This new flag "SI_FL_ISBACK" is set only on the back SI and is cleared
on the front SI. That way it's possible only by looking at the SI to
know what side it is.
We'll soon remove direct references to the channels from the stream
interface since everything belongs to the same session, so let's
first not dereference si->ib / si->ob anymore and use macros instead.
The channels were pointers to outside structs and this is not needed
anymore since the buffers have moved, but this complicates operations.
Move them back into the session so that both channels and stream interfaces
are always allocated for a session. Some places (some early sample fetch
functions) used to validate that a channel was NULL prior to dereferencing
it. Now instead we check if chn->buf is NULL and we force it to remain NULL
until the channel is initialized.
Commit bf883e0 ("MAJOR: session: implement a wait-queue for sessions who
need a buffer") introduced in 1.6 forgot to initialize the buffer_wait
list when the session is initiated by an applet for a peer, resulting in
a crash. Thanks to Chris Kopp for reporting the issue.
Since commit 3dd6a25 ("MINOR: stream-int: retrieve session pointer from
stream-int"), we can get the session from the task, so let's get rid of
this less obvious function.
A session doesn't need buffers all the time, especially when they're
empty. With this patch, we don't allocate buffers anymore when the
session is initialized, we only allocate them in two cases :
- during process_session()
- during I/O operations
During process_session(), we try hard to allocate both buffers at once
so that we know for sure that a started operation can complete. Indeed,
a previous version of this patch used to allocate one buffer at a time,
but it can result in a deadlock when all buffers are allocated for
requests for example, and there's no buffer left to emit error responses.
Here, if any of the buffers cannot be allocated, the whole operation is
cancelled and the session is added at the tail of the buffer wait queue.
At the end of process_session(), a call to session_release_buffers() is
done so that we can offer unused buffers to other sessions waiting for
them.
For I/O operations, we only need to allocate a buffer on the Rx path.
For this, we only allocate a single buffer but ensure that at least two
are available to avoid the deadlock situation. In case buffers are not
available, SI_FL_WAIT_ROOM is set on the stream interface and the session
is queued. Unused buffers resulting either from a successful send() or
from an unused read buffer are offered to pending sessions during the
->wake() callback.
We'll soon want to release buffers together upon failure so we need to
allocate them after the channels. Let's change this now. There's no
impact on the behaviour, only the error path is unrolled slightly
differently. The same was done in peers.
We don't call pool_free2(pool2_buffers) anymore, we only call b_free()
to do the job. This ensures that we can start to centralize the releasing
of buffers.
It's not clean to initialize the buffer before the channel since it
dereferences one pointer in the channel. Also we'll want to let the
channel pre-initialize the buffer, so let's ensure that the channel
is always initialized prior to the buffers.
b_alloc() now allocates a buffer and initializes it to the size specified
in the pool minus the size of the struct buffer itself. This ensures that
callers do not need to care about buffer details anymore. Also this never
applies memory poisonning, which is slow and useless on buffers.
We'll soon need to be able to switch buffers without touching the
channel, so let's move buffer initialization out of channel_init().
We had the same in compressoin.c.
Currently this is harmless since trash.size is copied from
global.tune.bufsize, but this may soon change when buffers become
more dynamic.
At least for consistency it should be backported to 1.5.
Peers with integer stick tables are breaking the keys received. This is due to
the fact that the sender converts the key with htonl() but the receiver doesn't
convert the value back to its original format.
Peers appeared in haproxy-1.5, no backport is needed.
Currently, all states, all status codes and a few constants used in
the peers are all prefixed with "PEER_SESSION_". It's confusing because
there is no way to know which one is a state, a status code or anything
else. Thus, let's rename them this way :
PEER_SESS_ST_* : states
PEER_SESS_SC_* : status codes
Additionally the states have been numbered from zero and contigously.
This will allow us not to have to deal with the stream interface
initialization anymore and to ease debugging using enums.
The task returned by stream_int_register_handler() is never used, however we
always need to access the appctx afterwards. So make it return the appctx
instead. We already plan for it to fail, which is the reason for the addition
of a few tests and the possibility for the HTTP analyser to return a status
code 500.
We're about to remove si->appctx, so first let's replace all occurrences
of its usage with a dynamic extract from si->end. A lot of code was changed
by search-n-replace, but the behaviour was intentionally not altered.
The code surrounding calls to stream_int_register_handler() was slightly
changed since we can only use si->end *after* the registration.
The outgoing connection is now allocated dynamically upon the first attempt
to touch the connection's source or destination address. If this allocation
fails, we fail on SN_ERR_RESOURCE.
As we didn't use si->conn anymore, it was removed. The endpoints are released
upon session_free(), on the error path, and upon a new transaction. That way
we are able to carry the existing server's address across retries.
The stream interfaces are not initialized anymore before session_complete(),
so we could even think about allocating them dynamically as well, though
that would not provide much savings.
The session initialization now makes use of conn_new()/conn_free(). This
slightly simplifies the code and makes it more logical. The connection
initialization code is now shorter by about 120 bytes because it's done
at once, allowing the compiler to remove all redundant initializations.
The si_attach_applet() function now takes care of first detaching the
existing endpoint, and it is called from stream_int_register_handler(),
so we can safely remove the calls to si_release_endpoint() in the
application code around this call.
A call to si_detach() was made upon stream_int_unregister_handler() to
ensure we always free the allocated connection if one was allocated in
parallel to setting an applet (eg: detect HTTP proxy while proceeding
with stats maybe).
si_prepare_conn() is not appropriate in our case as it both initializes and
attaches the connection to the stream interface. Due to the asymmetry between
accept() and connect(), it causes some fields such as the control and transport
layers to be reinitialized.
Now that we can separately initialize these fields using conn_prepare(), let's
break this function to only attach the connection to the stream interface.
Also, by analogy, si_prepare_none() was renamed si_detach(), and
si_prepare_applet() was renamed si_attach_applet().
The first function is used to (re)initialize a stream interface and
the second to force it into a known state. These are intended for
cleaning up the stream interface initialization code in session.c
and peers.c and avoiding future issues with missing initializations.
When we know we're not going to use a connection on a stream interface
because we're using an applet instead, do not allocate a connection, or
release the preallocated one. We do that for peers and CLI only at the
moment, and not for HTTP stats which in the future might be adapted to
support keep-alive.
The connection pointer is simply set to NULL, which pool_free2() already
supports.
The connection will only remain there as a pre-allocated entity whose
goal is to be placed in ->end when establishing an outgoing connection.
All connection initialization can be made on this connection, but all
information retrieved should be applied to the end point only.
This change is huge because there were many users of si->conn. Now the
only users are those who initialize the new connection. The difficulty
appears in a few places such as backend.c, proto_http.c, peers.c where
si->conn is used to hold the connection's target address before assigning
the connection to the stream interface. This is why we have to keep
si->conn for now. A future improvement might consist in dynamically
allocating the connection when it is needed.
The long-term goal is to have a context for applets as an alternative
to the connection and not as a complement. At the moment, the context
is still stored into the stream interface, and we only put a pointer
to the applet's context in si->end, initialize the context with object
type OBJ_TYPE_APPCTX, and this allows us not to allocate an entry when
deciding to switch to an applet.
A special care is taken to never dereference si->conn anymore when
dealing with an applet. That's why it's important that si->end is
always set to the proper type :
si->end == NULL => not connected to anything
*si->end == OBJ_TYPE_APPCTX => connected to an applet
*si->end == OBJ_TYPE_CONN => real connection (server, proxy, ...)
The session management code used to check the applet from the connection's
target. Now it uses the stream interface's end point and does not touch the
connection at all. Similarly, we stop checking the connection's addresses
and file descriptors when reporting the applet's status in the stats dump.
Since last commit, we now have a pointer to the applet in the
applet context. So we don't need the si->release function pointer
anymore, it can be extracted from applet->applet.release. At many
places, the ->release function was still tested for real connections
while it is only limited to applets, so most of them were simply
removed. For the remaining valid uses, a new inline function
si_applet_release() was added to simplify the check and the call.
Since this is the applet context, call it ->appctx to avoid the confusion
with the pointer to the applet. Many places were changed but it's only a
renaming.
A long time ago when peers were introduced, there was no applet nor
applet context. Applet contexts were introduced but the peers still
did not make use of them and the "ptr" pointer remains present in
every stream interface in addition to the other contexts.
Simply move this pointer to its own location in the context.
Note that this pointer is still a void* because its type and contents
varies depending on the peers session state. Probably that this could
be cleaned up in the future given that all other contexts already store
much more than a single pointer.
We make the peers code use applet->ptr instead of conn->xprt_ctx to
store the pointer to the current peer. That way it does not depend
on a connection anymore.
While analysing old bug (9d9179b) with Emeric, we first believed
that the fix was wrong and that there was a potential for learning
one extra character in the peers learning code for strings due to
the use of table->key_size instead of table->key_size-1. In fact it
cannot happen with a normally behaving sender because the key sizes
are compared when synchronizing the table.
But this unveiled a suboptimal handling of strings. It can be quite
common to see admins reload haproxy to increase some key sizes when
seeing that user agents or cookies get truncated, or conversely to
reduce them after seeing they take too much memory and are never full.
The problem is that this will get rid of the table's contents because
of the size mismatch. While this is understandable for properly
formatted data (eg: IP addresses, integers, SSLIDs...) it's too bad
for strings.
So instead, make an exception to accept string of incompatible lengths
and let the synchronization code truncate them to the appropriate size
just as if the keys were learned normally.
Thanks to this change, it is now possible to change the "len" parameter
of a string stick-table and restart without losing its contents.
When a process with large stick tables is replaced by a new one and remains
present until the last connection finishes, it keeps these data in memory
for nothing since they will never be used anymore by incoming connections,
except during syncing with the new process. This is especially problematic
when dealing with long session protocols such as WebSocket as it becomes
possible to stack many processes and eat a lot of memory.
So the idea here is to know if a table still needs to be synced or not,
and to purge all unused entries once the sync is complete. This means that
after a few hundred milliseconds when everything has been synchronized with
the new process, only a few entries will remain allocated (only the ones
held by sessions during the restart) and all the remaining memory will be
freed.
Note that we carefully do that only after the grace period is expired so as
not to impact a possible proxy that needs to accept a few more connections
before leaving.
Doing this required to add a sync counter to the stick tables, to know how
many peer sync sessions are still in progress in order not to flush the entries
until all synchronizations are completed.
Remove event_accept() in include/proto/proto_http.h and use correct function
name in other two files instead of event_accept().
Signed-off-by: Godbach <nylzhaowei@gmail.com>
By properly affecting the flags and values, it becomes easier to add
more tracked counters, for example for experimentation. It also slightly
reduces the code and the number of tests. No counters were added with
this patch.
When syncing data between two haproxy instances, the received keys were
allocated in the stack but no room was planned for type string. So in
practice all strings of 16 or less bytes were properly handled (due to
the union with in6_addr which reserves some room), but above this some
local variables were overwritten. Up to 8 additional bytes could be
written without impact, but random behaviours are expected above, including
crashes and memory corruption.
If large enough strings are allowed in the configuration, it is possible that
code execution could be triggered when the function's return pointer is
overwritten.
A quick workaround consists in ensuring that no stick-table uses a string
larger than 16 bytes (default is 32). Another workaround is to disable peer
sync when strings are in use.
Thanks to Will Glass-Husain for bringing up this issue with a backtrace to
understand the issue.
The bug only affects 1.5-dev3 and above. No backport is needed.
We'll need to centralize some pool_alloc()/pool_free() calls in the
upcoming fix so before that we need to reduce the number of points
by which we leave the critical code.
The stick counters were in two distinct sets of struct members,
causing some code to be duplicated. Now we use an array, which
enables some processing to be performed in loops. This allowed
the code to be shrunk by 700 bytes.
Instead of storing a couple of (int, ptr) in the struct connection
and the struct session, we use a different method : we only store a
pointer to an integer which is stored inside the target object and
which contains a unique type identifier. That way, the pointer allows
us to retrieve the object type (by dereferencing it) and the object's
address (by computing the displacement in the target structure). The
NULL pointer always corresponds to OBJ_TYPE_NONE.
This reduces the size of the connection and session structs. It also
simplifies target assignment and compare.
In order to improve the generated code, we try to put the obj_type
element at the beginning of all the structs (listener, server, proxy,
si_applet), so that the original and target pointers are always equal.
A lot of code was touched by massive replaces, but the changes are not
that important.
The trash is used everywhere to store the results of temporary strings
built out of s(n)printf, or as a storage for a chunk when chunks are
needed.
Using global.tune.bufsize is not the most convenient thing either.
So let's replace trash with a chunk and directly use it as such. We can
then use trash.size as the natural way to get its size, and get rid of
many intermediary chunks that were previously used.
The patch is huge because it touches many areas but it makes the code
a lot more clear and even outlines places where trash was used without
being that obvious.
We will need to be able to switch server connections on a session and
to keep idle connections. In order to achieve this, the preliminary
requirement is that the connections can survive the session and be
detached from them.
Right now they're still allocated at exactly the same place, so when
there is a session, there are always 2 connections. We could soon
improve on this by allocating the outgoing connection only during a
connect().
This current patch touches a lot of code and intentionally does not
change any functionnality. Performance tests show no regression (even
a very minor improvement). The doc has not yet been updated.
This field was used to trace precisely where a session was terminated
but it did not survive code rearchitecture and was not used at all
anymore. Let's get rid of it.
With this commit, we now separate the channel from the buffer. This will
allow us to replace buffers on the fly without touching the channel. Since
nobody is supposed to keep a reference to a buffer anymore, doing so is not
a problem and will also permit some copy-less data manipulation.
Interestingly, these changes have shown a 2% performance increase on some
workloads, probably due to a better cache placement of data.
While working on the changes required to make the health checks use the
new connections, it started to become obvious that some naming was not
logical at all in the connections. Specifically, it is not logical to
call the "data layer" the layer which is in charge for all the handshake
and which does not yet provide a data layer once established until a
session has allocated all the required buffers.
In fact, it's more a transport layer, which makes much more sense. The
transport layer offers a medium on which data can transit, and it offers
the functions to move these data when the upper layer requests this. And
it is the upper layer which iterates over the transport layer's functions
to move data which should be called the data layer.
The use case where it's obvious is with embryonic sessions : an incoming
SSL connection is accepted. Only the connection is allocated, not the
buffers nor stream interface, etc... The connection handles the SSL
handshake by itself. Once this handshake is complete, we can't use the
data functions because the buffers and stream interface are not there
yet. Hence we have to first call a specific function to complete the
session initialization, after which we'll be able to use the data
functions. This clearly proves that SSL here is only a transport layer
and that the stream interface constitutes the data layer.
A similar change will be performed to rename app_cb => data, but the
two could not be in the same commit for obvious reasons.
Navigating through listeners was very inconvenient and error-prone. Not to
mention that listeners were linked in reverse order and reverted afterwards.
In order to definitely get rid of these issues, we now do the following :
- frontends have a dual-linked list of bind_conf
- frontends have a dual-linked list of listeners
- bind_conf have a dual-linked list of listeners
- listeners have a pointer to their bind_conf
This way we can now navigate from anywhere to anywhere and always find the
proper bind_conf for a given listener, as well as find the list of listeners
for a current bind_conf.
We need to have the source and destination addresses in the connection.
They were lying in the stream interface so let's move them. The flags
SI_FL_FROM_SET and SI_FL_TO_SET have been moved as well.
It's worth noting that tcp_connect_server() almost does not use the
stream interface anymore except for a few flags.
It has been identified that once we detach the connection from the SI,
it will probably be needed to keep a copy of the server-side addresses
in the SI just for logging purposes. This has not been implemented right
now though.
This is a massive rename of most functions which should make use of the
word "channel" instead of the word "buffer" in their names.
In concerns the following ones (new names) :
unsigned long long channel_forward(struct channel *buf, unsigned long long bytes);
static inline void channel_init(struct channel *buf)
static inline int channel_input_closed(struct channel *buf)
static inline int channel_output_closed(struct channel *buf)
static inline void channel_check_timeouts(struct channel *b)
static inline void channel_erase(struct channel *buf)
static inline void channel_shutr_now(struct channel *buf)
static inline void channel_shutw_now(struct channel *buf)
static inline void channel_abort(struct channel *buf)
static inline void channel_stop_hijacker(struct channel *buf)
static inline void channel_auto_connect(struct channel *buf)
static inline void channel_dont_connect(struct channel *buf)
static inline void channel_auto_close(struct channel *buf)
static inline void channel_dont_close(struct channel *buf)
static inline void channel_auto_read(struct channel *buf)
static inline void channel_dont_read(struct channel *buf)
unsigned long long channel_forward(struct channel *buf, unsigned long long bytes)
Some functions provided by channel.[ch] have kept their "buffer" name because
they are really designed to act on the buffer according to some information
gathered from the channel. They have been moved together to the same place in
the file for better readability but they were not changed at all.
The "buffer" memory pool was also renamed "channel".
Get rid of these confusing BF_* flags. Now channel naming should clearly
be used everywhere appropriate.
No code was changed, only a renaming was performed. The comments about
channel operations was updated.
Some parts of the sock_ops structure were only used by the stream
interface and have been moved into si_ops. Some of them were callbacks
to the stream interface from the connection and have been moved into
app_cp as they're the application seen from the connection (later,
health-checks will need to use them). The rest has moved to data_ops.
Normally at this point the connection could live without knowing about
stream interfaces at all.
The "raw_sock" prefix will be more convenient for naming functions as
it will be prefixed with the data layer and suffixed with the data
direction. So let's rename the files now to avoid any further confusion.
The #include directive was also removed from a number of files which do
not need it anymore.
At the moment, the struct is still embedded into the struct channel, but
all the functions have been updated to use struct buffer only when possible,
otherwise struct channel. Some functions would likely need to be splitted
between a buffer-layer primitive and a channel-layer function.
Later the buffer should become a pointer in the struct buffer, but doing so
requires a few changes to the buffer allocation calls.
fdtab[].state was only used to know whether a connection was in progress
or an error was encountered. Instead we now use connection->flags to store
a flag for both. This way, connection management will be able to update the
connection status on I/O.
The destination address is purely a connection thing and not an fd thing.
It's also likely that later the address will be stored into the connection
and linked to by the SI.
struct fdinfo only keeps the pointer to the port range and the local port
for now. All of this also needs to move to the connection but before this
the release of the port range must move from fd_delete() to a new function
dedicated to the connection.
Herv Commowick reported a failure to resync upon restart caused by a
segfault on the old process. This is due to the data_ctx of the connection
being initialized after the stream interface.
When the target is a client, it will be convenient to have a pointer to the
original listener so that we can retrieve some configuration information at
the stream interface level.
At the moment, all the peers are initialized to use sock_raw as the socket
layer, so use this info in peers_session_create() instead of the hard-coded
sock_raw.
The state and the private pointer are not specific to the applets, since SSL
will require exactly both of them. Move them to the connection layer now and
rename them. We also now ensure that both are NULL on first call.
We start to move everything needed to manage a connection to a special
entity "struct connection". We have the data layer operations and the
control operations there. We'll also have more info in the future such
as file descriptors and applet contexts, so that in the end it becomes
detachable from the stream interface, which will allow connections to
be reused between sessions.
For now on, we start with minimal changes.
Before it was possible to resize the buffers using global.tune.bufsize,
the trash has always been the size of a buffer by design. Unfortunately,
the recent buffer sizing at runtime forgot to adjust the trash, resulting
in it being too short for content rewriting if buffers were enlarged from
the default value.
The bug was encountered in 1.4 so the fix must be backported there.
Similarly to the previous patch, we don't need the socket-layer functions
outside of stream_interface. They could even move to a file dedicated to
applets, though that does not seem particularly useful at the moment.
We'll soon have an SSL socket layer, and in order to ease the difference
between the two, we use the name "sock_raw" to designate the one which
directly talks to the sockets without any conversion.
Last memory poisonning patch immediately made this issue appear.
The unique_id field is released but not properly initialized. The
feature was introduced very recently, no backport is needed.
Commit b22e55bc introduced send_proxy_ofs but forgot to initialize it,
which remained unnoticed since it's always at the same place in the
stream interface. On a machine with dirty RAM returned by malloc(),
some responses were holding a PROXY header, which normally is not
possible.
The problem goes away after properly initializing the field upon each
new session_accept().
This fix does not need to be backported except if any code makes use of
a backport of this feature.
These operators are used regardless of the socket protocol family. Move
them to a "sock_ops" struct. ->read and ->write have been moved there too
as they have no reason to remain at the protocol level.
These callbacks are used to retrieve the source and destination address
of a socket. The address flags are not hold on the stream interface and
not on the session anymore. The addresses are collected when needed.
This still needs to be improved to store the IP and port separately so
that it is not needed to perform a getsockname() when only the IP address
is desired for outgoing traffic.
On Solaris/sparc, getpid() returns pid_t which is not an int :
src/peers.c: In function `peer_io_handler':
src/peers.c:508: warning: int format, pid_t arg (arg 6)
Stream interfaces used to distinguish between client and server addresses
because they were previously of different types (sockaddr_storage for the
client, sockaddr_in for the server). This is not the case anymore, and this
distinction is confusing at best and has caused a number of regressions to
be introduced in the process of converting everything to full-ipv6. We can
now remove this and have a much cleaner code.
"[MINOR] session: add a pointer to the new target into the session" (664beb8)
introduced a regression by changing the type of a peer's target from
TARG_TYPE_PROXY to TARG_TYPE_NONE. The effect of this is that during
a soft-restart the new process no longer tries to connect to the
old process to replicate its stick tables.
This patch sets the type of a peer's target as TARG_TYPE_PROXY and
replication on soft-restart works once again.
Those states have been replaced with PR_STFULL and PR_STREADY respectively,
as it is what matches them the best now. Also, two occurrences of PR_STIDLE
in peers.c have been removed as this did not provide any form of error recovery
anyway.
Patch af5149 introduced an issue which can be detected only on out of
memory conditions : a LIST_DEL() may be performed on an uninitialized
struct member instead of a LIST_INIT() during the accept() phase,
causing crashes and memory corruption to occur.
This issue was detected and diagnosed by the Exceliance R&D team.
This is 1.5-specific and very recent, so no existing deployment should
be impacted.
The motivation for this is to allow iteration of all the connections
of a server without the expense of iterating over the global list
of connections.
The first use of this will be to implement an option to close connections
associated with a server when is is marked as being down or in maintenance
mode.
* The declaration of peer_session_create() does
not match its definition. As it is only
used inside of peers.c make it static.
* Make the declaration of peers_register_table()
match its definition.
* Also, make all functions in peers.c that
are not also in peers.h static
Since we now have the copy of the target in the session, use it instead
of relying on the SI for it. The SI drops the target upon unregister()
so applets such as stats were logged as "NOSRV".
This patch turns internal server addresses to sockaddr_storage to
store IPv6 addresses, and makes the connect() function use it. This
code already works but some caveats with getaddrinfo/gethostbyname
still need to be sorted out while the changes had to be merged at
this stage of internal architecture changes. So for now the config
parser will not emit an IPv6 address yet so that user experience
remains unchanged.
This change should have absolutely zero user-visible effect, otherwise
it's a bug introduced during the merge, that should be reported ASAP.
This one has been removed and is now totally superseded by ->target.
To get the server, one must use target_srv(&s->target) instead of
s->srv now.
The function ensures that non-server targets still return NULL.
s->prev_srv is used by assign_server() only, but all code paths leading
to it now take s->prev_srv from the existing s->srv. So assign_server()
can do that copy into its own stack.
If at one point a different srv is needed, we still have a copy of the
last server on which we failed a connection attempt in s->target.
When dealing with HTTP keep-alive, we'll have to know if we can reuse
an existing connection. For that, we'll have to check if the current
connection was made on the exact same target (referenced in the stream
interface).
Thus, we need to first assign the next target to the session, then
copy it to the stream interface upon connect(). Later we'll check for
equivalence between those two operations.
Now that we have the target pointer and type in the stream interface,
we don't need the applet.handler pointer anymore. That makes the code
somewhat cleaner because we know we're dealing with an applet by checking
its type instead of checking the pointer is not null.
When doing a connect() on a stream interface, some information is needed
from the server and from the backend. In some situations, we don't have
a server and only a backend (eg: peers). In other cases, we know we have
an applet and we don't want to connect to anything, but we'd still like
to have the info about the applet being used.
For this, we now store a pointer to the "target" into the stream interface.
The target describes what's on the other side before trying to connect. It
can be a server, a proxy or an applet for now. Later we'll probably have
descriptors for multiple-stage chains so that the final information may
still be found.
This will help removing many specific cases in the code. It already made
it possible to remove the "srv" and "be" parameters to tcpv4_connect_server().