I found on an (old) AIX 5.1 machine that stdint.h didn't exist while
inttypes.h which is expected to include it does exist and provides the
desired functionalities.
As explained here, stdint being just a subset of inttypes for use in
freestanding environments, it's probably always OK to switch to inttypes
instead:
https://pubs.opengroup.org/onlinepubs/009696799/basedefs/stdint.h.html
Also it's even clearer here in the autoconf doc :
https://www.gnu.org/software/autoconf/manual/autoconf-2.61/html_node/Header-Portability.html
"The C99 standard says that inttypes.h includes stdint.h, so there's
no need to include stdint.h separately in a standard environment.
Some implementations have inttypes.h but not stdint.h (e.g., Solaris
7), but we don't know of any implementation that has stdint.h but not
inttypes.h"
Commit 19ed92b ("MINOR: hpack: optimize header encoding for short names")
introduced an error in the space computation for short names, as it removed
the length encoding from the count without replacing with 1 (the minimum
byte). This results in the last byte of the area being occasionally
overwritten, which is immediately detected with -DDEBUG_MEMORY_POOLS as
the canary at the end gets overwritten.
No backport is needed.
We'll need these functions from other inline functions, let's make them
accessible. len_to_bytes() was renamed to hpack_len_to_bytes() since it's
now exposed.
We used to have a series of well-known header fields that were looked
up, but most of them were not. The current model couldn't scale with
the addition of the new headers or pseudo-headers required to process
requests, resulting in their encoding being hard-coded in the caller.
This patch implements a quick lookup which retrieves any header from
the static table. A binary stream is made of header names prefixed by
lengths and indexes. These header names are sorted by length, then by
frequency, then by direction (preference for response), then by name,
the the lowest index of each is stored only in case of multiple
entries. A parallel length index table provides the index of the first
header for a given string. This allows to focus on the first few values
matching the same length.
Everything was made to limit the cache footprint. Interestingly, the
lookup ends up being slightly faster than the previous one, while
covering the 54 distinct headers instead of only 10.
A test with a curl request and a basic response showed that the request
size has dropped from 85 to 56 bytes and that the response size has
dropped from 197 to 170 bytes, thus we can now shave roughly 25-30 bytes
per message.
For unknown fields, since we know that most of them are less than 127
characters, we don't need to go through the loop and can instead directly
emit the one-byte length encoding. This increases the request rate by
approximately 0.5%.
memcpy() tends to be overkill to copy short strings, better use ist's
naive functions for this. This shows a consistent 1.2% performance
gain with h2load.
The len-to-bytes conversion can be slightly simplified and optimized
by hardcoding a tree lookup. Just doing this increases by 1% the
request rate on H2. It could be made almost branch-free by using
fls() but it looks overkill for most situations since most headers
are very short.
In hpack_encode_header() there is a length check to verify that a literal
header name fits in the buffer, but there it an off-by-one in this length
check, which forgets the byte required to mark the encoding type (literal
without indexing). It should be harmless though as it cannot be triggered
since response headers passing through haproxy are limited by the reserve,
which is not the case of the output buffer.
This fix should be backported to 1.8.
James Brown reported that when an "accept-ranges" header field is sent
through haproxy and converted from HTTP/1.1 to H2, it's mis-encoded as
"accept-language". It happens that it's one of the few very common header
fields encoded using its index value and that this index value was misread
in the spec as 17 instead of 18, resulting in the wrong name being sent.
Thanks to Lukas for spotting the issue in the HPACK encoder itself.
This fix must be backported to 1.8.
Now all the code used to manipulate chunks uses a struct buffer instead.
The functions are still called "chunk*", and some of them will progressively
move to the generic buffer handling code as they are cleaned up.
Chunks are only a subset of a buffer (a non-wrapping version with no head
offset). Despite this we still carry a lot of duplicated code between
buffers and chunks. Replacing chunks with buffers would significantly
reduce the maintenance efforts. This first patch renames the chunk's
fields to match the name and types used by struct buffers, with the goal
of isolating the code changes from the declaration changes.
Most of the changes were made with spatch using this coccinelle script :
@rule_d1@
typedef chunk;
struct chunk chunk;
@@
- chunk.str
+ chunk.area
@rule_d2@
typedef chunk;
struct chunk chunk;
@@
- chunk.len
+ chunk.data
@rule_i1@
typedef chunk;
struct chunk *chunk;
@@
- chunk->str
+ chunk->area
@rule_i2@
typedef chunk;
struct chunk *chunk;
@@
- chunk->len
+ chunk->data
Some minor updates to 3 http functions had to be performed to take size_t
ints instead of ints in order to match the unsigned length here.
For now it only supports literals and a bit of static header table
references for the 9 most common header field names (date, server,
content-type, content-length, last-modified, accept-ranges, etag,
cache-control, location).
A previous incarnation of this commit used to strip the forbidden H2
header names (connection, proxy-connection, upgrade, transfer-encoding,
keep-alive) but this is no longer the case as this filtering is irrelevant
to HPACK encoding and is specific to H2, so this will have to be done by
the caller.
It's quite not optimal but works fine enough to prepare some valid and
partially compressed responses during development.