The fd_send_uxst() function which is used to send a socket over the
socketpair returns 1 upon error instead of -1, which means the error
case of the sendmsg() is never catched correctly.
Must be backported as far as 1.9.
The file descriptors will need to know the thread group ID in addition
to the mask. This extends fd_insert() to take the tgid, and will store
it into the FD.
In the FD, the tgid is stored as a combination of tgid on the lower 16
bits and a refcount on the higher 16 bits. This allows to know when it's
really possible to trust the tgid and the running mask. If a refcount is
higher than 1 it indeed indicates another thread else might be in the
process of updating these values.
Since a closed FD must necessarily have a zero refcount, a test was
added to fd_insert() to make sure that it is the case.
It's a bit ugly to see that half of the callers of fd_insert() have to
apply all_threads_mask themselves to the bit field they're passing,
because usually it comes from a listener that may have other bits set.
Let's make the function apply the mask itself.
Since commit d2494e048 ("BUG/MEDIUM: peers/config: properly set the
thread mask") there must not remain any single case of a receiver that
is bound nowhere, so there's no need anymore for thread_mask().
We're adding a test in fd_insert() to make sure this doesn't happen by
accident though, but the function was removed and its rare uses were
replaced with the original value of the bind_thread msak.
There's been some great confusion between proto_type, ctrl_type and
sock_type. It turns out that ctrl_type was improperly chosen because
it's not the control layer that is of this or that type, but the
transport layer, and it turns out that the transport layer doesn't
(normally) denaturate the underlying control layer, except for QUIC
which turns dgrams to streams. The fact that the SOCK_{DGRAM|STREAM}
set of values was used added to the confusion.
Let's replace it with xprt_type which reuses the later introduced
PROTO_TYPE_* values, and update the comments to explain which one
works at what level.
Just like for the conn_stream, now that these addresses are dynamically
allocated, there is no single case where the pointer is set without the
corresponding flag, and the flag is used as a permission to dereference
the pointer. Let's just replace the test of the flag with a test of the
pointer and remove all flag assignment. This makes the code clearer
(especially in "if" conditions) and saves the need for future code to
think about properly setting the flag after setting the pointer.
Some of the protocol-level ->connect() functions currently dereference
the connection's destination address while others test it and return an
error. There's normally no more non-bogus code path that calls such
functions without a valid destination address on the connection, so
let's unify these functions and just place a BUG_ON() there, and drop
the useless test that's supposed to return an internal error.
This gets rid of most open-coded fcntl() calls, some of which were passed
through DISGUISE() to avoid a useless test. The FD_CLOEXEC was most often
set without preserving previous flags, which could become a problem once
new flags are created. Now this will not happen anymore.
Some older systems may routinely return EWOULDBLOCK for some syscalls
while we tend to check only for EAGAIN nowadays. Modern systems define
EWOULDBLOCK as EAGAIN so that solves it, but on a few older ones (AIX,
VMS etc) both are different, and for portability we'd need to test for
both or we never know if we risk to confuse some status codes with
plain errors.
There were few entries, the most annoying ones are the switch/case
because they require to only add the entry when it differs, but the
other ones are really trivial.
The protocol selection is currently performed based on the family,
control type and socket type. But this is often not enough, as both
only provide DGRAM or STREAM, leaving few variants. Protocols like
SCTP for example might be indistinguishable from TCP here. Same goes
for TCP extensions like MPTCP.
This commit introduces a new enum proto_type that is placed in each
and every protocol definition, that will usually more or less match
the sock_type, but being an enum, will support additional values.
With groups at some point we'll have to have distinct masks/groups in the
receiver and the bind_conf, because a single bind_conf might require to
instantiate multiple receivers (one per group).
Let's split the thread mask and group to have one for the bind_conf and
another one for the receiver while it remains easy to do. This will later
allow to use different storage for the bind_conf if needed (e.g. support
multiple groups).
Some protocols fail with "error blah [ip:port]" and other fail with
"[ip:port] error blah". All this already appears in a "starting" or
"binding" context after a proxy name. Let's choose a more universal
approach like below where the ip:port remains at the end of the line
prefixed with "for".
[WARNING] (18632) : Binding [binderr.cfg:10] for proxy http: cannot bind receiver to device 'eth2' (No such device) for [0.0.0.0:1080]
[WARNING] (18632) : Starting [binderr.cfg:10] for proxy http: cannot set MSS to 12 for [0.0.0.0:1080]
Ilya reports in GH #1392 that clang 13 complains about a flag being added
to the "flags" parameter without being used later. That's generic code
that was shared from TCP but we can indeed drop this flag since it's used
for TFO which we don't have in socketpairs.
No need to keep this flag apart any more, let's merge it into the global
state. The CLI's output state was extended to 6 digits and the linger/cloned
flags moved inside the parenthesis.
For a long time we've had fdtab[].ev and fdtab[].state which contain two
arbitrary sets of information, one is mostly the configuration plus some
shutdown reports and the other one is the latest polling status report
which also contains some sticky error and shutdown reports.
These ones used to be stored into distinct chars, complicating certain
operations and not even allowing to clearly see concurrent accesses (e.g.
fd_delete_orphan() would set the state to zero while fd_insert() would
only set the event to zero).
This patch creates a single uint with the two sets in it, still delimited
at the byte level for better readability. The original FD_EV_* values
remained at the lowest bit levels as they are also known by their bit
value. The next step will consist in merging the remaining bits into it.
The whole bits are now cleared both in fd_insert() and _fd_delete_orphan()
because after a complete check, it is certain that in both cases these
functions are the only ones touching these areas. Indeed, for
_fd_delete_orphan(), the thread_mask has already been zeroed before a
poller can call fd_update_event() which would touch the state, so it
is certain that _fd_delete_orphan() is alone. Regarding fd_insert(),
only one thread will get an FD at any moment, and it as this FD has
already been released by _fd_delete_orphan() by definition it is certain
that previous users have definitely stopped touching it.
Strictly speaking there's no need for clearing the state again in
fd_insert() but it's cheap and will remove some doubts during some
troubleshooting sessions.
Introduce a new XPRT method, start(). The init() method will now only
initialize whatever is needed for the XPRT to run, but any action the XPRT
has to do before being ready, such as handshakes, will be done in the new
start() method. That way, we will be sure the full stack of xprt will be
initialized before attempting to do anything.
The init() call is also moved to conn_prepare(). There's no longer any reason
to wait for the ctrl to be ready, any action will be deferred until start(),
anyway. This means conn_xprt_init() is no longer needed.
Right now the connection subscribe/unsubscribe code needs to manipulate
FDs, which is not compatible with QUIC. In practice what we need there
is to be able to either subscribe or wake up depending on readiness at
the moment of subscription.
This commit introduces two new functions at the control layer, which are
provided by the socket code, to check for FD readiness or subscribe to it
at the control layer. For now it's not used.
This is what we need to drain pending incoming data from an connection.
The code was taken from conn_sock_drain() without the connection-specific
stuff. It still takes a connection for now for API simplicity.
Currnetly conn_ctrl_init() does an fd_insert() and conn_ctrl_close() does an
fd_delete(). These are the two only short-term obstacles against using a
non-fd handle to set up a connection. Let's have pur these into the protocol
layer, along with the other connection-level stuff so that the generic
connection code uses them instead. This will allow to define new ones for
other protocols (e.g. QUIC).
Since we only support regular sockets at the moment, the code was placed
into sock.c and shared with proto_tcp, proto_uxst and proto_sockpair.
For the sake of an improved readability, let's group the protocol
field members according to where they're supposed to be defined:
- connection layer (note: for now even UDP needs one)
- binding layer
- address family
- socket layer
Nothing else was changed.
The various protocols were made static since there was no point in
exporting them in the past. Nowadays with QUIC relying on UDP we'll
significantly benefit from UDP being exported and more generally from
being able to declare some functions as being the same as other
protocols'.
In an ideal world it should not be these protocols which should be
exported, but the intermediary levels:
- socket layer (sock.c only right now), already exported as functions
but nothing structured at the moment ;
- family layer (sock_inet, sock_unix, sockpair etc): already structured
and exported
- binding layer (the part that relies on the receiver): currently fused
within the protocol
- connectiong layer (the part that manipulates connections): currently
fused within the protocol
- protocol (connection's control): shouldn't need to be exposed
ultimately once the elements above are in an easily sharable way.
This field used to be needed before commit 2b5e0d8b6 ("MEDIUM: proto_udp:
replace last AF_CUST_UDP* with AF_INET*") as it was used as a protocol
entry selector. Since this commit it's always equal to the socket family's
value so it's entirely redundant. Let's remove it now to simplify the
protocol definition a little bit.
With the removal of the family-specific port setting, all protocol had
exactly the same implementation of ->add(). A generic one was created
with the name "default_add_listener" so that all other ones can now be
removed. The API was slightly adjusted so that the protocol and the
listener are passed instead of the listener and the port.
Note that all protocols continue to provide this ->add() method instead
of routinely calling default_add_listener() from create_listeners(). This
makes sure that any non-standard protocol will still be able to intercept
the listener addition if needed.
This could be backported to 2.3 along with the few previous patches on
listners as a pure code cleanup.
We used to refrain from calling fd_want_recv() if fd_updt was not allocated
but it's not the right solution as this does not allow the FD to be set.
Instead, let's use the new fd_want_recv_safe() which will update the FD and
create an update entry only if possible. In addition, the equivalent test
before calling fd_stop_recv() was removed as totally useless since there's
not fd_updt creation in this case.
We don't need to specify the handler anymore since it's set in the
receiver. Let's remove this argument from the function and clean up
the remains of code that were still setting it.
Now we define a new sock_accept_iocb() for socket-based stream protocols
and use it as a wrapper for listener_accept() which now takes a listener
and not an FD anymore. This will allow the receiver's I/O cb to be
redefined during registration, and more specifically to get rid of the
hard-coded hacks in protocol_bind_all() made for syslog.
The previous ->accept() callback in the protocol was removed since it
doesn't have anything to do with accept() anymore but is more generic.
A few places where listener_accept() was compared against the FD's IO
callback for debugging purposes on the CLI were updated.
This is the same as previous commit, but this time for the sockpair-
specific stuff, relying on recv_fd_uxst() instead of accept(), so the
code is simpler. The various errno cases are handled like for regular
sockets, though some of them will probably never happen, but this does
not hurt.
This call was introduced by commit 5ced3e887 ("MINOR: sock: add
sock_accept_conn() to test a listening socket") but is actually quite
confusing because it makes one think the socket will accept a connection
(which is what we want to have in a new function) while it only tells
whether it's configured to accept connections. Let's call it
sock_accepting_conn() instead.
The same change was applied to sockpair which had the same issue.
For socket pairs we don't rely on a real listening socket but we need to
have a properly connected UNIX stream socket. This is what the new
sockpair_accept_conn() tries to report. Some corner cases like half
shutdown will still not be detected but that should be sufficient for
most cases we really care about.
The inner part now goes into the protocol and is used to decide how to
unbind a given protocol's listener. The existing code which is able to
also unbind the receiver was provided as a default function that we
currently use everywhere. Some complex listeners like QUIC will use this
to decide how to unbind without impacting existing connections, possibly
by setting up other incoming paths for the traffic.
This is used as a generic way to unbind a receiver at the end of
do_unbind_listener(). This allows to considerably simplify that function
since we can now let the protocol perform the cleanup. The generic code
was moved to sock.c, along with the conditional rx_disable() call. Now
the code also supports that the ->disable() function of the protocol
which acts on the listener performs the close itself and adjusts the
RX_F_BUOND flag accordingly.
These methods will be used to enable/disable accepting new connections
so that listeners do not play with FD directly anymore. Since all the
currently supported protocols work on socket for now, these are identical
to the rx_enable/rx_disable functions. However they were not defined in
sock.c since it's likely that some will quickly start to differ. At the
moment they're not used.
We have to take care of fd_updt before calling fd_{want,stop}_recv()
because it's allocated fairly late in the boot process and some such
functions may be called very early (e.g. to stop a disabled frontend's
listeners).
These methods will be used to enable/disable rx at the receiver level so
that callers don't play with FDs directly anymore. All our protocols use
the generic ones from sock.c at the moment. For now they're not used.
The ->pause method is inappropriate since it doesn't exactly "pause" a
listener but rather temporarily disables it so that it's not visible at
all to let another process take its place. The term "suspend" is more
suitable, since the "pause" is actually what we'll need to apply to the
FULL and LIMITED states which really need to make a pause in the accept
process. And it goes well with the use of the "resume" function that
will also need to be made per-protocol.
Let's rename the function and make it act on the receiver since it's
already what it essentially does, hence the prefix "_rx" to make it
more explicit.
The protocol struct was a bit reordered because it was becoming a real
mess between the parts related to the listeners and those for the
receivers.
Since the listeners were split into receiver+listener, this field ought
to have been renamed because it's confusing. It really links receivers
and not listeners, as most of the time it's used via rx.proto_list!
The nb_listeners field was updated accordingly.
This function is used as a wrapper to set a listener's state everywhere.
We'll use it later to maintain some counters in a consistent state when
switching state so it's capital that all state changes go through it.
No functional change was made beyond calling the wrapper.
This one will be needed to more accurately select a protocol. It may
differ from the socket type for QUIC, which uses dgram at the socket
layer and provides stream at the control layer. The upper level requests
a control layer only so we need this field.
This removes the following fields from struct protocol that are now
retrieved from the protocol family instead: .sock_family, .sock_addrlen,
.l3_addrlen, .addrcmp, .bind, .get_src, .get_dst.
This also removes the UDP-specific udp{,6}_get_{src,dst}() functions
which were referenced but not used yet. Their goal was only to remap
the original AF_INET* addresses to AF_CUST_UDP*.
Note that .sock_domain is still there as it's used as a selector for
the protocol struct to be used.
We need to specially handle protocol families which regroup common
functions used for a given address family. These functions include
bind(), addrcmp(), get_src() and get_dst() for now. Some fields are
also added about the address family, socket domain (protocol family
passed to the socket() syscall), and address length.
These protocol families are referenced from the protocols but not yet
used.
All protocol's listeners now only take care of themselves and not of
the receiver anymore since that's already being done in proto_bind_all().
Now it finally becomes obvious that UDP doesn't need a listener, as the
only thing it does is to set the listener's state to LI_LISTEN!
Note that for now we don't have a sockpair.c file to host that unusual
family, so the new function was placed directly into proto_sockpair.c.
It's no big deal given that this family is currently not shared with
multiple protocols.
The function does almost nothing but setting up the receiver. This is
normal as the socket the FDs are passed onto are supposed to have been
already created somewhere else, and the only usable identifier for such
a socket pair is the receiving FD itself.
The function was assigned to sockpair's ->bind() and is not used yet.
In order to split the receiver from the listener, we'll need to know that
a socket is already bound and ready to receive. We used to do that via
tha LI_O_ASSIGNED state but that's not sufficient anymore since the
receiver might not belong to a listener anymore. The new RX_F_BOUND flag
is used for this.
Some socket settings used to be retrieved via the listener and the
bind_conf. Now instead we use the receiver and its settings whenever
appropriate. This will simplify the removal of the dependency on the
listener.