The purpose of these two macros will be to pass via the session to
find the relevant stream interfaces so that we don't need to store
the ->cons nor ->prod pointers anymore. Currently they're only defined
so that all references could be removed.
Note that many places need a second pass of clean up so that we don't
have any chn_prod(&s->req) anymore and only &s->si[0] instead, and
conversely for the 3 other cases.
At a few places we need to find one stream interface from the other one.
Instead of passing via the channel, we simply use the session as an
intermediary, which simply results in applying an offset to the pointer.
We go back to the session to get the owner. Here again it's very easy
and is just a matter of relative offsets. Since the owner always exists
and always points to the session's task, we can remove some unneeded
tests.
In order to plan removal of si->ib / si->ob, we now check the side of the
stream interface and find the session, then the requested channel. In
practice it's just an offset applied to the pointer based on the flag.
This new flag "SI_FL_ISBACK" is set only on the back SI and is cleared
on the front SI. That way it's possible only by looking at the SI to
know what side it is.
We'll soon remove direct references to the channels from the stream
interface since everything belongs to the same session, so let's
first not dereference si->ib / si->ob anymore and use macros instead.
If we are writing in the request buffer, we are not waked up
when the data are forwarded because it is useles. The request
analyzers are waked up only when data is incoming. So, if the
request buffer is full, we set the WAKE_ON_WRITE flag.
Before this patch, each yield in a Lua action set a flags to be
waked up when some activity were detected on the response channel.
This behavior causes loop in the analyzer process.
This patch set the wake up on response buffer activity only if we
really want to be waked up on this activity.
This flag indicate that the current yield is returned by the Lua
execution task control. If this flag is set, the current task may
quit but will be set in the run queue to be re-executed immediatly.
This patch modify the "hlua_yieldk()" function, it adds an argument
that contain a field containing yield options.
In the future, the lua execution must return scheduling informations.
We want more than one flag, so I convert an integer used with an
enum into an interer used as bitfield.
This system permits to execute some lua function after than HAProxy
complete his initialisation. These functions are executed between
the end of the configuration parsing and check and the begin of the
scheduler.
This is the first step of the lua integration. We add the useful
files in the HAProxy project. These files contains the main
includes, the Makefile options and empty initialisation function.
Is is the LUA skeleton.
We now have functions to retrieve one block and one line from
either the input or the output part of a buffer. They return
up to two (pointer,length) values in case the buffer wraps.
This patch introduces an action keyword registration system for TCP
rulesets similar to what is available for HTTP rulesets. This sytem
will be useful with lua.
These modifications are done for resolving cross-dependent
includes in the upcoming LUA code.
<proto/channel.h> misses <types/channel.h>.
<types/acl.h> doesn't use <types/session.h> because the session
is already declared in the file as undefined pointer.
appsession.c misses <unistd.h> to use "write()".
Declare undefined pointer "struct session" for <types/proxy.h>
and <types/queue.h>. These includes dont need the detail of this
struct.
The functions "val_payload_lv" and "val_hdr" are useful with
lua. The lua automatic binding for sample fetchs needs to
compare check functions.
The "arg_type_names" permit to display error messages.
Actually, HAProxy uses the function "process_runnable_tasks" and
"wake_expired_tasks" to get the next task which can expires.
If a task is added with "task_schedule" or other method during
the execution of an other task, the expiration of this new task
is not taken into account, and the execution of this task can be
too late.
Actualy, HAProxy seems to be no sensitive to this bug.
This fix moves the call to process_runnable_tasks() before the timeout
calculation and ensures that all wakeups are processed together. Only
wake_expired_tasks() needs to return a timeout now.
As found by Thierry Fournier, if a task manages to kill another one and
if this other task is the next one in the run queue, we can do whatever
including crashing, because the scheduler restarts from the saved next
task. For now, there is no such concept of a task killing another one,
but with Lua it will come.
A solution consists in always performing the lookup of the first task in
the scheduler's loop, but it's expensive and costs around 2% of the
performance.
Another solution consists in keeping a global next run queue node and
ensuring that when this task gets removed, it updates this pointer to
the next one. This allows to simplify the code a bit and in the end to
slightly increase the performance (0.3-0.5%). The mechanism might still
be usable if we later migrate to a multi-threaded scheduler.
The patch "MEDIUM: args: increase arg type to 5 bits and limit arg count
to 5" (dbc79d0a) increased the number of types supported, but forgot to
remove the ARG6/ARG7 macros.
This patch adds a new option which allows configuration of the maximum
log level of messages for which email alerts will be sent.
The default is alert which is more restrictive than
the current code which sends email alerts for all priorities.
That behaviour may be configured using the new configuration
option to set the maximum level to notice or greater.
email-alert level notice
Signed-off-by: Simon Horman <horms@verge.net.au>
Refactor init_check so that an error string is returned
rather than alerts being printed by it. Also
init_check to checks.c and provide a prototype to allow
it to be used from multiple C files.
Signed-off-by: Simon Horman <horms@verge.net.au>
This is in order to add new types. This patch does not change anything
else. Two remaining (harmless) occurrences of a count of 8 instead of 7
were fixed by this patch : empty_arg_list[] and the for() loop counting
args.
It applies to the channel and it doesn't erase outgoing data, only
pending unread data, which is strictly equivalent to what recv()
does with MSG_TRUNC, so that new name is more accurate and intuitive.
This name more accurately reminds that it applies to a channel and not
to a buffer, and that what is returned may be used as a max number of
bytes to pass to recv().
This applies to the channel, not the buffer, so let's fix this name.
Warning, the function's name happens to be the same as the old one
which was mistakenly used during 1.5.
This function's name was poorly chosen and is confusing to the point of
being suspiciously used at some places. The operations it does always
consider the ability to forward pending input data before receiving new
data. This is not obvious at all, especially at some places where it was
used when consuming outgoing data to know if the buffer has any chance
to ever get the missing data. The code needs to be re-audited with that
in mind. Care must be taken with existing code since the polarity of the
function was switched with the renaming.
channel_reserved is confusingly named. It is used to know whether or
not the rewrite area is left intact for situations where we want to
ensure we can use it before proceeding. Let's rename it to fix this
confusion.
Option http-send-name-header is still hurting. If a POST request has to be
redispatched when this option is used, and the next server's name is larger
than the initial one, and the POST body fills the buffer, it becomes
impossible to rewrite the server's name in the buffer when redispatching.
In 1.4, this is worse, the process may crash because of a negative size
computation for the memmove().
The only solution to fix this is to refrain from eating the reserve before
we're certain that we won't modify the buffer anymore. And the condition for
that is that the connection is established.
This patch introduces "channel_may_send()" which helps to detect whether it's
safe to eat the reserve or not. This condition is used by channel_in_transit()
introduced by recent patches.
This patch series must be backported into 1.5, and a simpler version must be
backported into 1.4 where fixing the bug is much easier since there were no
channels by then. Note that in 1.4 the severity is major.
This function returns the amount of bytes in transit in a channel's buffer,
which is the amount of outgoing data plus the amount of incoming data bound
to the forward limit.
We know that all incoming data are going to be purged if to_forward
is greater than them, not only if greater than the buffer size. This
buf has no direct impact on this version, but it participates to some
bugs affecting http-send-name-header since 1.4. This fix will have to
be backported down to 1.4 albeit in a different form.
The buffer_max_len() function is subject to an integer overflow in this
calculus :
int ret = global.tune.maxrewrite - chn->to_forward - chn->buf->o;
- chn->to_forward may be up to 2^31 - 1
- chn->buf->o may be up to chn->buf->size
- global.tune.maxrewrite is by definition smaller than chn->buf->size
Thus here we can subtract (2^31 + buf->o) (highly negative) from something
slightly positive, and result in ret being larger than expected.
Fortunately in 1.5 and 1.6, this is only used by bi_avail() which itself
is used by applets which do not set high values for to_forward so this
problem does not happen there. However in 1.4 the equivalent computation
was used to limit the size of a read and can result in a read overflow
when combined with the nasty http-send-name-header feature.
This fix must be backported to 1.5 and 1.4.