There are 2 new ctl commands that may be used to retrieve the current number
of streams openned for a connection and its limit (the maximum number of
streams a mux connection supports).
For the PT and H1 muxes, the limit is always 1 and the current number of
streams is 0 for idle connections, otherwise 1 is returned.
For the H2 and the FCGI muxes, info are already available in the mux
connection.
For the QUIC mux, the limit is also directly available. It is the maximum
initial sub-ID of bidirectional stream allowed for the connection. For the
current number of streams, it is the number of SC attached on the connection
and the number of not already attached streams present in the "opening_list"
list.
A reason is now passed as parameter to muxes shutdowns to pass additional
info about the abort, if any. No info means no abort or only generic one.
For now, the reason is composed of 2 32-bits integer. The first on represents
the abort code and the other one represents the info about the code (for
instance the source). The code should be interpreted according to the associated
info.
One info is the source, encoding on 5 bits. Other bits are reserverd for now.
For now, the muxes are the only supported source. But we can imagine to extend
it to applets, streams, health-checks...
The current design is quite simple and will most probably evolved.. But the
idea is to let the opposite side forward some errors and let's a mux know
why its stream was aborted. At first glance, a abort reason must only be
evaluated if SE_SHW_SILENT flag is set.
The main goal at short term, is to forward some H2 RST_STREAM codes because
it is mandatory for gRPC applications, mainly to forward gRPC cancellation
from an H2 client to an H2 server. But we can imagine to alter this reason
at the applicative level to enrich it. It would also be used to report more
accurate errors in logs.
mux-ops .shutr and .shutw callback functions are merged into a unique
functions, called .shut. The shutdown mode is still passed as argument,
muxes are responsible to test it. Concretly, .shut() function of each mux is
now the content of the old .shutw() followed by the content of the old
.shutr().
CO_SHR_* and CO_SHW_* modes are in fact used by the stream-connectors to
instruct the muxes how streams must be shut done. It is then the mux
responsibility to decide if it must be propagated to the connection layer or
not. And in this case, the modes above are only tested to pass a boolean
(clean or not).
So, it is not consistant to still use connection related modes for
information set at an upper layer and never used by the connection layer
itself.
These modes are thus moved at the sedesc level and merged into a single
enum. Idea is to add more modes, not necessarily mutually exclusive, to pass
more info to the muxes. For now, it is a one-for-one renaming.
In .shutr and .shutw callback functions, we must rely on the connection
flags (CO_FL_SOCK_RD_SH/WR_SH) to decide to fully close the connection
instead of using sedesc flags. At the end, for the PT multiplexer, it is
equivalent. But it is more logicial and consistent this way.
Global options to disable for zero-copy forwarding are now tested outside
callbacks responsible to perform the forwarding itself. It is cleaner this
way because we don't try at all zero-copy forwarding if at least one side
does not support it. It is equivalent to what was performed before, but it
is simplier this way.
It is unused for now, but the muxes announce their support of the zero-copy
forwarding on consumer side. All muxes, except the fgci one, are supported
it.
To fix a bug, a flag to announce the capabitlity to support the zero-copy
forwarding on the consumer side will be added on the SE descriptor. So the
old flag SE_FL_MAY_FASTFWD is renamed to indicate it concerns the producer
side. It is now SE_FL_MAY_FASTFWD_PROD. And to prepare addition of the new
flag, the bitfield is a bit reordered.
During zero-copy forwarding negotiation, a pseudo flag was already used to
notify the consummer if the producer is able to use kernel splicing or not. But
this was not extensible. So, now we use a true bitfield to be able to pass flags
during the negotiation. NEGO_FF_FL_* flags may be used now.
Of course, for now, there is only one flags, the kernel splicing support on
producer side (NEGO_FF_FL_MAY_SPLICE).
tune.pt.zero-copy-forwarding parameter can now be used to enable or disable
the zero-copy fast-forwarding for the PT mux only. It is enabled ('on') by
default. It can be disabled by setting the parameter to 'off'. In this case,
this disables receive and send side.
All muxes now implements the ->sctl() callback function and are able to
return the stream ID. For the PT multiplexer, it is always 0. For the H1
multiplexer it is the request count for the current H1 connection (added for
this purpose). The FCGI, H2 and QUIC muxes, the stream ID is returned.
The stream ID is returned as a signed 64 bits integer.
Instead of the generic MUX_, we now use MUX_CTL_ prefix for all mux_ctl_type
value. This will avoid any ambiguities with other enums, especially with a
new one that will be added to get information on mux streams.
When data are directly forwarded from a mux to the opposite one, we must not
forget to report send activity when data are successfully sent or report a
blocked send with data are blocked. It is important because otherwise, if
the transfer is quite long, longer than the client or server timeout, an
error may be triggered because the write timeout is reached.
H1, H2 and PT muxes are concerned. To fix the issue, The done_fastword()
callback now returns the amount of data consummed. This way it is possible
to update/reset the FSB data accordingly.
No backport needed.
Instead of speaking of an initialisation stage for each data
fast-forwarding, we now use the negociate term. Thus init_ff/init_fastfwd
functions were renamed nego_ff/nego_fastfwd.
The PT multiplexer now implements callbacks function to produce and consume
fast-forwarded data. Only splicing is support because the mux-pt does not
use its own buffers.
Because the kernel splicing support was removed from the stconn, it is
useless to keep it in muxes. In this patch, we remove the kernel splicing
support from the passthough multiplexer. It will be replaced by the
mux-to-mux data fast-forwarding.
Instead of talking about kernel splicing at stconn/sedesc level, we now try
to talk about mux-to-mux fast-forwarding. To do so, 2 functions were added
to know if there are fast-forwarded data and to retrieve this amount of
data. Of course, for now, there is only data in a pipe.
In addition, some flags were renamed to reflect this notion. Note the
channel's documentation was not updated yet.
In the PT multiplexer, the end of stream is also the end of input. Thus
we must report EOI to the stream-endpoint descriptor when the EOS is
reported. For now, it is a bit useless but it will be important to
disginguish an shutdown to an error to an abort.
To be sure to not report an EOI on an error, the errors are now handled
first.
It is more a less a revert of the commit b65af26e1 ("MEDIUM: mux-pt: Don't
always set a final error on SE on the sending path"). The PT multiplexer is
so simple that an error on the sending path is terminal. Unlike other muxes,
there is no connection level here. However, instead of reporting an final
error by setting SE_FL_ERROR, we set SE_FL_EOS flag instead if a read0 was
received on the underlying connection. Concretely, it is always true with
the current design of the raw socket layer. But it is cleaner this way.
Without this patch, it is possible to block a TCP socket if a connection
error is triggered when data are sent (for instance a broken pipe) while the
upper stream does not expect to receive more data.
Note the patch above introduced a regression because errors handling at the
connection level is quite simple. All errors are final. But we must keep in
mind it may change. And if so, this will require to move back on a 2-step
errors handling in the mux-pt.
This patch must be backported to 2.7.
SE_FL_ERROR must be set on the SE descriptor only if EOS was already
reported. So call se_fl_set_error() function to properly the
ERR_PENDING/ERROR flags. It is not really a bug because the mux-pt is really
simple. But it is better to do it now the right way.
Function arguments and local variables called "cs" were renamed to
"sc" to avoid future confusion. There was also one place in traces
where "cs" used to display the stconn, which were turned to "sc".
There's no more reason for keepin the code and definitions in conn_stream,
let's move all that to stconn. The alphabetical ordering of include files
was adjusted.
For historical reasons (stream-interface and connections), we used to
require two independent fields for the application level callbacks and
the transport-level functions. Over time the distinction faded away so
much that the low-level functions became specific to the application
and conversely. For example, applets may only work with streams on top
since they rely on the channels, and the stream-level functions differ
between applets and connections. Right now the application level only
contains a wake() callback and the low-level ones contain the functions
that act at the lower level to perform the shutr/shutw and at the upper
level to notify about readability and writability. Let's just merge them
together into a single set and get rid of this confusing distinction.
Note that the check ops do not define any app-level function since these
are only called by streams.
This renames the "struct conn_stream" to "struct stconn" and updates
the descriptions in all comments (and the rare help descriptions) to
"stream connector" or "connector". This touches a lot of files but
the change is minimal. The local variables were not even renamed, so
there's still a lot of "cs" everywhere.
Just like for the appctx, this is a pointer to a stream endpoint descriptor,
so let's make this explicit and not confuse it with the full endpoint. There
are very few changes thanks to the preliminary refactoring of the flags
manipulation.
After some discussion we found that the cs_endpoint was precisely the
descriptor for a stream endpoint, hence the naturally coming name,
stream endpoint constructor.
This patch renames only the type everywhere and the new/init/free functions
to remain consistent with it. Future patches will address field names and
argument names in various code areas.
That's the "stream endpoint" pointer. Let's change it now while it's
not much spread. The function __cs_endp_target() wasn't yet renamed
because that will change more globally soon.
This changes all main uses of endp->flags to the se_fl_*() equivalent
by applying coccinelle script endp_flags.cocci. The se_fl_*() functions
themselves were manually excluded from the change, of course.
Note: 144 locations were touched, manually reviewed and found to be OK.
The script was applied with all includes:
spatch --in-place --recursive-includes -I include --sp-file $script $files
This one is exclusively used by the connection, regardless its generic
name "ctx" is rather confusing. Let's make it a struct connection* and
call it "conn". This way there's no doubt about what it is and there's
no way it will be used by accident by being taken for something else.
The two functions became exact copies since there's no more special case
for the appctx owner. Let's merge them into a single one, that simplifies
the code.
The mux ->detach() function currently takes a conn_stream. This causes
an awkward situation where the caller cs_detach_endp() has to partially
mark it as released but not completely so that ->detach() finds its
endpoint and context, and it cannot be done later since it's possible
that ->detach() deletes the endpoint. As such the endpoint link between
the conn_stream and the mux's stream is in a transient situation while
we'd like it to be clean so that the mux's ->detach() code can call any
regular function it wants that knows the regular semantics of the
relation between the CS and the endpoint.
A better approach consists in slightly modifying the detach() API to
better match the reality, which is that the endpoint is detached but
still alive and that it's the only part the function is interested in.
As such, this patch modifies the function to take an endpoint there,
and by analogy (or simplicity) does the same for ->attach(), even
though it looks less important there since we're always attaching an
endpoint to a conn_stream anyway. It is possible that in the future
the API could evolve to use more endpoints that provide a bit more
flexibility in the API, but at this point we don't need to go further.
At a few places the endpoint pointer was retrieved from the conn_stream
while it's safer and more long-term proof to take it from the context.
Let's just do that.
For all muxes, the function responsible to release a mux is always called
with a defined mux. Thus there is no reason to test if it is defined or not.
Note the patch may seem huge but it is just because of indentation changes.
Once a mux initialized, the underlying connection alwaus exists from its
point of view and it is never removed until the mux is released. It may be
owned by another mux during an upgrade. But the pointer remains set. Thus
there is no reason to test it in the destroy callback function.
This patch should fix the issue #1652.
To be able to move wait_event from the stream-interface to the conn-stream,
we must be prepare to handle errors when a mux is attached to a conn-stream.
Indeed, the wait_event's tasklet will be allocated when both a mux and a
stream will be both attached to a stream. So, we must be prepared to handle
allocation errors.
These flags only concerns the connection part. In addition, it is required
for a next commit, to avoid circular deps. Thus CS_SHR_* and CS_SHW_* were
renamed with the "CO_" prefix.