This type of blocks is useless because transition between data and trailers is
obvious. And when there is no trailers, the end-of-message is still there to
know when data end for chunked messages.
In order to later allow htx_add_data() to transmit partial blocks and
avoid defragmenting the buffer, we'll need to return the number of bytes
consumed. This first modification makes the function do this and its
callers take this into account. At the moment the function still works
atomically so it returns either the block size or zero. However all
call places have been adapted to consider any value between zero and
the block size.
Applets must never rely on the first block position to consume an HTX
message. The head position must be used instead. For the request it is always
the start-line. At this stage, it is not a bug, because the first position of
the request is never changed by HTX analysers.
The first block is the start-line, if defined. Otherwise it the head of the HTX
message. So now, during HTTP analysis, lookup are all done using the first block
instead of the head. Concretely, for now, it is the same because only one HTTP
message is stored at a time in an HTX message. 1xx informational messages are
handled separatly from the final reponse and from each other. But it will make
sense when the 1xx informational messages and the associated final reponse will
be stored in the same HTX message.
Now, we only return the start-line. If not found, NULL is returned. No lookup is
performed and the HTX message is no more updated. It is now the caller
responsibility to update the position of the start-line to the right value. So
when it is not found, i.e sl_pos is set to -1, it means the last start-line has
been already processed and the next one has not been inserted yet.
It is mandatory to rely on this kind of warranty to store 1xx informational
responses and final reponse in the same HTX message.
The stats page now reports the per-process output bit rate and applies
the usual conversions needed to turn the TCP payload rate to an Ethernet
bit rate in order to give a reasonably accurate estimate of how far from
interface saturation we are.
Many times we've been missing per-process traffic statistics. While it
didn't make sense in multi-process mode, with threads it does. Thus we
now have a counter of bytes emitted by raw_sock, and a freq counter for
these as well. However, freq_ctr are limited to 32 bits, and given that
loads of 300 Gbps have already been reached over a loopback using
splicing, we need to downscale this a bit. Here we're storing 1/32 of
the byte rate, which gives a theorical limit of 128 GB/s or ~1 Tbps,
which is more than enough. Let's have fun re-reading this sentence in
2029 :-) The values can be read in "show info" output on the CLI.
It's always a pain to have to stuff lots of #ifdef USE_OPENSSL around
ssl headers, it even results in some of them appearing in a random order
and multiple times just to benefit form an existing ifdef block. Let's
make these headers safe for inclusion when USE_OPENSSL is not defined,
they now perform the test themselves and do nothing if USE_OPENSSL is
not defined. This allows to remove no less than 8 such ifdef blocks
and make include blocks more readable.
The 'do-resolve' action is an http-request or tcp-request content action
which allows to run DNS resolution at run time in HAProxy.
The name to be resolved can be picked up in the request sent by the
client and the result of the resolution is stored in a variable.
The time the resolution is being performed, the request is on pause.
If the resolution can't provide a suitable result, then the variable
will be empty. It's up to the admin to take decisions based on this
statement (return 503 to prevent loops).
Read carefully the documentation concerning this feature, to ensure your
setup is secure and safe to be used in production.
This patch creates a global counter to track various errors reported by
the action 'do-resolve'.
On the client side, as far as possible, we will try to keep connection
alive. So, in most of cases, this header will be removed. So it is better to not
add it at all. If finally the connection must be closed, the header will be
added by the mux h1.
No need to backport this patch.
In the stats applet (in HTX and legacy HTTP), after a response is fully sent to
a client, the request is consumed. It is done at the end, after all the response
was copied into the channel's buffer. But only outgoing data at time the applet
is called are consumed. Then the applet is closed. If a request with a huge body
is sent, an error is triggerred because a SHUTW is catched for an unfinisehd
request.
Now, we consume request data until the end. In fact, we don't try to shutdown
the request's channel for write anymore.
This patch must be backported to 1.9 after some observation period. It should
probably be backported in prior versions too. But honnestly, with refactoring
on the connection layer and the stream interface in 1.9, it is probably safer
to not do so.
When the body length is greater than a chunk size (so if length of POST data
exceeds the buffer size), the requests is rejected with the status code
STAT_STATUS_EXCD. Otherwise the stats applet will wait to have all the data to
copy and parse them. But there is a problem when the total request size
(including the headers) is just lower than the buffer size but greater the
buffer size less the reserve. In such case, the body length is considered as
enough small to be processed but not entierly received. So the stats applet
waits for more data. But because outgoing data are still there, the channel's
buffer is considered as full and nothing more can be read, leading to a freeze
of the session.
Note this bug is pretty easy to reproduce with the legacy HTTP. It is harder
with the HTX but still possible. To fix the bug, in the stats applet, when the
request is not fully received, we check if at least the reserve remains
available the channel's buffer.
This patch must be backported as far as 1.5. But because the HTX does not exist
in 1.8 and lower, it will have to be adapted for these versions.
The status codes definition (STAT_STATUS_*) and their string representation
stat_status_codes) have been moved in stats files. There is no reason to keep
them in proto_http files.
This function will only increment the total amount of bytes read by a channel
because at this stage there is no fast forwarding. So the bug is pretty limited.
This patch must be backported to 1.9.
It's pointless to always set and maintain l->maxconn because the accept
loop already enforces the frontend's limit anyway. Thus let's stop setting
this value by default and keep it to zero meaning "no limit". This way the
frontend's maxconn will be used by default. Of course if a value is set,
it will be enforced.
For HTX streams, the scope pointer is relative to the URI in the start-line. But
for streams using the legacy HTTP representation, the scope pointer is relative
to the beginning of output data in the channel's buffer. So we must be careful
to use the right one depending on the HTX is used or not.
Because the start-line is used to get de scope pointer, it is important to keep
it after the parsing of post paramters. So now, instead of removing blocks when
read in the function stats_process_http_post(), we just move on next, leaving it
in the HTX message.
Thanks to Pieter (PiBa-NL) to report this bug.
This patch must be backported to 1.9.
As for the cache applet, this one must respect the reserve on HTX streams. This
patch is tagged as MINOR because it is unlikely to fully fill the channel's
buffer. Some tests are already done to not process almost full buffer.
This patch must be backported to 1.9.
While testing fixes, it's sometimes confusing to rebuild only one C file
(e.g. a mux) and not to have the correct commit ID reported in "haproxy -v"
nor on the stats page.
This patch adds a new "version.c" file which is always rebuilt. It's
very small and contains only 3 variables derived from the various
version strings. These variables are used instead of the macros at the
few places showing the version. This way the output version of the
running code is always correct for the parts that were rebuilt.
This way we are sure the channel state is always correctly upadated, especially
the amount of data directly forwarded. For the stats applet, it is not a bug
because the fast forwarding is never used (the response is chunked and the HTX
extra field is always set to 0).
This patch must be backported to 1.9.
The tooltip in the HTML stats page was damaged by commit 1b0f85e47 ("MINOR:
stats: also report the failed header rewrites warnings on the stats page"),
due to the header rewrites counter being inserted at the wrong place and
taking the place of the other statuses.
This is only for 1.9, no backport is needed.
Sadly we didn't have the cumulated number of connections established to
servers till now, so let's now update it per backend and per-server and
report it in the stats. On the stats page it appears in the tooltip
when hovering over the total sessions count field.
All the HTX definition is self-contained and doesn't really depend on
anything external since it's a mostly protocol. In addition, some
external similar files (like h2) also placed in common used to rely
on it, making it a bit awkward.
This patch moves the two htx.h files into a single self-contained one.
The historical dependency on sample.h could be also removed since it
used to be there only for http_meth_t which is now in http.h.
Now, the function htx_from_buf() will set the buffer's length to its size
automatically. In return, the caller should call htx_to_buf() at the end to be
sure to leave the buffer hosting the HTX message in the right state. When the
caller can use the function htxbuf() to get the HTX message without any update
on the underlying buffer.
Instead, we now use the htx_sl coming from the HTX message. It avoids to have
too H1 specific code in version-agnostic parts. Of course, the concept of the
start-line is higly influenced by the H1, but the structure htx_sl can be
adapted, if necessary. And many things depend on a start-line during HTTP
analyzis. Using the structure htx_sl also avoid boring conversions between HTX
version and H1 version.
This switches explicit calls to various trivial registration methods for
keywords, muxes or protocols from constructors to INITCALL1 at stage
STG_REGISTER. All these calls have in common to consume a single pointer
and return void. Doing this removes 26 constructors. The following calls
were addressed :
- acl_register_keywords
- bind_register_keywords
- cfg_register_keywords
- cli_register_kw
- flt_register_keywords
- http_req_keywords_register
- http_res_keywords_register
- protocol_register
- register_mux_proto
- sample_register_convs
- sample_register_fetches
- srv_register_keywords
- tcp_req_conn_keywords_register
- tcp_req_cont_keywords_register
- tcp_req_sess_keywords_register
- tcp_res_cont_keywords_register
- flt_register_keywords
In some situations, especially when dealing with low latency on processors
supporting a variable frequency or when running inside virtual machines,
each time the process waits for an I/O using the poller, the processor
goes back to sleep or is offered to another VM for a long time, and it
causes excessively high latencies.
A solution to this provided by this patch is to enable busy polling using
a global option. When busy polling is enabled, the pollers never sleep and
loop over themselves waiting for an I/O event to happen or for a timeout
to occur. On multi-processor machines it can significantly overheat the
processor but it usually results in much lower latencies.
A typical test consisting in injecting traffic over a single connection at
a time over the loopback shows a bump from 4640 to 8540 connections per
second on forwarded connections, indicating a latency reduction of 98
microseconds for each connection, and a bump from 12500 to 21250 for
locally terminated connections (redirects), indicating a reduction of
33 microseconds.
It is only usable with epoll and kqueue because select() and poll()'s
API is not convenient for such usages, and the level of performance they
are used in doesn't benefit from this anyway.
The option, which obviously remains disabled by default, can be turned
on using "busy-polling" in the global section, and turned off later
using "no busy-polling". Its status is reported in "show info" to help
troubleshooting suspicious CPU spikes.
The request is eaten when the stats applet have finished to send its
response. It was removed from the channel's buffer, removing all HTX blocks till
the EOM. But the channel's output was not reset, leaving the request channel in
an undefined state.
Remaining calls to si_cant_put() were all for lack of room and were
turned to si_rx_room_blk(). A few places where SI_FL_RXBLK_ROOM was
cleared by hand were converted to si_rx_room_rdy().
The now unused si_cant_put() function was removed.
A number of calls to si_cant_put() were used in fact to request being
called back once a buffer is available. These ones are not needed anymore
since si_alloc_ibuf() already sets the SI_FL_RXBLK_BUFF flag when called
in appctx context. Those called with a foreign stream-int are simply turned
to si_rx_buff_blk().
This patch allows a process to properly quit when some jobs are still
active, this feature is handled by the unstoppable_jobs variable, which
must be atomically incremented.
During each new iteration of run_poll_loop() the break condition of the
loop is now (jobs - unstoppable_jobs) == 0.
The unique usage of this at the moment is to handle the socketpair CLI
of a the worker during the stopping of the process. During the soft
stop, we could mark the CLI listener as an unstoppable job and still
handle new connections till every other jobs are stopped.
It's easy to detect when logs on some paths are lost as sendmsg() will
return EAGAIN. This is particularly true when sending to /dev/log, which
often doesn't support a big logging capacity. Let's keep track of these
and report the total number of dropped messages in "show info".
It doesn't make sense to limit this code to applets, as any stream
interface can use it. Let's rename it by simply dropping the "applet_"
part of the name. No other change was made except updating the comments.
The active peers output indicates both the number of established peers
connections and the number of peers connection attempts. The new counter
"ConnectedPeers" also indicates the number of currently connected peers.
This helps detect that some peers cannot be reached for example. It's
worth mentioning that this value changes over time because unused peers
are often disconnected and reconnected. Most of the time it should be
equal to ActivePeers.
Peers are the last type of activity which can maintain a job present, so
it's important to report that such an entity is still active to explain
why the job count may be higher than zero. Here by "ActivePeers" we report
peers sessions, which include both established connections and outgoing
connection attempts.
When an haproxy process doesn't stop after a reload, it's because it
still has some active "jobs", which mainly are active sessions, listeners,
peers or other specific activities. Sometimes it's difficult to troubleshoot
the cause of these issues (which generally are the result of a bug) only
because some indicators are missing.
This patch add the number of listeners, the number of jobs, and the stopping
status to the output of "show info". This way it becomes a bit easier to try
to narrow down the cause of such an issue should it happen. A typical use
case is to connect to the CLI before reloading, then issuing the "show info"
command to see what happens. In the normal situation, stopping should equal
1, jobs should equal 1 (meaning only the CLI is still active) and listeners
should equal zero.
The patch is so trivial that it could make sense to backport it to 1.8 in
order to help with troubleshooting.
It's a bit painful to have to deal with HTTP semantics for each protocol
version (H1 and H2), and working on the version-agnostic code further
emphasizes the problem.
This patch creates http.h and http.c which are agnostic to the version
in use, and which borrow a few parts from proto_http and from h1. For
example the once thought h1-specific h1_char_classes array is in fact
dictated by RFC7231 and is used to parse HTTP headers. A few changes
were made to a few files which were including proto_http.h while they
only needed http.h.
Certain string definitions pre-dated the introduction of indirect
strings (ist) so some were used to simplify the definition of the known
HTTP methods. The current lookup code saves 2 kB of a heavily used table
and is faster than the previous table based lookup (typ. 14 ns vs 16
before).
The stats applet is still a bit hackish. It uses the HTTP txn to parse
the POST contents. Due to this it pretends not having parsed the request
from the buffer so that the HTTP parser continues to work fine on these
data. This comes with a side effect : the request lies pending in the
channel's buffer, and because of this, stream_int_update_applet() always
wakes the applet up. It's very visible when retrieving a large stats page
over a slow link as haproxy eats 100% of the CPU waiting for the data to
leave.
While the proper long term solution definitely is to consume these data
and parse the body from the applet, changing this is not suitable for a
fix.
What this patch does instead is to disable request polling as long as there
are pending data in the response buffer. Given that for almost all cases,
the applet remains busy sending data, this is at least enough to ensure
that we don't wake up for the pending request data while we're waiting for
the client to receive these data. Now a 5k backend stats page is dumped at
1% CPU over a 10 Mbps link instead of 100%, using 1500 epoll_wait() calls
instead of 80000.
Note that the previous fix (BUG/MEDIUM: stream-int: don't immediately
enable reading when the buffer was reportedly full) is necessary for the
effects of the fix to be noticed since both bugs have the exact same
effect.
This fix must be backported at least as far as 1.5.
Now all the code used to manipulate chunks uses a struct buffer instead.
The functions are still called "chunk*", and some of them will progressively
move to the generic buffer handling code as they are cleaned up.
Chunks are only a subset of a buffer (a non-wrapping version with no head
offset). Despite this we still carry a lot of duplicated code between
buffers and chunks. Replacing chunks with buffers would significantly
reduce the maintenance efforts. This first patch renames the chunk's
fields to match the name and types used by struct buffers, with the goal
of isolating the code changes from the declaration changes.
Most of the changes were made with spatch using this coccinelle script :
@rule_d1@
typedef chunk;
struct chunk chunk;
@@
- chunk.str
+ chunk.area
@rule_d2@
typedef chunk;
struct chunk chunk;
@@
- chunk.len
+ chunk.data
@rule_i1@
typedef chunk;
struct chunk *chunk;
@@
- chunk->str
+ chunk->area
@rule_i2@
typedef chunk;
struct chunk *chunk;
@@
- chunk->len
+ chunk->data
Some minor updates to 3 http functions had to be performed to take size_t
ints instead of ints in order to match the unsigned length here.
Now the buffers only contain the header and a pointer to the storage
area which can be anywhere. This will significantly simplify buffer
swapping and will make it possible to map chunks on buffers as well.
The buf_empty variable was removed, as now it's enough to have size==0
and area==NULL to designate the empty buffer (thus a non-allocated head
is the empty buffer by default). buf_wanted for now is indicated by
size==0 and area==(void *)1.
The channels and the checks now embed the buffer's head, and the only
pointer is to the storage area. This slightly increases the unallocated
buffer size (3 extra ints for the empty buffer) but considerably
simplifies dynamic buffer management. It will also later permit to
detach unused checks.
The way the struct buffer is arranged has proven quite efficient on a
number of tests, which makes sense given that size is always accessed
and often first, followed by the othe ones.