8< =
A bind line creates the listener in the specified namespace, and connections
originating from that listener also have their network namespace set to
that of the listener.
A server line either forces the connection to be made in a specified
namespace or may use the namespace from the client-side connection if that
was set.
For more documentation please read the documentation included in the patch
itself.
Signed-off-by: KOVACS Tamas <ktamas@balabit.com>
Signed-off-by: Sarkozi Laszlo <laszlo.sarkozi@balabit.com>
Signed-off-by: KOVACS Krisztian <hidden@balabit.com>
When we're stopping, we're not going to create new tasks anymore, so
let's release the task pool upon each task_free() in order to reduce
memory fragmentation.
Commit 179085c ("MEDIUM: http: move Connection header processing earlier")
introduced a regression : the backend's HTTP mode is not considered anymore
when setting the session's HTTP mode, because wait_for_request() is only
called once, when the frontend receives the request (or when the frontend
is in TCP mode, when the backend receives the request).
The net effect is that in some situations when the frontend and the backend
do not work in the same mode (eg: keep-alive vs close), the backend's mode
is ignored.
This patch moves all that processing to a dedicated function, which is
called from the original place, as well as from session_set_backend()
when switching from an HTTP frontend to an HTTP backend in different
modes.
This fix must be backported to 1.5.
There are two sample commands to get information about the presence of a
client certificate.
ssl_fc_has_crt is true if there is a certificate present in the current
connection
ssl_c_used is true if there is a certificate present in the session.
If a session has stopped and resumed, then ssl_c_used could be true, while
ssl_fc_has_crt is false.
In the client byte of the TLS TLV of Proxy Protocol V2, there is only one
bit to indicate whether a certificate is present on the connection. The
attached patch adds a second bit to indicate the presence for the session.
This maintains backward compatibility.
[wt: this should be backported to 1.5 to help maintain compatibility
between versions]
Google's boringssl doesn't currently support OCSP, so
disable it if detected.
OCSP support may be reintroduced as per:
https://code.google.com/p/chromium/issues/detail?id=398677
In that case we can simply revert this commit.
Signed-off-by: Lukas Tribus <luky-37@hotmail.com>
If a source file includes proto/server.h twice or more, redefinition errors will
be triggered for such inline functions as server_throttle_rate(),
server_is_draining(), srv_adm_set_maint() and so on. Just move #endif directive
to the end of file to solve this issue.
Signed-off-by: Godbach <nylzhaowei@gmail.com>
Add support for http-request track-sc, similar to what is done in
tcp-request for backends. A new act_prm field was added to HTTP
request rules to store the track params (table, counter). Just
like for TCP rules, the table is resolved while checking for
config validity. The code was mostly copied from the TCP code
with the exception that here we also count the HTTP request count
and rate by hand. Probably that something could be factored out in
the future.
It seems like tracking flags should be improved to mark each hook
which tracks a key so that we can have some check points where to
increase counters of the past if not done yet, a bit like is done
for TRACK_BACKEND.
Some users want to add their own data types to stick tables. We don't
want to use a linked list here for performance reasons, so we need to
continue to use an indexed array. This patch allows one to reserve a
compile-time-defined number of extra data types by setting the new
macro STKTABLE_EXTRA_DATA_TYPES to anything greater than zero, keeping
in mind that anything larger will slightly inflate the memory consumed
by stick tables (not per entry though).
Then calling stktable_register_data_store() with the new keyword will
either register a new keyword or fail if the desired entry was already
taken or the keyword already registered.
Note that this patch does not dictate how the data will be used, it only
offers the possibility to create new keywords and have an index to
reference them in the config and in the tables. The caller will not be
able to use stktable_data_cast() and will have to explicitly cast the
stable pointers to the expected types. It can be used for experimentation
as well.
Currently we have stktable_fetch_key() which fetches a sample according
to an expression and returns a stick table key, but we also need a function
which does only the second half of it from a known sample. So let's cut the
function in two and introduce smp_to_stkey() to perform this lookup. The
first function was adapted to make use of it in order to avoid code
duplication.
Abstract namespace sockets ignore the shutdown() call and do not make
it possible to temporarily stop listening. The issue it causes is that
during a soft reload, the new process cannot bind, complaining that the
address is already in use.
This change registers a new pause() function for unix sockets and
completely unbinds the abstract ones since it's possible to rebind
them later. It requires the two previous patches as well as preceeding
fixes.
This fix should be backported into 1.5 since the issue apperas there.
In order to fix the abstact socket pause mechanism during soft restarts,
we'll need to proceed differently depending on the socket protocol. The
pause_listener() function already supports some protocol-specific handling
for the TCP case.
This commit makes this cleaner by adding a new ->pause() function to the
protocol struct, which, if defined, may be used to pause a listener of a
given protocol.
For now, only TCP has been adapted, with the specific code moved from
pause_listener() to tcp_pause_listener().
With all the goodies supported by logformat, people find that the limit
of 1024 chars for log lines is too short. Some servers do not support
larger lines and can simply drop them, so changing the default value is
not always the best choice.
This patch takes a different approach. Log line length is specified per
log server on the "log" line, with a value between 80 and 65535. That
way it's possibly to satisfy all needs, even with some fat local servers
and small remote ones.
stktable_fetch_key() does not indicate whether it returns NULL because
the input sample was not found or because it's unstable. It causes trouble
with track-sc* rules. Just like with sample_fetch_string(), we want it to
be able to give more information to the caller about what it found. Thus,
now we use the pointer to a sample passed by the caller, and fill it with
the information we have about the sample. That way, even if we return NULL,
the caller has the ability to check whether a sample was found and if it is
still changing or not.
'ssl_sock_get_common_name' applied to a connection was also renamed
'ssl_sock_get_remote_common_name'. Currently, this function is only used
with protocol PROXYv2 to retrieve the client certificate's common name.
A further usage could be to retrieve the server certificate's common name
on an outgoing connection.
The support is all based on static responses. This doesn't add any
request / response logic to HAProxy, but allows a way to update
information through the socket interface.
Currently certificates specified using "crt" or "crt-list" on "bind" lines
are loaded as PEM files.
For each PEM file, haproxy checks for the presence of file at the same path
suffixed by ".ocsp". If such file is found, support for the TLS Certificate
Status Request extension (also known as "OCSP stapling") is automatically
enabled. The content of this file is optional. If not empty, it must contain
a valid OCSP Response in DER format. In order to be valid an OCSP Response
must comply with the following rules: it has to indicate a good status,
it has to be a single response for the certificate of the PEM file, and it
has to be valid at the moment of addition. If these rules are not respected
the OCSP Response is ignored and a warning is emitted. In order to identify
which certificate an OCSP Response applies to, the issuer's certificate is
necessary. If the issuer's certificate is not found in the PEM file, it will
be loaded from a file at the same path as the PEM file suffixed by ".issuer"
if it exists otherwise it will fail with an error.
It is possible to update an OCSP Response from the unix socket using:
set ssl ocsp-response <response>
This command is used to update an OCSP Response for a certificate (see "crt"
on "bind" lines). Same controls are performed as during the initial loading of
the response. The <response> must be passed as a base64 encoded string of the
DER encoded response from the OCSP server.
Example:
openssl ocsp -issuer issuer.pem -cert server.pem \
-host ocsp.issuer.com:80 -respout resp.der
echo "set ssl ocsp-response $(base64 -w 10000 resp.der)" | \
socat stdio /var/run/haproxy.stat
This feature is automatically enabled on openssl 0.9.8h and above.
This work was performed jointly by Dirkjan Bussink of GitHub and
Emeric Brun of HAProxy Technologies.
This patch adds two new actions to http-request and http-response rulesets :
- replace-header : replace a whole header line, suited for headers
which might contain commas
- replace-value : replace a single header value, suited for headers
defined as lists.
The match consists in a regex, and the replacement string takes a log-format
and supports back-references.
Using the last rate counters, we now compute the queue, connect, response
and total times per server and per backend with a 95% accuracy over the last
1024 samples. The operation is cheap so we don't need to condition it.
While the current functions report average event counts per period, we are
also interested in average values per event. For this we use a different
method. The principle is to rely on a long tail which sums the new value
with a fraction of the previous value, resulting in a sliding window of
infinite length depending on the precision we're interested in.
The idea is that we always keep (N-1)/N of the sum and add the new sampled
value. The sum over N values can be computed with a simple program for a
constant value 1 at each iteration :
N
,---
\ N - 1 e - 1
> ( --------- )^x ~= N * -----
/ N e
'---
x = 1
Note: I'm not sure how to demonstrate this but at least this is easily
verified with a simple program, the sum equals N * 0.632120 for any N
moderately large (tens to hundreds).
Inserting a constant sample value V here simply results in :
sum = V * N * (e - 1) / e
But we don't want to integrate over a small period, but infinitely. Let's
cut the infinity in P periods of N values. Each period M is exactly the same
as period M-1 with a factor of ((N-1)/N)^N applied. A test shows that given a
large N :
N - 1 1
( ------- )^N ~= ---
N e
Our sum is now a sum of each factor times :
N*P P
,--- ,---
\ N - 1 e - 1 \ 1
> v ( --------- )^x ~= VN * ----- * > ---
/ N e / e^x
'--- '---
x = 1 x = 0
For P "large enough", in tests we get this :
P
,---
\ 1 e
> --- ~= -----
/ e^x e - 1
'---
x = 0
This simplifies the sum above :
N*P
,---
\ N - 1
> v ( --------- )^x = VN
/ N
'---
x = 1
So basically by summing values and applying the last result an (N-1)/N factor
we just get N times the values over the long term, so we can recover the
constant value V by dividing by N.
A value added at the entry of the sliding window of N values will thus be
reduced to 1/e or 36.7% after N terms have been added. After a second batch,
it will only be 1/e^2, or 13.5%, and so on. So practically speaking, each
old period of N values represents only a quickly fading ratio of the global
sum :
period ratio
1 36.7%
2 13.5%
3 4.98%
4 1.83%
5 0.67%
6 0.25%
7 0.09%
8 0.033%
9 0.012%
10 0.0045%
So after 10N samples, the initial value has already faded out by a factor of
22026, which is quite fast. If the sliding window is 1024 samples wide, it
means that a sample will only count for 1/22k of its initial value after 10k
samples went after it, which results in half of the value it would represent
using an arithmetic mean. The benefit of this method is that it's very cheap
in terms of computations when N is a power of two. This is very well suited
to record response times as large values will fade out faster than with an
arithmetic mean and will depend on sample count and not time.
Demonstrating all the above assumptions with maths instead of a program is
left as an exercise for the reader.
This patch adds support for a new "drain" mode. So now we have 3 admin
modes for a server :
- READY
- DRAIN
- MAINT
The drain mode disables load balancing but leaves the server up. It can
coexist with maint, except that maint has precedence. It is also inherited
from tracked servers, so just like maint, it's represented with 2 bits.
New functions were designed to set/clear each flag and to propagate the
changes to tracking servers when relevant, and to log the changes. Existing
functions srv_set_adm_maint() and srv_set_adm_ready() were replaced to make
use of the new functions.
Currently the drain mode is not yet used, however the whole logic was tested
with all combinations of set/clear of both flags in various orders to catch
all corner cases.
This function was taken from check_set_server_drain(). It does not
consider health checks at all and only sets a server to stopping
provided it's not in maintenance and is not currently stopped. The
resulting state will be STOPPING. The state change is propagated
to tracked servers.
For now the function is not used, but the goal is to split health
checks status from server status and to be able to change a server's
state regardless of health checks statuses.
This function was taken from check_set_server_up(). It does not consider
health checks at all and only sets a server up provided it's not in
maintenance. The resulting state may be either RUNNING or STARTING
depending on the presence of a slowstart or not. The state change is
propagated to tracked servers.
For now the function is not used, but the goal is to split health
checks status from server status and to be able to change a server's
state regardless of health checks statuses.
This function was extracted from check_set_server_down(). In only
manipulates the server state and does not consider the health checks
at all, nor does it modify their status. It takes a reason message to
report in logs, however it passes NULL when recursing through the
trackers chain.
For now the function is not used, but the goal is to split health
checks status from server status and to be able to change a server's
state regardless of health checks statuses.
srv_adm_append_status() was renamed srv_append_status() since it's no
more dedicated to maintenance mode. It now supports a reason which if
not null is appended to the output string.
We don't have to handle the maintenance transition here anymore so we
can simplify the functions and conditions. This also means that we don't
need the disable/enable functions but only a function to switch to each
new state.
It's worth mentionning that at this stage there are still confusions
between the server state and the checks states. For example, the health
check's state is adjusted from tracked servers changing state, while it
should not be.
This change now involves a new flag SRV_ADMF_IMAINT to note that the
maintenance status of a server is inherited from another server. Thus,
we know at each server level in the chain if it's running, in forced
maintenance or in a maintenance status because it tracks another server,
or even in both states.
Disabling a server propagates this flag down to other servers. Enabling
a server flushes the flag down. A server becomes up again once both of
its flags are cleared.
Two new functions "srv_adm_set_maint()" and "srv_adm_set_ready()" are used to
manipulate this maintenance status. They're used by the CLI and the stats
page.
Now the stats page always says "MAINT" instead of "MAINT(via)" and it's
only the chk/down field which reports "via x/y" when the status is
inherited from another server, but it doesn't say it when a server was
forced into maintenance. The CSV output indicates "MAINT (via x/y)"
instead of only "MAINT(via)". This is the most accurate representation.
One important thing is that now entering/leaving maintenance for a
tracking server correctly follows the state of the tracked server.
Checks.c has become a total mess. A number of proxy or server maintenance
and queue management functions were put there probably because they were
used there, but that makes the code untouchable. And that's without saying
that their names does not always relate to what they really do!
So let's do a first pass by moving these ones :
- set_backend_down() => backend.c
- redistribute_pending() => queue.c:pendconn_redistribute()
- check_for_pending() => queue.c:pendconn_grab_from_px()
- shutdown_sessions => server.c:srv_shutdown_sessions()
- shutdown_backup_sessions => server.c:srv_shutdown_backup_sessions()
All of them were moved at once.
Servers used to have 3 flags to store a state, now they have 4 states
instead. This avoids lots of confusion for the 4 remaining undefined
states.
The encoding from the previous to the new states can be represented
this way :
SRV_STF_RUNNING
| SRV_STF_GOINGDOWN
| | SRV_STF_WARMINGUP
| | |
0 x x SRV_ST_STOPPED
1 0 0 SRV_ST_RUNNING
1 0 1 SRV_ST_STARTING
1 1 x SRV_ST_STOPPING
Note that the case where all bits were set used to exist and was randomly
dealt with. For example, the task was not stopped, the throttle value was
still updated and reported in the stats and in the http_server_state header.
It was the same if the server was stopped by the agent or for maintenance.
It's worth noting that the internal function names are still quite confusing.
Now we introduce srv->admin and srv->prev_admin which are bitfields
containing one bit per source of administrative status (maintenance only
for now). For the sake of backwards compatibility we implement a single
source (ADMF_FMAINT) but the code already checks any source (ADMF_MAINT)
where the STF_MAINTAIN bit was previously checked. This will later allow
us to add ADMF_IMAINT for maintenance mode inherited from tracked servers.
Along doing these changes, it appeared that some places will need to be
revisited when implementing the inherited bit, this concerns all those
modifying the ADMF_FMAINT bit (enable/disable actions on the CLI or stats
page), and the checks to report "via" on the stats page. But currently
the code is harmless.
Till now, the server's state and flags were all saved as a single bit
field. It causes some difficulties because we'd like to have an enum
for the state and separate flags.
This commit starts by splitting them in two distinct fields. The first
one is srv->state (with its counter-part srv->prev_state) which are now
enums, but which still contain bits (SRV_STF_*).
The flags now lie in their own field (srv->flags).
The function srv_is_usable() was updated to use the enum as input, since
it already used to deal only with the state.
Note that currently, the maintenance mode is still in the state for
simplicity, but it must move as well.
When run in daemon mode (i.e. with at least one forked process) and using
the epoll poller, sending USR1 (graceful shutdown) to the worker processes
can cause some workers to start running at 100% CPU. Precondition is having
an established HTTP keep-alive connection when the signal is received.
The cloned (during fork) listening sockets do not get closed in the parent
process, thus they do not get removed from the epoll set automatically
(see man 7 epoll). This can lead to the process receiving epoll events
that it doesn't feel responsible for, resulting in an endless loop around
epoll_wait() delivering these events.
The solution is to explicitly remove these file descriptors from the epoll
set. To not degrade performance, care was taken to only do this when
neccessary, i.e. when the file descriptor was cloned during fork.
Signed-off-by: Conrad Hoffmann <conrad@soundcloud.com>
[wt: a backport to 1.4 could be studied though chances to catch the bug are low]
We used to call srv_is_usable() with either the current state and weights
or the previous ones. This causes trouble for future changes, so let's first
split it in two variants :
- srv_is_usable(srv) considers the current status
- srv_was_usable(srv) considers the previous status
Detecting that a server's status has changed is a bit messy, as well
as it is to commit the status changes. We'll have to add new conditions
soon and we'd better avoid to multiply the number of touched locations
with the high risk of forgetting them.
This commit introduces :
- srv_lb_status_changed() to report if the status changed from the
previously committed one ;
- svr_lb_commit_status() to commit the current status
The function is now used by all load-balancing algorithms.
This flag is only a copy of (srv->uweight == 0), so better get rid of
it to reduce some of the confusion that remains in the code, and use
a simple function to return this state based on this weight instead.
Being able to map prefixes to values is already used for IPv4/IPv6
but was not yet used with strings. It can be very convenient to map
directories to server farms but large lists may be slow.
By using ebmb_insert_prefix() and ebmb_lookup_longest(), we can
insert strings with their own length as a prefix, and lookup
candidate strings and ensure that the longest matching one will
be returned, which is the longest string matching the entry.
This commit modifies the PROXY protocol V2 specification to support headers
longer than 255 bytes allowing for optional extensions. It implements the
PROXY protocol V2 which is a binary representation of V1. This will make
parsing more efficient for clients who will know in advance exactly how
many bytes to read. Also, it defines and implements some optional PROXY
protocol V2 extensions to send information about downstream SSL/TLS
connections. Support for PROXY protocol V1 remains unchanged.
Process shared mutex seems not supported on some OSs (FreeBSD).
This patch checks errors on mutex lock init to fallback
on a private session cache (per process cache) in error cases.
Last fix did address the issue for inlined patterns, but it was not
enough because the flags are lost as well when updating patterns
dynamically over the CLI.
Also if the same file was used once with -i and another time without
-i, their references would have been merged and both would have used
the same matching method.
It's appear that the patterns have two types of flags. The first
ones are relative to the pattern matching, and the second are
relative to the pattern storage. The pattern matching flags are
the same for all the patterns of one expression. Now they are
stored in the expression. The storage flags are information
returned by the pattern mathing function. This information is
relative to each entry and is stored in the "struct pattern".
Now, the expression matching flags are forwarded to the parse
and index functions. These flags are stored during the
configuration parsing, and they are used during the parse and
index actions.
This issue was introduced in dev23 with the major pattern rework,
and is a continuation of commit a631fc8 ("BUG/MAJOR: patterns: -i
and -n are ignored for inlined patterns"). No backport is needed.
These flags are only passed to pattern_read_from_file() which
loads the patterns from a file. The functions used to parse the
patterns from the current line do not provide the means to pass
the pattern flags so they're lost.
This issue was introduced in dev23 with the major pattern rework,
and was reported by Graham Morley. No backport is needed.