At the moment sepoll is not 100% event-driven, because a call to fd_set()
on an event which is already being polled will not change its state.
This causes issues with OpenSSL because if some I/O processing is interrupted
after clearing the I/O event (eg: read all data from a socket, can't put it
all into the buffer), then there is no way to call the SSL_read() again once
the buffer releases some space.
The only real solution is to go 100% event-driven. The principle is to use
the spec list as an event cache and that each time an I/O event is reported
by epoll_wait(), this event is automatically scheduled for addition to the
spec list for future calls until the consumer explicitly asks for polling
or stopping.
Doing this is a bit tricky because sepoll used to provide a substantial
number of optimizations such as event merging. These optimizations have
been maintained : a dedicated update list is affected when events change,
but not the event list, so that updates may cancel themselves without any
side effect such as displacing events. A specific case was considered for
handling newly created FDs as soon as they are detected from within the
poll loop. This ensures that their read or write operation will always be
attempted as soon as possible, thus reducing the number of poll loops and
process_session wakeups. This is especially true for newly accepted fds
which immediately perform their first recv() call.
Two new flags were added to the fdtab[] struct to tag the fact that a file
descriptor already exists in the update list. One flag indicates that a
file descriptor is new and has just been created (fdtab[].new) and the other
one indicates that a file descriptor is already referenced by the update list
(fdtab[].updated). Even if the FD state changes during operations or if the
fd is closed and replaced, it's not an issue because the update flag remains
and is easily spotted during list walks. The flag must absolutely reflect the
presence of the fd in the update list in order to avoid overflowing the update
list with more events than there are distinct fds.
Note that this change also recovers the small performance loss introduced
by its connection counter-part and goes even beyond.
These functions have a more explicity meaning and will offer provisions
for explicit polling.
EV_FD_ISSET() has been left for now as it is still in use in checks.
In an attempt to get rid of fdtab[].state, and to move the relevant
parts to the connection struct, we remove the FD_STCLOSE state which
can easily be deduced from the <owner> pointer as there is a 1:1 match.
When running with -vv or -V -d, the list of usable polling systems
is reported. The final selection did not take into account the
possible failures during the tests, which is misleading and could
make one think that a non-working poller will be used, while it is
not the case. Fix that to really report the correct ones.
(cherry picked from commit 6d0e354e0171f08b7b3868ad2882c3663bd068a7)
Some rarely information are stored in fdtab, making it larger for no
reason (source port ranges, remote address, ...). Such information
lie there because the checks can't find them anywhere else. The goal
will be to move these information to the stream interface once the
checks make use of it.
For now, we move them to an fdinfo array. This simple change might
have improved the cache hit ratio a little bit because a 0.5% of
performance increase has measured.
Some users are already hitting the 64k source port limit when
connecting to servers. The system usually maintains a list of
unused source ports, regardless of the source IP they're bound
to. So in order to go beyond the 64k concurrent connections, we
have to manage the source ip:port lists ourselves.
The solution consists in assigning a source port range to each
server and use a free port in that range when connecting to that
server, either for a proxied connection or for a health check.
The port must then be put back into the server's range when the
connection is closed.
This mechanism is used only when a port range is specified on
a server. It makes it possible to reach 64k connections per
server, possibly all from the same IP address. Right now it
should be more than enough even for huge deployments.
The global tuning options right now only concern the polling mechanisms,
and they are not in the global struct itself. It's not very practical to
add other options so let's move them to the global struct and remove
types/polling.h which was not used for anything else.
Using pipe pools makes pipe management a lot easier. It also allows to
remove quite a bunch of #ifdefs in areas which depended on the presence
or not of support for kernel splicing.
The buffer now holds a pointer to a pipe structure which is always NULL
except if there are still data in the pipe. When it needs to use that
pipe, it dynamically allocates it from the pipe pool. When the data is
consumed, the pipe is immediately released.
That way, there is no need anymore to care about pipe closure upon
session termination, nor about pipe creation when trying to use
splice().
Another immediate advantage of this method is that it considerably
reduces the number of pipes needed to use splice(). Tests have shown
that even with 0.2 pipe per connection, almost all sessions can use
splice(), because the same pipe may be used by several consecutive
calls to splice().
It should be stated as a rule that a C file should never
include types/xxx.h when proto/xxx.h exists, as it gives
less exposure to declaration conflicts (one of which was
caught and fixed here) and it complicates the file headers
for nothing.
Only types/global.h, types/capture.h and types/polling.h
have been found to be valid includes from C files.
New functions implemented:
- deinit_pollers: called at the end of deinit())
- prune_acl: called via list_for_each_entry_safe
Add missing pool_destroy2 calls:
- p->hdr_idx_pool
- pool2_tree64
Implement all task stopping:
- health-check: needs new "struct task" in the struct server
- queue processing: queue_mgt
- appsess_refresh: appsession_refresh
before (idle system):
==6079== LEAK SUMMARY:
==6079== definitely lost: 1,112 bytes in 75 blocks.
==6079== indirectly lost: 53,356 bytes in 2,090 blocks.
==6079== possibly lost: 52 bytes in 1 blocks.
==6079== still reachable: 150,996 bytes in 504 blocks.
==6079== suppressed: 0 bytes in 0 blocks.
after (idle system):
==6945== LEAK SUMMARY:
==6945== definitely lost: 7,644 bytes in 137 blocks.
==6945== indirectly lost: 9,913 bytes in 587 blocks.
==6945== possibly lost: 0 bytes in 0 blocks.
==6945== still reachable: 0 bytes in 0 blocks.
==6945== suppressed: 0 bytes in 0 blocks.
before (running system for ~2m):
==9343== LEAK SUMMARY:
==9343== definitely lost: 1,112 bytes in 75 blocks.
==9343== indirectly lost: 54,199 bytes in 2,122 blocks.
==9343== possibly lost: 52 bytes in 1 blocks.
==9343== still reachable: 151,128 bytes in 509 blocks.
==9343== suppressed: 0 bytes in 0 blocks.
after (running system for ~2m):
==11616== LEAK SUMMARY:
==11616== definitely lost: 7,644 bytes in 137 blocks.
==11616== indirectly lost: 9,981 bytes in 591 blocks.
==11616== possibly lost: 0 bytes in 0 blocks.
==11616== still reachable: 4 bytes in 1 blocks.
==11616== suppressed: 0 bytes in 0 blocks.
Still not perfect but significant improvement.
Gcc provides __attribute__((constructor)) which is very convenient
to execute functions at startup right before main(). All the pollers
have been converted to have their register() function declared like
this, so that it is not necessary anymore to call them from a centralized
file.
Some pollers such as kqueue lose their FD across fork(), meaning that
the registered file descriptors are lost too. Now when the proxies are
started by start_proxies(), the file descriptors are not registered yet,
leaving enough time for the fork() to take place and to get a new pollfd.
It will be the first call to maintain_proxies that will register them.
select, poll and epoll now have their dedicated functions and have
been split into distinct files. Several FD manipulation primitives
have been provided with each poller.
The rest of the code needs to be cleaned to remove traces of
StaticReadEvent/StaticWriteEvent. A trick involving a macro has
temporarily been used right now. Some work needs to be done to
factorize tests and sets everywhere.
The timeouts, expiration timers and results are now stored in the buffers.
The timers will have to change a bit to become more flexible, and when the
I/O completion functions will be written, the connect_complete() will have
to be extracted from the write() function.
The files are now stored under :
- include/haproxy for the generic includes
- include/types.h for the structures needed within prototypes
- include/proto.h for function prototypes and inline functions
- src/*.c for the C files
Most include files are now covered by LGPL. A last move still needs
to be done to put inline functions under GPL and not LGPL.
Version has been set to 1.3.0 in the code but some control still
needs to be done before releasing.