Move all QUIC trace definitions from quic_conn.h to quic_trace-t.h. Also
remove multiple definition trace_quic macro definition into
quic_trace.h. This forces all QUIC source files who relies on trace to
include it while reducing the size of quic_conn.h.
->others member of tp_version_information structure pointed to a buffer in the
TLS stack used to parse the transport parameters. There is no garantee that this
buffer is available until the connection is released.
Do not dump the available versions selected by the client anymore, but displayed the
chosen one (selected by the client for this connection) and the negotiated one.
Must be backported to 2.7 and 2.6.
A peer must not send active_connection_id_limit values smaller than 2
which is also the minimum value when not sent.
Make the transport parameters decoding fail in this case.
Must be backported to 2.7.
The SCID (source connection ID) used by a peer (client or server) is sent into the
long header of a QUIC packet in clear. But it is also sent into the transport
parameters (initial_source_connection_id). As these latter are encrypted into the
packet, one must check that these two pieces of information do not differ
due to a packet header corruption. Furthermore as such a connection is unusuable
it must be killed and must stop as soon as possible processing RX/TX packets.
Implement qc_kill_con() to flag a connection as unusable and to kille it asap
waking up the idle timer task to release the connection.
Add a check to quic_transport_params_store() to detect that the SCIDs do not
match and make it call qc_kill_con().
Add several tests about connection to be killed at several critial locations,
especially in the TLS stack callback to receive CRYPTO data from or derive secrets,
and before preparing packet after having received others.
Must be backported to 2.6 and 2.7.
This is a bad idea to make the TLS ClientHello callback call qc_conn_finalize().
If this latter fails, this would generate a TLS alert and make the connection
send packet whereas it is not functional. But qc_conn_finalize() job was to
install the transport parameters sent by the QUIC listener. This installation
cannot be done at any time. This must be done after having possibly negotiated
the QUIC version and before sending the first Handshake packets. It seems
the better moment to do that in when the Handshake TX secrets are derived. This
has been found inspecting the ngtcp2 code. Calling SSL_set_quic_transport_params()
too late would make the ServerHello to be sent without the transport parameters.
The code for the connection update which was done from qc_conn_finalize() has
been moved to quic_transport_params_store(). So, this update is done as soon as
possible.
Add QUIC_FL_CONN_TX_TP_RECEIVED to flag the connection as having received the
peer transport parameters. Indeed this is required when the ClientHello message
is splitted between packets.
Add QUIC_FL_CONN_FINALIZED to protect the connection from calling qc_conn_finalize()
more than one time. This latter is called only when the connection has received
the transport parameters and after returning from SSL_do_hanshake() which is the
function which trigger the TLS ClientHello callback call.
Remove the calls to qc_conn_finalize() from from the TLS ClientHello callbacks.
Must be backported to 2.6. and 2.7.
Set "disable_active_migration" transport parameter to inform the peer
haproxy listeners does not the connection migration feature.
Also drop all received datagrams with a modified source address.
Must be backported to 2.7.
Gcc 6.5 is now well known for triggering plenty of false "may be used
uninitialized", particularly at -O1, and two of them happen in quic,
quic_tp and quic_conn. Both of them were reviewed and easily confirmed
as wrong (gcc seems to ignore the control flow after the function
returns and believes error conditions are not met). Let's just preset
the variables that bothers it. In quic_tp the initialization was moved
out of the loop since there's no point inflating the code just to
silence a stupid warning.
On Initial packet reception, token is checked for validity through
quic_retry_token_check() function. However, some related parts were left
in the parent function quic_rx_pkt_retrieve_conn(). Move this code
directly into quic_retry_token_check() to facilitate its call in various
context.
The API of quic_retry_token_check() has also been refactored. Instead of
working on a plain char* buffer, it now uses a quic_rx_packet instance.
This helps to reduce the number of parameters.
This change will allow to check Retry token even if data were received
with a FD-owned quic-conn socket. Indeed, in this case,
quic_rx_pkt_retrieve_conn() call will probably be skipped.
This should be backported up to 2.6.
xprt_quic module was too large and did not reflect the true architecture
by contrast to the other protocols in haproxy.
Extract code related to XPRT layer and keep it under xprt_quic module.
This code should only contains a simple API to communicate between QUIC
lower layer and connection/MUX.
The vast majority of the code has been moved into a new module named
quic_conn. This module is responsible to the implementation of QUIC
lower layer. Conceptually, it overlaps with TCP kernel implementation
when comparing QUIC and HTTP1/2 stacks of haproxy.
This should be backported up to 2.6.
Clean up quic sources by adjusting headers list included depending
on the actual dependency of each source file.
On some occasion, xprt_quic.h was removed from included list. This is
useful to help reducing the dependency on this single file and cleaning
up QUIC haproxy architecture.
This should be backported up to 2.6.
This commit was not complete:
"BUG/MEDIUM: quic: Possible use of uninitialized <odcid>
variable in qc_lstnr_params_init()"
<token_odcid> should have been directly passed to qc_lstnr_params_init()
without dereferencing it to prevent haproxy to have new chances to crash!
Must be backported to 2.6.
When receiving a token into a client Initial packet without a cluster secret defined
by configuration, the <odcid> variable used to parse the ODCID from the token
could be used without having been initialized. Such a packet must be dropped. So
the sufficient part of this patch is this check:
+ }
+ else if (!global.cluster_secret && token_len) {
+ /* Impossible case: a token was received without configured
+ * cluster secret.
+ */
+ TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT,
+ NULL, NULL, NULL, qv);
+ goto drop;
}
Take the opportunity of this patch to rework and make it more readable this part
of code where such a packet must be dropped removing the <check_token> variable.
When an ODCID is parsed from a token, new <token_odcid> new pointer variable
is set to the address of the parsed ODCID. This way, is not set but used it will
make crash haproxy. This was not always the case with an uninitialized local
variable.
Adapt the API to used such a pointer variable: <token> boolean variable is removed
from qc_lstnr_params_init() prototype.
This must be backported to 2.6.
Implement quic_tp_version_info_dump() to dump such a transport parameter (only remote).
Call it from quic_transport_params_dump() which dump all the transport parameters.
Can be backported to 2.6 as it's useful for debugging.
At this time haproxy supported only incompatible version negotiation feature which
consists in sending a Version Negotiation packet after having received a long packet
without compatible value in its version field. This version value is the version
use to build the current packet. This patch does not modify this behavior.
This patch adds the support for compatible version negotiation feature which
allows endpoints to negotiate during the first flight or packets sent by the
client the QUIC version to use for the connection (or after the first flight).
This is done thanks to "version_information" parameter sent by both endpoints.
To be short, the client offers a list of supported versions by preference order.
The server (or haproxy listener) chooses the first version it also supported as
negotiated version.
This implementation has an impact on the tranport parameters handling (in both
direcetions). Indeed, the server must sent its version information, but only
after received and parsed the client transport parameters). So we cannot
encode these parameters at the same time we instantiated a new connection.
Add QUIC_TP_DRAFT_VERSION_INFORMATION(0xff73db) new transport parameter.
Add tp_version_information new C struct to handle this new parameter.
Implement quic_transport_param_enc_version_info() (resp.
quic_transport_param_dec_version_info()) to encode (resp. decode) this
parameter.
Add qc_conn_finalize() which encodes the transport parameters and configure
the TLS stack to send them.
Add ->negotiated_ictx quic_conn C struct new member to store the Initial
QUIC TLS context for the negotiated version. The Initial secrets derivation
is version dependent.
Rename ->version to ->original_version and add ->negotiated_version to
this C struct to reflect the QUIC-VN RFC denomination.
Modify most of the QUIC TLS API functions to pass a version as parameter.
Export the QUIC version definitions to be reused at least from quic_tp.c
(transport parameters.
Move the token check after the QUIC connection lookup. As this is the original
version which is sent into a Retry packet, and because this original version is
stored into the connection, we must check the token after having retreived this
connection.
Add packet version to traces.
See https://datatracker.ietf.org/doc/html/draft-ietf-quic-version-negotiation-08
for more information about this new feature.
This is becoming difficult to distinguish the default values for
transport parameters which come with the RFC from our implementation
default values when not set by configuration (tunable parameters).
Add a comment to distinguish them.
Prefix these default values by QUIC_TP_DFLT_ to distinguish them from
QUIC_DFLT_* value even if there are not numerous.
Furthermore ->max_udp_payload_size must be first initialized to
QUIC_TP_DFLT_MAX_UDP_PAYLOAD_SIZE especially for received value.
Add tunable "tune.quic.frontend.max_streams_bidi" setting for QUIC frontends
to set the "initial_max_streams_bidi" transport parameter.
Add some documentation for this new setting.
Add two tunable settings both for backends and frontends "max_idle_timeout"
QUIC transport parameter, "tune.quic.frontend.max-idle-timeout" and
"tune.quic.backend.max-idle-timeout" respectively.
cfg_parse_quic_time() has been implemented to parse a time value thanks
to parse_time_err(). It should be reused for any tunable time value to be
parsed.
Add the documentation for this tunable setting only for frontend.
Add quic_transport_params_dump() static inline function to do so for
a quic_transport_parameters struct as parameter.
We use the trace API do dump these transport parameters both
after they have been initialized (RX/local) or received (TX/remote).
Make the transport parameters be standlone as much as possible as
it consists only in encoding/decoding data into/from buffers.
Reduce the size of xprt_quic.h. Unfortunalety, I think we will
have to continue to include <xprt_quic-t.h> to use the trace API
into this module.