The fd_list[] used by sepoll was indexed on the fd number and was only
used to store the equivalent of an integer. Changing it to be merged
with fdtab reduces the number of pointer computations, the code size
and some initialization steps. It does not harm other pollers much
either, as only one integer was added to the fdtab array.
Some rarely information are stored in fdtab, making it larger for no
reason (source port ranges, remote address, ...). Such information
lie there because the checks can't find them anywhere else. The goal
will be to move these information to the stream interface once the
checks make use of it.
For now, we move them to an fdinfo array. This simple change might
have improved the cache hit ratio a little bit because a 0.5% of
performance increase has measured.
This can ensure that data is readily available on a socket when
we accept it, but a bug in the kernel ignores the timeout so the
socket can remain pending as long as the client does not talk.
Use with care.
This alone makes a typical HTML stats dump consume 10% CPU less,
because we avoid doing complex printf calls to drop them later.
Only a few common cases have been checked, those which are very
likely to run for nothing.
It is a bit expensive and complex to use to call buffer_feed()
directly from the request parser, and there are risks that some
output messages are lost in case of buffer full. Since most of
these messages are static, let's have a state dedicated to print
these messages and store them in a specific area shared with the
stats in the session. This both reduces code size and risks of
losing output data.
Capture & display more data from health checks, like
strerror(errno) for L4 failed checks or a first line
from a response for L7 successes/failed checks.
Non ascii or control characters are masked with
chunk_htmlencode() (html stats) or chunk_asciiencode() (logs).
Add two functions to encode input chunk replacing
non-printable, non ascii or special characters
with:
"&#%u;" - chunk_htmlencode
"<%02X>" - chunk_asciiencode
Above functions should be used when adding strings, received
from possible unsafe sources, to html stats or logs.
int get_backend_server(const char *bk_name, const char *sv_name,
struct proxy **bk, struct server **sv);
This function scans the list of backends and servers to retrieve the first
backend and the first server with the given names, and sets them in both
parameters. It returns zero if either is not found, or non-zero and sets
the ones it did not found to NULL. If a NULL pointer is passed for the
backend, only the pointer to the server will be updated.
The stats socket can now run at 3 different levels :
- user
- operator (default one)
- admin
These levels are used to restrict access to some information
and commands. Only the admin can clear all stats. A user cannot
clear anything nor access sensible data such as sessions or
errors.
Consistent hashing provides some interesting advantages over common
hashing. It avoids full redistribution in case of a server failure,
or when expanding the farm. This has a cost however, the hashing is
far from being perfect, as we associate a server to a request by
searching the server with the closest key in a tree. Since servers
appear multiple times based on their weights, it is recommended to
use weights larger than approximately 10-20 in order to smoothen
the distribution a bit.
In some cases, playing with weights will be the only solution to
make a server appear more often and increase chances of being picked,
so stats are very important with consistent hashing.
In order to indicate the type of hashing, use :
hash-type map-based (default, old one)
hash-type consistent (new one)
Consistent hashing can make sense in a cache farm, in order not
to redistribute everyone when a cache changes state. It could also
probably be used for long sessions such as terminal sessions, though
that has not be attempted yet.
More details on this method of hashing here :
http://www.spiteful.com/2008/03/17/programmers-toolbox-part-3-consistent-hashing/
Recent "struct chunk rework" introduced a NULL pointer dereference
and now haproxy segfaults if auth is required for stats but not found.
The reason is that size_t cannot store negative values, but current
code assumes that "len < 0" == uninitialized.
This patch fixes it.
There are a few remaining max values that need to move to counters.
Also, the counters are more often used than some config information,
so get them closer to the other useful struct members for better cache
efficiency.
Until now it was required that every custom ID was above 1000 in order to
avoid conflicts. Now we have the list of all assigned IDs and can automatically
pick the first unused one. This means that it is perfectly possible to interleave
automatic IDs with persistent IDs and the parser will automatically allocate
unused values starting with 1.
This patch allows to collect & provide separate statistics for each socket.
It can be very useful if you would like to distinguish between traffic
generate by local and remote users or between different types of remote
clients (peerings, domestic, foreign).
Currently no "Session rate" is supported, but adding it should be possible
if we found it useful.
Doing this, we can remove the last BF_HIJACK user and remove
produce_content(). s->data_source could also be removed but
it is currently used to detect if the stats or a server was
used.
The stats handler used to store internal states in s->ana_state. Now
we only rely on si->st0 in which we can store as many states as we
have possible outputs. This cleans up the stats code a lot and makes
it more maintainable. It has also reduced code size by a few hundred
bytes.
We can simplify the code in the stats functions using buffer_feed_chunk()
instead of buffer_write_chunk(). Let's start with this function. This
patch also fixed an issue where we could dump past the end of the capture
buffer if it is shorter than the captured request.
Calling buffer_shutw() marks the buffer as closed but if it was already
closed in the other direction, the stream interface is not marked as
closed, causing infinite loops.
We took this opportunity to completely remove buffer_shutw() and buffer_shutr()
which have no reason to be used at all and which will always cause trouble
when directly called. The stats occurrence was the last one.
By default, when data is sent over a socket, both the write timeout and the
read timeout for that socket are refreshed, because we consider that there is
activity on that socket, and we have no other means of guessing if we should
receive data or not.
While this default behaviour is desirable for almost all applications, there
exists a situation where it is desirable to disable it, and only refresh the
read timeout if there are incoming data. This happens on sessions with large
timeouts and low amounts of exchanged data such as telnet session. If the
server suddenly disappears, the output data accumulates in the system's
socket buffers, both timeouts are correctly refreshed, and there is no way
to know the server does not receive them, so we don't timeout. However, when
the underlying protocol always echoes sent data, it would be enough by itself
to detect the issue using the read timeout. Note that this problem does not
happen with more verbose protocols because data won't accumulate long in the
socket buffers.
When this option is set on the frontend, it will disable read timeout updates
on data sent to the client. There probably is little use of this case. When
the option is set on the backend, it will disable read timeout updates on
data sent to the server. Doing so will typically break large HTTP posts from
slow lines, so use it with caution.
The "static-rr" is just the old round-robin algorithm. It is still
in use when a hash algorithm is used and the data to hash is not
present, but it was impossible to configure it explicitly. This one
is cheaper in terms of CPU and supports unlimited numbers of servers,
so it makes sense to be able to use it.
LB algo macros were composed of the LB algo by itself without any indication
of the method to use to look up a server (the lb function itself). This
method was implied by the LB algo, which was not very convenient to add
more algorithms. Now we have several fields in the LB macros, some to
describe what to look for in the requests, some to describe how to transform
that (kind of algo) and some to describe what lookup function to use.
The next patch will make it possible to factor out some code for all algos
which rely on a map.
The lbprm structure has moved to backend.h, where it should be, and
all algo-specific types and declarations have moved to their specific
files. The proxy struct is now much more readable.
This patch implements "description" (proxy and global) and "node" (global)
options, removes "node-name" and adds "show-node" & "show-desc" options
for "stats". It also changes the way the header lines (with proxy name) and
the statistics are displayed, so stats no longer look so clumsy with very
long names.
Instead of "node-name" it is possible to use show-node/show-desc with
an optional parameter that overrides a default node/description.
backend cust-0045
# report specific values for this customer
stats show-node Europe
stats show-desc Master node for Europe, Asia, Africa
We need to remove hash map accesses out of backend.c if we want to
later support new hash methods. This patch separates the hash computation
method from the server lookup. It leaves the lookup function to lb_map.c
and calls it with the result of the hash.
It was becoming painful to have all the LB algos in backend.c.
Let's move them to their own files. A few hashing functions still
need be broken in two parts, one for the contents and one for the
map position.
This patch adds health logging so it possible to check what
was happening before a crash. Failed healt checks are logged if
server is UP and succeeded healt checks if server is DOWN,
so the amount of additional information is limited.
I also reworked the code a little:
- check_status_description[] and check_status_info[] is now
joined into check_statuses[]
- set_server_check_status updates not only s->check_status and
s->check_duration but also s->result making the code simpler
Changes in v3:
- for now calculate and use local versions of health/rise/fall/state,
it is a slow path, no harm should be done. One day we may centralize
processing of the checks and remove the duplicated code.
- also log checks that are restoring current state
- use "conditionally succeeded" for 404 with disable-on-404
There is no reason to inline functions which are used to grab a server
depending on an LB algo. They are large and used at several places.
Uninlining them saves 400 bytes of code.
We can get rid of the stats analyser by moving all the stats code
to a stream interface applet. Above being cleaner, it provides new
advantages such as the ability to process requests and responses
from the same function and work only with simple state machines.
There's no need for any hijack hack anymore.
The direct advantage for the user are the interactive mode and the
ability to chain several commands delimited by a semi-colon. Now if
the user types "prompt", he gets a prompt from which he can send
as many requests as he wants. All outputs are terminated by a
blank line followed by a new prompt, so this can be used from
external tools too.
The code is not very clean, it needs some rework, but some part
of the dirty parts are due to the remnants of the hijack mode used
in the old functions we call.
The old AN_REQ_STATS_SOCK analyser flag is now unused and has been
removed.
iohandlers will need to store some form of context and for this will
need a way to find their call context. We add the ->private as well
as ->st0 and ->st1 for that purpose. Most likely ->private will be
initialized to the current session and ->st0 and ->st1 will be used
to maintain any form of internal state between calls.
It will soon be necessary to have stream interfaces running as part of
the current task, or as independant tasks. For instance when we want to
implement compression or SSL. It will also be used for applets running
as stream interfaces.
These new functions are used to perform exactly that. Note that it's
still not easy to write a simple echo applet and more functions will
likely be needed.
When stream interfaces will embedded applets running as part as their
holding task, we'll need a new callback to process them from the
session processor.
We had to add a new stream_interface flag : SI_FL_DONT_WAKE. This flag
is used to indicate that a stream interface is being updated and that
no wake up should be sent to its owner. This will be required for tasks
embedded into stream interfaces. Otherwise, we could have the
owner task send wakeups to itself during status updates, thus
preventing the state from converging. As long as a stream_interface's
status is being monitored and adjusted, there is no reason to wake it
up again, as we know its changes will be seen and considered.
Those two functions did not correctly deal with full buffers and/or
buffers that wrapped around. Buffer_skip() was even able to incorrectly
set buf->w further than the end of buffer if its len argument was wrong,
and buffer_si_getline() was able to incorrectly return a length larger
than the effective buffer data available.
It's important that these functions set these flags themselves, otherwise
the callers will always have to do this, and there is no valid reason for
not doing it.
Collect information about last health check result,
including L7 code if possible (for example http or smtp
return code) and time took to finish last check.
Health check info is provided on both stats pages (html & csv)
and logged when a server is marked UP or DOWN. Currently active
check are marked with an asterisk, but only in html mode.
Currently there are 14 status codes:
UNK -> unknown
INI -> initializing
SOCKERR -> socket error
L4OK -> check passed on layer 4, no upper layers testing enabled
L4TOUT -> layer 1-4 timeout
L4CON -> layer 1-4 connection problem, for example "Connection refused"
(tcp rst) or "No route to host" (icmp)
L6OK -> check passed on layer 6
L6TOUT -> layer 6 (SSL) timeout
L6RSP -> layer 6 invalid response - protocol error
L7OK -> check passed on layer 7
L7OKC -> check conditionally passed on layer 7, for example
404 with disable-on-404
L7TOUT -> layer 7 (HTTP/SMTP) timeout
L7RSP -> layer 7 invalid response - protocol error
L7STS -> layer 7 response error, for example HTTP 5xx