At the moment the WURFL module emits 3 lines of warnings upon startup
when it is not referenced in the configuration file, which is quite
confusing. Let's make sure to keep it silent when not configured, as
detected by the absence of the wurfl-data-file statement.
The current coverage of the dummy library was limited because the callbacks
passed to wurfl_lookup() were not called. Now we do call them with one existing
and one non-existing headers to make sure that ha_wurfl_retrieve_header() is
covered by the tests as well.
A segfault may happen in ha_wurfl_get() when dereferencing information not
present in wurfl-information-list. Check the node retrieved from the tree,
not its container.
This fix must be backported to 1.9.
The mux's name is the only one reported in lower case in "show sess"
or "haproxy -vv" while the other ones are upper case, so it loses and
the other ones win :-)
It was not as efficient as the watchdog in that it would only trigger
after the problem resolved by itself, and still required a huge margin
to make sure we didn't trigger for an invalid reason. This used to leave
little indication about the cause. Better use the watchdog now and
improve it if needed.
The detector of unkillable tasks remains active though.
Since threads were introduced, we've naturally had a number of bugs
related to locking issues. In addition we've also got some issues
with corrupted lists in certain rare cases not necessarily involving
threads. Not only these events cause a lot of trouble to the production
as it is very hard to detect that the process is stuck in a loop and
doesn't deliver the service anymore, but it's often difficult (or too
late) to collect more debugging information.
The patch presented here implements a lockup detection mechanism, also
known as "watchdog". The principle is that (on systems supporting it),
each thread will have its own CPU timer which progresses as the thread
consumes CPU cycles, and when a deadline is met, a signal is delivered
(SIGALRM here since it doesn't interrupt gdb by default).
The thread handling this signal (which is not necessarily the one which
triggered the timer) figures the thread ID from the signal arguments and
checks if it's really stuck by looking at the time spent since last exit
from poll() and by checking that the thread's scheduler is still alive
(so that even when dealing with configuration issues resulting in insane
amount of tasks being called in turn, it is not possible to accidently
trigger it). Checking the scheduler's activity will usually result in a
second chance, thus doubling the detecting time.
In order not to incorrectly flag a thread as being the cause of the
lockup, the thread_harmless_mask is checked : a thread could very well
be spinning on itself waiting for all other threads to join (typically
what happens when issuing "show sess"). In this case, once all threads
but one (or two) have joined, all the innocent ones are marked harmless
and will not trigger the timer. Only the ones not reacting will.
The deadline is set to one second, which already appears impossible to
reach, especially since it's 1 second of CPU usage, not elapsed time
with the CPU being preempted by other threads/processes/hypervisor. In
practice due to the scheduler's health verification it takes up to two
seconds to decide to panic.
Once all conditions are met, the goal is to crash from the offending
thread. So if it's the current one, we call ha_panic() otherwise the
signal is bounced to the offending thread which deals with it. This
will result in all threads being woken up in turn to dump their context,
the whole state is emitted on stderr in hope that it can be logged, and
the process aborts, leaving a chance for a core to be dumped and for a
service manager to restart it.
An alternative mechanism could be implemented for systems unable to
wake up a thread once its CPU clock reaches a deadline (e.g. FreeBSD).
Instead of waking the timer each and every deadline, it is possible to
use a standard timer which is reset each time we leave poll(). Since
the signal handler rechecks the CPU consumption this will also work.
However a totally idle process may trigger it from time to time which
may or may not confuse some debugging sessions. The same is true for
alarm() which could be another option for systems not having such a
broad choice of timers (but it seems that in this case they will not
have per-thread CPU measurements available either).
The feature is currently implemented only when threads are enabled in
order to keep the code clean, since the main purpose is to detect and
address inter-thread deadlocks. But if it proves useful for other
situations this condition might be relaxed.
This will be used by the watchdog to detect that a thread locked up.
It's only defined on platforms supporting it. This patch only reserves
the room for the timer in the struct. A special value was reserved for
the uninitialized timer. The problem is that the POSIX API was horribly
designed, defining no invalid value, thus for each timer it is required
to keep a second variable to indicate whether it's valid. A quick check
shows that defining a 32-bit invalid value is not something uncommon
across other implementations, with ~0 being common. Let's try with this
and if it causes issues we can revisit this decision.
This flag is constantly cleared by the scheduler and will be set by the
watchdog timer to detect stuck threads. It is also set by the "show
threads" command so that it is easy to spot if the situation has evolved
between two subsequent calls : if the first "show threads" shows no stuck
thread and the second one shows such a stuck thread, it indicates that
this thread didn't manage to make any forward progress since the previous
call, which is extremely suspicious.
Whenever we can retrieve a valid stream pointer, we now call stream_dump()
to get a detailed dump of the stream currently running on the processor.
This is used by "show threads" and by ha_panic().
This function dumps a lot of information about a stream into the provided
buffer. It is now used by stream_dump_and_crash() and will be used by the
debugger as well.
These functions are used respectively to signal one thread or all threads.
When multithreading is disabled, it's always the current thread which is
signaled.
Some code starts to add ifdefs everywhere to work around the lack of
threads_harmless_mask when threads are not compiled in. This one is
often used to indicate a thread having joined the rendez-vous point or
a thread sleeping in the poller. By setting it to zero we translate
what usually is required in debugging code (i.e. the only thread is
currently working) and for signal handlers we can use a combination of
threads_harmless_mask and sleeping_threads_mask to detect the polling
cases as well. Similarly do the same with threads_want_rdv_mask which
is less often used though.
Commit 5a6e2245f ("REORG: threads: move the struct thread_info from
global.h to hathreads.h") didn't hold its promise well, as the thread_info
struct was still declared and initialized in haproxy.c in addition to being
in hathreads.c. Let's move it for real now.
The current choice of SIGPWR has the adverse effect of stopping gdb each
time it is triggered using "show threads" or example, which is not really
convenient. Let's switch to SIGURG instead, which we don't use either.
The struct mworker_proc is not uniformly freed everywhere, sometimes leading
to leaks of the `id` string (and possibly the other strings).
Introduce a mworker_free_child function instead of duplicating the freeing
logic everywhere to prevent this kind of issues.
This leak was reported in issue #96.
It looks like the leaks have been introduced in commit 9a1ee7ac31,
which is specific to 2.0-dev. Backporting `mworker_free_child` might be
helpful to ease backporting other fixes, though.
Some structures have optional fields which depend on availability of
certain features on certain platforms, and having to stuff lots of
ifdefs in these structs makes them unreadable. Using real values like
ints requires some initialization and adds even more confusion.
Here we take a different approach : we create an empty type called
empty_t to use as a substitute for the real type that is not implemented
and which doesn't contain any value (it's an empty struct). Thus it has
a size of zero but an address, thus a pointer may point to it. It will
not have to be initialized though. Some initialization code might even
continue to work and do nothing like initializing it using memset with
its sizeof which is zero.
The clock_gettime() man page says we must check that _POSIX_TIMERS is
defined to a value greater than zero, not just that it's simply defined
so let's fix this right now.
When we receive a read0, and we're still in SI_ST_CON state (so on an
outgoing conneciton), don't immediately switch to SI_ST_DIS, or, we would
never call sess_establish(), and so the analysers will never run.
Instead, let sess_establish() handle that case, and switch to SI_ST_DIS if
we already have CF_SHUTR on the channel.
This should be backported to 1.9.
Event ports are kqueue/epoll polling class for Solaris. Code is based
on https://github.com/joyent/haproxy-1.8/tree/joyent/dev-v1.8.8.
Event ports are available only on SunOS systems derived from
Solaris 10 and later (including illumos systems).
-fomit-frame-pointer is commonly avoided because tools like dtrace
needs frame-pointer. Remove it from Makefile and let builder's env
do the job.
This patch could be backported to 1.9.
I took extreme care to always check for _POSIX_THREAD_CPUTIME before
manipulating clock_id, except at one place (run_thread_poll_loop) as
found by Manu, breaking Solaris. Now fixed, no backport needed.
Now we can report each thread's CPU time, both at wake up (poll) and
retrieved while dumping (now), then the difference, which directly
indicates how long the thread has been running uninterrupted. A very
high value for the diff could indicate a deadlock, especially if it
happens between two threads. Note that it may occasionally happen
that a wrong value is displayed since nothing guarantees that the
date is read atomically.
Since we're likely to access this thread_info struct more frequently in
the future, let's reserve the thread-local symbol to access it directly
and avoid always having to combine thread_info and tid. This pointer is
set when tid is set.
In order to ease the internal time API, we'll have the threads time always
present even when threads are disabled. Let's make sure clockid_t, and the
minimum clock times are defined even on older or non-compatible systems.
It doesn't make sense to keep this struct thread_info in global.h, it
causes difficulties to access its contents from hathreads.h, let's move
it to the threads where it ought to have been created.
Historically standard.h was the location where we used to (re-)define the
standard set of macros and functions, and to complement the ones missing
on the target OS. Over time it has become a toolbox in itself relying on
many other things, and its definition of LONGBITS is used everywhere else
(e.g. for MAX_THREADS), resulting in painful circular dependencies.
Let's move these few defines (integer sizes) to compat.h where other
similar definitions normally are.
It's a bit too easy to crash by accident when using dump_hex() on any
area. Let's have a function to check if the memory may safely be read
first. This one abuses the stat() syscall checking if it returns EFAULT
or not, in which case it means we're not allowed to read from there. In
other situations it may return other codes or even a success if the
area pointed to by the file exists. It's important not to abuse it
though and as such it's tested only once per output line.
When haproxy is built with DEBUG_DEV, the following commands are added
to the CLI :
debug dev close <fd> : close this file descriptor
debug dev delay [ms] : sleep this long
debug dev exec [cmd] ... : show this command's output
debug dev exit [code] : immediately exit the process
debug dev hex <addr> [len]: dump a memory area
debug dev log [msg] ... : send this msg to global logs
debug dev loop [ms] : loop this long
debug dev panic : immediately trigger a panic
debug dev tkill [thr] [sig] : send signal to thread
These are essentially aimed at helping developers trigger certain
conditions and are expected to be complemented over time.
This function dumps all existing threads using the thread dump mechanism
then aborts. This will be used by the lockup detection and by debugging
tools.
The test consisted in checking that there was always a timeout on a
stream's task and was only enabled when built in development mode,
but 1) it is never tested and 2) if it had been tested it would have
been noticed that it triggers a bit too easily on the CLI. Let's get
rid of this old one.
This is the per-thread CPU runtime clock, it will be used to measure
the CPU usage of each thread and by the lockup detection mechanism. It
must only be retrieved at the beginning of run_thread_poll_loop() since
the thread must already have been started for this. But it must be done
before performing any per-thread initcall so that all thread init
functions have access to the clock ID.
Note that it could make sense to always have this clockid available even
in non-threaded situations and place the process' clock there instead.
But it would add portability issues which are currently easy to deal
with by disabling threads so it may not be worth it for now.
This way we'll be able to store more per-thread information than just
the pthread pointer. The storage became an array of struct instead of
an allocated array since it's very small (typically 512 bytes) and not
worth the hassle of dealing with memory allocation on this. The array
was also renamed thread_info to make its intended usage more explicit.