b_alloc_margin is, strickly speeking, thread-safe. It will not crash
HAproxy. But its contract is not respected anymore in a multithreaded
environment. In this function, we need to be sure to have <margin> buffers
available in the pool after the allocation. So to have this guarantee, we must
lock the memory pool during all the operation. This also means, we must call
internal and lockless memory functions (prefixed with '__').
For the record, this patch fixes a pernicious bug happens after a soft reload
where some streams can be blocked infinitly, waiting for a buffer in the
buffer_wq list. This happens because, during a soft reload, pool_gc2 is called,
making some calls to b_alloc_fast fail.
This is specific to threads, no backport is needed.
This macro should be used to declare variables or struct members depending on
the USE_THREAD compile option. It avoids the encapsulation of such declarations
between #ifdef/#endif. It is used to declare all lock variables.
At a number of places, bitmasks are used for process affinity and to map
listeners to processes. Every time 1UL<<(relative_pid-1) is used. Let's
create a "pid_bit" variable corresponding to this value to clean this up.
In commit 53a4766 ("MEDIUM: connection: start to introduce a mux layer
between xprt and data") we introduced a release() function which ends
up never being used. Let's get rid of it now.
This small inline function causes some pain to the compiler when used
inside other functions due to its use of the unlikely() hint for non-digits.
It causes the letters to be processed far away in the calling function and
makes the code less efficient. Removing these unlikely() hints has increased
the chunk size parsing by around 5%.
The HTTP/1 code always has the reserve left available so the buffer is
never full there. But with HTTP/2 we have to deal with full buffers,
and it happens that the chunk size parser cannot tell the difference
between a full buffer and an empty one since it compares the start and
the stop pointer.
Let's change this to instead deal with the number of bytes left to process.
As a side effect, this code ends up being about 10% faster than the previous
one, even on HTTP/1.
When a write activity is reported on a channel, it is important to keep this
information for the stream because it take part on the analyzers' triggering.
When some data are written, the flag CF_WRITE_PARTIAL is set. It participates to
the task's timeout updates and to the stream's waking. It is also used in
CF_MASK_ANALYSER mask to trigger channels anaylzers. In the past, it was cleared
by process_stream. Because of a bug (fixed in commit 95fad5ba4 ["BUG/MAJOR:
stream-int: don't re-arm recv if send fails"]), It is now cleared before each
send and in stream_int_notify. So it is possible to loss this information when
process_stream is called, preventing analyzers to be called, and possibly
leading to a stalled stream.
Today, this happens in HTTP2 when you call the stat page or when you use the
cache filter. In fact, this happens when the response is sent by an applet. In
HTTP1, everything seems to work as expected.
To fix the problem, we need to make the difference between the write activity
reported to lower layers and the one reported to the stream. So the flag
CF_WRITE_EVENT has been added to notify the stream of the write activity on a
channel. It is set when a send succedded and reset by process_stream. It is also
used in CF_MASK_ANALYSER. finally, it is checked in stream_int_notify to wake up
a stream and in channel_check_timeouts.
This bug is probably present in 1.7 but it seems to have no effect. So for now,
no needs to backport it.
The H1 parser used by the H2 gateway was a bit lax and could validate
non-numbers in the status code. Since it computes the code on the fly
it's problematic, as "30:" is read as status code 310. Let's properly
check that it's a number now. No backport needed.
This adds a new keyword on the "server" line, "allow-0rtt", if set, we'll try
to send early data to the server, as long as the client sent early data, as
in case the server rejects the early data, we no longer have them, and can't
resend them, so the only option we have is to send back a 425, and we need
to be sure the client knows how to interpret it correctly.
The spin locks used to rely on W locks, which involve a loop waiting
for readers to leave, and this doesn't happen here. It's more efficient
to use S locks instead, which are also mutually exclusive and do not
have this loop. This saves one test per spinlock and a few tens of
bytes allowing certain functions to be inlined.
Currently the task scheduler suffers from an O(n) lookup when
skipping tasks that are not for the current thread. The reason
is that eb32_lookup_ge() has no information about the current
thread so it always revisits many tasks for other threads before
finding its own tasks.
This is particularly visible with HTTP/2 since the number of
concurrent streams created at once causes long series of tasks
for the same stream in the scheduler. With only 10 connections
and 100 streams each, by running on two threads, the performance
drops from 640kreq/s to 11.2kreq/s! Lookup metrics show that for
only 200000 task lookups, 430 million skips had to be performed,
which means that on average, each lookup leads to 2150 nodes to
be visited.
This commit backports the principle of scope lookups for ebtrees
from the ebtree_v7 development tree. The idea is that each node
contains a mask indicating the union of the scopes for the nodes
below it, which is fed during insertion, and used during lookups.
Then during lookups, branches that do not contain any leaf matching
the requested scope are simply ignored. This perfectly matches a
thread mask, allowing a thread to only extract the tasks it cares
about from the run queue, and to always find them in O(log(n))
instead of O(n). Thus the scheduler uses tid_bit and
task->thread_mask as the ebtree scope here.
Doing this has recovered most of the performance, as can be seen on
the test below with two threads, 10 connections, 100 streams each,
and 1 million requests total :
Before After Gain
test duration : 89.6s 4.73s x19
HTTP requests/s (DEBUG) : 11200 211300 x19
HTTP requests/s (PROD) : 15900 447000 x28
spin_lock time : 85.2s 0.46s /185
time per lookup : 13us 40ns /325
Even when going to 6 threads (on 3 hyperthreaded CPU cores), the
performance stays around 284000 req/s, showing that the contention
is much lower.
A test showed that there's no benefit in using this for the wait queue
though.
The __appctx_wakeup() function already does it. It matters with threads
enabled because it simplifies the code in appctx_res_wakeup() to get rid
of this test.
unbind_listener() takes the listener lock, which is already held by
enable_listener(). This situation happens when starting with nbproc > 1
with some bind lines limited to a certain process, because in this case
enable_listener() tries to stop unneeded listeners.
This commit introduces __do_unbind_listeners() which must be called with
the lock held, and makes enable_listener() use this one. Given that the
only return code has never been used and that it starts to make the code
more complicated to propagate it before throwing it to the trash, the
function's return type was changed to void.
This function incorrectly dealt with the case where data doesn't
wrap but lies at the end of the buffer, resulting in Lukas' reported
data corruption with HTTP/2. No backport is needed, it was introduced
for HTTP/2 in 1.8-dev.
For now it only supports literals and a bit of static header table
references for the 9 most common header field names (date, server,
content-type, content-length, last-modified, accept-ranges, etag,
cache-control, location).
A previous incarnation of this commit used to strip the forbidden H2
header names (connection, proxy-connection, upgrade, transfer-encoding,
keep-alive) but this is no longer the case as this filtering is irrelevant
to HPACK encoding and is specific to H2, so this will have to be done by
the caller.
It's quite not optimal but works fine enough to prepare some valid and
partially compressed responses during development.
The decoder is now fully functional. It makes use of the dynamic header
table. Dynamic header table size updates are currently ignored, as our
initially advertised value is the highest we support. Strictly speaking,
the impact is that a client referencing a header field after such an
update wouldn't observe an error instead of the connection being dropped
if it was implemented.
Decoded header fields are copied into a target buffer in HTTP/1 format
using HTTP/1.1 as the version. The Host header field is automatically
appended if a ":authority" header field is present.
All decoded header fields can be displayed if the file is compiled with
DEBUG_HPACK.
This code deals with header insertion, retrieval and eviction, as well
as with dynamic header table defragmentation. It is functional for use
as a decoder and was heavily tested in this context. There's still some
room for optimization (eg: the defragmentation code currently does it
in place using a memcpy).
Also for now the dynamic header table is allocated using malloc() while
a pool needs to be created instead.
This code was mostly imported from https://github.com/wtarreau/http2-exp
with "hpack_" prepended in front of most names to avoid risks of conflicts.
Some small cleanups and renamings were applied during the import. This
version must be considered more recent.
Some HPACK error codes were placed here (HPACK_ERR_*), not exactly because
they're needed by the decoder but they'll be needed by all callers. Maybe
a different location should be found.
The code was borrowed from the HPACK experimental implementations
available here :
https://github.com/wtarreau/http2-exp
It contains the Huffman table as specified in RFC7541 Appendix B, and a
set of reverse tables used to decode a Huffman byte stream, and produced
by contrib/h2/gen-rht. The encoder is not finalized, it doesn't emit the
byte stream but this is not needed for now.
This callback will be used to release upper layers when a mux is in
use. Given that the mux can be asynchronously deleted, we need a way
to release the extra information such as the session.
This callback will be called directly by the mux upon releasing
everything and before the connection itself is released, so that
the callee can find its information inside the connection if needed.
The way it currently works is not perfect, and most likely this should
instead become a mux release callback, but for now we have no easy way
to add mux-specific stuff, and since there's one mux per connection,
it works fine this way.
For H2, only the mux's timeout or other conditions might cause a
release of the mux and the connection, no stream should be allowed
to kill such a shared connection. So a stream will only detach using
cs_destroy() which will call mux->detach() then free the cs.
For now it's only handled by mux_pt. The goal is that the data layer
never has to care about the connection, which will have to be released
depending on the mux's mood.
This basically calls cs_shutw() followed by cs_shutr(). Both of them
are called in the most conservative mode so that any previous call is
still respected. The CS flags are cleared so that it can be reused
(this is important for connection retries when conn and CS are reused
without being reallocated).
In order to support all shutdown modes on the CS, we introduce the
following flags :
CS_FL_SHRD : shut read, drain extra data
CS_FL_SHRR : shut read, reset extra data
CS_FL_SHWN : shut write, normal notification
CS_FL_SHWS : shut write, silent mode (no notification)
And the following modes for shutr/shutw :
CS_SHR_DRAIN, CS_SHR_RESET, CS_SHW_NORMAL, CS_SHW_SILENT.
Note: it's possible that we won't need to distinguish the two shutw
above as they're only an action.
For now they are not used.
All the references to connections in the data path from streams and
stream_interfaces were changed to use conn_streams. Most functions named
"something_conn" were renamed to "something_cs" for this. Sometimes the
connection still is what matters (eg during a connection establishment)
and were not always renamed. The change is significant and minimal at the
same time, and was quite thoroughly tested now. As of this patch, all
accesses to the connection from upper layers go through the pass-through
mux.
Most of the functions dealing with conn_streams are here. They act at
the data layer and interact with the mux. For now they are not used yet
but everything builds.
This patch introduces a new struct conn_stream. It's the stream-side of
a multiplexed connection. A pool is created and destroyed on exit. For
now the conn_streams are not used at all.
When an incoming connection is made on an HTTP mode frontend, the
session now looks up the mux to use based on the ALPN token and the
proxy mode. This will allow easier mux registration, and we don't
need to hard-code the mux_pt_ops anymore.
Selecting a mux based on ALPN and the proxy mode will quickly become a
pain. This commit provides new functions to register/lookup a mux based
on the ALPN string and the proxy mode to make this easier. Given that
we're not supposed to support a wide range of muxes, the lookup should
not have any measurable performance impact.
For HTTP/2 and QUIC, we'll need to deal with multiplexed streams inside
a connection. After quite a long brainstorming, it appears that the
connection interface to the existing streams is appropriate just like
the connection interface to the lower layers. In fact we need to have
the mux layer in the middle of the connection, between the transport
and the data layer.
A mux can exist on two directions/sides. On the inbound direction, it
instanciates new streams from incoming connections, while on the outbound
direction it muxes streams into outgoing connections. The difference is
visible on the mux->init() call : in one case, an upper context is already
known (outgoing connection), and in the other case, the upper context is
not yet known (incoming connection) and will have to be allocated by the
mux. The session doesn't have to create the new streams anymore, as this
is performed by the mux itself.
This patch introduces this and creates a pass-through mux called
"mux_pt" which is used for all new connections and which only
calls the data layer's recv,send,wake() calls. One incoming stream
is immediately created when init() is called on the inbound direction.
There should not be any visible impact.
Note that the connection's mux is purposely not set until the session
is completed so that we don't accidently run with the wrong mux. This
must not cause any issue as the xprt_done_cb function is always called
prior to using mux's recv/send functions.
This is needed in the H2->H1 gateway so that we know how long the trailers
block is in chunked encoding. It returns the number of bytes, or 0 if some
are missing, or -1 in case of parse error.
It was a leftover from the last cleaning session; this mask applies
to threads and calling it process_mask is a bit confusing. It's the
same in fd, task and applets.
srv_set_fqdn() may be called with the DNS lock already held, but tries to
lock it anyway. So, add a new parameter to let it know if it was already
locked or not;
Commit 819fc6f ("MEDIUM: threads/stick-tables: handle multithreads on
stick tables") introduced a valid warning about an uninitialized return
value in stksess_kill_if_expired(). It just happens that this result is
never used, so let's turn the function back to void as previously.
The wrong bit was set to keep the lock on freq counter update. And the read
functions were re-worked to use volatile.
Moreover, when a freq counter is updated, it is now rotated only if the current
counter is in the past (now.tv_sec > ctr->curr_sec). It is important with
threads because the current time (now) is thread-local. So, rounded to the
second, the time may vary by more or less 1 second. So a freq counter rotated by
one thread may be see 1 second in the future. In this case, it is updated but
not rotated.
There was a flaw in the way the threads was created. the main one was just used
to create all the others and just wait to exit. Now, it is used to run a poll
loop. So we only create nbthread-1 threads.
This also fixes a bug about the compression filter when there is only 1 thread
(nbthread == 1 or no threads support). The bug was in the way thread-local
resources was initialized. per-thread init/deinit callbacks were never called
for the main process. So, with nthread set to 1, some buffers remained
uninitialized.
By default, no affinity is set for threads. To bind threads on CPU, you must
define a "thread-map" in the global section. The format is the same than the
"cpu-map" parameter, with a small difference. The process number must be
defined, with the same format than cpu-map ("all", "even", "odd" or a number
between 1 and 31/63).
A thread will be bound on the intersection of its mapping and the one of the
process on which it is attached. If the intersection is null, no specific bind
will be set for the thread.
Because there is not migration mechanism yet, all runtime information about an
SPOE agent are thread-local and async exchanges with agents are disabled when we
have serveral threads. Howerver, pipelining is still available. So for now, the
thread part of the SPOE is pretty simple.
We have two y for nsuring that the data is not concurently manipulated:
- locks
- running task on the same thread.
locks are expensives, it is better to avoid it.
This patch cecks that the Lua task run on the same thread that
the stream associated to the coprocess.
TODO: in a next version, the error should be replaced by a yield
and thread migration request.
Note that the Lua processing is not really thread safe. It provides
heavy system which consists to add our own lock function in the Lua
code and recompile the library. This system will probably not accepted
by maintainers of various distribs.
Our main excution point of the Lua is the function lua_resume(). A
quick looking on the Lua sources displays a lua_lock() a the start
of function and a lua_unlock() at the end of the function. So I
conclude that the Lua thread safe mode just perform a mutex around
all execution. So I prefer to do this in the HAProxy code, it will be
easier for distro maintainers.
Note that the HAProxy lua functions rounded by the macro SET_SAFE_LJMP
and RESET_SAFE_LJMP manipulates the Lua stack, so it will be careful
to set mutex around these functions.
Now, it is possible to define init_per_thread and deinit_per_thread callbacks to
deal with ressources allocation for each thread.
This is the filter responsibility to deal with concurrency. This is also the
filter responsibility to know if HAProxy is started with some threads. A good
way to do so is to check "global.nbthread" value. If it is greater than 1, then
_per_thread callbacks will be called.
A RW lock has been added to the vars structure to protect each list of
variables. And a global RW lock is used to protect registered names.
When a varibable is fetched, we duplicate sample data because the variable could
be modified by another thread.
When a frequency counter must be updated, we use the curr_sec/curr_tick fields
as a lock, by setting the MSB to 1 in a compare-and-swap to lock and by reseting
it to unlock. And when we need to read it, we loop until the counter is
unlocked. This way, the frequency counters are thread-safe without any external
lock. It is important to avoid increasing the size of many structures (global,
proxy, server, stick_table).
locks have been added in pat_ref and pattern_expr structures to protect all
accesses to an instance of on of them. Moreover, a global lock has been added to
protect the LRU cache used for pattern matching.
Patterns are now duplicated after a successfull matching, to avoid modification
by other threads when the result is used.
Finally, the function reloading a pattern list has been modified to be
thread-safe.
First, OpenSSL is now initialized to be thread-safe. This is done by setting 2
callbacks. The first one is ssl_locking_function. It handles the locks and
unlocks. The second one is ssl_id_function. It returns the current thread
id. During the init step, we create as much as R/W locks as needed, ie the
number returned by CRYPTO_num_locks function.
Next, The reusable SSL session in the server context is now thread-local.
Shctx is now also initialized if HAProxy is started with several threads.
And finally, a global lock has been added to protect the LRU cache used to store
generated certificates. The function ssl_sock_get_generated_cert is now
deprecated because the retrieved certificate can be removed by another threads
in same time. Instead, a new function has been added,
ssl_sock_assign_generated_cert. It must be used to search a certificate in the
cache and set it immediatly if found.
A lock is used to protect accesses to a peer structure.
A the lock is taken in the applet handler when the peer is identified
and released living the applet handler.
In the scheduling task for peers section, the lock is taken for every
listed peer and released at the end of the process task function.
The peer 'force shutdown' function was also re-worked.
A global lock has been added to protect accesses to the list of active
applets. A process mask has also been added on each applet. Like for FDs and
tasks, it is used to know which threads are allowed to process an
applet. Because applets are, most of time, linked to a session, it should be
sticky on the same thread. But in all cases, it is the responsibility of the
applet handler to lock what have to be protected in the applet context.
This is done by passing the right stream's proxy (the frontend or the backend,
depending on the context) to lock the error snapshot used to store the error
info.
The stick table API was slightly reworked:
A global spin lock on stick table was added to perform lookup and
insert in a thread safe way. The handling of refcount on entries
is now handled directly by stick tables functions under protection
of this lock and was removed from the code of callers.
The "stktable_store" function is no more externalized and users should
now use "stktable_set_entry" in any case of insertion. This last one performs
a lookup followed by a store if not found. So the code using "stktable_store"
was re-worked.
Lookup, and set_entry functions automatically increase the refcount
of the returned/stored entry.
The function "sticktable_touch" was renamed "sticktable_touch_local"
and is now able to decrease the refcount if last arg is set to true. It
is allowing to release the entry without taking the lock twice.
A new function "sticktable_touch_remote" is now used to insert
entries coming from remote peers at the right place in the update tree.
The code of peer update was re-worked to use this new function.
This function is also able to decrease the refcount if wanted.
The function "stksess_kill" also handle a parameter to decrease
the refcount on the entry.
A read/write lock is added on each entry to protect the data content
updates of the entry.
A lock for LB parameters has been added inside the proxy structure and atomic
operations have been used to update server variables releated to lb.
The only significant change is about lb_map. Because the servers status are
updated in the sync-point, we can call recalc_server_map function synchronously
in map_set_server_status_up/down function.
This list is used to save changes on the servers state. So when serveral threads
are used, it must be locked. The changes are then applied in the sync-point. To
do so, servers_update_status has be moved in the sync-point. So this is useless
to lock it at this step because the sync-point is a protected area by iteself.
For now, we have a list of each type per thread. So there is no need to lock
them. This is the easiest solution for now, but not the best one because there
is no sharing between threads. An idle connection on a thread will not be able
be used by a stream on another thread. So it could be a good idea to rework this
patch later.
Now, each proxy contains a lock that must be used when necessary to protect
it. Moreover, all proxy's counters are now updated using atomic operations.
First, we use atomic operations to update jobs/totalconn/actconn variables,
listener's nbconn variable and listener's counters. Then we add a lock on
listeners to protect access to their information. And finally, listener queues
(global and per proxy) are also protected by a lock. Here, because access to
these queues are unusal, we use the same lock for all queues instead of a global
one for the global queue and a lock per proxy for others.
2 global locks have been added to protect, respectively, the run queue and the
wait queue. And a process mask has been added on each task. Like for FDs, this
mask is used to know which threads are allowed to process a task.
For many tasks, all threads are granted. And this must be your first intension
when you create a new task, else you have a good reason to make a task sticky on
some threads. This is then the responsibility to the process callback to lock
what have to be locked in the task context.
Nevertheless, all tasks linked to a session must be sticky on the thread
creating the session. It is important that I/O handlers processing session FDs
and these tasks run on the same thread to avoid conflicts.
Many changes have been made to do so. First, the fd_updt array, where all
pending FDs for polling are stored, is now a thread-local array. Then 3 locks
have been added to protect, respectively, the fdtab array, the fd_cache array
and poll information. In addition, a lock for each entry in the fdtab array has
been added to protect all accesses to a specific FD or its information.
For pollers, according to the poller, the way to manage the concurrency is
different. There is a poller loop on each thread. So the set of monitored FDs
may need to be protected. epoll and kqueue are thread-safe per-se, so there few
things to do to protect these pollers. This is not possible with select and
poll, so there is no sharing between the threads. The poller on each thread is
independant from others.
Finally, per-thread init/deinit functions are used for each pollers and for FD
part for manage thread-local ressources.
Now, you must be carefull when a FD is created during the HAProxy startup. All
update on the FD state must be made in the threads context and never before
their creation. This is mandatory because fd_updt array is thread-local and
initialized only for threads. Because there is no pollers for the main one, this
array remains uninitialized in this context. For this reason, listeners are now
enabled in run_thread_poll_loop function, just like the worker pipe.
log buffers and static variables used in log functions are now thread-local. So
there is no need to lock anything to log messages. Moreover, per-thread
init/deinit functions are now used to initialize these buffers.
A sync-point is a protected area where you have the warranty that no concurrency
access is possible. It is implementated as a thread barrier to enter in the
sync-point and another one to exit from it. Inside the sync-point, all threads
that must do some syncrhonous processing will be called one after the other
while all other threads will wait. All threads will then exit from the
sync-point at the same time.
A sync-point will be evaluated only when necessary because it is a costly
operation. To limit the waiting time of each threads, we must have a mechanism
to wakeup all threads. This is done with a pipe shared by all threads. By
writting in this pipe, we will interrupt all threads blocked on a poller. The
pipe is then flushed before exiting from the sync-point.
hap_register_per_thread_init and hap_register_per_thread_deinit functions has
been added to register functions to do, for each thread, respectively, some
initialization and deinitialization. These functions are added in the global
lists per_thread_init_list and per_thread_deinit_list.
These functions are called only when HAProxy is started with more than 1 thread
(global.nbthread > 1).
This file contains all functions and macros used to deal with concurrency in
HAProxy. It contains all high-level function to do atomic operation
(HA_ATOMIC_*). Note, for now, we rely on "__atomic" GCC builtins to do atomic
operation. So HAProxy can be compiled with the thread support iff these builtins
are available.
It also contains wrappers around plocks to use spin or read/write locks. These
wrappers are used to abstract the internal representation of the locking system
and to add information to help debugging, when compiled with suitable
options.
To add extra info on locks, you need to add DEBUG=-DDEBUG_THREAD or
DEBUG=-DDEBUG_FULL compilation option. In addition to timing info on locks, we
keep info on where a lock was acquired the last time (function name, file and
line). There are also the thread id and a flag to know if it is still locked or
not. This will be useful to debug deadlocks.
Now memprintf relies on memvprintf. This new function does exactly what
memprintf did before, but it must be called with a va_list instead of a variable
number of arguments. So there is no change for every functions using
memprintf. But it is now also possible to have same functionnality from any
function with variadic arguments.
Email alerts relies on checks to send emails. The link between a mailers section
and a proxy was resolved during the configuration parsing, But initialization was
done when the first alert is triggered. This implied memory allocations and
tasks creations. With this patch, everything is now initialized during the
configuration parsing. So when an alert is triggered, only the memory required
by this alert is dynamically allocated.
Moreover, alerts processing had a flaw. The task handler used to process alerts
to be sent to the same mailer, process_email_alert, was designed to give back
the control to the scheduler when an alert was sent. So there was a delay
between the sending of 2 consecutives alerts (the min of
"proxy->timeout.connect" and "mailer->timeout.mail"). To fix this problem, now,
we try to process as much queued alerts as possible when the task is woken up.
This is a huge patch with many changes, all about the DNS. Initially, the idea
was to update the DNS part to ease the threads support integration. But quickly,
I started to refactor some parts. And after several iterations, it was
impossible for me to commit the different parts atomically. So, instead of
adding tens of patches, often reworking the same parts, it was easier to merge
all my changes in a uniq patch. Here are all changes made on the DNS.
First, the DNS initialization has been refactored. The DNS configuration parsing
remains untouched, in cfgparse.c. But all checks have been moved in a post-check
callback. In the function dns_finalize_config, for each resolvers, the
nameservers configuration is tested and the task used to manage DNS resolutions
is created. The links between the backend's servers and the resolvers are also
created at this step. Here no connection are kept alive. So there is no needs
anymore to reopen them after HAProxy fork. Connections used to send DNS queries
will be opened on demand.
Then, the way DNS requesters are linked to a DNS resolution has been
reworked. The resolution used by a requester is now referenced into the
dns_requester structure and the resolution pointers in server and dns_srvrq
structures have been removed. wait and curr list of requesters, for a DNS
resolution, have been replaced by a uniq list. And Finally, the way a requester
is removed from a DNS resolution has been simplified. Now everything is done in
dns_unlink_resolution.
srv_set_fqdn function has been simplified. Now, there is only 1 way to set the
server's FQDN, independently it is done by the CLI or when a SRV record is
resolved.
The static DNS resolutions pool has been replaced by a dynamoc pool. The part
has been modified by Baptiste Assmann.
The way the DNS resolutions are triggered by the task or by a health-check has
been totally refactored. Now, all timeouts are respected. Especially
hold.valid. The default frequency to wake up a resolvers is now configurable
using "timeout resolve" parameter.
Now, as documented, as long as invalid repsonses are received, we really wait
all name servers responses before retrying.
As far as possible, resources allocated during DNS configuration parsing are
releases when HAProxy is shutdown.
Beside all these changes, the code has been cleaned to ease code review and the
doc has been updated.
The messages processing is done using existing functions. So here, the main task
is to find the SPOE engine to use. To do so, we loop on all filter instances
attached to the stream. For each, we check if it is a SPOE filter and, if yes,
if its name is the one used to declare the "send-spoe-group" action.
We also take care to return an error if the action processing is interrupted by
HAProxy (because of a timeout or an error at the HAProxy level). This is done by
checking if the flag ACT_FLAG_FINAL is set.
The function spoe_send_group is the action_ptr callback ot
Because we can have messages chained by event or by group, we need to have a way
to know which kind of list we manipulate during the encoding. So 2 types of list
has been added, SPOE_MSGS_BY_EVENT and SPOE_MSGS_BY_GROUP. And the right type is
passed when spoe_encode_messages is called.
This action is used to trigger sending of a group of SPOE messages. To do so,
the SPOE engine used to send messages must be defined, as well as the SPOE group
to send. Of course, the SPOE engine must refer to an existing SPOE filter. If
not engine name is provided on the SPOE filter line, the SPOE agent name must be
used. For example:
http-request send-spoe-group my-engine some-group
This action is available for "tcp-request content", "tcp-response content",
"http-request" and "http-response" rulesets. It cannot be used for tcp
connection/session rulesets because actions for these rulesets cannot yield.
For now, the action keyword is parsed and checked. But it does nothing. Its
processing will be added in another patch.
For now, this section is only parsed. It should have the following format:
spoe-group <grp-name>
messages <msg-name> ...
And then SPOE groups must be referenced in spoe-agent section:
spoe-agnt <name>
...
groups <grp-name> ...
The purpose of these groups is to trigger messages sending from TCP or HTTP
rules, directly from HAProxy configuration, and not on specific event. This part
will be added in another patch.
It is important to note that a message belongs at most to a group.
The engine name is now kept in "spoe_config" struture. Because a SPOE filter can
be declared without engine name, we use the SPOE agent name by default. Then,
its uniqness is checked against all others SPOE engines configured for the same
proxy.
* TODO: Add documentation
Now, it is possible to conditionnaly send a SPOE message by adding an ACL-based
condition on the "event" line, in a "spoe-message" section. Here is the example
coming for the SPOE documentation:
spoe-message get-ip-reputation
args ip=src
event on-client-session if ! { src -f /etc/haproxy/whitelist.lst }
To avoid mixin with proxy's ACLs, each SPOE message has its private ACL list. It
possible to declare named ACLs in "spoe-message" section, using the same syntax
than for proxies. So we can rewrite the previous example to use a named ACL:
spoe-message get-ip-reputation
args ip=src
acl ip-whitelisted src -f /etc/haproxy/whitelist.lst
event on-client-session if ! ip-whitelisted
ACL-based conditions are executed in the context of the stream that handle the
client and the server connections.