The buffer's pointer <lr> was only used by HTTP parsers which also use a
struct http_msg to keep track of the parser's state. We've reached a point
where it makes no sense to keep ->lr in the buffer, as the split between
buffer and msg is only arbitrary for historical reasons.
This change ensures that touching buffers will not impact HTTP messages
anymore, making the buffers more content-agnostic. However, it becomes
very important not to forget to update msg->next when some data get
forwarded or moved (and in general each time buf->p is updated).
The new pointer in http_msg becomes relative to buffer->p so that
parsing multiple messages becomes easier. It is possible that at one
point ->som and ->next will be merged.
Note: http_parse_reqline() and http_parse_stsline() have been temporarily
modified to know the message starting point in the buffer (->p).
This change gets rid of buf->r which is always equal to buf->p + buf->i.
It removed some wrapping detection at a number of places, but required addition
of new relative offset computations at other locations. A large number of places
can be simplified now with extreme care, since most of the time, either the
pointer has to be computed once or we need a difference between the old ->w and
old ->r to compute free space. The cleanup will probably happen with the rewrite
of the buffer_input_* and buffer_output_* functions anyway.
buf->lr still has to move to the struct http_msg and be relative to buf->p
for the rework to be complete.
This change introduces the buffer's base pointer, which is the limit between
incoming and outgoing data. It's the point where the parsing should start
from. A number of computations have already been greatly simplified, but
more simplifications are expected to come from the removal of buf->r.
The changes appear good and have revealed occasional improper use of some
pointers. It is possible that this patch has introduced bugs or revealed
some, although preliminary testings tend to indicate that everything still
works as it should.
We don't have buf->l anymore. We have buf->i for pending data and
the total length is retrieved by adding buf->o. Some computation
already become simpler.
Despite extreme care, bugs are not excluded.
It's worth noting that msg->err_pos as set by HTTP request/response
analysers becomes relative to pending data and not to the beginning
of the buffer. This has not been completed yet so differences might
occur when outgoing data are left in the buffer.
These callbacks are used to retrieve the source and destination address
of a socket. The address flags are not hold on the stream interface and
not on the session anymore. The addresses are collected when needed.
This still needs to be improved to store the IP and port separately so
that it is not needed to perform a getsockname() when only the IP address
is desired for outgoing traffic.
The Unique ID, is an ID generated with several informations. You can use
a log-format string to customize it, with the "unique-id-format" keyword,
and insert it in the request header, with the "unique-id-header" keyword.
%Fi: Frontend IP
%Fp: Frontend Port
%Si: Server IP
%Sp: Server Port
%Ts: Timestamp
%rt: HTTP request counter
%H: hostname
%pid: PID
+X: Hexadecimal represenation
The +X mode in logformat displays hexadecimal for the following flags
%Ci %Cp %Fi %Fp %Bi %Bp %Si %Sp %Ts %ct %pid
rename logformat_write_string() to lf_text()
Optimize size computation
* logformat functions now take a format linked list as argument
* build_logline() build a logline using a format linked list
* rename LOG_* by LOG_FMT_* in enum
* improve error management in build_logline()
memcmp()/strcmp() calls were needed in different parts of code to determine
the status code. Each new status code introduces new calls, which can become
inefficient and source of bugs.
This patch reorganizes the code to rely on a numeric status code internally
and to be hopefully more generic.
Previously, the stats admin page required POST parameters to be provided
exactly in the same order as the HTML form.
This patch allows to handle those parameters in any orders.
Also, note that haproxy won't alter server states anymore if backend or server
names are ambiguous (duplicated names in the configuration) to prevent
unexpected results (the same should probably be applied to the stats socket).
Commit a1cc38 introduced a regression which was easy to trigger till ad4cd58
(snapshots 20120222 to 20120311 included). The bug was still present after
that but harder to trigger.
The bug is caused by the use of two distinct log buffers due to intermediary
changes. The issue happens when an HTTP request is logged just after a TCP
request during the same second and the HTTP request is too large for the buffer.
In this case, it happens that the HTTP request is logged into the TCP buffer
instead and that length controls can't detect anything.
Starting with bddd4f, the issue is still possible when logging too large an
HTTP request just after a send_log() call (typically a server status change).
We owe a big thanks to Sander Klein for testing several snapshots and more
specifically for taking significant risks in production by letting the buggy
version crash several times in order to provide an exploitable core ! The bug
could not have been found without this precious help. Thank you Sander !
This fix does not need to be backported, it did not affect any released version.
Merge http_sess_log() and tcp_sess_log() to sess_log() and move it to
log.c
A new field in logformat_type define if you can use a logformat
variable in TCP or HTTP mode.
doc: log-format in tcp mode
Note that due to the way log buffer allocation currently works, trying to
log an HTTP request without "option httplog" is still not possible. This
will change in the near future.
A number of offset computation functions use struct buffer* arguments
and return integers without modifying the input. Using consts helps
simplifying some operations in callers.
The principle behind this load balancing algorithm was first imagined
and modeled by Steen Larsen then iteratively refined through several
work sessions until it would totally address its original goal.
The purpose of this algorithm is to always use the smallest number of
servers so that extra servers can be powered off during non-intensive
hours. Additional tools may be used to do that work, possibly by
locally monitoring the servers' activity.
The first server with available connection slots receives the connection.
The servers are choosen from the lowest numeric identifier to the highest
(see server parameter "id"), which defaults to the server's position in
the farm. Once a server reaches its maxconn value, the next server is used.
It does not make sense to use this algorithm without setting maxconn. Note
that it can however make sense to use minconn so that servers are not used
at full load before starting new servers, and so that introduction of new
servers requires a progressively increasing load (the number of servers
would more or less follow the square root of the load until maxconn is
reached). This algorithm ignores the server weight, and is more beneficial
to long sessions such as RDP or IMAP than HTTP, though it can be useful
there too.
http_sess_log now use the logformat linked list to make the log
string, snprintf is not used for speed issue.
CLF mode also uses logformat.
NOTE: as of now, empty fields in CLF now are "" not "-" anymore.
parse_logformat_string: parse the string, detect the type: text,
separator or variable
parse_logformat_var: dectect variable name
parse_logformat_var_args: parse arguments and flags
add_to_logformat_list: add to the logformat linked list
send_log function is now splited in 3 functions
* hdr_log: generate the syslog header
* send_log: send a syslog message with a printf format string
* __send_log: send a syslog message
It was reported that a server configured with a zero weight would
sometimes still take connections from the backend queue. This issue is
real, it happens this way :
1) the disabled server accepts a request with a cookie
2) many cookie-less requests accumulate in the backend queue
3) when the disabled server completes its request, it checks its own
queue and the backend's queue
4) the server takes a pending request from the backend queue and
processes it. In response, the server's cookie is assigned to
the client, which ensures that some requests will continue to
be served by this server, leading back to point 1 above.
The fix consists in preventing a zero-weight server from dequeuing pending
requests from the backend. Making use of srv_is_usable() in such tests makes
the tests more robust against future changes.
This fix must be backported to 1.4 and 1.3.
In a config where server "s1" is marked disabled and "s2" tracks "s1",
s2 appears disabled on the stats but is still inserted into the LB farm
because the tracking is resolved too late in the configuration process.
We now resolve tracked servers before building LB maps and we also mark
the tracking server in maintenance mode, which previously was not done,
causing half of the issue.
Last point is that we also protect srv_is_usable() against electing a
server marked for maintenance. This is not absolutely needed but is a
safe choice and makes a lot of sense.
This fix must be backported to 1.4.
New option "http-send-name-header" specifies the name of a header which
will hold the server name in outgoing requests. This is the name of the
server the connection is really sent to, which means that upon redispatches,
the header's value is updated so that it always matches the server's name.
The new function does not return IP addresses but header values instead,
so that the caller is free to make what it want of them. The conversion
is not quite clean yet, as the previous test which considered that address
0.0.0.0 meant "no address" is still used. A different IP parsing function
should be used to take this into account.
In commit 4b517ca93a (MEDIUM: buffers:
add some new primitives and rework existing ones), we forgot to check
if buffer_max_len() < l.
No backport is needed.
A number of primitives were missing for buffer management, and some
of them were particularly awkward to use. Specifically, the functions
used to compute free space could not always be used depending what was
wrapping in the buffers. Some documentation has been added about how
the buffers work and their properties. Some functions are still missing
such as a buffer replacement which would support wrapping buffers.
It makes no sense to have one pointer to the hdr_idx pool in each proxy
struct since these pools do not depend on the proxy. Let's have a common
pool instead as it is already the case for other types.
Stream interfaces used to distinguish between client and server addresses
because they were previously of different types (sockaddr_storage for the
client, sockaddr_in for the server). This is not the case anymore, and this
distinction is confusing at best and has caused a number of regressions to
be introduced in the process of converting everything to full-ipv6. We can
now remove this and have a much cleaner code.
This patch introduces hdr_len, path_len and url_len for matching these
respective parts lengths against integers. This can be used to detect
abuse or empty headers.
We already had the ability to kill a connection, but it was only
for the checks. Now we can do this for any session, and for this we
add a specific flag "K" to the logs.
The stats socket now allows the admin to disable, enable or shutdown a frontend.
This can be used when a bug is discovered in a configuration and it's desirable
to fix it but the rules in place don't allow to change a running config. Thus it
becomes possible to kill the frontend to release the port and start a new one in
a separate process.
This can also be used to temporarily make haproxy return TCP resets to incoming
requests to pretend the service is not bound. For instance, this may be useful
to quickly flush a very deep SYN backlog.
The frontend check and lookup code was factored with the "set maxconn" usage.
This one enforces a per-process connection rate limit, regardless of what
may be set per frontend. It can be a way to limit the CPU usage of a process
being severely attacked.
The side effect is that the global process connection rate is now measured
for each incoming connection, so it will be possible to report it.
This was revealed with one of the very latest patches which caused
the listener_queue not to be initialized on the stats socket frontend.
And in fact a number of other ones were missing too. This is getting so
boring that now we'll always make use of the same function to initialize
any proxy. Doing so has even saved about 500 bytes on the binary due to
the avoided code redundancy.
No backport is needed.
This function is finally not needed anymore, as it has been replaced with
a per-proxy task that is scheduled when some limits are encountered on
incoming connections or when the process is stopping. The savings should
be noticeable on configs with a large number of proxies. The most important
point is that the rate limiting is now enforced in a clean and solid way.
When a listeners encounters a resource shortage, it currently stops until
one re-enables it. This is far from being perfect as it does not yet handle
the case where the single connection from the listener is rejected (eg: the
stats page).
Now we'll have a special status for resource limited listeners and we'll
queue them into one or multiple lists. That way, each time we have to stop
a listener because of a resource shortage, we can enqueue it and change its
state, so that it is dequeued once more resources are available.
This patch currently does not change any existing behaviour, it only adds
the basic building blocks for doing that.
Managing listeners state is difficult because they have their own state
and can at the same time have theirs dictated by their proxy. The pause
is not done properly, as the proxy code is fiddling with sockets. By
introducing new functions such as pause_listener()/resume_listener(), we
make it a bit more obvious how/when they're supposed to be used. The
listen_proxies() function was also renamed to resume_proxies() since
it's only used for pause/resume.
This patch is the first in a series aiming at getting rid of the maintain_proxies
mess. In the end, proxies should not call enable_listener()/disable_listener()
anymore.
Patch af5149 introduced an issue which can be detected only on out of
memory conditions : a LIST_DEL() may be performed on an uninitialized
struct member instead of a LIST_INIT() during the accept() phase,
causing crashes and memory corruption to occur.
This issue was detected and diagnosed by the Exceliance R&D team.
This is 1.5-specific and very recent, so no existing deployment should
be impacted.
The motivation for this is to allow iteration of all the connections
of a server without the expense of iterating over the global list
of connections.
The first use of this will be to implement an option to close connections
associated with a server when is is marked as being down or in maintenance
mode.
* The declaration of peer_session_create() does
not match its definition. As it is only
used inside of peers.c make it static.
* Make the declaration of peers_register_table()
match its definition.
* Also, make all functions in peers.c that
are not also in peers.h static
Since IPv6 is a different type than IPv4, the pattern fetch functions
src6 and dst6 were added. IPv6 stick-tables can also fetch IPv4 addresses
with src and dst. In this case, the IPv4 addresses are mapped to their
IPv6 counterpart, according to RFC 4291.
Since the latest additions to buffer_forward(), it became too large for
inlining, so let's uninline it. The code size drops by 3kB. Should be
backported to 1.4 too.
Despite much care around handling the content-length as a 64-bit integer,
forwarding was broken on 32-bit platforms due to the 32-bit nature of
the ->to_forward member of the "buffer" struct. The issue is that this
member is declared as a long, so while it works OK on 64-bit platforms,
32-bit truncate the content-length to the lower 32-bits.
One solution could consist in turning to_forward to a long long, but it
is used a lot in the critical path, so it's not acceptable to perform
all buffer size computations on 64-bit there.
The fix consists in changing the to_forward member to a strict 32-bit
integer and ensure in buffer_forward() that only the amount of bytes
that can fit into it is considered. Callers of buffer_forward() are
responsible for checking that their data were taken into account. We
arbitrarily ensure we never consider more than 2G at once.
That's the way it was intended to work on 32-bit platforms except that
it did not.
This issue was tracked down hard at Exosec with Bertrand Jacquin,
Thierry Fournier and Julien Thomas. It remained undetected for a long
time because files larger than 4G are almost always transferred in
chunked-encoded format, and most platforms dealing with huge contents
these days run on 64-bit.
The bug affects all 1.5 and 1.4 versions, and must be backported.
And also rename "req_acl_rule" "http_req_rule". At the beginning that
was a bit confusing to me, especially the "req_acl" list which in fact
holds what we call rules. After some digging, it appeared that some
part of the code is 100% HTTP and not just related to authentication
anymore, so let's move that part to HTTP and keep the auth-only code
in auth.c.
It's very annoying that frontend and backend stats are merged because we
don't know what we're observing. For instance, if a "listen" instance
makes use of a distinct backend, it's impossible to know what the bytes_out
means.
Some points take care of not updating counters twice if the backend points
to the frontend, indicating a "listen" instance. The thing becomes more
complex when we try to add support for server side keep-alive, because we
have to maintain a pointer to the backend used for last request, and to
update its stats. But we can't perform such comparisons anymore because
the counters will not match anymore.
So in order to get rid of this situation, let's have both frontend AND
backend stats in the "struct proxy". We simply update the relevant ones
during activity. Some of them are only accounted for in the backend,
while others are just for frontend. Maybe we can improve a bit on that
later, but the essential part is that those counters now reflect what
they really mean.
This patch turns internal server addresses to sockaddr_storage to
store IPv6 addresses, and makes the connect() function use it. This
code already works but some caveats with getaddrinfo/gethostbyname
still need to be sorted out while the changes had to be merged at
this stage of internal architecture changes. So for now the config
parser will not emit an IPv6 address yet so that user experience
remains unchanged.
This change should have absolutely zero user-visible effect, otherwise
it's a bug introduced during the merge, that should be reported ASAP.
This one has been removed and is now totally superseded by ->target.
To get the server, one must use target_srv(&s->target) instead of
s->srv now.
The function ensures that non-server targets still return NULL.
This is in fact where those parts belong to. The old data_state was replaced
by applet.state and is now initialized when the applet is registered. It's
worth noting that the applet does not need to know the session nor the
buffer anymore since everything is brought by the stream interface.
It is possible that having a separate applet struct would simplify the
code but that's not a big deal.
When doing a connect() on a stream interface, some information is needed
from the server and from the backend. In some situations, we don't have
a server and only a backend (eg: peers). In other cases, we know we have
an applet and we don't want to connect to anything, but we'd still like
to have the info about the applet being used.
For this, we now store a pointer to the "target" into the stream interface.
The target describes what's on the other side before trying to connect. It
can be a server, a proxy or an applet for now. Later we'll probably have
descriptors for multiple-stage chains so that the final information may
still be found.
This will help removing many specific cases in the code. It already made
it possible to remove the "srv" and "be" parameters to tcpv4_connect_server().
I/O handlers are still delicate to manipulate. They have no type, they're
just raw functions which have no knowledge of themselves. Let's have them
declared as applets once for all. That way we can have multiple applets
share the same handler functions and we can store their names there. When
we later need to add more parameters (eg: usage stats), we'll be able to
do so in the applets themselves.
The CLI functions has been prefixed with "cli" instead of "stats" as it's
clearly what is going on there.
The applet descriptor in the stream interface should get all the applet
specific data (st0, ...) but this will be done in the next patch so that
we don't pollute this one too much.
Debugging parsing errors can be greatly improved if we know what the parser
state was and what the buffer flags were (especially for closed inputs/outputs
and full buffers). Let's add that to the error snapshots.
Enhance pattern convs and fetch argument parsing, now fetchs and convs callbacks used typed args.
Add more details on error messages on parsing pattern expression function.
Update existing pattern convs and fetchs to new proto.
Create stick table key type "binary".
Manage Truncation and padding if pattern's fetch-converted result don't match table key size.
The introduction of a new PROXY protocol for proxied connections requires
an early analyser to decode the incoming connection and set the session
flags accordingly.
Some more work is needed, among which setting a flag on the session to
indicate it's proxied, and copying the original parameters for later
comparisons with new ACLs (eg: real_src, ...).
The stats web interface must be read-only by default to prevent security
holes. As it is now allowed to enable/disable servers, a new keyword
"stats admin" is introduced to activate this admin level, conditioned by ACLs.
(cherry picked from commit 5334bab92ca7debe36df69983c19c21b6dc63f78)
Based on a patch provided by Judd Montgomery, it is now possible to
enable/disable servers from the stats web interface. This allows to select
several servers in a backend and apply the action to them at the same time.
Currently, there are 2 known limitations :
- The POST data are limited to one packet
(don't alter too many servers at a time).
- Expect: 100-continue is not supported.
(cherry picked from commit 7693948766cb5647ac03b48e782cfee2b1f14491)
There was no consistency between all the functions used to exchange data
between a buffer and a stream interface. Also, the functions used to send
data to a buffer did not consider the possibility that the buffer was
shutdown for read.
Now the functions are called buffer_{put,get}_{char,block,chunk,string}.
The old buffer_feed* functions have been left available for existing code
but marked deprecated.
Signal zero is never delivered by the system. However having a signal to
which functions and tasks can subscribe to be notified of a stopping event
is useful. So this patch does two things :
1) allow signal zero to be delivered from any function of signal handler
2) make soft_stop() deliver this signal so that tasks can be notified of
a stopping condition.
The two new functions below make it possible to register any number
of functions or tasks to a system signal. They will be called in the
registration order when the signal is received.
struct sig_handler *signal_register_fct(int sig, void (*fct)(struct sig_handler *), int arg);
struct sig_handler *signal_register_task(int sig, struct task *task, int reason);
In case of HTTP keepalive processing, we want to release the counters tracked
by the backend. Till now only the second set of counters was released, while
it could have been assigned by the frontend, or the backend could also have
assigned the first set. Now we reuse to unused bits of the session flags to
mark which stick counters were assigned by the backend and to release them as
appropriate.
The assumption that there was a 1:1 relation between tracked counters and
the frontend/backend role was wrong. It is perfectly possible to track the
track-fe-counters from the backend and the track-be-counters from the
frontend. Thus, in order to reduce confusion, let's remove this useless
{fe,be} reference and simply use {1,2} instead. The keywords have also been
renamed in order to limit confusion. The ACL rule action now becomes
"track-sc{1,2}". The ACLs are now "sc{1,2}_*" instead of "trk{fe,be}_*".
That means that we can reasonably document "sc1" and "sc2" (sticky counters
1 and 2) as sort of patterns that are available during the whole session's
life and use them just like any other pattern.
Having a single tracking pointer for both frontend and backend counters
does not work. Instead let's have one for each. The keyword has changed
to "track-be-counters" and "track-fe-counters", and the ACL "trk_*"
changed to "trkfe_*" and "trkbe_*".
It's a bit cumbersome to have to know all possible storable types
from the stats interface. Instead, let's have generic types for
all data, which will facilitate their manipulation.
It is now possible to dump a table's contents with keys, expire,
use count, and various data using the command above on the stats
socket.
"show table" only shows main table stats, while "show table <name>"
dumps table contents, only if the socket level is admin.
This patch adds support for the following session counters :
- http_req_cnt : HTTP request count
- http_req_rate: HTTP request rate
- http_err_cnt : HTTP request error count
- http_err_rate: HTTP request error rate
The equivalent ACLs have been added to check the tracked counters
for the current session or the counters of the current source.
This function looks up a key, updates its expiration date, or creates
it if it was not found. acl_fetch_src_updt_conn_cnt() was updated to
make use of it.
These counters maintain incoming connection rates and session rates
in a stick-table, over a period which is defined in the configuration
(2 ms to 24 days). They can be used to detect service abuse and
enforce a certain accept rate per source address for instance, and
block if the rate is passed over.
Example :
# block if more than 50 requests per 5 seconds from a source.
stick-table type ip size 200k expire 1m store conn_rate(5s),sess_rate(5s)
tcp-request track-counters src
tcp-request reject if { trk_conn_rate gt 50 }
# cause a 3 seconds pause to requests from sources in excess of 20 requests/5s
tcp-request inspect-delay 3s
tcp-request content accept if { trk_sess_rate gt 20 } WAIT_END
We're now able to return errors based on the validity of an argument
passed to a stick-table store data type. We also support ARG_T_DELAY
to pass delays to stored data types (eg: for rate counters).
Some data types will require arguments (eg: period for a rate counter).
This patch adds support for such arguments between parenthesis in the
"store" directive of the stick-table statement. Right now only integers
are supported.
When a session tracks a counter, automatically increase the cumulated
connection count. This makes src_updt_conn_cnt() almost useless. In
fact it might still be used to update different tables.
The new "conn_cur" session counter has been added. It is automatically
updated upon "track XXX" directives, and the entry is touched at the
moment we increment the value so that we don't consider further counter
updates as real updates, otherwise we would end up updating upon completion,
which may not be desired. Probably that some other event counters (eg: HTTP
requests) will have to be updated upon each event though.
This counter can be matched against current session's source address using
the "src_conn_cur" ACL.
This patch adds the ability to set a pointer in the session to an
entry in a stick table which holds various counters related to a
specific pattern.
Right now the syntax matches the target syntax and only the "src"
pattern can be specified, to track counters related to the session's
IPv4 source address. There is a special function to extract it and
convert it to a key. But the goal is to be able to later support as
many patterns as for the stick rules, and get rid of the specific
function.
The "track-counters" directive may only be set in a "tcp-request"
statement right now. Only the first one applies. Probably that later
we'll support multi-criteria tracking for a single session and that
we'll have to name tracking pointers.
No counter is updated right now, only the refcount is. Some subsequent
patches will have to bring that feature.
The buffer_feed* functions that are used to send data to buffers did only
support sending contiguous chunks while they're relying on memcpy(). This
patch improves on this by making them able to write in two chunks if needed.
Thus, the buffer_almost_full() function has been improved to really consider
the remaining space and not just what can be written at once.
Some freq counters will have to work on periods different from 1 second.
The original freq counters rely on the period to be exactly one second.
The new ones (freq_ctr_period) let the user define the period in ticks,
and all computations are operated over that period. When reading a value,
it indicates the amount of events over that period too.
When an entry already exists, we just need to update its expiration
timer. Let's have a dedicated function for that instead of spreading
open code everywhere.
This change also ensures that an update of an existing sticky session
really leads to an update of its expiration timer, which was apparently
not the case till now. This point needs to be checked in 1.4.
Till now sticky sessions only held server IDs. Now there are other
data types so it is not acceptable anymore to overwrite the server ID
when writing something. The server ID must then only be written from
the caller when appropriate. Doing this has also led to separate
lookup and storage.
The stick_tables will now be able to store extra data for a same key.
A limited set of extra data types will be defined and for each of them
an offset in the sticky session will be assigned at startup time. All
of this information will be stored in the stick table.
The extra data types will have to be specified after the new "store"
keyword of the "stick-table" directive, which will reserve some space
for them.
pattern.c depended on stick_table while in fact it should be the opposite.
So we move from pattern.c everything related to stick_tables and invert the
dependency. That way the code becomes more logical and intuitive.
Right now we're only able to store a server ID in a sticky session.
The goal is to be able to store anything whose size is known at startup
time. For this, we store the extra data before the stksess pointer,
using a negative offset. It will then be easy to cumulate multiple
data provided they each have their own offset.
Now we're able to reject connections very early, so we need to use a
different counter for the connections that are received and the ones
that are accepted and converted into sessions, so that the rate limits
can still apply to the accepted ones. The session rate must still be
used to compute the rate limit, so that we can reject undesired traffic
without affecting the rate.
A new function session_accept() is now called from the lower layer to
instanciate a new session. Once the session is instanciated, the upper
layer's frontent_accept() is called. This one can be service-dependant.
That way, we have a 3-phase accept() sequence :
1) protocol-specific, session-less accept(), which is pointed to by
the listener. It defaults to the generic stream_sock_accept().
2) session_accept() which relies on a frontend but not necessarily
for use in a proxy (eg: stats or any future service).
3) frontend_accept() which performs the accept for the service
offerred by the frontend. It defaults to frontend_accept() which
is really what is used by a proxy.
The TCP/HTTP proxies have been moved to this mode so that we can now rely on
frontend_accept() for any type of session initialization relying on a frontend.
The next step will be to convert the stats to use the same system for the stats.
It's not normal to initialize the server-side stream interface from the
accept() function, because it may change later. Thus, we introduce a new
stream_sock_prepare_interface() function which is called just before the
connect() and which sets all of the stream_interface's callbacks to the
default ones used for real sockets. The ->connect function is also set
at the same instant so that we can easily add new server-side protocols
soon.
The new LI_O_TCP_RULES listener option indicates that some TCP rules
must be checked upon accept on this listener. It is now checked by
the frontend and the L4 rules are evaluated only in this case. The
flag is only set when at least one tcp-req rule is present in the
frontend.
The L4 rules check function has now been moved to proto_tcp.c where
it ought to be.
For a long time we had two large accept() functions, one for TCP
sockets instanciating proxies, and another one for UNIX sockets
instanciating the stats interface.
A lot of code was duplicated and both did not work exactly the same way.
Now we have a stream_sock layer accept() called for either TCP or UNIX
sockets, and this function calls the frontend-specific accept() function
which does the rest of the frontend-specific initialisation.
Some code is still duplicated (session & task allocation, stream interface
initialization), and might benefit from having an intermediate session-level
accept() callback to perform such initializations. Still there are some
minor differences that need to be addressed first. For instance, the monitor
nets should only be checked for proxies and not for other connection templates.
Last, we renamed l->private as l->frontend. The "private" pointer in
the listener is only used to store a frontend, so let's rename it to
eliminate this ambiguity. When we later support detached listeners
(eg: FTP), we'll add another field to avoid the confusion.
The 'client.c' file now only contained frontend-specific functions,
so it has naturally be renamed 'frontend.c'. Same for client.h. This
has also been an opportunity to remove some cross references from
files that should not have depended on it.
In the end, this file should contain a protocol-agnostic accept()
code, which would initialize a session, task, etc... based on an
accept() from a lower layer. Right now there are still references
to TCP.
Some functions which act on generic buffer contents without being
tcp-specific were historically in proto_tcp.c. This concerns ACLs
and RDP cookies. Those have been moved away to more appropriate
locations. Ideally we should create some new files for each layer6
protocol parser. Let's do that later.
Using get_ip_from_hdr2() we can look for occurrence #X or #-X and
extract the IP it contains. This is typically designed for use with
the X-Forwarded-For header.
Using "usesrc hdr_ip(name,occ)", it becomes possible to use the IP address
found in <name>, and possibly specify occurrence number <occ>, as the
source to connect to a server. This is possible both in a server and in
a backend's source statement. This is typically used to use the source
IP previously set by a upstream proxy.
The transparent proxy address selection was set in the TCP connect function
which is not the most appropriate place since this function has limited
access to the amount of parameters which could produce a source address.
Instead, now we determine the source address in backend.c:connect_server(),
right after calling assign_server_address() and we assign this address in
the session and pass it to the TCP connect function. This cannot be performed
in assign_server_address() itself because in some cases (transparent mode,
dispatch mode or http_proxy mode), we assign the address somewhere else.
This change will open the ability to bind to addresses extracted from many
other criteria (eg: from a header).
The following patch fixed an issue but brought another one :
296897 [MEDIUM] connect to servers even when the input has already been closed
The new issue is that when a connection is inspected and aborted using
TCP inspect rules, now it is sent to the server before being closed. So
that test is not satisfying. A probably better way is not to prevent a
connection from establishing if only BF_SHUTW_NOW is set but BF_SHUTW
is not. That way, the BF_SHUTW flag is not set if the request has any
data pending, which still fixes the stats issue, but does not let any
empty connection pass through.
Also, as a safety measure, we extend buffer_abort() to automatically
disable the BF_AUTO_CONNECT flag. While it appears to always be OK,
it is by pure luck, so better safe than sorry.
The trash buffer may now be smaller than a buffer because we can tune
it at run time. This causes a risk when we're trying to use it as a
temporary buffer to realign unaligned requests, because we may have to
put up to a full buffer into it.
Instead of doing a double copy, we're now relying on an open-coded
bouncing copy algorithm. The principle is that we move one byte at
a time to its final place, and if that place also holds a byte, then
we move it too, and so on. We finish when we've moved all the buffer.
It limits the number of memory accesses, but since it proceeds one
byte at a time and with random walk, it's not cache friendly and
should be slower than a double copy. However, it's only used in
extreme situations and the difference will not be noticeable.
It has been extensively tested and works reliably.
This is a first attempt to add a maintenance mode on servers, using
the stat socket (in admin level).
It can be done with the following command :
- disable server <backend>/<server>
- enable server <backend>/<server>
In this mode, no more checks will be performed on the server and it
will be marked as a special DOWN state (MAINT).
If some servers were tracking it, they'll go DOWN until the server
leaves the maintenance mode. The stats page and the CSV export also
display this special state.
This can be used to disable the server in haproxy before doing some
operations on this server itself. This is a good complement to the
"http-check disable-on-404" keyword and works in TCP mode.
Support the new syntax (http-request allow/deny/auth) in
http stats.
Now it is possible to use the same syntax is the same like in
the frontend/backend http-request access control:
acl src_nagios src 192.168.66.66
acl stats_auth_ok http_auth(L1)
stats http-request allow if src_nagios
stats http-request allow if stats_auth_ok
stats http-request auth realm LB
The old syntax is still supported, but now it is emulated
via private acls and an aditional userlist.
Add generic authentication & authorization support.
Groups are implemented as bitmaps so the count is limited to
sizeof(int)*8 == 32.
Encrypted passwords are supported with libcrypt and crypt(3), so it is
possible to use any method supported by your system. For example modern
Linux/glibc instalations support MD5/SHA-256/SHA-512 and of course classic,
DES-based encryption.
Just as for the req* rules, we can now condition rsp* rules with ACLs.
ACLs match on response, so volatile request information cannot be used.
A warning is emitted if a configuration contains such an anomaly.
From now on, if request filters have ACLs defined, these ACLs will be
evaluated to condition the filter. This will be used to conditionally
remove/rewrite headers based on ACLs.
This function automatically builds a rule, considering the if/unless
statements, and automatically updates the proxy's acl_requires, the
condition's file and line.
Calling this function after http_find_header2() automatically deletes
the current value of the header, and removes the header itself if the
value is the only one. The context is automatically adjusted for a
next call to http_find_header2() to return the next header. No other
change nor test should be made on the transient context though.
The stream_int_cond_close() function was added to preserve the
contents of the response buffer because stream_int_retnclose()
was buggy. It flushed the response instead of flushing the
request. This caused issues with pipelined redirects followed
by error messages which ate the previous response.
This might even have caused object truncation on pipelined
requests followed by an error or by a server redirection.
Now that this is fixed, simply get rid of the now useless
function.
Several HTTP analysers used to set those flags to values that
were useful but without considering the possibility that they
were not called again to clean what they did. First, replace
direct flag manipulation with more explicit macros. Second,
enforce a rule stating that any buffer which changes one of
these flags from the default must restore it after completion,
so that other analysers see correct flags.
With both this fix and the previous one about analyser bits,
we should not see any more stuck sessions.
Supported informations, available via "tr/td title":
- cap: capabilities (proxy)
- mode: one of tcp, http or health (proxy)
- id: SNMP ID (proxy, socket, server)
- IP (socket, server)
- cookie (backend, server)
The body parser will be used in close and keep-alive modes. It follows
the stream to keep in sync with both the request and the response message.
Both chunked transfer-coding and content-length are supported according to
RFC2616.
The multipart/byterange encoding has not yet been implemented and if not
seconded by any of the two other ones, will be forwarded till the close,
as requested by the specification.
Both the request and the response analysers converge into an HTTP_MSG_DONE
state where it will be possible to force a close (option forceclose) or to
restart with a fresh new transaction and maintain keep-alive.
This change is important. All tests are OK but any possible behaviour
change with "option httpclose" might find its root here.
This code really belongs to the http part since it's transaction-specific.
This will also make it easier to later reinitialize a transaction in order
to support keepalive.
We used to apply a limit to each buffer's size in order to leave
some room to rewrite headers, then we used to remove this limit
once the session switched to a data state.
Proceeding that way becomes a problem with keepalive because we
have to know when to stop reading too much data into the buffer
so that we can leave some room again to process next requests.
The principle we adopt here consists in only relying on to_forward+send_max.
Indeed, both of those data define how many bytes will leave the buffer.
So as long as their sum is larger than maxrewrite, we can safely
fill the buffers. If they are smaller, then we refrain from filling
the buffer. This means that we won't risk to fill buffers when
reading last data chunk followed by a POST request and its contents.
The only impact identified so far is that we must ensure that the
BF_FULL flag is correctly dropped when starting to forward. Right
now this is OK because nobody inflates to_forward without using
buffer_forward().
Implement decreasing health based on observing communication between
HAProxy and servers.
Changes in this version 2:
- documentation
- close race between a started check and health analysis event
- don't force fastinter if it is not set
- better names for options
- layer4 support
Changes in this version 3:
- add stats
- port to the current 1.4 tree
To sum up :
- len : it's now the max number of characters for the value, preventing
garbaged results.
- a new option "prefix" is added, this allows to use dynamic cookie
names (e.g. ASPSESSIONIDXXX).
Previously in the thread, I wanted to use the value found with
"capture cookie" but when i started to update the documentation, I
found this solution quite weird. I've made a small rework to not
depend on "capture cookie".
- There's the posssiblity to define the URL parser mode (path parameters
or query string).
We now set msg->col and msg->sov to the first byte of non-header.
They will be used later when parsing chunks. A new macro was added
to perform size additions on an http_msg in order to limit the risks
of copy-paste in the long term.
During this operation, it appeared that the http_msg struct was not
optimal on 64-bit, so it was re-ordered to fill the holes.
Right now, an HTTP server cannot track a TCP server and vice-versa.
This patch enables proxy tracking without relying on the proxy's mode
(tcp/http/health). It only requires a matching proxy name to exist. The
original function was renamed to findproxy_mode().
All files referencing the previous ebtree code were changed to point
to the new one in the ebtree directory. A makefile variable (EBTREE_DIR)
is also available to use files from another directory.
The ability to build the libebtree library temporarily remains disabled
because it can have an impact on some existing toolchains and does not
appear worth it in the medium term if we add support for multi-criteria
stickiness for instance.
The code part which waits for an HTTP response has been extracted
from the old function. We now have two analysers and the second one
may re-enable the first one when an 1xx response is encountered.
This has been tested and works.
The calls to stream_int_return() that were remaining in the wait
analyser have been converted to stream_int_retnclose().
This patch has 2 goals :
1. I wanted to test the appsession feature with a small PHP code,
using PHPSESSID. The problem is that when PHP gets an unknown session
id, it creates a new one with this ID. So, when sending an unknown
session to PHP, persistance is broken : haproxy won't see any new
cookie in the response and will never attach this session to a
specific server.
This also happens when you restart haproxy : the internal hash becomes
empty and all sessions loose their persistance (load balancing the
requests on all backend servers, creating a new session on each one).
For a user, it's like the service is unusable.
The patch modifies the code to make haproxy also learn the persistance
from the client : if no session is sent from the server, then the
session id found in the client part (using the URI or the client cookie)
is used to associated the server that gave the response.
As it's probably not a feature usable in all cases, I added an option
to enable it (by default it's disabled). The syntax of appsession becomes :
appsession <cookie> len <length> timeout <holdtime> [request-learn]
This helps haproxy repair the persistance (with the risk of losing its
session at the next request, as the user will probably not be load
balanced to the same server the first time).
2. This patch also tries to reduce the memory usage.
Here is a little example to explain the current behaviour :
- Take a Tomcat server where /session.jsp is valid.
- Send a request using a cookie with an unknown value AND a path
parameter with another unknown value :
curl -b "JSESSIONID=12345678901234567890123456789012" http://<haproxy>/session.jsp;jsessionid=00000000000000000000000000000001
(I know, it's unexpected to have a request like that on a live service)
Here, haproxy finds the URI session ID and stores it in its internal
hash (with no server associated). But it also finds the cookie session
ID and stores it again.
- As a result, session.jsp sends a new session ID also stored in the
internal hash, with a server associated.
=> For 1 request, haproxy has stored 3 entries, with only 1 which will be usable
The patch modifies the behaviour to store only 1 entry (maximum).
This alone makes a typical HTML stats dump consume 10% CPU less,
because we avoid doing complex printf calls to drop them later.
Only a few common cases have been checked, those which are very
likely to run for nothing.
It is a bit expensive and complex to use to call buffer_feed()
directly from the request parser, and there are risks that some
output messages are lost in case of buffer full. Since most of
these messages are static, let's have a state dedicated to print
these messages and store them in a specific area shared with the
stats in the session. This both reduces code size and risks of
losing output data.
Add two functions to encode input chunk replacing
non-printable, non ascii or special characters
with:
"&#%u;" - chunk_htmlencode
"<%02X>" - chunk_asciiencode
Above functions should be used when adding strings, received
from possible unsafe sources, to html stats or logs.
int get_backend_server(const char *bk_name, const char *sv_name,
struct proxy **bk, struct server **sv);
This function scans the list of backends and servers to retrieve the first
backend and the first server with the given names, and sets them in both
parameters. It returns zero if either is not found, or non-zero and sets
the ones it did not found to NULL. If a NULL pointer is passed for the
backend, only the pointer to the server will be updated.
Consistent hashing provides some interesting advantages over common
hashing. It avoids full redistribution in case of a server failure,
or when expanding the farm. This has a cost however, the hashing is
far from being perfect, as we associate a server to a request by
searching the server with the closest key in a tree. Since servers
appear multiple times based on their weights, it is recommended to
use weights larger than approximately 10-20 in order to smoothen
the distribution a bit.
In some cases, playing with weights will be the only solution to
make a server appear more often and increase chances of being picked,
so stats are very important with consistent hashing.
In order to indicate the type of hashing, use :
hash-type map-based (default, old one)
hash-type consistent (new one)
Consistent hashing can make sense in a cache farm, in order not
to redistribute everyone when a cache changes state. It could also
probably be used for long sessions such as terminal sessions, though
that has not be attempted yet.
More details on this method of hashing here :
http://www.spiteful.com/2008/03/17/programmers-toolbox-part-3-consistent-hashing/
Recent "struct chunk rework" introduced a NULL pointer dereference
and now haproxy segfaults if auth is required for stats but not found.
The reason is that size_t cannot store negative values, but current
code assumes that "len < 0" == uninitialized.
This patch fixes it.
There are a few remaining max values that need to move to counters.
Also, the counters are more often used than some config information,
so get them closer to the other useful struct members for better cache
efficiency.
This patch allows to collect & provide separate statistics for each socket.
It can be very useful if you would like to distinguish between traffic
generate by local and remote users or between different types of remote
clients (peerings, domestic, foreign).
Currently no "Session rate" is supported, but adding it should be possible
if we found it useful.
Doing this, we can remove the last BF_HIJACK user and remove
produce_content(). s->data_source could also be removed but
it is currently used to detect if the stats or a server was
used.
The stats handler used to store internal states in s->ana_state. Now
we only rely on si->st0 in which we can store as many states as we
have possible outputs. This cleans up the stats code a lot and makes
it more maintainable. It has also reduced code size by a few hundred
bytes.
We can simplify the code in the stats functions using buffer_feed_chunk()
instead of buffer_write_chunk(). Let's start with this function. This
patch also fixed an issue where we could dump past the end of the capture
buffer if it is shorter than the captured request.
Calling buffer_shutw() marks the buffer as closed but if it was already
closed in the other direction, the stream interface is not marked as
closed, causing infinite loops.
We took this opportunity to completely remove buffer_shutw() and buffer_shutr()
which have no reason to be used at all and which will always cause trouble
when directly called. The stats occurrence was the last one.
We need to remove hash map accesses out of backend.c if we want to
later support new hash methods. This patch separates the hash computation
method from the server lookup. It leaves the lookup function to lb_map.c
and calls it with the result of the hash.
It was becoming painful to have all the LB algos in backend.c.
Let's move them to their own files. A few hashing functions still
need be broken in two parts, one for the contents and one for the
map position.
There is no reason to inline functions which are used to grab a server
depending on an LB algo. They are large and used at several places.
Uninlining them saves 400 bytes of code.
We can get rid of the stats analyser by moving all the stats code
to a stream interface applet. Above being cleaner, it provides new
advantages such as the ability to process requests and responses
from the same function and work only with simple state machines.
There's no need for any hijack hack anymore.
The direct advantage for the user are the interactive mode and the
ability to chain several commands delimited by a semi-colon. Now if
the user types "prompt", he gets a prompt from which he can send
as many requests as he wants. All outputs are terminated by a
blank line followed by a new prompt, so this can be used from
external tools too.
The code is not very clean, it needs some rework, but some part
of the dirty parts are due to the remnants of the hijack mode used
in the old functions we call.
The old AN_REQ_STATS_SOCK analyser flag is now unused and has been
removed.
It will soon be necessary to have stream interfaces running as part of
the current task, or as independant tasks. For instance when we want to
implement compression or SSL. It will also be used for applets running
as stream interfaces.
These new functions are used to perform exactly that. Note that it's
still not easy to write a simple echo applet and more functions will
likely be needed.
Those two functions did not correctly deal with full buffers and/or
buffers that wrapped around. Buffer_skip() was even able to incorrectly
set buf->w further than the end of buffer if its len argument was wrong,
and buffer_si_getline() was able to incorrectly return a length larger
than the effective buffer data available.
It's important that these functions set these flags themselves, otherwise
the callers will always have to do this, and there is no valid reason for
not doing it.
Collect information about last health check result,
including L7 code if possible (for example http or smtp
return code) and time took to finish last check.
Health check info is provided on both stats pages (html & csv)
and logged when a server is marked UP or DOWN. Currently active
check are marked with an asterisk, but only in html mode.
Currently there are 14 status codes:
UNK -> unknown
INI -> initializing
SOCKERR -> socket error
L4OK -> check passed on layer 4, no upper layers testing enabled
L4TOUT -> layer 1-4 timeout
L4CON -> layer 1-4 connection problem, for example "Connection refused"
(tcp rst) or "No route to host" (icmp)
L6OK -> check passed on layer 6
L6TOUT -> layer 6 (SSL) timeout
L6RSP -> layer 6 invalid response - protocol error
L7OK -> check passed on layer 7
L7OKC -> check conditionally passed on layer 7, for example
404 with disable-on-404
L7TOUT -> layer 7 (HTTP/SMTP) timeout
L7RSP -> layer 7 invalid response - protocol error
L7STS -> layer 7 response error, for example HTTP 5xx
In TCP, we don't want to forward chunks of data, we want to forward
indefinitely. This patch introduces a special value for the amount
of data to be forwarded. When buffer_forward() is called with
BUF_INFINITE_FORWARD, it configures the buffer to never stop
forwarding until the end.
The BF_EMPTY flag was once used to indicate an empty buffer. However,
it was used half the time as meaning the buffer is empty for the reader,
and half the time as meaning there is nothing left to send.
"nothing to send" is only indicated by "->send_max=0 && !pipe". Once
we fix this, we discover that the flag is not used anymore. So the
flags has been renamed BF_OUT_EMPTY and means exactly the condition
above, ie, there is nothing to send.
Doing so has allowed us to remove some unused tests for emptiness,
but also to uncover a certain amount of situations where the flag
was not correctly set or tested.
The BF_WRITE_ENA buffer flag became very complex to deal with, because
it was used to :
- enable automatic connection
- enable close forwarding
- enable data forwarding
The last point was not very true anymore since we introduced ->send_max,
but still the test remained everywhere. This was causing issues such as
impossibility to connect without forwarding data, impossibility to prevent
closing when data was forwarded, etc...
This patch clarifies the situation by getting rid of this multi-purpose
flag and replacing it with :
- data forwarding based only on ->send_max || ->pipe ;
- a new BF_AUTO_CONNECT flag to allow automatic connection and only
that ;
- ability to perform an automatic connection when ->send_max or ->pipe
indicate that data is waiting to leave the buffer ;
- a new BF_AUTO_CLOSE flag to let the producer automatically set the
BF_SHUTW_NOW flag when it gets a BF_SHUTR.
During this cleanup, it was discovered that some tests were performed
twice, or that the BF_HIJACK flag was still tested, which is not needed
anymore since ->send_max replcaed it. These places have been fixed too.
These cleanups have also revealed a few areas where the other flags
such as BF_EMPTY are not cleanly used. This will be an opportunity for
a second patch.
By inlining this function and slightly reordering it, we can double
the getchar/putchar test throughput, and reduce its footprint by about
40 bytes. Also, it was the only non-inlined char-based function, which
now makes it more consistent this time.
This function is used to cut the "tail" of a buffer, which means strip it
to the length of unsent data only, and kill any remaining unsent data. Any
scheduled forwarding is stopped. This is mainly to be used to send error
messages after existing data. It does the same as buffer_erase() for buffers
without pending outgoing data.
The computations in buffer_forward() were only valid if buffer_forward()
was used on a buffer which had no more data scheduled for forwarding.
This is always the case right now so this bug is not yet triggered but
it will soon be. Now we correctly discount the bytes to be forwarded
from the data already present in the buffer.
This function works like a traditional putchar() except that it
can return 0 if the output buffer is full.
Now a basic character-based echo function would look like this, from
a stream interface :
while (1) {
c = buffer_si_peekchar(req);
if (c < 0)
break;
if (!buffer_si_putchar(res, c)) {
si->flags |= SI_FL_WAIT_ROOM;
break;
}
buffer_skip(req, 1);
req->flags |= BF_WRITE_PARTIAL;
res->flags |= BF_READ_PARTIAL;
}
The buffer_si_peekline() function is sort of a fgets() to be used from a
stream interface. It returns a complete line whenever possible, and does
not update the buffer's pointer, so that the reader is free to consume
what it wants to.
buffer_si_peekchar() only returns one character, and also needs a call
to buffer_skip() once the character is definitely consumed.
This functions act like their buffer_write*() counter-parts,
except that they're specifically designed to be used from a
stream interface handler, as they carefully check size limits
and automatically advance the read pointer depending on the
to_forward attribute.
buffer_feed_chunk() is an inline calling buffer_feed() as both
are the sames. For this reason, buffer_write_chunk() has also
been turned into an inline which calls buffer_write().
buffer_contig_space(), buffer_contig_data() and buffer_skip()
provide easy methods to extract/insert data from/into a buffer.
buffer_write() and buffer_write_chunk() currently do not check
max_len nor to_forward, so they will quickly become embarrassing
to use or will need an equivalent. The reason is that they are
used to build error messages which currently are not subject to
analysis.
The first step towards dynamic buffer size consists in removing
all static definitions of the buffer size. Instead, we store a
buffer's size in itself. Right now they're all preinitialized
to BUFSIZE, but we will change that.
The remains of the stats socket code has nothing to do in proto_uxst
anymore and must move to dumpstats. The code is much cleaner and more
structured. It was also an opportunity to rename AN_REQ_UNIX_STATS
as AN_REQ_STATS_SOCK as the stats socket is no longer unix-specific
either.
The last item refering to stats in proto_uxst is the setting of the
task's nice value which should in fact come from the listener.
process_session() is now ready to handle unix stats sockets. This
first step works and old code has not been removed. A cleanup is
required. The stats handler is not unix socket-centric anymore and
should move to dumpstats.c.
The connection establishment was completely handled by backend.c which
normally just handles LB algos. Since it's purely TCP, it must move to
proto_tcp.c. Also, instead of calling it directly, we now call it via
the stream interface, which will later help us unify session handling.
The new statement "persist rdp-cookie" enables RDP cookie
persistence. The RDP cookie is then extracted from the RDP
protocol, and compared against available servers. If a server
matches the RDP cookie, then it gets the connection.
The RDP protocol is quite simple and documented, which permits
an easy detection and extraction of cookies. It can be useful
to match the MSTS cookie which can contain the username specified
by the client.
The HTTP processing has been splitted into 7 steps, one of which
is not anymore HTTP-specific (content-switching). That way, it
becomes possible to use "use_backend" rules in TCP mode. A new
"use_server" directive should follow soon.
Some stream analysers might become generic enough to be called
for several bits. So we cannot have the analyser bit hard coded
into the analyser itself. Let's make the caller inform the callee.
We want to split several steps in HTTP processing so that
we can call individual analysers depending on what processing
we want to perform. The first step consists in splitting the
part that waits for a request from the rest.
This is a first step towards support of multiple configuration files.
Now readcfgfile() only reads a file in memory and performs very minimal
parsing. The checks are performed afterwards.
Some users are already hitting the 64k source port limit when
connecting to servers. The system usually maintains a list of
unused source ports, regardless of the source IP they're bound
to. So in order to go beyond the 64k concurrent connections, we
have to manage the source ip:port lists ourselves.
The solution consists in assigning a source port range to each
server and use a free port in that range when connecting to that
server, either for a proxied connection or for a health check.
The port must then be put back into the server's range when the
connection is closed.
This mechanism is used only when a port range is specified on
a server. It makes it possible to reach 64k connections per
server, possibly all from the same IP address. Right now it
should be more than enough even for huge deployments.
Some users want to keep the max sessions/s seen on servers, frontends
and backends for capacity planning. It's easy to grab it while the
session count is updated, so let's keep it.
These functions will be used to deliver asynchronous signals in order
to make the signal handling functions more robust. The goal is to keep
the same interface to signal handlers.
It's useful to be able to accept an invalid header name in a request
or response but still be able to monitor further such errors. Now,
when an invalid request/response is received and accepted due to
an "accept-invalid-http-{request|response}" option, the invalid
request will be captured for later analysis with "show errors" on
the stats socket.
It's sometimes useful at least for statistics to keep a task count.
It's easy to do by forcing the rare task creators to always use the
same functions to create/destroy a task.
The top of a duplicate tree is not where bit == -1 but at the most
negative bit. This was causing tasks to be queued in reverse order
within duplicates. While this is not dramatic, it's incorrect and
might lead to longer than expected duplicate depths under some
circumstances.
Since we're now able to search from a precise expiration date in
the timer tree using ebtree 4.1, we don't need to maintain 4 trees
anymore. Not only does this simplify the code a lot, but it also
ensures that we can always look 24 days back and ahead, which
doubles the ability of the previous scheduler. Indeed, while based
on absolute values, the timer tree is now relative to <now> as we
can always search from <now>-31 bits.
The run queue uses the exact same principle now, and is now simpler
and a bit faster to process. With these changes alone, an overall
0.5% performance gain was observed.
Tests were performed on the few wrapping cases and everything works
as expected.
In order to get termination flags properly updated, the session was
relying a bit too much on http_return_srv_error() which is http-centric.
A generic srv_error function was implemented in the session in order to
catch all connection abort situations. It was then noticed that a request
abort during a connection attempt was not reported, which is now fixed.
Read and write errors/timeouts were not logged either. It was necessary
to add those tests at 4 new locations.
Now it looks like everything is correctly logged. Most likely some error
checking code could now be removed from some analysers.
Most of the time, task_queue() will immediately return. By extracting
the preliminary checks and putting them in an inline function, we can
significantly reduce the number of calls to the function itself, and
most of the tests can be optimized away due to the caller's context.
Another minor improvement in process_runnable_tasks() consisted in
taking benefit from the processor's branch prediction unit by making
a special case of the process_session() callback which is by far the
most common one.
All this improved performance by about 1%, mainly during the call
from process_runnable_tasks().
Timers are unsigned and used as tree positions. Ticks are signed and
used as absolute date within current time frame. While the two are
normally equal (except zero), it's important not to confuse them in
the code as they are not interchangeable.
We add two inline functions to turn each one into the other.
The comments have also been moved to the proper location, as it was
not easy to understand what was a tick and what was a timer unit.
All the tasks callbacks had to requeue the task themselves, and update
a global timeout. This was not convenient at all. Now the API has been
simplified. The tasks callbacks only have to update their expire timer,
and return either a pointer to the task or NULL if the task has been
deleted. The scheduler will take care of requeuing the task at the
proper place in the wait queue.
In many situations, we wake a task on an I/O event, then queue it
exactly where it was. This is a real waste because we delete/insert
tasks into the wait queue for nothing. The only reason for this is
that there was only one tree node in the task struct.
By adding another tree node, we can have one tree for the timers
(wait queue) and one tree for the priority (run queue). That way,
we can have a task both in the run queue and wait queue at the
same time. The wait queue now really holds timers, which is what
it was designed for.
The net gain is at least 1 delete/insert cycle per session, and up
to 2-3 depending on the workload, since we save one cycle each time
the expiration date is not changed during a wake up.
The rate-limit was applied to the smoothed value which does a special
case for frequencies below 2 events per period. This caused irregular
limitations when set to 1 session per second.
The proper way to handle this is to compute the number of remaining
events that can occur without reaching the limit. This is what has
been added. It also has the benefit that the frequency calculation
is now done once when entering event_accept(), before the accept()
loop, and not once per accept() loop anymore, thus saving a few CPU
cycles during very high loads.
With this fix, rate limits of 1/s are perfectly respected.
With this change, all frontends, backends, and servers maintain a session
counter and a timer to compute a session rate over the last second. This
value will be very useful because it varies instantly and can be used to
check thresholds. This value is also reported in the stats in a new "rate"
column.
The new "show errors" command sent on a unix socket will dump
all captured request and response errors for all proxies. It is
also possible to bound the log to frontends and backends whose
ID is passed as an optional parameter.
The output provides information about frontend, backend, server,
session ID, source address, error type, and error position along
with a complete dump of the request or response which has caused
the error.
If a new error scratches the one currently being reported, then
the dump is aborted with a warning message, and processing goes
on to next error.
Using pipe pools makes pipe management a lot easier. It also allows to
remove quite a bunch of #ifdefs in areas which depended on the presence
or not of support for kernel splicing.
The buffer now holds a pointer to a pipe structure which is always NULL
except if there are still data in the pipe. When it needs to use that
pipe, it dynamically allocates it from the pipe pool. When the data is
consumed, the pipe is immediately released.
That way, there is no need anymore to care about pipe closure upon
session termination, nor about pipe creation when trying to use
splice().
Another immediate advantage of this method is that it considerably
reduces the number of pipes needed to use splice(). Tests have shown
that even with 0.2 pipe per connection, almost all sessions can use
splice(), because the same pipe may be used by several consecutive
calls to splice().
A new data type has been added : pipes. Some pre-allocated empty pipes
are maintained in a pool for users such as splice which use them a lot
for very short times.
Pipes are allocated using get_pipe() and released using put_pipe().
Pipes which are released with pending data are immediately killed.
The struct pipe is small (16 to 20 bytes) and may even be further
reduced by unifying ->data and ->next.
It would be nice to have a dedicated cleanup task which would watch
for the pipes usage and destroy a few of them from time to time.
When CONFIG_HAP_LINUX_SPLICE is defined, the buffer structure will be
slightly enlarged to support information needed for kernel splicing
on Linux.
A first attempt consisted in putting this information into the stream
interface, but in the long term, it appeared really awkward. This
version puts the information into the buffer. The platform-dependant
part is conditionally added and will only enlarge the buffers when
compiled in.
One new flag has also been added to the buffers: BF_KERN_SPLICING.
It indicates that the application considers it is appropriate to
use splicing to forward remaining data.
In the buffers, the read limit used to leave some place for header
rewriting was set by a pointer to the end of the buffer. Not only
this required subtracts at every place in the code, but this will
also soon not be usable anymore when we want to support keepalive.
Let's replace this with a length limit, comparable to the buffer's
length. This has also sightly reduced the code size.
The way the buffers and stream interfaces handled ->to_forward was
really not handy for multiple reasons. Now we've moved its control
to the receive-side of the buffer, which is also responsible for
keeping send_max up to date. This makes more sense as it now becomes
possible to send some pre-formatted data followed by forwarded data.
The following explanation has also been added to buffer.h to clarify
the situation. Right now, tests show that the I/O is behaving extremely
well. Some work will have to be done to adapt existing splice code
though.
/* Note about the buffer structure
The buffer contains two length indicators, one to_forward counter and one
send_max limit. First, it must be understood that the buffer is in fact
split in two parts :
- the visible data (->data, for ->l bytes)
- the invisible data, typically in kernel buffers forwarded directly from
the source stream sock to the destination stream sock (->splice_len
bytes). Those are used only during forward.
In order not to mix data streams, the producer may only feed the invisible
data with data to forward, and only when the visible buffer is empty. The
consumer may not always be able to feed the invisible buffer due to platform
limitations (lack of kernel support).
Conversely, the consumer must always take data from the invisible data first
before ever considering visible data. There is no limit to the size of data
to consume from the invisible buffer, as platform-specific implementations
will rarely leave enough control on this. So any byte fed into the invisible
buffer is expected to reach the destination file descriptor, by any means.
However, it's the consumer's responsibility to ensure that the invisible
data has been entirely consumed before consuming visible data. This must be
reflected by ->splice_len. This is very important as this and only this can
ensure strict ordering of data between buffers.
The producer is responsible for decreasing ->to_forward and increasing
->send_max. The ->to_forward parameter indicates how many bytes may be fed
into either data buffer without waking the parent up. The ->send_max
parameter says how many bytes may be read from the visible buffer. Thus it
may never exceed ->l. This parameter is updated by any buffer_write() as
well as any data forwarded through the visible buffer.
The consumer is responsible for decreasing ->send_max when it sends data
from the visible buffer, and ->splice_len when it sends data from the
invisible buffer.
A real-world example consists in part in an HTTP response waiting in a
buffer to be forwarded. We know the header length (300) and the amount of
data to forward (content-length=9000). The buffer already contains 1000
bytes of data after the 300 bytes of headers. Thus the caller will set
->send_max to 300 indicating that it explicitly wants to send those data,
and set ->to_forward to 9000 (content-length). This value must be normalised
immediately after updating ->to_forward : since there are already 1300 bytes
in the buffer, 300 of which are already counted in ->send_max, and that size
is smaller than ->to_forward, we must update ->send_max to 1300 to flush the
whole buffer, and reduce ->to_forward to 8000. After that, the producer may
try to feed the additional data through the invisible buffer using a
platform-specific method such as splice().
*/
In preparation of splice support, let's add the splice_len member
to the buffer struct. An earlier implementation made it conditional,
which made the whole logics very complex due to a large number of
ifdefs.
Now BF_EMPTY is only set once both buf->l and buf->splice_len are
null. Splice_len is initialized to zero during buffer creation and
is currently not changed, so the whole logics remains unaffected.
When splice gets merged, splice_len will reflect the number of bytes
in flight out of the buffer but not yet sent, typically in a pipe for
the Linux case.
If an analyser sets buf->to_forward to a given value, that many
data will be forwarded between the two stream interfaces attached
to a buffer without waking the task up. The same applies once all
analysers have been released. This saves a large amount of calls
to process_session() and a number of task_dequeue/queue.
By letting the producer tell the consumer there is data to check,
and the consumer tell the producer there is some space left again,
we can cut in half the number of session wakeups.
This is also an important starting point for future splicing support.
Sometimes we don't care about a read timeout, for instance, from the
client when waiting for the server, but we still want the client to
be able to read.
Till now it was done by articially forcing the read timeout to ETERNITY.
But this will cause trouble when we want the low level stream sock to
communicate without waking the session up. So we add a BF_READ_NOEXP
flag to indicate that when the read timeout is to be set, it might
have to be set to ETERNITY.
Since BF_READ_ENA was not used, we replaced this flag.
We don't want to report a buffer timeout if there was I/O activity
for the same events. That way we'll not have to always re-arm timeouts
on I/O, without the fear of a timeout triggering too fast.
For keep-alive, line-mode protocols and splicing, we will need to
limit the sender to process a certain amount of bytes. The limit
is automatically set to the buffer size when analysers are detached
from the buffer.
Kai Krueger found that previous patch was incomplete, because there is
an unconditionnal call to process_srv_queue() in session_free() which
still causes a dead server to consume pending connections from the
backend.
This call was made unconditionnal so that we don't leave unserved
connections in the server queue, for instance connections coming
in with "option persist" which can bypass the server status check.
However, the server must not touch the backend's queue if it is down.
Another fear was that some connections might remain unserved when
the server is using a dynamic maxconn if the number of connections
to the backend is too low. Right now, srv_dynamic_maxconn() ensures
this cannot happen, so the call can remain conditionnal.
The fix consists in allowing a server to process it own queue whatever
its state, but not to touch the backend's queue if it is down. Its
queue should normally be empty when the server is down because it is
redistributed when the server goes down. The only remaining cases are
precisely the persistent connections with "option persist" set, coming
in after the queue has been redispatched. Those ones must still be
processed when a connection terminates.
(cherry picked from commit cd485c4480)
Kai Krueger reported a problem when a server goes down with active
connections. A lot of connections were drained by that server. Kai
did an amazing job at tracking this bug down to the dequeuing
mechanism which forgets to check the server state before allowing
a request to be sent to a server.
The problem occurs more often with long requests, which have a chance
to complete after the server is completely marked down, and to find
requests in the global queue which have not yet been fetched by other
servers.
The fix consists in ensuring that a server is up before sending it
any new request from the queue.
(cherry picked from commit 80b286a064)
(cherry picked from commit 2e5e0d2853f059a1d09dc81fdbbad9fd03124a98)
There is a problem when an instance is marked "disabled". Its ports are
still bound but will not be unbound upon termination. This causes processes
to accumulate during soft restarts, and might even cause failures to restart
new ones due to the inability to bind to the same port.
The ideal solution would be to bind all ports at the end of the configuration
parsing. An acceptable workaround is to unbind all listeners of disabled
proxies. This is what the current patch does.
(cherry picked from commit a944218e9c)
(cherry picked from commit 8cfebbb82b87345bade831920177077e7d25840a)
It is now possible to list all known sessions by issuing "show sess"
on the unix stats socket. The format is not much evolved but it is
very useful for debugging.
The doc has been updated to reflect the new keyword.
Both should process the response buffer equally. They now both
clear the hijack bit once done, and both receive a pointer to
the response buffer in their arguments.
Instead of calling a hard-coded function to produce data, let's
reference this function into the buffer and call it from there
when BF_HIJACK is set. This goes in the direction of more generic
session management code.
The unix protocol handler had not been updated during the last
stream_sock changes. This has been done now. There is still a
lot of duplicated code between session.c and proto_uxst.c due
to the way the session is handled. Session.c relies on the existence
of a frontend while it does not exist here.
It is easier to see the difference between the stats part (placed
in dumpstats.c) and the unix-stream part (in proto_uxst.c).
The hijacking function still needs to be dynamically set into the
response buffer, and some cleanup is still required, then all those
changes should be forward-ported to the HTTP part. Adding support
for new keywords should not cause trouble now.
The TCP analyser has moved to proto_tcp.c. Breaking the function
has required finer use of the return value and adding some tests
to process_session().
It was a bit awkward to have session.c call return_srv_error() for
HTTP error messages related to servers. The function has been adapted
to be passed a pointer to the faulty stream interface, and is now a
pointer in the session. It is possible that in the future, it will
become a callback in the stream interface itself.
The new function looks like the previous one except that it operates
at the stream interface level and assumes an already closed SI.
Also remove some old unused occurrences of srv_close_with_err().
proto_http.c was not suitable for session-related processing, it was
just convenient for the tranformation.
Some more splitting must occur: process_request/response in proto_http.c
must be split again per protocol, and the caller must run a list.
Some functions should be directly attached to the session or the buffer
(eg: perform_http_redirect, return_srv_error, http_sess_log).
All the processing has now completely been split in layers. As of
now, everything is still in process_session() which is not the right
place, but the code sequence works. Timeouts, retries, errors, all
work.
The shutdown sequence has been strictly applied: BF_SHUTR/BF_SHUTW
are only assigned by lower layers. Upper layers can only indicate
their wish to close using BF_SHUTR_NOW and BF_SHUTW_NOW.
When a shutdown is performed on a stream interface, the buffer flags
are updated accordingly and re-checked by upper layers. A lot of care
has been taken to ensure that aborts during intermediate connection
setups are correctly handled and shutdowns correctly propagated to
both buffers.
A future evolution would consist in ensuring that BF_SHUT?_NOW may
be set at any time, and applies only when the buffer is empty. This
might help with error messages, but might complicate the processing
of data remaining in buffers.
Some useless buffer flag combinations have been removed.
Stat counters are still broken (eg: per-server total number of sessions).
Error messages should be delayed to the close instant and be produced by
protocol.
Many functions must now move to proper locations.
Now the global variable 'sessions' will be a dual-linked list of all
known sessions. The list element is set at the beginning of the session
so that it's easier to follow them all with gdb.
Two new functions are used instead : buffer_check_{shutr,shutw}.
It is indeed more adequate to check for new closures only when the
buffer reports them.
Several remaining unclosed connections were detected after a test,
even before this patch, so a bug remains. To reproduce, try the
following during 30 seconds :
inject30l4 -n 20000 -l -t 1000 -P 10 -o 4 -u 100 -s 100 -G 127.0.0.1:8000/
Tracking connection status changes was hard, and some code was
redundant. A new SI_ST_CER state was added to the stream interface
to indicate a past connection error, and an SI_FL_ERR flag was
added to report past I/O error. The stream_sock code does not set
the connection to SI_ST_CLO anymore in case of I/O error, it's
the upper layer which does it. This makes it possible to know
exactly when the file descriptors are allocated.
The new SI_ST_CER state permitted to split tcp_connection_status()
in two parts, one processing SI_ST_CON and the other one SI_ST_CER.
Synchronous connection errors now make use of this last state, hence
eliminating duplicate code.
Some ib<->ob copy paste errors were found and fixed, and all entities
setting SI_ST_CLO also shut the buffers down.
Some of these stream_interface specific functions and structures
have migrated to a new stream_interface.c file.
Some types of errors are still not detected by the buffers. For
instance, let's assume the following scenario in one single pass
of process_session: a connection sits in SI_ST_TAR state during
a retry. At TAR expiration, a new connection attempt is made, the
connection is obtained and srv->cur_sess is increased. Then the
buffer timeout is fires and everything is cleared, the new state
becomes SI_ST_CLO. The cleaning code checks that previous state
was either SI_ST_CON or SI_ST_EST to release the connection. But
that's wrong because last state is still SI_ST_TAR. So the
server's connection count does not get decreased.
This means that prev_state must not be used, and must be replaced
by some transition detection instead of level detection.
The following debugging line was useful to track state changes :
fprintf(stderr, "%s:%d: cs=%d ss=%d(%d) rqf=0x%08x rpf=0x%08x\n", __FUNCTION__, __LINE__,
s->si[0].state, s->si[1].state, s->si[1].err_type, s->req->flags, s-> rep->flags);
The connection setup code has been refactored in order to
make it run only on low level (stream interface). Several
complicated functions have been removed from backend.c,
and we now have sess_update_stream_int() to manage
an assigned connection, sess_prepare_conn_req() to assign a
server to a connection request, perform_http_redirect() to
redirect instead of connecting to server, and return_srv_error()
to return connection error status messages.
The stream_interface status changes are checked before adjusting
buffer flags, so that the buffers can be informed about this lower
level update.
A new connection is initiated by changing si->state from SI_ST_INI
to SI_ST_REQ.
The code seems to work but is awfully dirty. Some functions need
to be moved, and the layering is not yet quite clear.
A lot of dead old code has simply been removed.
Those entries were really needed for cleaner and better code. Using them
has permitted to automatically close a file descriptor during a shut write,
reducing by 20% the number of calls to process_session() and derived
functions.
Process_session() does not need to know the file descriptor anymore, though
it still remains very complicated due to the special case for the connect
mode.
As of now, a stream socket does not directly wake up the task
but it does contact the stream interface which itself knows the
task. This allows us to perform a few cleanups upon errors and
shutdowns, which reduces the number of calls to data_update()
from 8 per session to 2 per session, and make all the functions
called in the process_session() loop completely swappable.
Some improvements are required. We need to provide a shutw()
function on stream interfaces so that one side which closes
its read part on an empty buffer can propagate the close to
the remote side.
It's very frequent to require some information about the
reason why a task is running. Some flags have been added
so that a task now knows if it got woken up due to I/O
completion, timeout, etc...
A test has shown that more than 16% of the calls to task_wakeup()
could be avoided because the task is already woken up. So make it
inline and move the test to the inline part.
The buffer flags became a big bazaar. Re-arrange them
so that their names are more explicit and so that they
are more easily readable in hex form. Some aggregates
have also been adjusted.
It was a waste to constantly update the file descriptor's status
and timeouts during a flags update. So stream_sock_process_data
has been slit in two parts :
stream_sock_data_update() => computes updated flags
stream_sock_data_finish() => computes timeouts
Only the first one is called during flag updates. The second one
is only called upon completion. The number of calls to fd_set/fd_clr
has now significantly dropped.
Also, it's useless to check for errors and timeouts in the
process_session() loop, it's enough to check for them at the
beginning.
srv_state has been removed from HTTP state machines, and states
have been split in either TCP states or analyzers. For instance,
the TARPIT state has just become a simple analyzer.
New flags have been added to the struct buffer to compensate this.
The high-level stream processors sometimes need to force a disconnection
without touching a file-descriptor (eg: report an error). But if
they touched BF_SHUTW or BF_SHUTR, the file descriptor would not
be closed. Thus, the two SHUT?_NOW flags have been added so that
an application can request a forced close which the stream interface
will be forced to obey.
During this change, a new BF_HIJACK flag was added. It will
be used for data generation, eg during a stats dump. It
prevents the producer on a buffer from sending data into it.
BF_SHUTR_NOW /* the producer must shut down for reads ASAP */
BF_SHUTW_NOW /* the consumer must shut down for writes ASAP */
BF_HIJACK /* the producer is temporarily replaced */
BF_SHUTW_NOW has precedence over BF_HIJACK. BF_HIJACK has
precedence over BF_MAY_FORWARD (so that it does not need it).
New functions buffer_shutr_now(), buffer_shutw_now(), buffer_abort()
are provided to manipulate BF_SHUT* flags.
A new type "stream_interface" has been added to describe both
sides of a buffer. A stream interface has states and error
reporting. The session now has two stream interfaces (one per
side). Each buffer has stream_interface pointers to both
consumer and producer sides.
The server-side file descriptor has moved to its stream interface,
so that even the buffer has access to it.
process_srv() has been split into three parts :
- tcp_get_connection() obtains a connection to the server
- tcp_connection_failed() tests if a previously attempted
connection has succeeded or not.
- process_srv_data() only manages the data phase, and in
this sense should be roughly equivalent to process_cli.
Little code has been removed, and a lot of old code has been
left in comments for now.
It is not always convenient to run checks on req->l in functions to
check if a buffer is empty or full. Now the stream_sock functions
set flags BF_EMPTY and BF_FULL according to the buffer contents. Of
course, functions which touch the buffer contents adjust the flags
too.
BF_SHUTR_PENDING and BF_SHUTW_PENDING were poor ideas because
BF_SHUTR is the pending of BF_SHUTW_DONE and BF_SHUTW is the
pending of BF_SHUTR_DONE. Remove those two useless and confusing
"pending" versions and rename buffer_shut{r,w}_* functions.
A new member has been added to the struct session. It keeps a trace
of what block of code performs a close or a shutdown on a socket, and
in what sequence. This is extremely convenient for post-mortem analysis
where flag combinations and states seem impossible. A new ABORT_NOW()
macro has also been added to make the code immediately segfault where
called.
The HTTP response code has been moved to a specific function
called "process_response" and the SV_STHEADERS state has been
removed and replaced with the flag AN_RTR_HTTP_HDR.
For the first time, HTTP and TCP are not merged anymore. All request
processing has moved to process_request while the TCP processing of
the frontend remains in process_cli. The code is a lot cleaner,
simpler, smaller (1%) and slightly faster (1% too).
Right now, the HTTP state machine cannot easily command the TCP
state machine, but it does not cause that many difficulties.
The response processing has not yet been extracted, and the unix-stream
state machines have to be broken down that way too.
The CL_STDATA, CL_STSHUTR and CL_STSHUTW states still exist and are
exactly the sames. They will have to be all merged into CL_STDATA
once the work has stabilized. It is also possible that this single
state will disappear in favor of just buffer flags.
When an ACL is referenced at a wrong place (eg: response during request, layer7
during layer4), try to indicate precisely the name and requirements of this ACL.
Only the first faulty ACL is returned. A small change consisting in iterating
that way may improve reports :
cap = ACL_USE_any_unexpected
while ((acl=cond_find_require(cond, cap))) {
warning()
cap &= ~acl->requires;
}
This will report the first ACL of each unsupported type. But doing so will
mangle the error reporting a lot, so we need to rework error reports first.
It should be stated as a rule that a C file should never
include types/xxx.h when proto/xxx.h exists, as it gives
less exposure to declaration conflicts (one of which was
caught and fixed here) and it complicates the file headers
for nothing.
Only types/global.h, types/capture.h and types/polling.h
have been found to be valid includes from C files.
This new function supports one major and one minor and makes an int of them.
It is very convenient to compare versions (eg: SSL) just as if they were plain
integers, as the comparison functions will still be based on integers.
Some people need to inspect contents of TCP requests before
deciding to forward a connection or not. A future extension
of this demand might consist in selecting a server farm
depending on the protocol detected in the request.
For this reason, a new state CL_STINSPECT has been added on
the client side. It is immediately entered upon accept() if
the statement "tcp-request inspect-delay <xxx>" is found in
the frontend configuration. Haproxy will then wait up to
this amount of time trying to find a matching ACL, and will
either accept or reject the connection depending on the
"tcp-request content <action> {if|unless}" rules, where
<action> is either "accept" or "reject".
Note that it only waits that long if no definitive verdict
can be found earlier. That generally implies calling a fetch()
function which does not have enough information to decode
some contents, or a match() function which only finds the
beginning of what it's looking for.
It is only at the ACL level that partial data may be processed
as such, because we need to distinguish between MISS and FAIL
*before* applying the term negation.
Thus it is enough to add "| ACL_PARTIAL" to the last argument
when calling acl_exec_cond() to indicate that we expect
ACL_PAT_MISS to be returned if some data is missing (for
fetch() or match()). This is the only case we may return
this value. For this reason, the ACL check in process_cli()
has become a lot simpler.
A new ACL "req_len" of type "int" has been added. Right now
it is already possible to drop requests which talk too early
(eg: for SMTP) or which don't talk at all (eg: HTTP/SSL).
Also, the acl fetch() functions have been extended in order
to permit reporting of missing data in case of fetch failure,
using the ACL_TEST_F_MAY_CHANGE flag.
The default behaviour is unchanged, and if no rule matches,
the request is accepted.
As a side effect, all layer 7 fetching functions have been
cleaned up so that they now check for the validity of the
layer 7 pointer before dereferencing it.
This is the first attempt at moving all internal parts from
using struct timeval to integer ticks. Those provides simpler
and faster code due to simplified operations, and this change
also saved about 64 bytes per session.
A new header file has been added : include/common/ticks.h.
It is possible that some functions should finally not be inlined
because they're used quite a lot (eg: tick_first, tick_add_ifset
and tick_is_expired). More measurements are required in order to
decide whether this is interesting or not.
Some function and variable names are still subject to change for
a better overall logics.
When queuing a timer, it's very likely that an expiration date is
equal to that of the previously queued timer, due to time rounding
to the millisecond. Optimizing for this case provides a noticeable
1% performance boost.
The run queue scheduler now considers task->nice to queue a task and
to pick a task out of the queue. This makes it possible to boost the
access to statistics (both via HTTP and UNIX socket). The UNIX socket
receives twice as much a boost as the HTTP socket because it is more
sensible.
We now insert tasks in a certain sequence in the run queue.
The sorting key currently is the arrival order. It will now
be possible to apply a "nice" value to any task so that it
goes forwards or backwards in the run queue.
The calls to wake_expired_tasks() and maintain_proxies()
have been moved to the main run_poll_loop(), because they
had nothing to do in process_runnable_tasks().
The task_wakeup() function is not inlined anymore, as it was
only used at one place.
The qlist member of the task structure has been removed now.
The run_queue list has been replaced for an integer indicating
the number of tasks in the run queue.
The ultree code has been removed in favor of a simpler and
cleaner ebtree implementation. The eternity queue does not
need to exist anymore, and the pool_tree64 has been removed.
The ebtree node is stored in the task itself. The qlist list
header is still used by the run-queue, but will be able to
disappear once the run-queue uses ebtree too.
The dequeuing logic was completely wrong. First, a task was assigned
to all servers to process the queue, but this task was never scheduled
and was only woken up on session free. Second, there was no reservation
of server entries when a task was assigned a server. This means that
as long as the task was not connected to the server, its presence was
not accounted for. This was causing trouble when detecting whether or
not a server had reached maxconn. Third, during a redispatch, a session
could lose its place at the server's and get blocked because another
session at the same moment would have stolen the entry. Fourth, the
redispatch option did not work when maxqueue was reached for a server,
and it was not possible to do so without indefinitely hanging a session.
The root cause of all those problems was the lack of pre-reservation of
connections at the server's, and the lack of tracking of servers during
a redispatch. Everything relied on combinations of flags which could
appear similarly in quite distinct situations.
This patch is a major rework but there was no other solution, as the
internal logic was deeply flawed. The resulting code is cleaner, more
understandable, uses less magics and is overall more robust.
As an added bonus, "option redispatch" now works when maxqueue has
been reached on a server.
New functions implemented:
- deinit_pollers: called at the end of deinit())
- prune_acl: called via list_for_each_entry_safe
Add missing pool_destroy2 calls:
- p->hdr_idx_pool
- pool2_tree64
Implement all task stopping:
- health-check: needs new "struct task" in the struct server
- queue processing: queue_mgt
- appsess_refresh: appsession_refresh
before (idle system):
==6079== LEAK SUMMARY:
==6079== definitely lost: 1,112 bytes in 75 blocks.
==6079== indirectly lost: 53,356 bytes in 2,090 blocks.
==6079== possibly lost: 52 bytes in 1 blocks.
==6079== still reachable: 150,996 bytes in 504 blocks.
==6079== suppressed: 0 bytes in 0 blocks.
after (idle system):
==6945== LEAK SUMMARY:
==6945== definitely lost: 7,644 bytes in 137 blocks.
==6945== indirectly lost: 9,913 bytes in 587 blocks.
==6945== possibly lost: 0 bytes in 0 blocks.
==6945== still reachable: 0 bytes in 0 blocks.
==6945== suppressed: 0 bytes in 0 blocks.
before (running system for ~2m):
==9343== LEAK SUMMARY:
==9343== definitely lost: 1,112 bytes in 75 blocks.
==9343== indirectly lost: 54,199 bytes in 2,122 blocks.
==9343== possibly lost: 52 bytes in 1 blocks.
==9343== still reachable: 151,128 bytes in 509 blocks.
==9343== suppressed: 0 bytes in 0 blocks.
after (running system for ~2m):
==11616== LEAK SUMMARY:
==11616== definitely lost: 7,644 bytes in 137 blocks.
==11616== indirectly lost: 9,981 bytes in 591 blocks.
==11616== possibly lost: 0 bytes in 0 blocks.
==11616== still reachable: 4 bytes in 1 blocks.
==11616== suppressed: 0 bytes in 0 blocks.
Still not perfect but significant improvement.
This patch adds two optional arguments "len" and "depth" to
"balance uri". They are used to limit the length in characters
of the analysis, as well as the number of directory components
it applies to.
This patch extends the "url_param" load balancing method by introducing
the "check_post" option. Using this option enables analysis of the beginning
of POST requests to search for the specified URL parameter.
The patch also fixes a few minor typos in comments that were discovered
during code review.
Due to the way the stats socket work, it was not possible to
maintain the information related to the command entered, so
after filling a whole buffer, the request was lost and it was
considered that there was nothing to write anymore.
The major reason was that some flags were passed directly
during the first call to stats_dump_raw() instead of being
stored persistently in the session.
To definitely fix this problem, flags were added to the stats
member of the session structure.
A second problem appeared. When the stats were produced, a first
call to client_retnclose() was performed, then one or multiple
subsequent calls to buffer_write_chunks() were done. But once the
stats buffer was full and a reschedule operated, the buffer was
flushed, the write flag cleared from the buffer and nothing was
done to re-arm it.
For this reason, a check was added in the proto_uxst_stats()
function in order to re-call the client FSM when data were added
by stats_dump_raw(). Finally, the whole unix stats dump FSM was
rewritten to avoid all the magics it depended on. It is now
simpler and looks more like the HTTP one.
The new "leastconn" LB algorithm selects the server which has the
least established or pending connections. The weights are considered,
so that a server with a weight of 20 will get twice as many connections
as the server with a weight of 10.
The algorithm respects the minconn/maxconn settings, as well as the
slowstart since it is a dynamic algorithm. It also correctly supports
backup servers (one and all).
It is generally suited for protocols with long sessions (such as remote
terminals and databases), as it will ensure that upon restart, a server
with no connection will take all new ones until its load is balanced
with others.
A test configuration has been added in order to ease regression testing.
Currently there is a ~16KB limit for a data size passed via unix socket.
It is caused by a trivial bug ttat is going to fixed soon, however
in most cases there is no need to dump a full stats.
This patch makes possible to select a scope of dumped data by extending
current "show stat" to "show stat [<iid> <type> <sid>]":
- iid is a proxy id, -1 to dump all proxies
- type selects type of dumpable objects: 1 for frontend, 2 for backend, 4 for
server, -1 for all types. Values can be ORed, for example:
1+2=3 -> frontend+backend.
1+2+4=7 -> frontend+backend+server.
- sid is a service id, -1 to dump everything from the selected proxy.
To do this I implemented a new session flag (SN_STAT_BOUND), added three
variables in data_ctx.stats (iid, type, sid), modified dumpstats.c and
completely revorked the process_uxst_stats: now it waits for a "\n"
terminated string, splits args and uses them. BTW: It should be quite easy
to add new commands, for example to enable/disable servers, the only problem
I can see is a not very lucky config name (*stats* socket). :|
During the work I also fixed two bug:
- s->flags were not initialized for proto_uxst
- missing comma if throttling not enabled (caused by a stupid change in
"Implement persistent id for proxies and servers")
Other changes:
- No more magic type valuse, use STATS_TYPE_FE/STATS_TYPE_BE/STATS_TYPE_SV
- Don't memset full s->data_ctx (it was clearing s->data_ctx.stats.{iid/type/sid},
instead initialize stats.sv & stats.sv_st (stats.px and stats.px_st were already
initialized)
With all that changes it was extremely easy to write a short perl plugin
for a perl-enabled net-snmp (also included in this patch).
29385 is my PEN (Private Enterprise Number) and I'm willing to donate
the SNMPv2-SMI::enterprises.29385.106.* OIDs for HAProxy if there
is nothing assigned already.
When haproxy decides that session needs to be redispatched it chose a server,
but there is no guarantee for it to be a different one. So, it often
happens that selected server is exactly the same that it was previously, so
a client ends up with a 503 error anyway, especially when one sever has
much bigger weight than others.
Changes from the previous version:
- drop stupid and unnecessary SN_DIRECT changes
- assign_server(): use srvtoavoid to keep the old server and clear s->srv
so SRV_STATUS_NOSRV guarantees that t->srv == NULL (again)
and get_server_rr_with_conns has chances to work (previously
we were passing a NULL here)
- srv_redispatch_connect(): remove t->srv->cum_sess and t->srv->failed_conns
incrementing as t->srv was guaranteed to be NULL
- add avoididx to get_server_rr_with_conns. I hope I correctly understand this code.
- fix http_flush_cookie_flags() and move it to assign_server_and_queue()
directly. The code here was supposed to set CK_DOWN and clear CK_VALID,
but: (TX_CK_VALID | TX_CK_DOWN) == TX_CK_VALID == TX_CK_MASK so:
if ((txn->flags & TX_CK_MASK) == TX_CK_VALID)
txn->flags ^= (TX_CK_VALID | TX_CK_DOWN);
was really a:
if ((txn->flags & TX_CK_MASK) == TX_CK_VALID)
txn->flags &= TX_CK_VALID
Now haproxy logs "--DI" after redispatching connection.
- defer srv->redispatches++ and s->be->redispatches++ so there
are called only if a conenction was redispatched, not only
supposed to.
- don't increment lbconn if redispatcher selected the same sarver
- don't count unsuccessfully redispatched connections as redispatched
connections
- don't count redispatched connections as errors, so:
- the number of connections effectively served by a server is:
srv->cum_sess - srv->failed_conns - srv->retries - srv->redispatches
and
SUM(servers->failed_conns) == be->failed_conns
- requires the "Don't increment server connections too much + fix retries" patch
- needs little more testing and probably some discussion so reverting to the RFC state
Tests #1:
retries 4
redispatch
i) 1 server(s): b (wght=1, down)
b) sessions=5, lbtot=1, err_conn=1, retr=4, redis=0
-> request failed
ii) server(s): b (wght=1, down), u (wght=1, down)
b) sessions=4, lbtot=1, err_conn=0, retr=3, redis=1
u) sessions=1, lbtot=1, err_conn=1, retr=0, redis=0
-> request FAILED
iii) 2 server(s): b (wght=1, down), u (wght=1, up)
b) sessions=4, lbtot=1, err_conn=0, retr=3, redis=1
u) sessions=1, lbtot=1, err_conn=0, retr=0, redis=0
-> request OK
iv) 2 server(s): b (wght=100, down), u (wght=1, up)
b) sessions=4, lbtot=1, err_conn=0, retr=3, redis=1
u) sessions=1, lbtot=1, err_conn=0, retr=0, redis=0
-> request OK
v) 1 server(s): b (down for first 4 SYNS)
b) sessions=5, lbtot=1, err_conn=0, retr=4, redis=0
-> request OK
Tests #2:
retries 4
i) 1 server(s): b (down)
b) sessions=5, lbtot=1, err_conn=1, retr=4, redis=0
-> request FAILED
This patch implements ability to set the current state of one server
by tracking another one. It:
- adds two variables: *tracknext, *tracked to struct server
- implements findserver(), similar to findproxy()
- adds "track" keyword accepting both "proxy/server" and "server" (assuming current proxy)
- verifies if both checks and tracking is not enabled at the same time
- changes set_server_down() to notify tracking server
- creates set_server_up(), set_server_disabled(), set_server_enabled() by
moving the code from process_chk() and adding notifications
- changes stats to show a name of tracked server instead of Chk/Dwn/Dwntime(html)
or by adding new variable (csv)
Changes from the previuos version:
- it is possibile to track independently of the declaration order
- one extra comma bug is fixed
- new condition to check if there is no disable-on-404 inconsistency
GCC4 is stupid (unbelievable news!).
When some code uses __builtin_expect(x != 0, 1), it really performs
the check of x != 0 then tests that the result is not zero! This is
a double check when only one was expected. Some performance drops
of 10% in the HTTP parser code have been observed due to this bug.
GCC 3.4 is fine though.
A solution consists in expecting that the tested value is 1. In
this case, it emits the correct code, but it's still not optimal
it seems. Finally the best solution is to ignore likely() and to
pray for the compiler to emit correct code. However, we still have
to fix unlikely() to remove the test there too, and to fix all
code which passed pointers overthere to pass integers instead.
This patch adds two new variables: fastinter and downinter.
When server state is:
- non-transitionally UP -> inter (no change)
- transitionally UP (going down), unchecked or transitionally DOWN (going up) -> fastinter
- down -> downinter
It allows to set something like:
server sr6 127.0.51.61:80 cookie s6 check inter 10000 downinter 20000 fastinter 500 fall 3 weight 40
In the above example haproxy uses 10000ms between checks but as soon as
one check fails fastinter (500ms) is used. If server is down
downinter (20000) is used or fastinter (500ms) if one check pass.
Fastinter is also used when haproxy starts.
New "timeout.check" variable was added, if set haproxy uses it as an additional
read timeout, but only after a connection has been already established. I was
thinking about using "timeout.server" here but most people set this
with an addition reserve but still want checks to kick out laggy servers.
Please also note that in most cases check request is much simpler
and faster to handle than normal requests so this timeout should be smaller.
I also changed the timeout used for check connections establishing.
Changes from the previous version:
- use tv_isset() to check if the timeout is set,
- use min("timeout connect", "inter") but only if "timeout check" is set
as this min alone may be to short for full (connect + read) check,
- debug code (fprintf) commented/removed
- documentation
Compile tested only (sorry!) as I'm currently traveling but changes
are rather small and trivial.
Due to the way Linux delivers EPOLLIN and EPOLLHUP, a closed connection
received after some server data sometimes results in truncated responses
if the client disconnects before server starts to respond. The reason
is that the EPOLLHUP flag is processed as an indication of end of
transfer while some data may remain in the system's socket buffers.
This problem could only be triggered with sepoll, although nothing should
prevent it from happening with normal epoll. In fact, the work factoring
performed by sepoll increases the risk that this bug appears.
The fix consists in making FD_POLL_HUP and FD_POLL_ERR sticky and that
they are only checked if FD_POLL_IN is not set, meaning that we have
read all pending data.
That way, the problem is definitely fixed and sepoll still remains about
17% faster than epoll since it can take into account all information
returned by the kernel.
The source address selection for health checks did not consider
the new transparent proxy method. Rely on the same unified function
as the other connect() calls.
This patch also fixes a bug by which the proxy's source address was
ignored if cttproxy was used.
It is sometimes required to know some informations such as the
process uptime when consulting statistics. This patch adds the
"show info" command to query those informations on the UNIX
socket.
A new "timeout" keyword replaces old "{con|cli|srv}timeout", and
provides the ability to independantly set the following timeouts :
- client
- tarpit
- queue
- connect
- server
- appsession
Additionally, the "clitimeout", "contimeout" and "srvtimeout" values
are supported but deprecated. No warning is emitted yet when they are
used since the option is very new.
Other timeouts should follow soon now.
This round robin algorithm was written from trees, so that we
do not have to recompute any table when changing server weights.
This solution allows on-the-fly weight adjustments with immediate
effect on the load distribution.
There is still a limitation due to 32-bit computations, to about
2000 servers at full scale (weight 255), or more servers with
lower weights. Basically, sum(srv.weight)*4096 must be below 2^31.
Test configurations and an example program used to develop the
tree will be added next.
Many changes have been brought to the weights computations and
variables in order to accomodate for the possiblity of a server to
be running but disabled from load balancing due to a null weight.
Under some circumstances, it will be useful to be able to have
a server's effective weight bigger than the user weight, and this
is particularly true for dynamic weight-based algorithms. In order
to support this, we add a "wdiv" member to the lbprm structure
which will always be used to divide the weights before reporting
them.
Since the introduction of server weights, all load balancing algorithms
relied on a pre-computed map. Incidently, quite a bunch of map-specific
parameters were used at random places in order to get the number of
servers or their total weight. It was not architecturally acceptable
that optimizations for the map computation had impact on external parts.
For instance, during this cleanup it was found that a backend weight was
seen as 1 when only the first backup server is used, whatever its weight.
This cleanup consists in differentiating between LB-generic parameters,
such as total weights, number of servers, etc... and map-specific ones.
The struct proxy has been enhanced in order to make it easier to later
support other algorithms. The recount_servers() function now also
updates generic values such as total weights so that it's not needed
anymore to call recalc_server_map() when weights are needed. This
permitted to simplify some code which does not need to know about map
internals anymore.
By default, counters used for statistics calculation are incremented
only when a session finishes. It works quite well when serving small
objects, but with big ones (for example large images or archives) or
with A/V streaming, a graph generated from haproxy counters looks like
a hedgehog.
This patch implements a contstats (continous statistics) option.
When set counters get incremented continuously, during a whole session.
Recounting touches a hotpath directly so it is not enabled by default,
as it has small performance impact (~0.5%).
Proxy listeners were very special and not very easy to manipulate.
A proto_tcp file has been created with all that is required to
manage TCPv4/TCPv6 as raw protocols, and provide generic listeners.
The code of start_proxies() and maintain_proxies() now looks less
like spaghetti. Also, event_accept will need a serious lifting in
order to use more of the information provided by the listener.
There was a missing state for listeners, when they are not listening
but still attached to the protocol. The LI_ASSIGNED state was added
for this purpose. This permitted to clean up the assignment/release
workflow quite a bit. Generic enable/enable_all/disable/disable_all
primitives were added, and a disable_all entry was added to the
struct protocol.
It's not easy to report useful information to help the user quickly
fix a configuration. This patch :
- removes the word "listener" in favor of "proxy" as it has been
used since the beginning ;
- ensures that the same function (hence the same words) will be
used to report capabilities of a proxy being declared and an
existing proxy ;
- avoid the term "conflicting capabilities" in favor of "overlapping
capabilities" which is more exact.
- just report that the same name is reused in case of warnings
This patch:
- adds proxy_mode_str() similar to proxy_type_str()
- adds a generic findproxy function used with default_backend/setbe/use_backed
- rewrite default_backend/senbe/use_backed to use introduced findproxy()
- relaxes duplicated proxy check
- changes capabilities displaying from "%X" to "%s" with a call to proxy_type_str()
A new function "backend_parse_balance" has been created in backend.c,
which is dedicated to the parsing of the "balance" keyword. It will
provide easier methods for adding new algorithms.
Hello,
This patch implements new statistics for SLA calculation by adding new
field 'Dwntime' with total down time since restart (both HTTP/CSV) and
extending status field (HTTP) or inserting a new one (CSV) with time
showing how long each server/backend is in a current state. Additionaly,
down transations are also calculated and displayed for backends, so it is
possible to know how many times selected backend was down, generating "No
server is available to handle this request." error.
New information are presentetd in two different ways:
- for HTTP: a "human redable form", one of "100000d 23h", "23h 59m" or
"59m 59s"
- for CSV: seconds
I believe that seconds resolution is enough.
As there are more columns in the status page I decided to shrink some
names to make more space:
- Weight -> Wght
- Check -> Chk
- Down -> Dwn
Making described changes I also made some improvements and fixed some
small bugs:
- don't increment s->health above 's->rise + s->fall - 1'. Previously it
was incremented an then (re)set to 's->rise + s->fall - 1'.
- do not set server down if it is down already
- do not set server up if it is up already
- fix colspan in multiple places (mostly introduced by my previous patch)
- add missing "status" header to CSV
- fix order of retries/redispatches in server (CSV)
- s/Tthen/Then/
- s/server/backend/ in DATA_ST_PX_BE (dumpstats.c)
Changes from previous version:
- deal with negative time intervales
- don't relay on s->state (SRV_RUNNING)
- little reworked human_time + compacted format (no spaces). If needed it
can be used in the future for other purposes by optionally making "cnt"
as an argument
- leave set_server_down mostly unchanged
- only little reworked "process_chk: 9"
- additional fields in CSV are appended to the rigth
- fix "SEC" macro
- named arguments (human_time, be_downtime, srv_downtime)
Hope it is OK. If there are only cosmetic changes needed please fill free
to correct it, however if there are some bigger changes required I would
like to discuss it first or at last to know what exactly was changed
especially since I already put this patch into my production server. :)
Thank you,
Best regards,
Krzysztof Oledzki
Removed old unused MODE_LOG and MODE_STATS, and replaced the "stats"
keyword in the global section. The new "stats" keyword in the global
section is used to create a UNIX socket on which the statistics will
be accessed. The client must issue a "show stat\n" command in order
to get a CSV-formated output similar to the output on the HTTP socket
in CSV mode.
A unix socket can now access the statistics. It currently only
recognizes the "show stat\n" command at the beginning of the
input, then returns the statistics in CSV format.
It is now possible to get CSV ouput from the statistics by
simply appending ";csv" to the HTTP request sent to get the
stats. The fields keep the same ordering as in the HTML page,
and a field "pxname" has been prepended at the beginning of
the line.
A new file, proto_uxst.c, implements support of PF_UNIX sockets
of type SOCK_STREAM. It relies on generic stream_sock_read/write
and uses its own accept primitive which also tries to be generic.
Right now it only implements an echo service in sight of a general
support for start dumping via unix socket. The echo code is more
of a proof of concept than useful code.
A new generic protocol mechanism has been added. It provides
an easy method to implement new protocols with different
listeners (eg: unix sockets).
The listeners are automatically started at the right moment
and enabled after the possible fork().
When one server appears at the same position in multiple backends, it
receives all the checks from all the backends exactly at the same time
because the health-checks are only spread within a backend but not
globally.
Attached patch implements per-server start delay in a different way.
Checks are now spread globally - not locally to one backend. It also makes
them start faster - IMHO there is no need to add a 'server->inter' when
calculating first execution. Calculation were moved from cfgparse.c to
checks.c. There is a new function start_checks() and now it is not called
when haproxy is started in MODE_CHECK.
With this patch it is also possible to set a global 'spread-checks'
parameter. It takes a percentage value (1..50, probably something near
5..10 is a good idea) so haproxy adds or removes that many percent to the
original interval after each check. My test shows that with 18 backends,
54 servers total and 10000ms/5% it takes about 45m to mix them completely.
I decided to use rand/srand pseudo-random number generator. I am aware it
is not recommend for a good randomness but a) we do not need a good random
generator here b) it is probably the most portable one.
When a very large number of servers is configured (thousands),
shutting down many of them at once could lead to large number
of calls to recalc_server_map() which already takes some time.
This would result in an O(N^3) computation time, leading to
noticeable pauses on slow embedded CPUs on test platforms.
Instead, mark the map as dirty and recalc it only when needed.
Those ACLs are sometimes useful for troubleshooting. Two ACL subjects
"always_true" and "always_false" have been added too. They return what
their subject says for every pattern. Also, acl_match_pst() has been
removed.
Some fetches such as 'line' or 'hdr' need to know the direction of
the test (request or response). A new 'dir' parameter is now
propagated from the caller to achieve this.
ACLs now support operators such as 'eq', 'le', 'lt', 'ge' and 'gt'
in order to give more flexibility to the language. Because of this
change, the 'dst_limit' keyword changed to 'dst_conn' and now requires
either a range or a test such as 'dst_conn lt 1000' which is more
understandable.
A second occurrence of read-timeout rearming was present in stream_sock.c.
To fix the problem, it was necessary to put the shutdown information in
the buffer (already planned).
The timeout functions were difficult to manipulate because they were
rounding results to the millisecond. Thus, it was difficult to compare
and to check what expired and what did not. Also, the comparison
functions were heavy with multiplies and divides by 1000. Now, all
timeouts are stored in timevals, reducing the number of operations
for updates and leading to cleaner and more efficient code.
This framework offers all other subsystems the ability to register
ACL matching criteria. Some generic matching functions are already
provided. Others will come soon and the framework shall evolve.
There are multiple places where the client's destination address is
required. Let's store it in the session when needed, and add a flag
to inform that it has been retrieved.
The rbtree-based wait queue consumes a lot of CPU. Use the ul2tree
instead. Lots of cleanups and code reorganizations made it possible
to reduce the task struct and simplify the code a bit.
Gcc provides __attribute__((constructor)) which is very convenient
to execute functions at startup right before main(). All the pollers
have been converted to have their register() function declared like
this, so that it is not necessary anymore to call them from a centralized
file.
Some pollers such as kqueue lose their FD across fork(), meaning that
the registered file descriptors are lost too. Now when the proxies are
started by start_proxies(), the file descriptors are not registered yet,
leaving enough time for the fork() to take place and to get a new pollfd.
It will be the first call to maintain_proxies that will register them.
select, poll and epoll now have their dedicated functions and have
been split into distinct files. Several FD manipulation primitives
have been provided with each poller.
The rest of the code needs to be cleaned to remove traces of
StaticReadEvent/StaticWriteEvent. A trick involving a macro has
temporarily been used right now. Some work needs to be done to
factorize tests and sets everywhere.
logs are handled better with dedicated functions. The HTTP implementation
moved to proto_http.c. It has been cleaned up a bit. Now a frontend with
option httplog and no log will not call the function anymore.
Previously, use of the "usesrc" keyword could silently fail if
either the module was not loaded, or the user did not have enough
permissions. Now the errors are better diagnosed and more appropriate
advices are given.
Two new functions http_header_add_tail() and http_header_add_tail2()
make it easier to append headers, and also reduce the number of
sprintf() calls and perform stricter checks.
Some session flags were clearly related to HTTP transactions.
A new 'flags' field has been added to http_txn, and the
associated flags moved to proto_http.h.
Now the response is correctly processed in the backend first
then in the frontend. It has followed intensive tests to
catch regressions, and everything seems OK now, but the code
is young anyway.
The HTTP parser has been rewritten for better compliance to RFC2616.
The same parser is now usable for both requests and responses, and
it now supports HTTP/0.9 as well as multi-line headers. It has also
been improved for speed ; a typicial HTTP request is parsed in about
2 microseconds on a 1 GHz processor.
The monitor-uri check has been moved so that the requests are not
logged. The httpclose option now tries to change as little as
possible in the request, and does not affect the first header if
it is already set to 'close'. HTTP/0.9 requests are converted to
HTTP/1.0 before being forwarded.
Headers and request transformations are now distinct. The headers
list is updated after each insertion/removal/transformation. The
request is re-parsed and checked after each transformation. It is
not possible anymore to remove a request, and requests which lead
to invalid request lines are now rejected.
This patch from Sin Yu makes use of an rbtree for the wait queue,
which will solve the slowdown problem encountered when timeouts
are heterogenous in the configuration. The next step will be to
turn maintain_proxies() into a per-proxy task so that we won't
have to scan them all after each poll() loop.
The stats page could not tell the difference between a FE and a BE.
It has been revamped to indicate all relevant information. The font
is also slightly smaller in order for all the info to fit into small
screens. The data output path has been greatly simplified to use
string chunks.
It is now possible to define an errorloc in the backend as well as
in the frontend. The backend's will be used first, and if undefined,
then the frontend's will be used instead. If none is used, then the
original error messages will be used.
HTTP error messages were all specific cases handled by an IF.
Now they are all in an array so that it will be easier to add
new ones. Also, the return functions now use chunks as inputs
so that it should be easier to provide alternative return
messages if needed.
There was a confusion about the way to find filters and backend
parameters from sessions. The chaining has been changed between
the session and the proxy.
Now, a session knows only two proxies : one frontend (->fe) and
one backend (->be). Each proxy has a link to the proxy providing
filters and to the proxy providing backend parameters (both self
by default).
The captures (cookies and headers) have been attached to the
frontend's filters for now.
The uri_auth and the statistics are attached to the backend's
filters so that the uri can depend on a hostname for instance.
The check of uri_auth is now in a separate function which is
checked after every backend switch, so that it will be possible
to have an uri_auth for the frontend and another one for the
backend.
The new parser uses an FSM to strictly follow RFC2616.
Headers are indexed and parsed only once they're all available.
That way, complex regexes make more sense.
HTTP processing is now performed in several phases by calling
multiple functions, making the code cleaner and easier to read.
Note that req[i]pass does not work anymore because it would
require that we mark a header to be ignored. What is really
needed is to have the ability to add an exception to a matching
(match xx except yy).
Several bugs have been fixed in appsession during the conversion
to the new FSM (method length and recovery on malloc errors).
The code does build and work with the debug examples, but is
not usable yet to connect to anything as it does not forward
the requests yet.
As suggested by Markus Elfring, a few "const char *" have replaced
some "char *" declarations where a function is not expected to
modify a value. It does not change the code but it helps detecting
coding errors.
The timeouts, expiration timers and results are now stored in the buffers.
The timers will have to change a bit to become more flexible, and when the
I/O completion functions will be written, the connect_complete() will have
to be extracted from the write() function.
The files are now stored under :
- include/haproxy for the generic includes
- include/types.h for the structures needed within prototypes
- include/proto.h for function prototypes and inline functions
- src/*.c for the C files
Most include files are now covered by LGPL. A last move still needs
to be done to put inline functions under GPL and not LGPL.
Version has been set to 1.3.0 in the code but some control still
needs to be done before releasing.