The body of a cached object must not be sent in response to a HEAD request. This
works for the legacy HTTP because the parsing is performed by HTTP analyzers
_AND_ because the connection is closed at the end of the transaction. So the
body is ignored. But the applet send it. For the HTX, the applet must skip the
body explicitly.
This patch must be backported to 1.9.
Only responses for GET requests are stored in the cache. But there is no check
on the method during the lookup. So it is possible to retrieve an object from
the cache independently of the method, from the time the key of the object
matches. Now, lookups are performed only for GET and HEAD requests.
This patch must be backportedi in 1.9.
When the function htx_add_stline() is used, this offset is automatically set
when necessary. But the HTX cache applet adds all header blocks of the responses
manually, including the start-line. So its offset must be explicitly set by the
applet.
When everything goes well, the HTTP analyzer http_wait_for_response() looks for
the start-line in the HTX messages, calling http_find_stline(). If necessary,
the start-line offet will also be automatically set during this stage. So the
bug of the HTX cache applet does not hurt most of the time. But, when an error
occurred, HTTP responses analyzers can be bypassed. In such caese, the
start-line offset of cached responses remains unset.
Some part of the code relies on the start-line offset to process the HTX
messages. Among others, when H2 responses are sent to clients, the H2
multiplexer read the start-line without any check, because it _MUST_ always be
there. if its offset is not set, a NULL pointer is dereferenced leading to a
segfault.
The patch must be backported to 1.9.
The cache uses the first 32 bits of the uri's hash as the key to reference
the object in the cache. It makes a special case of the value zero to mean
that the object is not in the cache anymore. The problem is that when an
object hashes as zero, it's still inserted but the eb32_delete() call is
skipped, resulting in the object still being chained in the memory area
while the block has been reclaimed and used for something else. Then when
objects which were chained below it (techically any object since zero is
at the root) are deleted, the walk through the upper object may encounter
corrupted values where valid pointers were expected.
But while this should only happen statically once on 4 billion, the problem
gets worse when the cache-use conditions don't match the cache-store ones,
because cache-store runs with an uninitialized key, which can create objects
that will never be found by the lookup code, or worse, entries with a zero
key preventing eviction of the tree node and resulting in a crash. It's easy
to accidently end up on such a config because the request rules generally
can't be used to decide on the response :
http-request cache-use cache if { path_beg /images }
http-response cache-store cache
In this test, mixing traffic with /images/$RANDOM and /foo/$RANDOM will
result in random keys being inserted, some of them possibly being zero,
and crashes will quickly happen.
The fix consists in 1) always initializing the transaction's cache_hash
to zero, and 2) never storing a response for which the hash has not been
calculated, as indicated by the value zero.
It is worth noting that objects hashing as value zero will never be cached,
but given that there's only one chance among 4 billion that this happens,
this is totally harmless.
This fix must be backported to 1.9 and 1.8.
We need to check if any compression filter precedes the cache filter. This is
only possible when the compression is configured in the frontend while the cache
filter is configured on the backend (via a cache-store action or
explicitly). This case cannot be detected during HAProxy startup. So in such
cases, the cache is disabled.
The patch must be backported to 1.9.
It is only true for HTX streams. The legacy code relies on ci_putblk() which is
already aware of the reserve. It is mandatory to not fill the reserve to let
other filters analysing data. It is especially true for the compression
filter. It needs at least 20 bytes of free space, plus at most 5 bytes per 32kB
block. So if the cache fully fills the channel's buffer, the compression will
not have enough space to do its job and it will block the data forwarding,
waiting for more free space. But if the buffer fully filled with input data (ie
no outgoing data), the stream will be frozen infinitely.
This patch must be backported to 1.9. It depends on the following patches:
* BUG/MEDIUM: cache/htx: Respect the reserve when cached objects are served
from the cache
* MINOR: channel/htx: Add HTX version for some helper functions
When a chunked object is served from the cache, If the trailers are not pushed
in the channel's buffer in one time, we still have to count them in the total
written bytes in the buffer.
This patch must be backported to 1.9.
This bug exists in the HTX code and in the legacy one. When the body length is
unknown, the applet hangs. For the legacy code, it hangs because the end of the
cached object is not correctly handled and the applet is never recalled. For the
HTX code, only the begining of the response (the 1st buffer) is sent then the
applet hangs. To work in HTX, The fast forwarding must be correctly handled.
This patch must be backported to 1.9.
[cf: the patch adding the function channel_add_input must be backported with
this one. It does not exist in 1.8 because only responses with a C-L are cached.]
As long-time changes have accumulated over time, the exported functions
of the stream-interface were almost all prefixed "si_<something>" while
most private ones (mostly callbacks) were called "stream_int_<something>".
There were still a few confusing exceptions, which were addressed to
follow this shcme :
- stream_sock_read0(), only used internally, was renamed stream_int_read0()
and made static
- stream_int_notify() is only private and was made static
- stream_int_{check_timeouts,report_error,retnclose,register_handler,update}
were renamed si_<something>.
Now it is clearer when checking one of these if it risks to be used outside
or not.
The cache runs in an applet, so it delivers data into the input side
of the channel's buffer. Thus it must also abort feeding the buffer
as soon as CF_SHUTR is present, not just CF_SHUTW*, since these last
ones may only appear later. There doesn't seem to be an observable
side effect of this bug, the fix probably doesn't even need to be
backported.
The HTX-specific cache code uses HTX_CACHE_* states which overlap with
the legacy HTTP states. A typo in the error handling made the state
become HTTP_CACHE_END, which equals 3 and is the value for HTX_CACHE_EOD,
which explains why we were seeing a transition to trailers and memory
corruption.
no backport needed.
Caching the response with the compression enabled was totally broken. To fix the
problem, the compression must be done after caching the response. Otherwise it
needs to change the cache to store compressed and uncompressed objects for the
same ressource. So, because it is not possible for now, it is forbidden to
declare the compression filter before the cache one. To ease the configuration,
both can be implicitly declared (without "filter" keyword). The compression will
automatically be inserted after the cache.
Then, to make it works this way, the compression filter has been slighly
modified. Now, the response headers are updated after http-response rules
evaluations, instead of before. So, if the response contains a "Content-length"
header, it will be kept with the response stored in the cache. So this cached
response will be able to be served to clients not supporting the compression at
all.
The cconf variable was not initialized before the two first possible
error exits before being freed, resulting in random crashes instead
of displaying an error message if the cache ID was missing from the
filter declaration.
No backport is needed, this is exclusively 1.9.
All the HTX definition is self-contained and doesn't really depend on
anything external since it's a mostly protocol. In addition, some
external similar files (like h2) also placed in common used to rely
on it, making it a bit awkward.
This patch moves the two htx.h files into a single self-contained one.
The historical dependency on sample.h could be also removed since it
used to be there only for http_meth_t which is now in http.h.
As for the compression filter, the cache filter must be explicitly declared
(using the filter keyword) if other filters than cache are used. It is mandatory
to explicitly define the filters order.
Documentation has been updated accordingly.
This is only true for HTX proxies. On legacy HTTP proxy, if the compression and
the cache are both enabled, an error during HAProxy startup is triggered.
With the HTX, now you can use both in any order. If the compression is defined
before the cache, then the responses will be stored compressed. If the
compression is defined after the cache, then the responses will be stored
uncompressed. So in the last case, when a response is served from the cache, it
will compressed too like any response.
To do so, a dedicated configuration has been added on cache filters. Before the
cache filter configuration pointed directly to the cache it used. Now, it is the
dedicated structure cache_flt_conf. Store and use rules also point to this
structure. It is linked to the cache the filter must used. It also contains a
flags field. This will allow us to define the behavior of a cache filter when a
response is stored in the cache or delivered from it.
And now, Store and use rules uses a common parsing function. So if it does not
already exists, a filter is always created for both kind of rules. The cache
filters configuration is checked using their check callback. In the postparser
function, we only check the caches configuration. This removes the loop on all
proxies in the postparser function.
The cache is now able to store and resend HTX messages. When an HTX message is
stored in the cache, the headers are prefixed with their block's info (an
uint32_t), containing its type and its length. Data, on their side, are stored
without any prefix. Only the value is copied in the cache. 2 fields have been
added in the structure cache_entry, hdrs_len and data_len, to known the size, in
the cache, of the headers part and the data part. If the message is chunked, the
trailers are also copied, the same way as data. When the HTX message is
recreated in the cache applet, the trailers size is known removing the headers
length and the data lenght from the total object length.
Instead of calling register_data_filter() when the stream analyze starts, we now
call it when we are sure the response is cacheable. It is done in the
http_headers callback, just before the body analyzis, and only if the headers
was already been cached. And during the body analyzis, if an error occurred or
if the response is too big, we unregistered the cache immediatly.
This patch may be backported in 1.8. It is not a bug but a significant
improvement.
It is not possible to mix the format of messages stored in a cache. So we reject
the configurations with a cache used by an HTX proxy and a legacy HTTP proxy in
same time.
This commit replaces the explicit pool creation that are made in
constructors with a pool registration. Not only this simplifies the
pools declaration (it can be done on a single line after the head is
declared), but it also removes references to pools from within
constructors. The only remaining create_pool() calls are those
performed in init functions after the config is parsed, so there
is no more user of potentially uninitialized pool now.
It has been the opportunity to remove no less than 12 constructors
and 6 init functions.
This switches explicit calls to various trivial registration methods for
keywords, muxes or protocols from constructors to INITCALL1 at stage
STG_REGISTER. All these calls have in common to consume a single pointer
and return void. Doing this removes 26 constructors. The following calls
were addressed :
- acl_register_keywords
- bind_register_keywords
- cfg_register_keywords
- cli_register_kw
- flt_register_keywords
- http_req_keywords_register
- http_res_keywords_register
- protocol_register
- register_mux_proto
- sample_register_convs
- sample_register_fetches
- srv_register_keywords
- tcp_req_conn_keywords_register
- tcp_req_cont_keywords_register
- tcp_req_sess_keywords_register
- tcp_res_cont_keywords_register
- flt_register_keywords
Remaining calls to si_cant_put() were all for lack of room and were
turned to si_rx_room_blk(). A few places where SI_FL_RXBLK_ROOM was
cleared by hand were converted to si_rx_room_rdy().
The now unused si_cant_put() function was removed.
A number of calls to si_cant_put() were used in fact to request being
called back once a buffer is available. These ones are not needed anymore
since si_alloc_ibuf() already sets the SI_FL_RXBLK_BUFF flag when called
in appctx context. Those called with a foreign stream-int are simply turned
to si_rx_buff_blk().
Building on 32 bit gives this :
src/cache.c: In function 'http_action_store_cache':
src/cache.c:466:4: warning: this decimal constant is unsigned only in ISO C90 [enabled by default]
src/cache.c:467:5: warning: this decimal constant is unsigned only in ISO C90 [enabled by default]
src/cache.c: In function 'cache_channel_append_age_header':
src/cache.c:578:2: warning: this decimal constant is unsigned only in ISO C90 [enabled by default]
src/cache.c:579:3: warning: this decimal constant is unsigned only in ISO C90 [enabled by default]
It's because of the definition below added in commit e7a770c ("MINOR:
cache: Add "Age" header.") :
#define CACHE_ENTRY_MAX_AGE 2147483648
Just appending "U" to mark it unsigned is enough to fix it. This only
affects 1.9, no backport is needed.
It doesn't make sense to limit this code to applets, as any stream
interface can use it. Let's rename it by simply dropping the "applet_"
part of the name. No other change was made except updating the comments.
This patch makes the cache capable of adding an "Age" header as defined by
rfc7234.
During the storage of new HTTP objects we memorize ->eoh value and
the value of the "Age" header coming from the origin server.
These information may then be reused to return the cached HTTP objects
with a new "Age" header.
May be backported to 1.8.
With this patch we avoid parsing "max-object-size" with atoi() and we store its
value as an unsigned int to prevent bad implicit conversion issues especially
when we compare it with others unsigned value (content length).
With this patch we check that shctx_init() does not returns 0.
This is possible if the maxblocks argument, which is passed as an
int, is negative due to an implicit conversion.
Must be backported to 1.8.
With this patch we support cache size larger than 2047 (MB) and prevent haproxy from crashing when "total-max-size" is parsed as negative values by atoi().
The limit at parsing time is 4095 MB (UINT_MAX >> 20).
May be backported to 1.8.
This patch adds "max-object-size" option to the cache to limit
the size in bytes of the HTTP objects to be cached. When not provided,
the maximum size of an HTTP object is a 256th of the cache size.
This patch makes the capable of storing HTTP objects larger than a buffer.
It makes usage of the "block by block shared object allocation" new shctx API.
A new pointer to struct shared_block has been added to the cache applet
context to memorize the next block to be used by the HTTP cache I/O handler
http_cache_io_handler() to emit the data. Another member, named "sent" memorize
the number of bytes already sent by this handler. So, to send an object from cache,
http_cache_io_handler() must be called until "sent" counter reaches the size
of this object.
This patch makes shctx capable of storing objects in several parts,
each parts being made of several blocks. There is no more need to
walk through until reaching the end of a row to append new blocks.
A new pointer to a struct shared_block member, named last_reserved,
has been added to struct shared_block so that to memorize the last block which was
reserved by shctx_row_reserve_hot(). Same thing about "last_append" pointer which
is used to memorize the last block used by shctx_row_data_append() to store the data.
These ones are mostly called from cfgparse.c for the parsing and do
not depend on the HTTP representation. The functions's prototypes
were moved to proto/http_rules.h, making this file work exactly like
tcp_rules. Ideally we should stop calling these functions directly
from cfgparse and register keywords, but there are a few cases where
that wouldn't work (stats http-request) so it's probably not worth
trying to go this far.
This function is purely HTTP once http_txn is put aside. So the original
one was renamed to http_txn_get_path() and it extracts the relevant offsets
from the txn to pass them to http_get_path(). One benefit of the new version
is that it returns the length at the same time so that allowed to slightly
simplify http_get_path_from_string() which had to look up the end pointer
previously and which is not needed anymore.
Now all the code used to manipulate chunks uses a struct buffer instead.
The functions are still called "chunk*", and some of them will progressively
move to the generic buffer handling code as they are cleaned up.
Chunks are only a subset of a buffer (a non-wrapping version with no head
offset). Despite this we still carry a lot of duplicated code between
buffers and chunks. Replacing chunks with buffers would significantly
reduce the maintenance efforts. This first patch renames the chunk's
fields to match the name and types used by struct buffers, with the goal
of isolating the code changes from the declaration changes.
Most of the changes were made with spatch using this coccinelle script :
@rule_d1@
typedef chunk;
struct chunk chunk;
@@
- chunk.str
+ chunk.area
@rule_d2@
typedef chunk;
struct chunk chunk;
@@
- chunk.len
+ chunk.data
@rule_i1@
typedef chunk;
struct chunk *chunk;
@@
- chunk->str
+ chunk->area
@rule_i2@
typedef chunk;
struct chunk *chunk;
@@
- chunk->len
+ chunk->data
Some minor updates to 3 http functions had to be performed to take size_t
ints instead of ints in order to match the unsigned length here.
Now the buffers only contain the header and a pointer to the storage
area which can be anywhere. This will significantly simplify buffer
swapping and will make it possible to map chunks on buffers as well.
The buf_empty variable was removed, as now it's enough to have size==0
and area==NULL to designate the empty buffer (thus a non-allocated head
is the empty buffer by default). buf_wanted for now is indicated by
size==0 and area==(void *)1.
The channels and the checks now embed the buffer's head, and the only
pointer is to the storage area. This slightly increases the unallocated
buffer size (3 extra ints for the empty buffer) but considerably
simplifies dynamic buffer management. It will also later permit to
detach unused checks.
The way the struct buffer is arranged has proven quite efficient on a
number of tests, which makes sense given that size is always accessed
and often first, followed by the othe ones.
This function was sometimes used from a channel and sometimes from a buffer.
In both cases it requires knowledge of the size of the output data (to skip
them). Here the split ensures the channel can deal with this point, and that
other places not having output data can continue to work.
These ones manipulate the output data count which will be specific to
the channel soon, so prepare the call points to use the channel only.
The b_* functions are now unused and were removed.