Tests show that it's slightly faster to have this field in the listener.
The cache walk patterns are under heavy stress and having only this field
written to in the bind_conf was wasting a cache line that was heavily
read. Let's move this close to the other entries already written to in
the listener. Warning, the position does have an impact on peak performance.
Now that the P2C algorithm for the accept queue is removed, we don't
need to map a number to a thread bit anymore, so let's remove all
these fields which are taking quite some space for no reason.
We already have my_ffsl() to find the lowest bit set in a word, and
this patch implements the search for the highest bit set in a word.
On x86 it uses the bsr instruction and on other architectures it
uses an efficient implementation.
By picking two randoms following the P2C algorithm, we seldom observe
asymmetric loads on bursts of small session counts. This is typically
what makes h2load take a bit of time to complete the last 100% because
if a thread gets two connections while the other ones only have one,
it takes twice the time to complete its work.
This patch proposes a modification of the p2c algorithm which seems
more suitable to this case : it mixes a rotating index with a random.
This way, we're certain that all threads are consulted in turn and at
the same time we're not forced to use the ones we're giving a chance.
This significantly increases the traffic rate. Now h2load shows faster
completion and the average request rates on H2 and the TLS resume rate
increases by a bit more than 5% compared to pure p2c.
The index was placed into the struct bind_conf because 1) it's faster
there and it's the best place to optimally distribute traffic among a
group of listeners. It's the only runtime-modified element there and
it will be quite cache-hot.
By using LIST_DEL_INIT() instead of LIST_DEL()+LIST_INIT() we manage
to bump the peak connection rate by no less than 3% on 8 threads.
The perf top profile shows much less contention in this area which
suffered from the second reload.
It turns out that we call LIST_DEL+LIST_INIT very frequently and that
the compiler doesn't know what pointers get modified in the e->n->p
and e->p->n dance, so when LIST_INIT() is called, it reloads these
pointers, which is quite a bit of a mess in terms of performance.
This patch adds LIST_DEL_INIT() to perform the two operations at once
using local temporary variables so that the compiler knows these
pointers are left unaffected.
We move the code responsible of parsing protocol buffers messages
inside gRPC messages from sample.c to include/proto/protocol_buffers.h
so that to reuse it to cascade "ungrpc" converter.
For now on, "ungrpc" may take a second optional argument to provide
the protocol buffers types used to encode the field value to be extracted.
When absent the field value is extracted as a binary sample which may then
followed by others converters like "hex" which takes binary as input sample.
When this second argument is a type which does not match the one found by "ungrpc",
this field is considered as not found even if present.
With this patch we also remove the useless "varint" and "svarint" converters.
Update the documentation about "ungrpc" converters.
Parsing protocol buffer fields always consists in skip the field
if the field is not found or store the field value if found.
So, with this patch we factorize a little bit the code for "ungrpc" converter.
Well, that's becoming embarrassing. Now this fixes commit 4ef6801c
("BUG/MEDIUM: list: correct fix for LIST_POP_LOCKED's removal of last
element") which itself tried to fix commit 285192564. This fix only
works under low contention and was tested with the listener's queue.
With the idle conns it's obvious that it's still wrong since adding
more than one element to the list leaves a LLIST_BUSY pointer into
the list's head. This was visible when accumulating idle connections
in a server's list.
This new version of the fix almost goes back to the original code,
except that since then we addressed issues with expectedly idempotent
operations that were not. Now the code has been verified on paper again
and has survived 300 million connections spread over 4 threads.
This will have to be backported if the commit above is backported.
Let's keep a copy of these initial values. They will be useful to
compute automatic maxconn, as well as to restore proper limits when
doing an execve() on external checks.
This patch implements peer heartbeat feature to prevent any haproxy peer
from reconnecting too often, consuming sockets for nothing.
To do so, we add PEER_MSG_CTRL_HEARTBEAT new message to PEER_MSG_CLASS_CONTROL peers
control class of messages. A ->heartbeat field is added to peer structs
to store the heatbeat timeout value which is handled by the same function as for ->reconnect
to control the session timeouts. A 2-bytes heartbeat message is sent every 3s when
no updates have to be sent. This way, the peer which receives such a message is sure
the remote peer is still alive. So, it resets the ->reconnect peer session
timeout to its initial value (5s). This prevents any reconnection to an
already connected alive peer.
Historically the default frontend's maxconn used to be quite low (2000),
which was sufficient two decades ago but often proved to be a problem
when users had purposely set the global maxconn value but forgot to set
the frontend's.
There is no point in keeping this arbitrary limit for frontends : when
the global maxconn is lower, it's already too high and when the global
maxconn is much higher, it becomes a limiting factor which causes trouble
in production.
This commit allows the value to be set to zero, which becomes the new
default value, to mean it's not directly limited, or in fact it's set
to the global maxconn. Since this operation used to be performed before
computing a possibly automatic global maxconn based on memory limits,
the calculation of the maxconn value and its propagation to the backends'
fullconn has now moved to a dedicated function, proxy_adjust_all_maxconn(),
which is called once the global maxconn is stabilized.
This comes with two benefits :
1) a configuration missing "maxconn" in the defaults section will not
limit itself to a magically hardcoded value but will scale up to the
global maxconn ;
2) when the global maxconn is not set and memory limits are used instead,
the frontends' maxconn automatically adapts, and the backends' fullconn
as well.
In an attempt to try to provide automatic maxconn settings, we need to
decorrelate a listner's backlog and maxconn so that these values can be
independent. This introduces a listener_backlog() function which retrieves
the backlog value from the listener's backlog, the frontend's, the
listener's maxconn, the frontend's or falls back to 1024. This
corresponds to what was done in cfgparse.c to force a value there except
the last fallback which was not set since the frontend's maxconn is always
known.
As seen with Olivier, in the end the fix in commit 285192564 ("BUG/MEDIUM:
list: fix LIST_POP_LOCKED's removal of the last pointer") is wrong,
the code there was right but the bug was triggered by another bug in
LIST_ADDQ_LOCKED() which doesn't properly update the list's head by
inserting in the wrong order.
This will have to be backported if the commit above is backported.
There is a very difficult to reproduce race in the listener's accept
code, which is much easier to reproduce once connection limits are
properly enforced. It's an ABBA lock issue :
- the following functions take l->lock then lq_lock :
disable_listener, pause_listener, listener_full, limit_listener,
do_unbind_listener
- the following ones take lq_lock then l->lock :
resume_listener, dequeue_all_listener
This is because __resume_listener() only takes the listener's lock
and expects to be called with lq_lock held. The problem can easily
happen when listener_full() and limit_listener() are called a lot
while in parallel another thread releases sessions for the same
listener using listener_release() which in turn calls resume_listener().
This scenario is more prevalent in 2.0-dev since the removal of the
accept lock in listener_accept(). However in 1.9 and before, a different
but extremely unlikely scenario can happen :
thread1 thread2
............................ enter listener_accept()
limit_listener()
............................ long pause before taking the lock
session_free()
dequeue_all_listeners()
lock(lq_lock) [1]
............................ try_lock(l->lock) [2]
__resume_listener()
spin_lock(l->lock) =>WAIT[2]
............................ accept()
l->accept()
nbconn==maxconn =>
listener_full()
state==LI_LIMITED =>
lock(lq_lock) =>DEADLOCK[1]!
In practice it is almost impossible to trigger it because it requires
to limit both on the listener's maxconn and the frontend's rate limit,
at the same time, and to release the listener when the connection rate
goes below the limit between poll() returns the FD and the lock is
taken (a few nanoseconds). But maybe with threads competing on the
same core it has more chances to appear.
This patch removes the lq_lock and replaces it with a lockless queue
for the listener's wait queue (well, technically speaking a self-locked
queue) brought by commit a8434ec14 ("MINOR: lists: Implement locked
variations.") and its few subsequent fixes. This relieves us from the
need of the lq_lock and removes the deadlock. It also gets rid of the
distinction between __resume_listener() and resume_listener() since the
only difference was the lq_lock. All listener removals from the list
are now unconditional to avoid races on the state. It's worth noting
that the list used to never be initialized and that it used to work
only thanks to the state tests, so the initialization has now been
added.
This patch must carefully be backported to 1.9 and very likely 1.8.
It is mandatory to be careful about replacing all manipulations of
l->wait_queue, global.listener_queue and p->listener_queue.
Since LIST_DEL_LOCKED() and LIST_POP_LOCKED() now automatically reinitialize
the removed element, there's no need for keeping this LIST_INIT() call in the
idle connection code.
These operations previously used to return a "locked" element, which is
a constraint when multiple threads try to delete the same element, because
the second one will block indefinitely. Instead, let's make sure that both
LIST_DEL_LOCKED() and LIST_POP_LOCKED() always reinitialize the element
after deleting it. This ensures that the second thread will immediately
unblock and succeed with the removal. It also secures the pop vs delete
competition that may happen when trying to remove an element that's about
to be dequeued.
Commit a8434ec14 ("MINOR: lists: Implement locked variations.")
introduced locked lists which use the elements pointers as locks
for concurrent operations. Under heavy stress the lists occasionally
fail. The cause is a missing barrier at some points when updating
the list element and the head : nothing prevents the compiler (or
CPU) from updating the list head first before updating the element,
making another thread jump to a wrong location. This patch simply
adds the missing barriers before these two opeations.
This will have to be backported if the commit above is backported.
There was a typo making the last updated pointer be the pre-last element's
prev instead of the last's prev element. It didn't show up during early
tests because the contention is very rare on this one and it's implicitly
recovered when updating the pointers to go to the next element, but it was
clearly visible in the listener_accept() tests by having all threads block
on LIST_POP_LOCKED() with n==p==LLIST_BUSY.
This will have to be backported if commit a8434ec14 ("MINOR: lists:
Implement locked variations.") is backported.
Commit a8434ec14 ("MINOR: lists: Implement locked variations.")
introduced locked lists which use the elements pointers as locks
for concurrent operations. A copy-paste typo in LIST_ADDQ_LOCKED()
causes corruption in the list in case the next pointer is already
held, as it restores the previous pointer into the next one. It
may impact the server pools.
This will have to be backported if the commit above is backported.
Threads have long matured by now, still for most users their usage is
not trivial. It's about time to enable them by default on platforms
where we know the number of CPUs bound. This patch does this, it counts
the number of CPUs the process is bound to upon startup, and enables as
many threads by default. Of course, "nbthread" still overrides this, but
if it's not set the default behaviour is to start one thread per CPU.
The default number of threads is reported in "haproxy -vv". Simply using
"taskset -c" is now enough to adjust this number of threads so that there
is no more need for playing with cpu-map. And thanks to the previous
patches on the listener, the vast majority of configurations will not
need to duplicate "bind" lines with the "process x/y" statement anymore
either, so a simple config will automatically adapt to the number of
processors available.
tune.listener.multi-queue { on | off }
Enables ('on') or disables ('off') the listener's multi-queue accept which
spreads the incoming traffic to all threads a "bind" line is allowed to run
on instead of taking them for itself. This provides a smoother traffic
distribution and scales much better, especially in environments where threads
may be unevenly loaded due to external activity (network interrupts colliding
with one thread for example). This option is enabled by default, but it may
be forcefully disabled for troubleshooting or for situations where it is
estimated that the operating system already provides a good enough
distribution and connections are extremely short-lived.
It's important to monitor the accept queues to know if some incoming
connections had to be handled by their originating thread due to an
overflow. It's also important to be able to confirm thread fairness.
This patch adds "accq_pushed" to activity reporting, which reports
the number of connections that were successfully pushed into each
thread's queue, and "accq_full", which indicates the number of
connections that couldn't be pushed because the thread's queue was
full.
There is one point where we can migrate a connection to another thread
without taking risk, it's when we accept it : the new FD is not yet in
the fd cache and no task was created yet. It's still possible to assign
it a different thread than the one which accepted the connection. The
only requirement for this is to have one accept queue per thread and
their respective processing tasks that have to be woken up each time
an entry is added to the queue.
This is a multiple-producer, single-consumer model. Entries are added
at the queue's tail and the processing task is woken up. The consumer
picks entries at the head and processes them in order. The accept queue
contains the fd, the source address, and the listener. Each entry of
the accept queue was rounded up to 64 bytes (one cache line) to avoid
cache aliasing because tests have shown that otherwise performance
suffers a lot (5%). A test has shown that it's important to have at
least 256 entries for the rings, as at 128 it's still possible to fill
them often at high loads on small thread counts.
The processing task does almost nothing except calling the listener's
accept() function and updating the global session and SSL rate counters
just like listener_accept() does on synchronous calls.
At this point the accept queue is implemented but not used.
In order to quickly pick a thread ID when accepting a connection, we'll
need to know certain pre-computed values derived from the thread mask,
which are counts of bits per position multiples of 1, 2, 4, 8, 16 and
32. In practice it is sufficient to compute only the 4 first ones and
store them in the bind_conf. We update the count every time the
bind_thread value is adjusted.
The fields in the bind_conf struct have been moved around a little bit
to make it easier to group all thread bit values into the same cache
line.
The function used to return a thread number is bind_map_thread_id(),
and it maps a number between 0 and 31/63 to a thread ID between 0 and
31/63, starting from the left.
Function mask_find_rank_bit() returns the bit position in mask <m> of
the nth bit set of rank <r>, between 0 and LONGBITS-1 included, starting
from the left. For example ranks 0,1,2,3 for mask 0x55 will be 6, 4, 2
and 0 respectively. This algorithm is based on a popcount variant and
is described here : https://graphics.stanford.edu/~seander/bithacks.html.
Now that nbproc and nbthread are exclusive, we can still provide more
detailed explanations about what we've found in the config when a bind
line appears on multiple threads and processes at the same time, then
ignore the setting.
This patch reduces the listener's thread mask to a single mask instead
of an array of masks per process. Now we have only one thread mask and
one process mask per bind-conf. This removes ~504 bytes of RAM per
bind-conf and will simplify handling of thread masks.
If a "bind" line only refers to process numbers not found by its parent
frontend or not covered by the global nbproc directive, or to a thread
not covered by the global nbthread directive, a warning is emitted saying
what will be used instead.
In LIST_DEL_LOCKED(), initialize p2 to NULL, and only attempt to set it back
to its previous value if we had a previous element, and thus p2 is non-NULL.
Instead of having one task per thread and per server that does clean the
idling connections, have only one global task for every servers.
That tasks parses all the servers that currently have idling connections,
and remove half of them, to put them in a per-thread list of connections
to kill. For each thread that does have connections to kill, wake a task
to do so, so that the cleaning will be done in the context of said thread.
Use the locked macros when manipulating idle_orphan_conns, so that other
threads can remove elements from it.
It will be useful later to avoid having a task per server and per thread to
cleanup the orphan list.
Implement LIST_ADD_LOCKED(), LIST_ADDQ_LOCKED(), LIST_DEL_LOCKED() and
LIST_POP_LOCKED().
LIST_ADD_LOCKED, LIST_ADDQ_LOCKED and LIST_DEL_LOCKED work the same as
LIST_ADD, LIST_ADDQ and LIST_DEL, except before any manipulation it locks
the relevant elements of the list, so it's safe to manipulate the list
with multiple threads.
LIST_POP_LOCKED() removes the first element from the list, and returns its
data.
This patch implements "req.ungrpc" sample fetch method to decode and
parse a gRPC request. It takes only one argument: a protocol buffers
field number to identify the protocol buffers message number to be looked up.
This argument is a sort of path in dotted notation to the terminal field number
to be retrieved.
ex:
req.ungrpc(1.2.3.4)
This sample fetch catch the data in raw mode, without interpreting them.
Some protocol buffers specific converters may be used to convert the data
to the correct type.
This function is useful to parse strings made of unsigned integers
and to allocate a C array of unsigned integers from there.
For instance this function allocates this array { 1, 2, 3, 4, } from
this string: "1.2.3.4".
It is the HTX version of co_skip(). Internally, It uses the function htx_drain().
It will be used by other commits to fix bugs, so it must be backported to 1.9.
The function htx_drain() can now be used to drain data from an HTX message.
It will be used by other commits to fix bugs, so it must be backported to 1.9.
in co_skip(), the flag CF_WRITE_PARTIAL is set on the channel. The flag
CF_WROTE_DATA must also be set to notify the channel some data were sent.
This patch must be backported to 1.9.
Calculate if the fd or task should be locked once, before locking, and
reuse the calculation when determing when to unlock.
Fixes a race condition added in 87d54a9a for fds, and b20aa9ee for tasks,
released in 1.9-dev4. When one thread modifies thread_mask to be a single
thread for a task or fd while a second thread has locked or is waiting on a
lock for that task or fd, the second thread will not unlock it. For FDs,
this is observable when a listener is polled by multiple threads, and is
closed while those threads have events pending. For tasks, this seems
possible, where task_set_affinity is called, but I did not observe it.
This must be backported to 1.9.
This is a naive implementation of closefrom() which closes all FDs
starting from the one passed in argument. closefrom() is not provided
on all operating systems, and other versions will follow.
Add a per-thread counter of idling connections, and use it to determine
how many connections we should kill after the timeout, instead of using
the global counter, or we're likely to just kill most of the connections.
This should be backported to 1.9.
Use atomic operations when dealing with srv->curr_idle_conns, as it's shared
between threads, otherwise we could get inconsistencies.
This should be backported to 1.9.
1xx responses does not work in HTTP2 when the HTX is enabled. First of all, when
a response is parsed, only one HEADERS frame is expected. So when an interim
response is received, the flag H2_SF_HEADERS_RCVD is set and the next HEADERS
frame (for another interim repsonse or the final one) is parsed as a trailers
one. Then when the response is sent, because an EOM block is found at the end of
the interim HTX response, the ES flag is added on the frame, closing too early
the stream. Here, it is a design problem of the HTX. Iterim responses are
considered as full messages, leading to some ambiguities when HTX messages are
processed. This will not be fixed now, but we need to keep it in mind for future
improvements.
To fix the parsing bug, the flag H2_MSGF_RSP_1XX is added when the response
headers are decoded. When this flag is set, an EOM block is added into the HTX
message, despite the fact that there is no ES flag on the frame. And we don't
set the flag H2_SF_HEADERS_RCVD on the corresponding H2S. So the next HEADERS
frame will not be parsed as a trailers one.
To fix the sending bug, the ES flag is not set on the frame when an interim
response is processed and the flag H2_SF_HEADERS_SENT is not set on the
corresponding H2S.
This patch must be backported to 1.9.
Initialize ->srv peer field for all the peers, the local peer included.
Indeed, a haproxy process needs to connect to the local peer of a remote
process. Furthermore, when a "peer" or "server" line is parsed by parse_server()
the address must be copied to ->addr field of the peer object only if this address
has been also parsed by parse_server(). This is not the case if this address belongs
to the local peer and is provided on a "server" line.
After having parsed the "peer" or "server" lines of a peer
sections, the ->srv part of all the peer must be initialized for SSL, if
enabled. Same thing for the binding part.
Revert 1417f0b commit which is no more required.
No backport is needed, this is purely 2.0.
The existing threading flag in the 51Degrees API
(FIFTYONEDEGREES_NO_THREADING) has now been mapped to the HAProxy
threading flag (USE_THREAD), and the 51Degrees module code has been made
thread safe.
In Pattern, the cache is now locked with a spin lock from hathreads.h
using a new lable 'OTHER_LOCK'. The workset pool is now created with the
same size as the number of threads to avoid any time waiting on a
worket.
In Hash Trie, the global device offsets structure is only used in single
threaded operation. Multi threaded operation creates a new offsets
structure in each thread.
Commit 1055e687a ("MINOR: peers: Make outgoing connection to SSL/TLS
peers work.") introduced an "srv" field in the peers, which points to
the equivalent server to hold SSL settings. This one is not set when
the peer is local so we must always test it before testing p->srv->use_ssl
otherwise haproxy dies during reloads.
No backport is needed, this is purely 2.0.
For some embedded systems, it's pointless to have 32- or even 64- large
arrays of processes when it's known that much fewer processes will be
used in the worst case. Let's introduce this MAX_PROCS define which
contains the highest number of processes allowed to run at once. It
still defaults to LONGBITS but may be lowered.
This also depends on the nbthread count, so it must only be performed after
parsing the whole config file. As a side effect, this removes some code
duplication between servers and server-templates.
This must be backported to 1.9.
These two functions return either all_{proc,threads}_mask, or the argument.
This is used to default to all_proc_mask or all_threads_mask when not set
on bind_conf or proxies.
We'll call popcount() more often so better use a parallel method
than an iterative one. One optimal design is proposed at the site
below. It requires a fast multiplication though, but even without
it will still be faster than the iterative one, and all relevant
64 bit platforms do have a multiply unit.
https://graphics.stanford.edu/~seander/bithacks.html
Some unused fields were placed early and some important ones were on
the second cache line. Let's move the proto_list and name closer to
the end of the structure to bring accept() and default_target() into
the first cache line.
When compiling with DEBUG_FAIL_ALLOC, add a new option, tune.fail-alloc,
that gives the percentage of chances an allocation fails.
This is useful to check that allocation failures are always handled
gracefully.
With variable connection limits, it's not possible to accurately determine
whether the mux is still in use by comparing usage and max to be equal due
to the fact that one determines the capacity and the other one takes care
of the context. This can cause some connections to be dropped before they
reach their stream ID limit.
It seems it could also cause some connections to be terminated with
streams still alive if the limit was reduced to match the newly computed
avail_streams() value, though this cannot yet happen with existing muxes.
Instead let's switch to usage reports and simply check whether connections
are both unused and available before adding them to the idle list.
This should be backported to 1.9.
The new flag SI_FL_KILL_CONN is now set by the rare actions which
deliberately want the whole connection (and not just the stream) to be
killed. This is only used for "tcp-request content reject",
"tcp-response content reject", "tcp-response content close" and
"http-request reject". The purpose is to desambiguate the close from
a regular shutdown. This will be used by the next patches.
If we're adding a connection to the server orphan idle list, don't forget
to remove the CO_FL_SESS_IDLE flag, or we will assume later it's still
attached to a session.
This should be backported to 1.9.
The previous patch clarifies the fact that the htx pointer is never null
along all the code. This test for a null will never match, didn't catch
the pointer 1 before the fix for b_is_null(), but it confuses the compiler
letting it think that any dereferences made to this pointer after this
test could actually mean we're dereferencing a null. Let's now drop this
test. This saves us from having to add impossible tests everywhere to
avoid the warning.
This should be backported to 1.9 if the b_is_null() patch is backported.
Update the comments above htxbuf() and htx_from_buf() to make it clear
that they always return valid htx pointers so that callers know they do
not have to test them. This is only true after the fix on b_is_null()
which was the only known corner case.
This should be backported to 1.9 if the b_is_null() patch is backported.
In b_is_null(), make sure we return 1 if the buffer is waiting for its
allocation, as users assume there's memory allocated if b_is_null() returns
0.
The indirect impact of not having this was that htxbuf() would not match
b_is_null() for a buffer waiting for an allocation, and would thus return
the value 1 for the htx pointer, causing various crashes under low memory
condition.
Note that this patch makes gcc versions 6 and above report two null-deref
warnings in proto_htx.c since htx_is_empty() continues to check for a null
pointer without knowing that this is protected by the test on b_is_null().
This is addressed by the following patches.
This should be backported to 1.9.
The new function h2_frame_check() checks the protocol limits for the
received frame (length, ID, direction) and returns a verdict made of
a connection error code. The purpose is to be able to validate any
frame regardless of the state and the ability to call the frame handler,
and to emit a GOAWAY early in this case.
There's a very small but existing uncertainty window when waking another
thread up where it is possible for task_wakeup() not to wake the other
task up because it's still running while this once is in the process of
finishing and loses its TASK_RUNNING flag. In this case the wakeup will
be missed.
The problem is that we have a single flag to store 3 states, since the
transition from running to sleeping isn't atomic. Thus we need to have
another flag to cover this part. This patch introduces TASK_QUEUED to
mention that the task is already in the run queue, running or not. This
bit will be removed while TASK_RUNNING is kept once dequeued, and will
be used when removing TASK_RUNNING to check if the task has been requeued.
It might be possible to slightly improve this but the occurrence rate
is quite low and we don't really need to complexify the scheduler to
optimize for a rare case.
The impact with the current code is very low since we have few inter-
thread wakeups. Most of them are caused by checks killing sessions.
This must be backported to 1.9.
There's some value in being able to limit MAX_THREADS, either to save
precious resources in embedded environments, or to protect certain
deployments against accidently incorrect settings.
With this patch, if MAX_THREADS is defined at build time, it will be
used. However, given that LONGBITS is not a macro but is defined
according to sizeof(long), we can't check the value range at build
time and instead we need to perform the check at early boot time.
However, the compiler is able to optimize away the constant comparisons
and doesn't even emit the check code when values are correct.
The output message regarding threading support was improved to report
the number of threads.
The header used to be parsed only in HTX but not in legacy. And even in
HTX mode, the value was dropped. Let's always parse it and report the
parsed value back so that we'll be able to store it in the streams.
Before the first send() attempt, we should be in SI_ST_CON, not
SI_ST_EST, since we have not yet attempted to send and we are
allowed to retry. This is particularly important with complex
outgoing muxes which can fail during the first send attempt (e.g.
failed stream ID allocation).
It only requires that sess_update_st_con_tcp() knows about this
possibility, as we must not forcefully close a reused connection
when facing an error in this case, this will be handled later.
This may be backported to 1.9 with care after some observation period.
Some servers may wish to limit the total number of requests they execute
over a connection because some of their components might leak resources.
In HTTP/1 it was easy, they just had to emit a "connection: close" header
field with the last response. In HTTP/2, it's less easy because the info
is not always shared with the component dealing with the H2 protocol and
it could be harder to advertise a GOAWAY with a stream limit.
This patch provides a solution to this by adding a new "max-reuse" parameter
to the server keyword. This parameter indicates how many times an idle
connection may be reused for new requests. The information is made available
and the underlying muxes will be able to use it at will.
This patch should be backported to 1.9.
RFC7541#6.3 mandates that an error is reported when a dynamic table size
update announces a size larger than the one configured with settings. This
is tested by h2spec using test "hpack/6.3/1".
This must be backported to 1.9 and possibly 1.8 as well.
This patch adds H2_FT_HDR_MASK to group all frame types carrying headers
information, and H2_FT_LATE_MASK to group frame types allowed to arrive
after a stream was closed.
Make "bind" keywork be supported in "peers" sections.
All "bind" settings are supported on this line.
Add "default-bind" option to parse the binding options excepted the bind address.
Do not parse anymore the bind address for local peers on "server" lines.
Do not use anymore list_for_each_entry() to set the "peers" section
listener parameters because there is only one listener by "peers" section.
May be backported to 1.5 and newer.
This patch adds pointer to a struct server to peer structure which
is initialized after having parsed a remote "peer" line.
After having parsed all peers section we run ->prepare_srv to initialize
all SSL/TLS stuff of remote perr (or server).
Remaining thing to do to completely support peer protocol over SSL/TLS:
make "bind" keyword be supported in "peers" sections to make SSL/TLS
incoming connections to local peers work.
May be backported to 1.5 and newer.
When using the peers feature a race condition could prevent
a connection from being properly counted. When this connection
exits it is being "uncounted" nonetheless, leading to a possible
underflow (-1) of the conn_curr stick table entry in the following
scenario :
- Connect to peer A (A=1, B=0)
- Peer A sends 1 to B (A=1, B=1)
- Kill connection to A (A=0, B=1)
- Connect to peer B (A=0, B=2)
- Peer A sends 0 to B (A=0, B=0)
- Peer B sends 0/2 to A (A=?, B=0)
- Kill connection to B (A=?, B=-1)
- Peer B sends -1 to A (A=-1, B=-1)
This fix may be backported to all supported branches.
Since all of them are exclusive, let's move them to an union instead
of eating memory with the sum of all of them. We're using a transparent
union to limit the code changes.
Doing so reduces the struct lbprm from 392 bytes to 372, and thanks
to these changes, the struct proxy is now down to 6480 bytes vs 6624
before the changes (144 bytes saved per proxy).
This one is a proxy option which can be inherited from defaults even
if the LB algo changes. Move it out of the lb_chash struct so that we
don't need to keep anything separate between these structs. This will
allow us to merge them into an union later. It even takes less room
now as it fills a hole and removes another one.
The algo-specific settings move from the proxy to the LB algo this way :
- uri_whole => arg_opt1
- uri_len_limit => arg_opt2
- uri_dirs_depth1 => arg_opt3
Some algorithms require a few extra options (up to 3). Let's provide
some room in lbprm to store them, and make sure they're passed from
defaults to backends.
These ones used to rely on separate variables called hh_name/hh_len
but they are exclusive with the former. Let's use the same variable
which becomes a generic argument name and length for the LB algorithm.
Openssl switched from aes128 to aes256 since may 2016 to compute
tls ticket secrets used by default. But Haproxy still handled only
128 bits keys for both tls key file and CLI.
This patch permit the user to set aes256 keys throught CLI or
the key file (80 bytes encoded in base64) in the same way that
aes128 keys were handled (48 bytes encoded in base64):
- first 16 bytes for the key name
- next 16/32 bytes for aes 128/256 key bits key
- last 16/32 bytes for hmac 128/256 bits
Both sizes are now supported (but keys from same file must be
of the same size and can but updated via CLI only using a key of
the same size).
Note: This feature need the fix "dec func ignores padding for output
size checking."
Instead of assuming we have a server, store the proxy directly in struct
check, and use it instead of s->server.
This should be a no-op for now, but will be useful later when we change
mail checks to avoid having a server.
This should be backported to 1.9.
When mux->init() fails, session_free() will call it again to unregister
it while it was already done, resulting in null derefs or use-after-free.
This typically happens on out-of-memory conditions during H1 or H2 connection
or stream allocation.
This fix must be backported to 1.9.
The function channel_htx_truncate() can now be used on HTX buffer to truncate
all incoming data, keeping outgoing one intact. This function relies on the
function channel_htx_erase() and htx_truncate().
This patch may be backported to 1.9. If so, the patch "MINOR: channel/htx: Add
the HTX version of channel_truncate()" must also be backported.
HTX versions for functions to test the free space in input against the reserve
have been added. Now, on HTX streams, following functions can be used:
* channel_htx_may_recv
* channel_htx_recv_limit
* channel_htx_recv_max
* channel_htx_full
This patch must be backported in 1.9 because it will be used by a futher patch
to fix a bug.
While testing fixes, it's sometimes confusing to rebuild only one C file
(e.g. a mux) and not to have the correct commit ID reported in "haproxy -v"
nor on the stats page.
This patch adds a new "version.c" file which is always rebuilt. It's
very small and contains only 3 variables derived from the various
version strings. These variables are used instead of the macros at the
few places showing the version. This way the output version of the
running code is always correct for the parts that were rebuilt.
Currently the H1 headers parser works for either a request or a response
because it starts from the start line. It is also able to resume its
processing when it was interrupted, but in this case it doesn't update
the list.
Make it support a new flag, H1_MF_HDRS_ONLY so that the caller can
indicate it's only interested in the headers list and not the start
line. This will be convenient to parse H1 trailers.
This function is usable to transform a list of H2 header fields to a
HTX trailers block. It takes care of rejecting forbidden headers and
pseudo-headers when performing the conversion. It also emits the
trailing CRLF that is currently needed in the HTX trailers block.
This function is usable to transform a list of H2 header fields to a
H1 trailers block. It takes care of rejecting forbidden headers and
pseudo-headers when performing the conversion.
This function must be called when new incoming data are pushed in the channel's
buffer. It updates the channel state and take care of the fast forwarding by
consuming right amount of data and decrementing "->to_forward" accordingly when
necessary. In fact, this patch just moves a part of ci_putblk in a dedicated
function.
This patch must be backported to 1.9.
Instead of keeping track of the number of connections we're responsible for,
keep track of the number of connections we're responsible for that we are
currently considering idling (ie that we are not using, they may be in use
by other sessions), that way we can actually reuse connections when we have
more connections than the max configured.
When a session adds a connection to its connection list, we used to remove
connections for an another server if there were not enough room for our
server. This can't work, because those lists are now the list of connections
we're responsible for, not just the idle connections.
To fix this, allow for an unlimited number of servers, instead of using
an array, we're now using a linked list.
This function will be used to move parts of a buffer to another place
in the same buffer, even if the parts overlap. In order to keep things
under reasonable control, it only uses a length and absolute offsets
for the source and destination, and doesn't consider head nor data.
Released version 2.0-dev0 with the following main changes :
- BUG/MAJOR: connections: Close the connection before freeing it.
- REGTEST: Require the option LUA to run lua tests
- REGTEST: script: Process script arguments before everything else
- REGTEST: script: Evaluate the varnishtest command to allow quoted parameters
- REGTEST: script: Add the option --clean to remove previous log direcotries
- REGTEST: script: Add the option --debug to show logs on standard ouput
- REGTEST: script: Add the option --keep-logs to keep all log directories
- REGTEST: script: Add the option --use-htx to enable the HTX in regtests
- REGTEST: script: Print only errors in the results report
- REGTEST: Add option to use HTX prefixed by the macro 'no-htx'
- REGTEST: Make reg-tests target support argument.
- REGTEST: Fix a typo about barrier type.
- REGTEST: Be less Linux specific with a syslog regex.
- REGTEST: Missing enclosing quotes for ${tmpdir} macro.
- REGTEST: Exclude freebsd target for some reg tests.
- BUG/MEDIUM: h2: Don't forget to quit the sending_list if SUB_CALL_UNSUBSCRIBE.
- BUG/MEDIUM: mux-h2: Don't forget to quit the send list on error reports
- BUG/MEDIUM: dns: Don't prevent reading the last byte of the payload in dns_validate_response()
- BUG/MEDIUM: dns: overflowed dns name start position causing invalid dns error
- BUG/MINOR: compression/htx: Don't compress responses with unknown body length
- BUG/MINOR: compression/htx: Don't add the last block of data if it is empty
- MEDIUM: mux_h1: Implement h1_show_fd.
- REGTEST: script: Add support of alternatives in requited options list
- REGTEST: Add a basic test for the compression
- BUG/MEDIUM: mux-h2: don't needlessly wake up the demux on short frames
- REGTEST: A basic test for "http-buffer-request"
- BUG/MEDIUM: server: Also copy "check-sni" for server templates.
- MINOR: ssl: Add ssl_sock_set_alpn().
- MEDIUM: checks: Add check-alpn.
Add a way to configure the ALPN used by check, with a new "check-alpn"
keyword. By default, the checks will use the server ALPN, but it may not
be convenient, for instance because the server may use HTTP/2, while checks
are unable to do HTTP/2 yet.
In si_release_endpoint(), if the end point is a connection, because we don't
know which mux to use it, make sure we close the connection before freeing it,
or else, we'd have a fd left for polling, which would point to a now free'd
connection.
This should be backported to 1.9.
As long-time changes have accumulated over time, the exported functions
of the stream-interface were almost all prefixed "si_<something>" while
most private ones (mostly callbacks) were called "stream_int_<something>".
There were still a few confusing exceptions, which were addressed to
follow this shcme :
- stream_sock_read0(), only used internally, was renamed stream_int_read0()
and made static
- stream_int_notify() is only private and was made static
- stream_int_{check_timeouts,report_error,retnclose,register_handler,update}
were renamed si_<something>.
Now it is clearer when checking one of these if it risks to be used outside
or not.
There was a reference to struct stream in conn_free() for the case
where we're freeing a connection that doesn't have a mux attached.
For now we know it's always a stream, and we only need to do it to
put a NULL in s->si[1].end.
Let's do it better by storing the pointer to si[1].end in the context
and specifying that this pointer is always nulled if the mux is null.
This way it allows a connection to detach itself from wherever it's
being used. Maybe we could even get rid of the condition on the mux.
We most often store the mux context there but it can also be something
else while setting up the connection. Better call it "ctx" and know
that it's the owner's context than misleadingly call it mux_ctx and
get caught doing suspicious tricks.
The SUB_CAN_SEND/SUB_CAN_RECV enum values have been confusing a few
times, especially when checking them on reading. After some discussion,
it appears that calling them SUB_RETRY_SEND/SUB_RETRY_RECV more
accurately reflects their purpose since these events may only appear
after a first attempt to perform the I/O operation has failed or was
not completed.
In addition the wait_reason field in struct wait_event which carries
them makes one think that a single reason may happen at once while
it is in fact a set of events. Since the struct is called wait_event
it makes sense that this field is called "events" to indicate it's the
list of events we're subscribed to.
Last, the values for SUB_RETRY_RECV/SEND were swapped so that value
1 corresponds to recv and 2 to send, as is done almost everywhere else
in the code an in the shutdown() call.
When producing an HTX message, we can't rely on the next-level H1 parser
to check and deduplicate the content-length header, so we have to do it
while parsing a message. The algorithm is the exact same as used for H1
messages.
Types DNS_SRVRQ and CS were not referenced in the type to string
conversions, causing possibly misleading outputs in session dumps.
Now instead of showing "NONE" for unknown invalid types names, we
display "!INVAL!" to clear the confusion that may exist in case of
memory corruption for example.
Add a new flag to conn_streams, CS_FL_ERR_PENDING. This is to be set instead
of CS_FL_ERR in case there's still more data to be read, so that we read all
the data before closing.
When using DEBUG_MEMORY_POOLS, when we want to crash, instead of using
*(int *)0 = 0, use *(volatile int *)0 = 0, or clang will just translate it
to a nop, instead of dereferencing 0.
In session, don't keep an infinite number of connection that can idle.
Add a new frontend parameter, "max-session-srv-conns" to set a max number,
with a default value of 5.
Instead of trying to get the session from the connection, which is not
always there, and of course there could be multiple sessions per connection,
provide it with the init() and attach() methods, so that we know the
session for each outgoing stream.
Instead of the old "idle-timeout" mechanism, add a new option,
"pool-purge-delay", that sets the delay before purging idle connections.
Each time the delay happens, we destroy half of the idle connections.
Add a new command, "pool-max-conn" that sets the maximum number of connections
waiting in the orphan idling connections list (as activated with idle-timeout).
Using "-1" means unlimited. Using pools is now dependant on this.
Sadly we didn't have the cumulated number of connections established to
servers till now, so let's now update it per backend and per-server and
report it in the stats. On the stats page it appears in the tooltip
when hovering over the total sessions count field.
Add a new method to mux, "reset", that is used to let the mux know the
connection attempt failed, and we're about to retry, so it just have to
reinit itself. Currently only the H1 mux needs it.
Handle the CLI level in the master CLI. In order to do this, the master
CLI stores the level in the stream. Each command are prefixed by a
"user" or "operator" command before they are forwarded to the target
CLI.
The level can be configured in the haproxy program arguments with the
level keyword: -S /tmp/sock,level,admin -S /tmp/sock2,level,user.
The maximum number of bytes in a DNS name is indeed 255, but we
need to allocate one more byte for the NULL-terminating byte.
Otherwise dns_read_name() might return 255 for a very long name,
causing dns_validate_dns_response() to write a NULL value one
byte after the end of the buffer:
dns_answer_record->name[len] = 0;
The next fields in the struct being filled from the content of the
query, it might have been possible to fill them with non-0 values,
causing for example a strlen() of the name to read past the end of
the struct and access unintended parts of the memory, possibly
leading to a crash.
To be backported to 1.8, probably also 1.7.
Since the data_len field of the dns_answer_item struct was an int16_t,
record length values larger than 2^15-1 were causing an integer
overflow and thus may have been interpreted as negative, making us
read well before the beginning of the buffer.
This might have led to information disclosure or a crash.
To be backported to 1.8, probably also 1.7.
These flags haven't been used for a while. SF_TUNNEL was reintroduced
by commit d62b98c6e ("MINOR: stream: don't set backend's nor response
analysers on SF_TUNNEL") to handle the two-level streams needed to
deal with the first model for H2, and was not removed after this model
was abandonned. SF_INITIALIZED was only set. SF_CONN_TAR was never
referenced at all.
Now that h1 and legacy HTTP are two distinct things, there's no need
to keep the legacy HTTP parsers in h1.c since they're only used by
the legacy code in proto_http.c, and h1.h doesn't need to include
hdr_idx anymore. This concerns the following functions :
- http_parse_reqline();
- http_parse_stsline();
- http_msg_analyzer();
- http_forward_trailers();
All of these were moved to http_msg.c.
Lots of HTTP code still uses struct http_msg. Not only this code is
still huge, but it's part of the legacy interface. Let's move most
of these functions to a separate file http_msg.c to make it more
visible which file relies on what. It's mostly symmetrical with
what is present in http_htx.c.
The function http_transform_header_str() which used to rely on two
function pointers to look up a header was simplified to rely on
two variants http_legacy_replace_{,full_}header(), making both
sides of the function much simpler.
No code was changed beyond these moves.
All the HTX definition is self-contained and doesn't really depend on
anything external since it's a mostly protocol. In addition, some
external similar files (like h2) also placed in common used to rely
on it, making it a bit awkward.
This patch moves the two htx.h files into a single self-contained one.
The historical dependency on sample.h could be also removed since it
used to be there only for http_meth_t which is now in http.h.
The cache is now able to store and resend HTX messages. When an HTX message is
stored in the cache, the headers are prefixed with their block's info (an
uint32_t), containing its type and its length. Data, on their side, are stored
without any prefix. Only the value is copied in the cache. 2 fields have been
added in the structure cache_entry, hdrs_len and data_len, to known the size, in
the cache, of the headers part and the data part. If the message is chunked, the
trailers are also copied, the same way as data. When the HTX message is
recreated in the cache applet, the trailers size is known removing the headers
length and the data lenght from the total object length.
The CLI proxy was not handling payload. To do that, we needed to keep a
connection active on a server and to transfer each new line over that
connection until we receive a empty line.
The CLI proxy handles the payload in the same way that the CLI do it.
Examples:
$ echo -e "@1;add map #-1 <<\n$(cat data)\n" | socat /tmp/master-socket -
$ socat /tmp/master-socket readline
prompt
master> @1
25130> add map #-1 <<
+ test test
+ test2 test2
+ test3 test3
+
25130>
There were a number of ugly setsockopt() calls spread all over
proto_http.c, proto_htx.c and hlua.c just to manipulate the front
connection's TOS, mark or TCP quick-ack. These ones entirely relied
on the connection, its existence, its control layer's presence, and
its addresses. Worse, inet_set_tos() was placed in proto_http.c,
exported and used from the two other ones, surrounded in #ifdefs.
This patch moves this code to connection.h and makes the other ones
rely on it without ifdefs.
The new function hpack_encode_path() supports encoding a path into
the ":path" header. It knows about "/" and "/index.html" which use
a single byte, and falls back to literal encoding for other ones,
with a fast path for short paths < 127 bytes.
The new function hpack_encode_scheme() supports encoding a scheme
into the ":scheme" header. It knows about "https" and "http" which use
a single byte, and falls back to literal encoding for other ones.
The new function hpack_encode_method() supports encoding a method.
It knows about GET and POST which use a single byte, and falls back
to literal encoding for other ones.
This header exists with 7 different values, it's worth taking them
into account for the encoding, hence these functions. One of them
makes use of an integer only and computes the 3 output bytes in case
of literal. The other one benefits from the knowledge of an existing
string, which for example exists in the case of H1 to H2 encoding.
For long header values whose index is known, hpack_encodde_long_idx()
may now be used. This function emits the short index and follows with
the header's value.
Most direct calls to HPACK functions are made to encode short header
fields like methods, schemes or statuses, whose lengths and indexes
are known. Let's have a small function to do this.
We'll need these functions from other inline functions, let's make them
accessible. len_to_bytes() was renamed to hpack_len_to_bytes() since it's
now exposed.
This macro may be used to block constant propagation that lets the compiler
detect a possible NULL dereference on a variable resulting from an explicit
assignment in an impossible check. Sometimes a function is called which does
safety checks and returns NULL if safe conditions are not met. The place
where it's called cannot hit this condition and dereferencing the pointer
without first checking it will make the compiler emit a warning about a
"potential null pointer dereference" which is hard to work around. This
macro "washes" the pointer and prevents the compiler from emitting tests
branching to undefined instructions. It may only be used when the developer
is absolutely certain that the conditions are guaranteed and that the
pointer passed in argument cannot be NULL by design.
A typical use case is a top-level function doing this :
if (frame->type == HEADERS)
parse_frame(frame);
Then parse_frame() does this :
void parse_frame(struct frame *frame)
{
const char *frame_hdr;
frame_hdr = frame_hdr_start(frame);
if (*frame_hdr == FRAME_HDR_BEGIN)
process_frame(frame);
}
and :
const char *frame_hdr_start(const struct frame *frame)
{
if (frame->type == HEADERS)
return frame->data;
else
return NULL;
}
Above parse_frame() is only called for frame->type == HEADERS so it will
never get a NULL in return from frame_hdr_start(). Thus it's always safe
to dereference *frame_hdr since the check was already performed above.
It's then safe to address it this way instead of inventing dummy error
code paths that may create real bugs :
void parse_frame(struct frame *frame)
{
const char *frame_hdr;
frame_hdr = frame_hdr_start(frame);
ALREADY_CHECKED(frame_hdr);
if (*frame_hdr == FRAME_HDR_BEGIN)
process_frame(frame);
}
Calling tolower/toupper for each character is slow, a lookup into a
256-byte table is cheaper, especially for common characters used in
header field names which all fit into a cache line. Let's create these
two variables marked weak so that they're included only once.
The ist functions were missing functions to copy an IST into a target
buffer, making some code have to resort to memcpy(), which tends to be
overkill for small strings, that the compiler cannot guess. In addition
sometimes there is a need to turn a string to lower or upper case so it
had to be overwritten after the operation.
This patch adds 6 functions to copy an ist to a buffer, as binary or as a
string (i.e. a zero is or is not appended), and optionally to apply a
lower case or upper case transformation on the fly.
A number of tests were performed to optimize the processing for small
strings. The loops are marked unlikely to dissuade the compilers from
over-optimizing them and switching to SIMD instructions. The lower case
or upper case transformations used to rely on external functions for
each character and to crappify the code due to clobbered registers,
which is not acceptable when we know that only a certain class of chars
has to be transformed, so the test was open-coded.
CS_FL_RCV_MORE is used in two cases, to let the conn_stream
know there may be more data available, and to let it know that
it needs more room. We can't easily differentiate between the
two, and that may leads to hangs, so split it into two flags,
CS_FL_RCV_MORE, that means there may be more data, and
CS_FL_WANT_ROOM, that means we need more room.
This should not be backported.
If we try to receive before the connection is established, we lose the
send event and are not woken up anymore once the connection is established.
This was diagnosed by Olivier.
No backport is needed.
There are some situations where we need to wait for the other side to
be connected. None of the current blocking flags support this. It used
to work more or less by accident using the old flags. Let's add a new
flag to mention we're blocking on this, it's removed by si_chk_rcv()
when a connection is established. It should be enough for now.
The master is not supposed to run (at the moment) any task before the
polling loop, the created tasks should be run only in the workers but in
the master they should be disabled or removed.
No backport needed.
To ease the fast forwarding and the infinte forwarding on HTX proxies, 2
functions have been added to let the channel be almost aware of the way data are
stored in its buffer. By calling these functions instead of legacy ones, we are
sure to forward the right amount of data.
Now, the function htx_from_buf() will set the buffer's length to its size
automatically. In return, the caller should call htx_to_buf() at the end to be
sure to leave the buffer hosting the HTX message in the right state. When the
caller can use the function htxbuf() to get the HTX message without any update
on the underlying buffer.
The small HTX overhead is enough to make the system perform multiple
reads and unaligned memory copies. Here we provide a function whose
purpose is to reduce the apparent room in a buffer by the size of the
overhead for DATA blocks, which is the struct htx plus 2 blocks (one
for DATA, one for the end of message so that small blocks can fit at
once). The muxes using HTX will be encouraged to use this one instead
of b_room() to compute the available buffer room and avoid filling
their demux buf with more data than can fit at once into the HTX
buffer.
This one is used a lot during transfers, let's avoid resetting its
size when there are already data in the buffer since it implies the
size is correct.
Add a new keyword for servers, "idle-timeout". If set, unused connections are
kept alive until the timeout happens, and will be picked for reuse if no
other connection is available.
Add a new method to muxes, "max_streams", that returns the max number of
streams the mux can handle. This will be used to know if a mux is in use
or not.
We currently have conn_get_best_mux() to return the best mux for a
given protocol name, side and proxy mode. But we need the mux entry
as well in order to fix the bind_conf and servers at the end of the
config parsing. Let's split the function in two parts. It's worth
noting that the <conn> argument is never used anymore so this part
is eligible to some cleanup.
Till now we could only produce an HTTP/1 request from a list of H2
request headers. Now the new function h2_make_htx_request() does the
same but using the HTX encoding instead, while respecting the H2
semantics. The code is not much different from the first version,
only the encoding differs.
For now it's not used.
First, to be called on HTX streams, a filter must explicitly be declared as
compatible by setting the flag STRM_FLT_FL_HAS_FILTERS on the filter's config at
HAProxy startup. This flag is checked when a filter implementation is attached
to a stream.
Then, some changes have been made on HTTP callbacks. The callback http_payload
has been added to filter HTX data. It will be called on HTX streams only. It
replaces the callbacks http_data, http_chunk_trailers and http_forward_data,
called on legacy HTTP streams only and marked as deprecated. The documention
(once updated)) will give all information to implement this new callback. Other
HTTP callbacks will be called for HTX and HTTP legacy streams. So it is the
filter's responsibility to known which kind of data it handles. The macro
IS_HTX_STRM should be used in such cases.
There is at least a noticeable changes in the way data are forwarded. In HTX,
after the call to the callback http_headers, all the headers are considered as
forwarded. So, in http_payload, only the body and eventually the trailers will
be filtered.
First of all, an dedicated error snapshot, h1_snapshot, has been added. It
contains more or less the some info than http_snapshot but adapted for H1
messages. Then, the function h1_capture_bad_message() has been added to capture
bad H1 messages. And finally, the function h1_show_error_snapshot() is used to
dump these errors. Only Headers or data parsing are captured.
During startup, after the configuration parsing, all HTTP error messages
(errorloc, errorfile or default messages) are converted into HTX messages and
stored in dedicated buffers. We use it to return errors in the HTX analyzers
instead of using ugly OOB blocks.
Instead, we now use the htx_sl coming from the HTX message. It avoids to have
too H1 specific code in version-agnostic parts. Of course, the concept of the
start-line is higly influenced by the H1, but the structure htx_sl can be
adapted, if necessary. And many things depend on a start-line during HTTP
analyzis. Using the structure htx_sl also avoid boring conversions between HTX
version and H1 version.
If there is no start-line, this offset is set to -1. Otherwise, it is the
relative address where the start-line is stored in the data block. When the
start-line is added, replaced or removed, this offset is updated accordingly. On
remove, if the start-line is no set and if the next block is a start-line, the
offset is updated. Finally, when an HTX structure is defragmented, the offset is
also updated accordingly.
The HTX start-line is now a struct. It will be easier to extend, if needed. Same
info can be found, of course. In addition it is now possible to set flags on
it. It will be used to set some infos about the message.
Some macros and functions have been added in proto/htx.h to help accessing
different parts of the start-line.
The function htx_find_blk() returns the HTX block containing data with a given
offset, relatively to the beginning of the HTX message. It is a good way to skip
outgoing data and find the first HTX block not already processed.
the functions htx_get_next() and htx_get_prev() are used to iterate on an HTX
message using blocks position. With htx_get_next_blk() and htx_get_prev_blk(),
it is possible to do the same, but with HTX blocks. Of course, internally, we
rely on position's versions to do so. But it is handy for callers to not take
care of the blocks position.
The function htx_add_data_before() can be used to add an HTX block before
another one. For instance, it could be used to add some data before the
end-of-message marker.
Time to time, the need arises to get some info owned by the multiplexer about a
connection stream from the upper layer. Today we really need to get some dates
and durations specific to the conn_stream. It is only true for the mux H1 and
H2. Otherwise it will be impossible to have correct times reported in the logs.
To do so, the structure cs_info has been defined to provide all info we ever
need on a conn_stream from the upper layer. Of course, it is the first step. So
this structure will certainly envloved. But for now, only the bare minimum is
referenced. On the mux side, the callback get_cs_info() has been added in the
structure mux_ops. Multiplexers can now implement it, if necessary, to return a
pointer on a structure cs_info. And finally, the function si_get_cs_info()
should be used from the upper layer. If the stream interface is not attached to
a connection stream, this function returns NULL, likewise if the callback
get_cs_info() is not defined for the corresponding mux.
htx_cut_data_blk() is used to cut the beginning of a DATA block after a
part of it was tranferred. It simply advances the address, reduces the
advertised length and updates the htx's total data count.
It looks like we forgot to report HTX when listing the muxes and their
respective protocols, leading to "NONE" being displayed. Let's report
"HTX" and "HTTP|HTX" since both will exist. Also fix a minor typo in
the output message.
Instead of just storing the last connection in the session, store all of
the connections, for at most MAX_SRV_LIST (currently 5) targets.
That way we can do keepalive on more than 1 outgoing connection when the
client uses HTTP/2.
Having a thread_local for the pool cache is messy as we need to
initialize all elements upon startup, but we can't until the threads
are created, and once created it's too late. For this reason, the
allocation code used to check for the pool's initialization, and
it was the release code which used to detect the first call and to
initialize the cache on the fly, which is not exactly optimal.
Now that we have initcalls, let's turn this into a per-thread array.
This array is initialized very early in the boot process (STG_PREPARE)
so that pools are always safe to use. This allows to remove the tests
from the alloc/free calls.
Doing just this has removed 2.5 kB of code on all cumulated pool_alloc()
and pool_free() paths.
signal_init(), init_log(), init_stream(), and init_task() all used to
only preset some values and lists. This needs to be done very early to
provide a reliable interface to all other users. The calls used to be
explicit in haproxy.c:init(). Now they're placed in initcalls at the
STG_PREPARE stage. The functions are not exported anymore.
Instead of exporting a number of pools and having to manually delete
them in deinit() or to have dedicated destructors to remove them, let's
simply kill all pools on deinit().
For this a new function pool_destroy_all() was introduced. As its name
implies, it destroys and frees all pools (provided they don't have any
user anymore of course).
This allowed to remove 4 implicit destructors, 2 explicit ones, and 11
individual calls to pool_destroy(). In addition it properly removes
the mux_pt_ctx pool which was not cleared on exit (no backport needed
here since it's 1.9 only). The sig_handler pool doesn't need to be
exported anymore and became static now.
This commit replaces the explicit pool creation that are made in
constructors with a pool registration. Not only this simplifies the
pools declaration (it can be done on a single line after the head is
declared), but it also removes references to pools from within
constructors. The only remaining create_pool() calls are those
performed in init functions after the config is parsed, so there
is no more user of potentially uninitialized pool now.
It has been the opportunity to remove no less than 12 constructors
and 6 init functions.
The new function create_pool_callback() takes 3 args including the
return pointer, and creates a pool with the specified name and size.
In case of allocation error, it emits an error message and returns.
The new macro REGISTER_POOL() registers a callback using this function
and will be usable to request some pools creation and guarantee that
the allocation will be checked. An even simpler approach is to use
DECLARE_POOL() and DECLARE_STATIC_POOL() which declare and register
the pool.
Most calls to hap_register_post_check(), hap_register_post_deinit(),
hap_register_per_thread_init(), hap_register_per_thread_deinit() can
be done using initcalls and will not require a constructor anymore.
Let's create a set of simplified macros for this, called respectively
REGISTER_POST_CHECK, REGISTER_POST_DEINIT, REGISTER_PER_THREAD_INIT,
and REGISTER_PER_THREAD_DEINIT.
Some files were not modified because they wouldn't benefit from this
or because they conditionally register (e.g. the pollers).
Most register_build_opts() calls use static strings. These ones were
replaced with a trivial REGISTER_BUILD_OPTS() statement adding the string
and its call to the STG_REGISTER section. A dedicated section could be
made for this if needed, but there are very few such calls for this to
be worth it. The calls made with computed strings however, like those
which retrieve OpenSSL's version or zlib's version, were moved to a
dedicated function to guarantee they are called late in the process.
For example, the SSL call probably requires that SSL_library_init()
has been called first.
Using __decl_spinlock(), __decl_rwlock(), __decl_aligned_spinlock()
and __decl_aligned_rwlock(), one can now simply declare a spinlock
or an rwlock which will automatically be initialized at boot time
by calling the ha_spin_init() or ha_rwlock_init() callback. The
"aligned" variants enforce a 64-byte alignment on the lock.
This patch adds ha_spin_init() and ha_rwlock_init() which are used as
a callback to initialise locks at boot time. They perform exactly the
same as HA_SPIN_INIT() or HA_RWLOCK_INIT() but from within a real
function.
We currently have to deal with multiple initialization stages in a way
that can be confusing, because certain parts rely on others having been
properly initialized. Most calls consist in adding lists to existing
lists, whose heads are initialized in the declaration so this is easy.
But some calls create new pools and require pools to be properly
initialized. Pools currently are thread-local and as such cannot be
pre-initialized, requiring run-time checks.
All this could be simplified by using multiple boot stages and allowing
functions to be registered at various stages.
One approach might be to use gcc's constructor priorities, but this
requires gcc >= 4.3 which eliminates a wide spectrum of working compilers,
and some versions of certain compilers (like clang 3.0) are known for
silently ignore these priorities.
Instead we can use our own init function registration mechanism. A first
attempt was made using register_function() calls in all constructors but
this made the code more painful.
This patch's approach is different. It creates sections containing
arrays of pointers to "initcall" descriptors. An initcall contains a
pointer to a function and an argument. Each section corresponds to a
specific initialization stage. Each module creates such descriptors
for various calls it requires. The main() function starts by scanning
each of these sections in turn to process these initcalls.
This will make it possible to remove many constructors from various
modules, by simply placing initcalls for the requested functions next
to the keyword lists that need to be called.
A first attempt was made by placing the initcalls directly into the
sections instead of creating an array of pointers, but it becomes
sensitive to the array's alignment which depends on the compiler and
the linker, so it seems too fragile.
For now we support 6 init stages :
- STG_PREPARE : preset variables, tables and list heads
- STG_LOCK : initialize spinlocks and rwlocks
- STG_ALLOC : allocate the required structures
- STG_POOL : create pools
- STG_REGISTER : register static lists (keywords etc)
- STG_INIT : subsystems normal initialization
These ones are declared directly in the files where they are needed
using one of the INITCALL* macros, passing 0 to 3 pointers as
arguments.
The API should possibly be extended to support a return value to give
a status to the caller, and to support a unified API, possibly a bit
more flexibility in the arguments. In this case it might make sense to
support a set of macros to register functions having a different API
and to pass the function type in the initcall itself.
Special thanks to Olivier for showing how to scan sections as this is
not something particularly well documented and exactly what I've been
missing to achieve this.
Building with musl and gcc-5.3 for MIPS returns this :
include/common/buf.h: In function 'b_dist':
include/common/buf.h:252:2: error: unknown type name 'ssize_t'
ssize_t dist = to - from;
^
Including stdint or stddef is not sufficient there to get ssize_t,
unistd is needed as well. It's likely that other platforms will have
the same issue. This patch also addresses it in ist.h and memory.h.
Building on 32 bits gives this :
include/proto/htx.h: In function 'htx_dump':
include/proto/htx.h:443:25: warning: format '%lu' expects argument of type 'long unsigned int', but argument 8 has type 'uint64_t {aka long long unsigned int}' [-Wformat=]
fprintf(stderr, "htx:%p [ size=%u - data=%u - used=%u - wrap=%s - extra=%lu]\n",
^
In htx_dump(), fprintf() uses %lu but the value is an uint64_t so it
doesn't match on 32-bit. Let's cast this to unsigned long long and use
%llu instead.
When we create a connection, if we have to defer the conn_stream and the
mux creation until we can decide it (ie until the SSL handshake is done, and
the ALPN is decided), store the connection in the stream_interface, so that
we're sure we can destroy it if needed.
If an ALPN (or a NPN) was chosen for a server, defer choosing the mux until
after the SSL handshake is done, and the ALPN/NPN has been negociated, so
that we know which mux to pick.
In some situations, especially when dealing with low latency on processors
supporting a variable frequency or when running inside virtual machines,
each time the process waits for an I/O using the poller, the processor
goes back to sleep or is offered to another VM for a long time, and it
causes excessively high latencies.
A solution to this provided by this patch is to enable busy polling using
a global option. When busy polling is enabled, the pollers never sleep and
loop over themselves waiting for an I/O event to happen or for a timeout
to occur. On multi-processor machines it can significantly overheat the
processor but it usually results in much lower latencies.
A typical test consisting in injecting traffic over a single connection at
a time over the loopback shows a bump from 4640 to 8540 connections per
second on forwarded connections, indicating a latency reduction of 98
microseconds for each connection, and a bump from 12500 to 21250 for
locally terminated connections (redirects), indicating a reduction of
33 microseconds.
It is only usable with epoll and kqueue because select() and poll()'s
API is not convenient for such usages, and the level of performance they
are used in doesn't benefit from this anyway.
The option, which obviously remains disabled by default, can be turned
on using "busy-polling" in the global section, and turned off later
using "no busy-polling". Its status is reported in "show info" to help
troubleshooting suspicious CPU spikes.
Right now we measure for each task the cumulated time spent waiting for
the CPU and using it. The timestamp uses a 64-bit integer to report a
nanosecond-level date. This is only enabled when "profiling.tasks" is
enabled, and consumes less than 1% extra CPU on x86_64 when enabled.
The cumulated processing time and wait time are reported in "show sess".
The task's counters are also reset when an HTTP transaction is reset
since the HTTP part pretends to restart on a fresh new stream. This
will make sure we always report correct numbers for each request in
the logs.
This is a new global setting which enables or disables CPU profiling
per task. For now it only sets/resets the variable based on the global
option "profiling.tasks" and supports showing it as well as setting it
from the CLI using "show profiling" and "set profiling". The option will
be used by a future commit. It was done in a way which should ease future
addition of profiling options.
Since we know the time it takes to process everything between two poll()
calls, we can use this as the max latency measurement any task will
experience and average it.
This code does this, and reports in "show activity" the average of this
loop time over the last 1024 poll() loops, for each thread. It will vary
quickly at high loads and slowly under low to moderate loads, depending
on the rate at which poll() is called. The latency a task experiences
is expected to be half of this on average.
At the moment the situation with activity measurement is quite tricky
because the struct activity is defined in global.h and declared in
haproxy.c, with operations made in time.h and relying on freq_ctr
which are defined in freq_ctr.h which itself includes time.h. It's
barely possible to touch any of these files without breaking all the
circular dependency.
Let's move all this stuff to activity.{c,h} and be done with it. The
measurement of active and stolen time is now done in a dedicated
function called just after tv_before_poll() instead of mixing the two,
which used to be a lazy (but convenient) decision.
No code was changed, stuff was just moved around.
Just found that proto/cli.h doesn't build if types/cli.h is not also
included by the caller, as it uses cli_kw_list is used in arguments.
But it's also true for a few other ones like mworker_proc, stream,
and channel, so let's fix this.
The new function signal_unregister() removes every handlers assigned to
a signal. Once the handler list of the signal is empty, the signal is
ignored with SIG_IGN.
In the output of 'show fd', the worker CLI's socketpair was still
handled by an "unknown" function. That can be really confusing during
debug. Fixed it by showing "mworker_accept_wrapper" instead.
The mworker waitpid mode (which is used when a reload failed to apply
the new configuration) was still using a specific initialisation path.
That's a problem since we use a polling loop in the master now, the
master proxy is not initialized and the master CLI is not activated.
This patch removes the initialisation code of the wait mode and
introduce the MODE_MWORKER_WAIT in order to use the same init path as
the MODE_MWORKER with some exceptions. It allows to use the master proxy
and the master CLI during the waitpid mode.
This was the largest function of the whole file, taking a rough second
to build alone. Let's move it to a distinct file along with a few
dependencies. Doing so saved about 2 seconds on the total build time.
The config parser is the largest file to build and its build dominates
the total project's build time. Let's start to split it into multiple
smaller pieces by extracting the "global" section parser into a new
file called "cfgparse-global.c". This removes 1/4th of the file's build
time.
It does the same than smp_prefetch_http but for HTX messages. It can be called
from an HTTP proxy or a TCP proxy. For HTTP proxies, the parsing is handled by
the mux, so it does nothing but wait. For TCP proxies, it tries to parse an HTTP
message and to convert it in a temporary HTX message. Sample fetches will use
this temporary variable to do their job.
It is more or less the same than legacy version but adapted to be called from
HTX analyzers. In the legacy version of this function, we switch on the HTX code
when applicable.
It is more or less the same than legacy version but adapted to be called from
HTX analyzers. In the legacy version of this function, we switch on the HTX code
when applicable.
It is more or less the same than legacy versions but adapted to be called from
HTX analyzers. In the legacy versions of these functions, we switch on the HTX
code when applicable.
It is more or less the same than legacy versions but adapted to be called from
HTX analyzers. In the legacy versions of these functions, we switch on the HTX
code when applicable.
This file will host all functions to manipulate HTTP messages using the HTX
representation. Functions in this file will be able to be called from anywhere
and are mainly related to the HTTP semantics.
The internal representation of an HTTP message, called HTX, is a structured
representation, unlike the old one which is a raw representation of
messages. Idea is to have a version-agnostic representation of the HTTP
messages, which can be easily used by to handle HTTP/1, HTTP/2 and hopefully
QUIC messages, and communication from one of them to another.
In this patch, we add types to define the internal representation itself and the
main functions to manipulate them.
Now, the connection mode is detected in the mux and not in HTX analyzers
anymore. Keep-alive connections are now managed by the mux. A new stream is
created for each transaction. This removes the most important part of the
synchronization between channels and the HTTP transaction cleanup. These changes
only affect the HTX part (proto_htx.c). Legacy HTTP analyzers remain untouched
for now.
On the client-side, the mux is responsible to create new streams when a new
request starts. It is also responsible to parse and update the "Connection:"
header of the response. On the server-side, the mux is responsible to parse and
update the "Connection:" header of the request. Muxes on each side are
independent. For now, there is no connection pool on the server-side, so it
always close the server connection.
For now, these analyzers are just copies of the legacy HTTP analyzers. But,
during the HTTP refactoring, it will be the main place where it will be
visible. And in legacy analyzers, the macro IS_HTX_STRM is used to know if the
HTX version should be called or not.
Note: the following commits were applied to proto_http.c after this patch
was developed and need to be studied to see if an adaptation to htx
is required :
fd9b68c BUG/MINOR: only mark connections private if NTLM is detected
To prepare the refactoring of the code handling HTTP messages, these macros will
help to use HTX functions instead of legacy ones when the new HTX internal
representation is in use. To do so, for a given stream, we will check if its
frontend has the option PR_O2_USE_HTX. It is useless to test backend options
because it is not possible to mix the HTX representation and the legacy one
(i.e, having an HTX frontend and a legacy backend or vice versa).
The flag CS_FL_READ_PARTIAL can be set by the mux on the conn_stream to notify
the stream interface that some data were received. Is is used in si_cs_recv to
re-arm read timeout on the channel.
These 2 functions are pretty naive. They only split a start-line into its 3
substrings or a header line into its name and value. Spaces before and after
each part are skipped. No CRLF at the end are expected.
By setting the flag CO_RFL_KEEP_RSV when calling mux->rcv_buf, the
stream-interface notifies the mux it must keep some space to preserve the
buffer's reserve. This flag is only useful for multiplexers handling structured
data, because in such case, the stream-interface cannot know the real amount of
free space in the channel's buffer.
By setting the flag CO_RFL_BUF_FLUSH when calling mux->rcv_buf, the
stream-interface notifies the mux it should flush its buffers without reading
more data. This flag is set when the SI want to use the kernel TCP splicing to
forward data. Of course, the mux can respect it or not, depending on its
state. It's just an information.
Do not destroy the connection when we're about to destroy a stream. This
prevents us from doing keepalive on server connections when the client is
using HTTP/2, as a new stream is created for each request.
Instead, the session is now responsible for destroying connections.
When reusing connections, the attach() mux method is now used to create a new
conn_stream.
Introduce a new field in session, "srv_conn", and a linked list of sessions
in the connection. It will be used later when we'll switch connections
from being managed by the stream, to being managed by the session.
Add a new method for mux, avail_streams, that returns the number of streams
still available for a mux.
For the mux_pt, it'll return 1 if the connection is in idle, or 0. For
the H2 mux, it'll return the max number of streams allowed, minus the number
of streams currently in use.
Remaining calls to si_cant_put() were all for lack of room and were
turned to si_rx_room_blk(). A few places where SI_FL_RXBLK_ROOM was
cleared by hand were converted to si_rx_room_rdy().
The now unused si_cant_put() function was removed.
The channel can disable reading from the stream-interface using various
methods, such as :
- CF_DONT_READ
- !channel_may_recv()
- and possibly others
Till now this was done by mangling SI_FL_RX_WAIT_EP which is not
appropriate at all since it's not the stream interface which decides
whether it wants to deliver data or not. Some places were also wrongly
relying on SI_FL_RXBLK_ROOM since it was the only other alternative,
but it's not suitable for CF_DONT_READ.
Let's use the SI_FL_RXBLK_CHAN flag for this instead. It will properly
prevent the stream interface from being woken up and reads from
subscribing to more receipt without being accidently removed. It is
automatically reset if CF_DONT_READ is not set in stream_int_notify().
The code is not trivial because it splits the logic between everything
related to buffer contents (channel_is_empty(), CF_WRITE_PARTIAL, etc)
and buffer policy (CF_DONT_READ). Also it now needs to decide timeouts
based on any blocking flag and not just SI_FL_RXBLK_ROOM anymore.
It looks like this patch has caused a minor performance degradation on
connection rate, which possibly deserves being investigated deeper as
the test conditions are uncertain (e.g. slightly more subscribe calls?).
Till now we were using si_done_put() upon shutr, but these flags could
be reset upon next activity. Now let's switch to SI_FL_RXBLK_SHUT which
doesn't go away. It's also set in stream_int_update() in case a shutr
condition is detected.
The now unused si_done_put() was removed.
Instead of checking complex conditions to call si_cs_recv() upon first
call, let's simply use si_rx_endp_ready() now that si_cs_recv() reports
it accurately, and add si_rx_blocked() to cover any blocking situation.
The stream interface used to conflate a missing buffer and lack of
buffer space into SI_FL_WAIT_ROOM but this causes difficulties as
these cannot be checked at the same moment and are not resolved at
the same moment either. Now we instead mark the buffer as presumably
available using si_rx_buff_rdy() and mark it as unavailable+requested
using si_rx_buff_blk().
The call to si_alloc_buf() was moved after si_stop_put(). This makes
sure that the SI_FL_RX_WAIT_EP flag is cleared on allocation failure so
that the function is called again if the callee fails to do its work.
The SI_FL_WANT_PUT flag is used in an awkward way, sometimes it's
set by the stream-interface to mean "I have something to deliver",
sometimes it's cleared by the channel to say "I don't want you to
send what you have", and it has to be set back once CF_DONT_READ
is cleared. This will have to be split between SI_FL_RX_WAIT_EP
and SI_FL_RXBLK_CHAN. This patch only replaces all uses of the
flag with its natural (but negated) replacement SI_FL_RX_WAIT_EP.
The code is expected to be strictly equivalent. The now unused flag
was completely removed.
The first ones are used to figure if a direction is blocked on the
stream interface for anything but the end point. The second ones are
used to detect if the end point is ready to receive/transmit. They
should be used instead of directly fiddling with the existing bits.
The plan is to have the following flags to describe why a stream interface
doesn't produce data :
- SI_FL_RXBLK_CHAN : the channel doesn't want it to receive
- SI_FL_RXBLK_BUFF : waiting for a buffer allocation to complete
- SI_FL_RXBLK_ROOM : more room is required in the channel to receive
- SI_FL_RXBLK_SHUT : input now closed, nothing new will come
- SI_FL_RX_WAIT_EP : waiting for the endpoint to produce more data
Applets like the CLI which consume complete commands at once and produce
large chunks of responses will for example be able to stop being woken up
by clearing SI_FL_WANT_GET and setting SI_FL_RXBLK_ROOM when the rx buffer
is full. Once called they will unblock WANT_GET. The flags were moved
together in readable form with the Rx bits using 2 hex digits and still
have some room to do a similar operation on the Tx path later, with the
WAIT_EP flag being represented alone on a digit.
This flag is not enough to describe all blocking situations, as can be
seen in each case we remove it. The muxes has taught us that using multiple
blocking flags in parallel will be much easier, so let's start to do this
now. This patch only renames this flags in order to make next changes more
readable.
We used to have enough of 16 bits, with 3 still available but it's
not possible to add the rx/tx blocking bits there. Let's extend the
format to 32 bits and slightly reorder the fields to maintain the
struct size to 64 bytes. Nothing else was changed.
This method is used to retrieve the first known good conn_stream from
the mux. It will be used to find the other end of a connection when
dealing with the proxy protocol for example.
There are still some unwelcome synchronous calls to si_cs_recv() in
process_stream(). Let's have a new function si_sync_recv() to perform
a synchronous receive call on a stream interface regardless of the type
of its endpoint, and move these calls there. For now it only implements
conn_streams since it doesn't seem useful to support applets there. The
function implements an extra check for the stream interface to be in an
established state before attempting anything.
An unstoppable listener is a listener which won't be stop during a soft
stop. The unstoppable_jobs variable is incremented and the listener
won't prevent the process to leave properly.
It is not a good idea to use this feature (the LI_O_NOSTOP flag) with a
listener that need to be bind again on another process during a soft
reload.
This patch allows a process to properly quit when some jobs are still
active, this feature is handled by the unstoppable_jobs variable, which
must be atomically incremented.
During each new iteration of run_poll_loop() the break condition of the
loop is now (jobs - unstoppable_jobs) == 0.
The unique usage of this at the moment is to handle the socketpair CLI
of a the worker during the stopping of the process. During the soft
stop, we could mark the CLI listener as an unstoppable job and still
handle new connections till every other jobs are stopped.
This patch implements http_apply_early_hint_rule() function is responsible of
building HTTP 103 Early Hint responses each time a "early-hint" rule is matched.
This patch adds a "early_hint" struct to "arg" union of "act_rule" struct
and parse "early-hint" http-request keyword with it using the same
code as for "(add|set)-header" parser.
When namespaces are disabled, support is still reported because the file
is built with almost nothing in it but built anyway. Instead of extending
the scope of the numerous ifdefs in this file, better avoid building it
when namespaces are diabled. In this case we define my_socketat() as an
inline function mapping directly to socket(). The struct netns_entry
still needs to be defined because it's used by various other functions
in the code.
This format is pretty similar to the previous "short" format except
that it also removes the severity level. Thus only the raw message is
sent. This is suitable for use in containers, where only the raw
information is expected and where the severity is supposed to come
from the file descriptor used.
This format is meant to be used with local file descriptors. It emits
messages only prefixed with a level, removing all the process name,
system name, date and so on. It is similar to the printk() format used
on Linux. It's suitable to be sent to a local logger compatible with
systemd's output format.
Note that the facility is still required but not used, hence it is
suggested to use "daemon" to remind that it's a local logger.
Example :
log stdout format short daemon # send everything to stdout
log stderr format short daemon notice # send important events to stderr
It's easy to detect when logs on some paths are lost as sendmsg() will
return EAGAIN. This is particularly true when sending to /dev/log, which
often doesn't support a big logging capacity. Let's keep track of these
and report the total number of dropped messages in "show info".
We exclusively use stream_int_update() now, the lower layers are not
called anymore so let's remove them, as well as si_update() which used
to be their wrapper.
The function used to be called in turn for each side of the stream, but
since it's called exclusively from process_stream(), it prevents us from
making use of the knowledge we have of the operations in progress for
each side, resulting in having to go all the way through functions like
stream_int_notify() which are not appropriate there.
That patch creates a new function, si_update_both() which takes two
stream interfaces expected to belong to the same stream, and processes
their flags in a more suitable order, but for now doesn't change the
logic at all.
The next step will consist in trying to reinsert the rest of the socket
layer-specific update code to ultimately update the flags correctly at
the end of the operation.
After careful inspection, it now seems OK to call si_chk_rcv() only when
SI_FL_WAIT_ROOM is cleared and SI_FL_WANT_PUT is set, since all identified
call places have already taken care of this.
Instead of clearing the SI_FL_WAIT_ROOM flag and losing the information
about the need from the producer to be woken up, we now call si_chk_rcv()
immediately. This is cheap to do and it could possibly be further improved
by only doing it when SI_FL_WAIT_ROOM was still set, though this will
require some extra auditing of the code paths.
The only remaining place where the flag was cleared without a call to
si_chk_rcv() is si_alloc_ibuf(), but since this one is called from a
receive path woken up from si_chk_rcv() or not having failed, the
clearing was not necessary anymore either.
And there was one place in stream_int_notify() where si_chk_rcv() was
called with SI_FL_WAIT_ROOM still explicitly set so this place was
adjusted in order to clear the flag prior to calling si_chk_rcv().
Now we don't have any situation where we randomly clear SI_FL_WAIT_ROOM
without trying to wake the other side up, nor where we call si_chk_rcv()
with the flag set, so this flag should accurately represent a failed
attempt at putting data into the buffer.
When CF_DONT_READ is set, till now we used to set SI_FL_WAIT_ROOM, which
is not appropriate since it would lose the subscribe status. Instead let's
clear SI_FL_WANT_PUT (just like applets do), and set the flag only when
CF_DONT_READ is cleared.
We have to do this in stream_int_update(), and in si_cs_io_cb() after
returning from si_cs_recv() since it would be a bit invasive to hack
this one for now. It must not be done in stream_int_notify() otherwise
it would re-enable blocked applets.
Last, when si_chk_rcv() is called, it immediately clears the flag before
calling ->chk_rcv() so that we are not tempted to uselessly loop on the
same call until the receive function is called. This is the same principle
as what is done with the applet scheduler.
This flag should already be cleared before calling the *chk_rcv() functions.
Before adapting all call places, let's first make sure si_chk_rcv() clears
it before calling them so that these functions do not have to check it again
and so that they do not adjust it. This function will only call the lower
layers if the SI_FL_WANT_PUT flag is present so that the endpoint can decide
not to be called (as done with applets).
There was an ambiguity in which functions of the si_ops struct could be
null or not. only ->update doesn't exist in one of the si_ops (the
embedded one), all others are always defined. ->shutr and ->shutw were
never tested. However ->chk_rcv() and ->chk_snd() were tested, causing
confusion about the proper way to wake the other side up if undefined
(which never happens).
Let's update the comments to state these functions are mandatory and
remove the offending checks.
We now do this on the si_cs_recv() path so that we always have
SI_FL_WANT_PUT properly set when there's a need to receive and
SI_FL_WAIT_ROOM upon failure.
It doesn't make sense to limit this code to applets, as any stream
interface can use it. Let's rename it by simply dropping the "applet_"
part of the name. No other change was made except updating the comments.
The buffer allocation callback appctx_res_wakeup() used to rely on old
tricks to detect if a buffer was already granted to an appctx, namely
by checking the task's state. Not only this test is not valid anymore,
but it's inaccurate.
Let's solely on SI_FL_WAIT_ROOM that is now set on allocation failure by
the functions trying to allocate a buffer. The buffer is now allocated on
the fly and the flag removed so that the consistency between the two
remains granted. The patch also fixes minor issues such as the function
being improperly declared inline(!) and the fact that using appctx_wakeup()
sets the wakeup reason to TASK_WOKEN_OTHER while we try to use TASK_WOKEN_RES
when waking up consecutive to a ressource allocation such as a buffer.
This function replaces stream_res_available(), which is used as a callback
for the buffer allocator. It now carefully checks which stream interface
was blocked on a buffer allocation, tries to allocate the input buffer to
this stream interface, and wakes the task up once such a buffer was found.
It will automatically remove the SI_FL_WAIT_ROOM flag upon success since
the info this flag indicates becomes wrong as soon as the buffer is
allocated.
The code is still far from being perfect because if a call to si_cs_recv()
fails to allocate a buffer, we'll still end up passing via process_stream()
again, but this could be improved in the future by using finer-grained
wake-up notifications.
The active peers output indicates both the number of established peers
connections and the number of peers connection attempts. The new counter
"ConnectedPeers" also indicates the number of currently connected peers.
This helps detect that some peers cannot be reached for example. It's
worth mentioning that this value changes over time because unused peers
are often disconnected and reconnected. Most of the time it should be
equal to ActivePeers.
Peers are the last type of activity which can maintain a job present, so
it's important to report that such an entity is still active to explain
why the job count may be higher than zero. Here by "ActivePeers" we report
peers sessions, which include both established connections and outgoing
connection attempts.
When an haproxy process doesn't stop after a reload, it's because it
still has some active "jobs", which mainly are active sessions, listeners,
peers or other specific activities. Sometimes it's difficult to troubleshoot
the cause of these issues (which generally are the result of a bug) only
because some indicators are missing.
This patch add the number of listeners, the number of jobs, and the stopping
status to the output of "show info". This way it becomes a bit easier to try
to narrow down the cause of such an issue should it happen. A typical use
case is to connect to the CLI before reloading, then issuing the "show info"
command to see what happens. In the normal situation, stopping should equal
1, jobs should equal 1 (meaning only the CLI is still active) and listeners
should equal zero.
The patch is so trivial that it could make sense to backport it to 1.8 in
order to help with troubleshooting.
It was reported here that authentication may fail when threads are
enabled :
https://bugzilla.redhat.com/show_bug.cgi?id=1643941
While I couldn't reproduce the issue, it's obvious that there is a
problem with the use of the non-reentrant crypt() function there.
On Linux systems there's crypt_r() but not on the vast majority of
other ones. Thus a first approach consists in placing a lock around
this crypt() call. Another patch may relax it when crypt_r() is
available.
This fix must be backported to 1.8. Thanks to Ryan O'Hara for the
quick notification.
Commit 27346b01a ("OPTIM: tools: optimize my_ffsl() for x86_64") optimized
my_ffsl() for intensive use cases in the scheduler, but as half of the times
I got it wrong so it counted bits the reverse way. It doesn't matter for the
scheduler nor fd cache but it broke cpu-map with threads which heavily relies
on proper ordering.
We should probably consider dropping support for gcc < 3.4 and switching
to builtins for these ones, though often they are as ambiguous.
No backport is needed.
When building with DEBUG_MEMORY_POOLS, an element returned from the
cache would not have its pool link initialized unless it's allocated
using pool_alloc(). This is problematic for buffer allocators which
use pool_alloc_dirty(), as freeing this object will make the code
think it was allocated from another pool. This patch does two things :
- make __pool_get_from_cache() set the link
- remove the extra initialization from pool_alloc() since it's always
done in either __pool_get_first() or __pool_refill_alloc()
This patch is marked MINOR since it only affects code explicitly built
for debugging. No backport is needed.
This patch implements analysers for parsing the CLI and extra features
for the master's CLI.
For each command (sent alone, or separated by ; or \n) the request
analyser will determine to which server it should send the request.
The 'mode cli' proxy is able to parse a prefix for each command which is
used to select the apropriate server. The prefix start by @ and is
followed by "master", the PID preceded by ! or the relative PID. (e.g.
@master, @1, @!1234). The servers are not round-robined anymore.
The command is sent with a SHUTW which force the server to close the
connection after sending its response. However the proxy allows a
keepalive connection on the client side and does not close.
The response analyser does not do much stuff, it only reinits the
connection when it received a close from the server, and forward the
response. It does not analyze the response data.
The only guarantee of the end of the response is the close of the
server, we can't rely on the double \n since it's not send by every
command.
This could be reimplemented later as a filter.
Add a struct server pointer in the mworker_proc struct so we can easily
use it as a target for the mworker proxy.
pcli_prefix_to_pid() is used to find the right PID of the worker
when using a prefix in the CLI. (@master, @#<relative pid> , @<pid>)
pcli_pid_to_server() is used to find the right target server for the
CLI proxy.
The master process does not need all the keywords of the cli, add 2
flags to chose which keyword to use.
It might be useful to activate some of them in a debug mode later...
This patch introduces mworker_cli_proxy_new_listener() which allows the
creation of new listeners for the CLI proxy.
Using this function it is possible to create new listeners from the
program arguments with -Sa <unix_socket>. It is allowed to create
multiple listeners with several -Sa.
This patch implements a listen proxy within the master. It uses the
sockpair of all the workers as servers.
In the current state of the code, the proxy is only doing round robin on
the CLI of the workers. A CLI mode will be needed to know to which CLI
send the requests.
The init code of the mworker_proc structs has been moved before the
init of the listeners.
Each socketpair is now connected to a CLI within the workers, which
allows the master to access their CLI.
The inherited flag of the worker side socketpair is removed so the
socket can be closed in the master.
With the new synchronous si_cs_send() at the end of process_stream(),
we're seeing re-appear the I/O layer specific part of the stream interface
which is supposed to deal with I/O event subscription. The only difference
is that now we subscribe to I/Os only after having attempted (and failed)
them.
This patch brings a cleanup in this by reintroducing stream_int_update_conn()
with the send code from process_stream(). However this alone would not be
enough because the flags which are cleared afterwards would result in the
loss of the possible events (write events only at the moment). So the flags
clearing and stream-int state updates are also performed inside si_update()
between the generic code and the I/O specific code. This definitely makes
sense as after this call we can simply check again for channel and SI flag
changes and decide to loop once again or not.
This will supersed channel_alloc_buffer() while relying on it. It will
automatically adjust SI_FL_WAIT_ROOM on the stream-int depending on
success or failure to allocate this buffer.
It's worth noting that it could make sense to also set SI_FL_WANT_PUT
each time we do this to further simplify the code at user places such
as applets, but it would possibly not be easy to clean this flag
everywhere an rx operation stops.
The behaviour of the flag CF_WRITE_PARTIAL was modified by commit
95fad5ba4 ("BUG/MAJOR: stream-int: don't re-arm recv if send fails") due
to a situation where it could trigger an immediate wake up of the other
side, both acting in loops via the FD cache. This loss has caused the
need to introduce CF_WRITE_EVENT as commit c5a9d5bf, to replace it, but
both flags express more or less the same thing and this distinction
creates a lot of confusion and complexity in the code.
Since the FD cache now acts via tasklets, the issue worked around in the
first patch no longer exists, so it's more than time to kill this hack
and to restore CF_WRITE_PARTIAL's semantics (i.e.: there has been some
write activity since we last left process_stream).
This patch mostly reverts the two commits above. Only the part making
use of CF_WROTE_DATA instead of CF_WRITE_PARTIAL to detect the loss of
data upon connection setup was kept because it's more accurate and
better suited.
This patch makes the capable of storing HTTP objects larger than a buffer.
It makes usage of the "block by block shared object allocation" new shctx API.
A new pointer to struct shared_block has been added to the cache applet
context to memorize the next block to be used by the HTTP cache I/O handler
http_cache_io_handler() to emit the data. Another member, named "sent" memorize
the number of bytes already sent by this handler. So, to send an object from cache,
http_cache_io_handler() must be called until "sent" counter reaches the size
of this object.
This patch makes shctx capable of storing objects in several parts,
each parts being made of several blocks. There is no more need to
walk through until reaching the end of a row to append new blocks.
A new pointer to a struct shared_block member, named last_reserved,
has been added to struct shared_block so that to memorize the last block which was
reserved by shctx_row_reserve_hot(). Same thing about "last_append" pointer which
is used to memorize the last block used by shctx_row_data_append() to store the data.
This option makes a proxy use only HTX-compatible muxes instead of the
HTTP-compatible ones for HTTP modes. It must be set on both ends, this
is checked at parsing time.
Some samples representing time will cover more than one sample at once
if they are units of time per time. For this we'd need to have the
ability to loop over swrate_add() multiple times but that would be
inefficient. By developing the function elevated to power N, it's
visible that some coefficients quickly disappear and that those which
remain at the first order more or less compensate each other.
Thus a simplified version of this function was added to provide a single
value for a given number of samples. Tests with multiple values, window
sizes and sample sizes have shown that it is possible to make it remain
surprisingly accurate (typical error < 0.2% over various large window
and sample sizes, even samples representing up to 1/4 of the window).
Avoid using conn_xprt_want_send/recv, and totally nuke cs_want_send/recv,
from the upper layers. The polling is now directly handled by the connection
layer, it is activated on subscribe(), and unactivated once we got the event
and we woke the related task.
Make sure we don't have any subscription when the connection is going in
idle mode, otherwise there's a race condition when the connection is
reused, if there are still old subscriptions, new ones won't be done.
No backport is needed.
When mapping memory with mmap(), we should use a fd of -1, not 0. 0 may
work on linux, but it doesn't work on FreeBSD, and probably other OSes.
It would be nice to backport this to 1.8 to help debugging there.
Commit ac6c880 ("BUILD: memory: fix pointer declaration for atomic CAS")
attemtped to fix a build warning affecting the lock-free version of the
pool allocator. But the fix tried to hide the cause instead of addressing
it, thus clang still complains about (void **) not matching (void ***).
The real solution is to declare free_list (void **) and not to use a cast.
Now this builds fine with gcc/clang with and without threads.
No backport is needed.
The purpose is to detect if threads or processes are competing for the
same CPU. This can happen when threads are incorrectly bound, or after a
reload if the previous process still has an important activity. With
threads this situation is problematic because a preempted thread holding
a lock will block other ones waiting for this lock to be released.
A first attempt consisted in measuring the cumulated lost time more
precisely but the system's scheduler is smart enough to try to limit the
thread preemption rate by mostly context switching during poll()'s blank
periods, so most of the time lost is not seen. In essence this is good
because it means a thread is not preempted with a lock held, and even
regarding the rendez-vous point it cannot prevent the other ones from
making progress. But still it happens tens to hundreds of times per
second that a thread might be preempted, so it's still possible to detect
that the situation is happening, thus it's interesting to measure and
report its frequency.
Each time we enter the poller, we check the CPU time spent working and
see if we've lost time doing something else. To limit false positives,
we're only interested in losses of 500 microseconds or more (i.e. half
a clock tick on a 1 kHz system). If so, it indicates that some time was
stolen by another thread or process. Note that we purposely store some
sub-millisecond counters so that under heavy traffic with a 1 kHz clock,
it's still possible to measure something without being subject to the
risk of rounding errors (i.e. if exactly 1 ms is stolen it's possible
that the time difference could often be slightly lower).
This counter of lost CPU time slots time is reported in "show activity"
in numbers of milliseconds of CPU lost per second, per 15s, and total
over the process' life. By definition, the per-second counter cannot
report values larger than 1000 per thread per second and the 15s one
will be limited to 15000/s in the worst case, but it's possible that
peak values exceed such thresholds after long pauses.
These two functions retrieve respectively the monotonic clock time and
the per-thread CPU time when available on the platform, or return zero.
These syscalls may require to link with -lrt on certain libc, which is
enabled in the Makefile with USE_RT=1 (default on Linux systems).
The calls to HA_ATOMIC_CAS() on the lockfree version of the pool allocator
were mistakenly done on (void*) for the old value instead of (void **).
While this has no impact on "recent" gcc, it does have one for gcc < 4.7
since the CAS was open coded and it's not possible to assign a temporary
variable of type "void".
No backport is needed, this only affects 1.9.
By placing this code into time.h (tv_entering_poll() and tv_leaving_poll())
we can remove the logic from the pollers and prepare for extending this to
offer more accurate time measurements.
The 4 pollers all contain the same code used to compute the poll timeout.
This is pointless, let's centralize this into fd.h. This also gets rid of
the useless SCHEDULER_RESOLUTION macro which used to work arond a very old
linux 2.2 bug causing select() to wake up slightly before the timeout.
Each thread now keeps the last ~512 kB of freed objects into a local
cache. There are some heuristics involved so that a specific pool cannot
use more than 1/8 of the total cache in number of objects. Tests have
shown that 512 kB is an optimal size on a 24-thread test running on a
dual-socket machine, resulting in an overall 7.5% performance increase
and a cache miss ratio reducing from 19.2 to 17.7%. Anyway it seems
pointless to keep more than an L2 cache, which probably explains why
sizes between 256 and 512 kB are optimal.
Cached objects appear in two lists, one per pool and one LRU to help
with fair eviction. Currently there is no way to check each thread's
cache state nor to flush it. This cache cannot be disabled and is
enabled as soon as the lockless pools are enabled (i.e.: threads are
enabled, no pool debugging is in use and the CPU supports a double word
CAS).
For caching it will be convenient to have indexes associated with pools,
without having to dereference the pool itself. One solution could consist
in replacing all pool pointers with integers but this would limit the
number of allocatable pools. Instead here we allocate the 32 first pools
from a pre-allocated array whose base address is known so that it's trivial
to convert a pool to an index in this array. Pools that cannot fit there
will be allocated normally.
Currently we have per-thread arrays of trees and counts, but these
ones unfortunately share cache lines and are accessed very often. This
patch moves the task-specific stuff into a structure taking a multiple
of a cache line, and has one such per thread. Just doing this has
reduced the cache miss ratio from 19.2% to 18.7% and increased the
12-thread test performance by 3%.
It starts to become visible that we really need a process-wide per-thread
storage area that would cover more than just these parts of the tasks.
The code was arranged so that it's easy to move the pieces elsewhere if
needed.
Now we still have a main contention point with the timers in the main
wait queue, but the vast majority of the tasks are pinned to a single
thread. This patch creates a per-thread wait queue and queues a task
to the local wait queue without any locking if the task is bound to a
single thread (the current one) otherwise to the shared queue using
locking. This significantly reduces contention on the wait queue. A
test with 12 threads showed 11 ms spent in the WQ lock compared to
4.7 seconds in the same test without this change. The cache miss ratio
decreased from 19.7% to 19.2% on the 12-thread test, and its performance
increased by 1.5%.
Another indirect benefit is that the average queue size is divided
by the number of threads, which roughly removes log(nbthreads) levels
in the tree and further speeds up lookups.
The vast majority of FDs are only seen by one thread. Currently the lock
on FDs costs a lot because it's touched often, though there should be very
little contention. This patch ensures that the lock is only grabbed if the
FD is shared by more than one thread, since otherwise the situation is safe.
Doing so resulted in a 15% performance boost on a 12-threads test.
peers_init_sync() doesn't check task_new()'s return value and doesn't
return any result to indicate success or failure. Let's make it return
an int and check it from the caller.
This can be backported as far as 1.6.
This statement is used as a hint for the compiler so that it knows that
the location where it's placed cannot be reached. It will mostly be used
after longjmp() or equivalent statements that deal with error processing
and that the compiler doesn't know will not return on certain conditions,
so that it doesn't complain about null dereferences on error paths.
Some pseudo-headers are added during the headers parsing, mainly for the mux
H2. With this flag, it is possible to not add them. This avoid some boring
filtering in the mux H1.
Instead of using offsets relating to the parsed buffer to store start line
infos, we now use indirect strings. So now, these infos remain valid only if the
origin buffer remains untouched. But it's not a real problem because this union
is used during the parsing and never stored to a later use.
This flags will be used by multiplexers to warn a conn-stream (and, by
transitivity, a stream) it is not the first one created by the mux. It will help
mux H1 to handle keep-alive connections.
Since keep-alive mode is the default mode, the passive close has disappeared,
and in the code, httpclose and forceclose options are handled the same way:
connections with the client and the server are closed as soon as the request and
the response are received and missing "Connection: close" header is added in
each direction.
So to make things clearer, forceclose is now an alias for httpclose. And
httpclose is explicitly an active close. So the old passive close does not exist
anymore. Internally, the flag PR_O_HTTP_PCL has been removed and PR_O_HTTP_FCL
has been replaced by PR_O_HTTP_CLO. In HTTP analyzers, the checks done to find
the right mode to use, depending on proxies options and "Connection: " header
value, have been simplified.
This should only be a cleanup and no changes are expected.
To ease the refactoring, the function "http_header_add_tail" have been
remove. Now, "http_header_add_tail2" is always used. And the function
"capture_headers" have been renamed into "http_capture_headers". Finally, some
functions have been exported.
HTTP_FLG_* and HTTP_IS_* were moved from "proto/proto_http.h" to "common/http.h"
but the associated comment was forgotten during the move.
This is 1.9-specific and should not be backported.
Make sure we unsubscribe from events before si_release_endpoint destroys
the conn_stream, or it will be never called. To do so, move the call to
unsubscribe to si_release_endpoint() directly.
This is 1.9-specific and shouldn't be backported.
When subscribing, we don't need to provide a list element, only the h2 mux
needs it. So instead, Add a list element to struct h2s, and use it when a
list is needed.
This forces us to use the unsubscribe method, since we can't just unsubscribe
by using LIST_DEL anymore.
This patch is larger than it should be because it includes some renaming.
As we don't know how subscriptions are handled, we can't just assume we can
use LIST_DEL() to unsubscribe, so introduce a new method to mux and connections
to do so.
This call is now used quite a bit in the fd cache, to decide which cache
to add/remove the fd to/from, when waking up a task for a single thread
in __task_wakeup(), in fd_cant_recv() and in fd_process_cached_events(),
and we can replace it with a single instruction, removing ~30 instructions
and ~80 bytes from the inner loop of some of these functions.
In addition the test for zero value was replaced with a comment saying
that it is illegal and leads to an undefined behaviour. The code does
not make use of this useless case today.
In commit f161d0f51 ("BUG/MINOR: pools/threads: don't ignore DEBUG_UAF
on double-word CAS capable archs") I moved some defines and accidently
messed up with lockfree pools. The problem is that the HA_HAVE_CAS_DW
macro is not defined anymore where the CONFIG_HAP_LOCKLESS_POOLS macro
is set, so this fix implicitly disabled lockfree pools.
This patch fixes this by moving the capabilities definition to config.h
(probably that we'd benefit from having an "arch.h" file to declare the
capabilities offered by the architecture). In a test on a 12-core machine,
we used to measure 19s spent in the pool lock for 1M requests without
this patch, and 0 with it so that's definitely a net saving.
No backport is required, this is only for 1.9.
OpenSSL released support for TLSv1.3. It also added a separate function
SSL_CTX_set_ciphersuites that is used to set the ciphers used in the
TLS 1.3 handshake. This change adds support for that new configuration
option by adding a ciphersuites configuration variable that works
essentially the same as the existing ciphers setting.
Note that it should likely be backported to 1.8 in order to ease usage
of the now released openssl-1.1.1.
In ci_insert_line2() and b_rep_blk(), we can't afford to wrap, so don't use
b_tail() to check if we do, use __b_tail() instead.
This should be backported to previous versions.
The prototypes of functions find_hdr_value_end(), extract_cookie_value()
and http_header_match2() were still in proto_http.h while some of them
don't exist anymore and the others were just moved. Let's remove them.
In addition, da.c was updated to use http_extract_cookie_value() which
is the correct one.
These ones are mostly called from cfgparse.c for the parsing and do
not depend on the HTTP representation. The functions's prototypes
were moved to proto/http_rules.h, making this file work exactly like
tcp_rules. Ideally we should stop calling these functions directly
from cfgparse and register keywords, but there are a few cases where
that wouldn't work (stats http-request) so it's probably not worth
trying to go this far.
The current proto_http.c file is huge and contains different processing
domains making it very difficult to work on an alternative representation.
This commit moves some parts to other files :
- ACL registration code => http_acl.c
This code only creates some ACL mappings and doesn't know anything
about HTTP nor about the representation. This code could even have
moved to acl.c but it was not worth polluting it again.
- HTTP sample conversion => http_conv.c
This code doesn't depend on the internal representation but definitely
manipulates some HTTP elements, such as dates. It also has access to
captures.
- HTTP sample fetching => http_fetch.c
This code does depend entirely on the internal representation but is
totally independent on the analysers. Placing it into a different
file will ease the transition to the new representation and the
creation of a wrapper if required. An include file was created due
to CHECK_HTTP_MESSAGE_FIRST() being used at various places.
- HTTP action registration => http_act.c
This code doesn't directly interact with the messages nor the
transaction but it does so via some exported http functions like
http_replace_req_line() or http_set_status() so it will be easier
to change only this after the conversion.
- a few very generic parts were found and moved to http.{c,h} as
relevant.
It is worth noting that the functions moved to these new files are not
referenced anywhere outside of the files and are only called as registered
callbacks, so these files do not even require associated include files.
This ads support for accessing stick tables from Lua. The supported
operations are reading general table info, lookup by string/IP key, and
dumping the table.
Similar to "show table", a data filter is available during dump, and as
an improvement over "show table" it's possible to use up to 4 filter
expressions instead of just one (with implicit AND clause binding the
expressions). Dumping with/without filters can take a long time for
large tables, and should be used sparingly.
Instead of using si_cs_io_cb() in process_stream() use si_cs_send/si_cs_recv
instead, as si_cs_io_cb() may lead to process_stream being woken up when it
shouldn't be, and thus timeout would never get triggered.
Tim Düsterhus found using afl-fuzz that some parts of the HPACK decoder
use incorrect bounds checking which do not catch negative values after
a type cast. The first culprit is hpack_valid_idx() which takes a signed
int and is fed with an unsigned one, but a few others are affected as
well due to being designed to work with an uint16_t as in the table
header, thus not being able to detect the high offset bits, though they
are not exposed if hpack_valid_idx() is fixed.
The impact is that the HPACK decoder can be crashed by an out-of-bounds
read. The only work-around without this patch is to disable H2 in the
configuration.
CVE-2018-14645 was assigned to this bug.
This patch addresses all of these issues at once. It must be backported
to 1.8.
Callers of si_appctx() always use the result without checking it because
they know by construction that it's valid. This results in unchecked null
pointer warnings at -Wextra, so let's remove this test and make it clear
that it's up to the caller to check validity first.
stktable_data_ptr() currently performs null pointer checks but most
callers don't check the result since they know by construction that
it cannot be null. This causes valid warnings when building with
-Wextra which are worth addressing since it will result in better
code. Let's provide an unguarded version of this function for use
where the check is known to be useless and untested.
These two functions were apparently written on the same model as their
parents when added by commit 11bcb6c4f ("[MEDIUM] IPv6 support for syslog")
except that they perform an assignment instead of a return, and as a
result fall through the next case where the assigned value may possibly
be partially overwritten. At least under Linux the port offset is the
same in both sockaddr_in and sockaddr_in6 so the value is written twice
without side effects.
This needs to be backported as far as 1.5.
The transfer-encoding header processing was a bit lenient in this part
because it was made to read messages already validated by haproxy. We
absolutely need to reinstate the strict processing defined in RFC7230
as is currently being done in proto_http.c. That is, transfer-encoding
presence alone is enough to cancel content-length, and must be
terminated by the "chunked" token, except in the response where we
can fall back to the close mode if it's not last.
For this we now use a specific parsing function which updates the
flags and we introduce a new flag H1_MF_XFER_ENC indicating that the
transfer-encoding header is present.
Last, if such a header is found, we delete all content-length header
fields found in the message.
This flag is usefull to handle cases where there is no body, regardless of CL or
TE headers (for instance, responses to HEAD requests). It will not be set by the
parser itself.
The new function h1_parse_connection_header() is called when facing a
connection header in the generic parser, and it will set up to 3 bits
in h1m->flags indicating if at least one "close", "keep-alive" or "upgrade"
tokens was seen.
This will be needed for the mux to know how to process the Connection
header, and will save it from having to re-parse the request line since
it's captured on the fly.
Till now it was very difficult for a mux to know what proxy it was
working for. Let's pass the proxy when the mux is instanciated at
init() time. It's not yet used but the H1 mux will definitely need
it, just like the H2 mux when dealing with backend connections.
The h1 parser used to systematically turn header field names to lower
case because it was designed for H2. Let's add a flag which is off by
default to condition this behaviour so that when using it from an H1
parser it will not affect the message.
This state was only a delimiter between headers and body but it now
causes more harm than good because it requires someone to change it.
Since the H1 parser knows if we're in DATA or CHUNK_SIZE, simply let
it set the right next state so that h1m->state constantly matches
what is expected afterwards.
This will allow the parser to fill some extra fields like the method or
status without having to store them permanently in the HTTP message. At
this point however the parser cannot restart from an interrupted read.
This way we maintain the old mechanism stating that -2 means we block
on errors, -1 means we only capture them, and a positive value indicates
the position of the first error.
Currently the only user of struct h1m is the h2 mux when it has to parse
an H1 message coming from the channel. Unfortunately this is not enough
to efficiently parse HTTP/1 messages like those coming from the network
as we don't want to restart from scratch at every byte received.
This patch reintroduces the "next" offset into the H1 message so that any
H1 parser can use it to restart when called with a state that is not the
initial state.
This is the *parsing* state of an HTTP/1 message. Currently the h1_state
is composite as it's made both of parsing and control (100SENT, BODY,
DONE, TUNNEL, ENDING etc). The purpose here is to have a purely H1 state
that can be used by H1 parsers. For now it's equivalent to h1_state.
Remove the recv() method from mux and conn_stream.
The goal is to always receive from the upper layers, instead of waiting
for the connection later. For now, recv() is still called from the wake()
method, but that should change soon.
For struct connection, struct conn_stream, and for the h2 mux, add 2 new
lists, one that handles waiters for recv, and one that handles waiters for
recv and send. That way we can ask to subscribe for either recv or send.
In tasklet_free(), if we're currently in the runnable task list, don't
forget to decrement taks_list_size, or it'll end up being to big, and we may
not process tasks in the global runqueue.
This protocol is based on the uxst one, but it uses socketpair and FD
passing insteads of a connect()/accept().
The "sockpair@" prefix has been implemented for both bind and server
keywords.
When HAProxy wants to connect through a sockpair@, it creates 2 new
sockets using the socketpair() syscall and pass one of the socket
through the FD specified on the server line.
On the bind side, haproxy will receive the FD, and will use it like it
was the FD of an accept() syscall.
This protocol was designed for internal communication within HAProxy
between the master and the workers, but it's possible to use it
externaly with a wrapper and pass the FD through environment variabls.
It's possible to have several protocols per family which is a problem
with the current way the protocols are stored.
This allows to register a new protocol in HAProxy which is not a
protocol in the strict socket definition. It will be used to register a
SOCK_STREAM protocol using socketpair().
The following functions only deal with header field values and are agnostic
to the HTTP version so they were moved to http.c :
http_header_match2(), find_hdr_value_end(), find_cookie_value_end(),
extract_cookie_value(), parse_qvalue(), http_find_url_param_pos(),
http_find_next_url_param().
Those lacking the "http_" prefix were modified to have it.
These error codes and messages are agnostic to the version, even if
they are represented as HTTP/1.0 messages. Ultimately they will have
to be transformed into internal HTTP messages to be used everywhere.
The HTTP/1.1 100 Continue message was turned to an IST and the local
copy in the Lua code was removed.
This function is purely HTTP once http_txn is put aside. So the original
one was renamed to http_txn_get_path() and it extracts the relevant offsets
from the txn to pass them to http_get_path(). One benefit of the new version
is that it returns the length at the same time so that allowed to slightly
simplify http_get_path_from_string() which had to look up the end pointer
previously and which is not needed anymore.
It's a bit painful to have to deal with HTTP semantics for each protocol
version (H1 and H2), and working on the version-agnostic code further
emphasizes the problem.
This patch creates http.h and http.c which are agnostic to the version
in use, and which borrow a few parts from proto_http and from h1. For
example the once thought h1-specific h1_char_classes array is in fact
dictated by RFC7231 and is used to parse HTTP headers. A few changes
were made to a few files which were including proto_http.h while they
only needed http.h.
Certain string definitions pre-dated the introduction of indirect
strings (ist) so some were used to simplify the definition of the known
HTTP methods. The current lookup code saves 2 kB of a heavily used table
and is faster than the previous table based lookup (typ. 14 ns vs 16
before).
Instead of having a separate area for the captured data, we now have a
contigous block made of the descriptor and the data. At the moment, since
the area is dynamically allocated, we can adjust its size to what is
needed, but the idea is to quickly switch to a pool and an LRU list.
Now upon error we dynamically allocate the snapshot instead of overwriting
it. This way there is no more memory wasted in the proxy to hold the two
error snapshot descriptors. Also an appreciable side effect of this is that
the proxy's lock is only taken during the pointer swap, no more while copying
the buffer's contents. This saves 480 bytes of memory per proxy.
This function now captures an error regardless of its side and protocol.
The caller must pass a number of elements and may pass a protocol-specific
structure and a callback to display it. Later this function may deal with
more advanced allocation techniques to avoid allocating as many buffers
as proxies.
The HTTP dumps are now configurable in the code : "show errors" now
calls a protocol-specific function to emit the decoded output. For
now only HTTP is implemented.
The idea will be to make the error snapshot feature accessible to other
protocols than just HTTP. This patch only introduces an "http_snapshot"
structure and renames a few fields to make things more explicit. The
HTTP part was installed inside a union so that we can easily add more
protocols in the future.
The snapshots have the ability to restart a partial dump and they use
the stream ID as the restart point. Since it's purely HTTP, let's use
the event ID instead.
This function returns the proxy associated to a connection. For front
connections it returns the frontend, and for back connections it
returns the backend. This will be used to retrieve some configuration
parameters from within a mux.
Sometimes a connection is prepared before the target is set, sometimes
after. There's no real rule since the few functions involved operate on
different and independent fields. Soon we'll benefit from knowing the
target at the connection layer, in order to figure the associated proxy
and retrieve the various parameters (timeouts etc). This patch slightly
reorders a few calls to conn_prepare() so that we can make sure that the
target is always known to the mux.
The new function sess_log() only needs a session to emit a log. It will
ignore the parts that depend on the stream. It is usable to emit a log
to report early errors in muxes. These ones will typically mention
"<BADREQ>" for the request and 0 for the HTTP status code.
The current build_logline() can only be used with valid streams, which
means it is not suitable for use from muxes. We start by moving it into
another more generic function which takes the session as an argument,
to avoid complexifying all the internal API for jsut a few use cases.
This new function is not supposed to be called directly from outside so
we'll be able to instrument it to support several calling conventions.
For now the behaviour and conditions remain unchanged.
This function was split in two at commit f7d0447 ("MINOR: buffers:
split b_putblk() into __b_putblk()") but it's wrong, the first half's
length is not adjusted to the requested size so it copies more than
desired.
This is purely 1.9-specific, no backport is needed.
The handshake processing time used to be stored per stream, which was
valid when there was exactly one stream per session. With H2 and
multiplexing it's not the case anymore and the reported handshake times
are wrong in the logs as it's computed between the TCP accept() and the
stream creation. Let's first move the handshake where it belongs, which
is the session.
However, this is not enough because we don't want to report an excessive
idle time either for H2 (since many requests use the connection).
So the solution used here is to have the stream retrieve sess->tv_accept
and the handshake duration when the stream is created, and let the mux
immediately reset them. This way, the handshake time becomes zero for the
second and subsequent requests in H2 (which was already the case in H1),
and the idle time exactly counts how long the connection remained unused
while it could be used, so in H1 it runs from the end of the previous
response and in H2 it runs from the end of the previous request since the
channel is already available.
This patch will need to be backported to 1.8.
We've been missing it several times and now we'll need it to increment
a request counter. Let's do it once for all.
This patch will need to be backported to 1.8 with the associated fix.
Server state file has no indication that a server is currently managed
by a DNS SRV resolution.
And thus, both feature (DNS SRV resolution and server state), when used
together, does not provide the expected behavior: a smooth experience...
This patch introduce the "SRV record name" in the server state file and
loads and applies it if found and wherever required.
This patch applies to haproxy-dev branch only. For backport, a specific patch
is provided for 1.8.
This patch improves the previous fix by implementing the socket draining
code directly in conn_sock_drain() so that it always applies regardless
of the protocol's family. Thus it gets rid of tcp_drain().
Since commit 843b7cb ("MEDIUM: chunks: make the chunk struct's fields
match the buffer struct") a chunk length is unsigned so we can remove
negative size checks.
Since commit 843b7cb ("MEDIUM: chunks: make the chunk struct's fields
match the buffer struct") a chunk length is unsigned so we can remove
negative size checks.
During a test it happened that a connection was deleted before the
stream it's attached to, resulting in a crash related to the fix
18a85fe ("BUG/MEDIUM: streams: Don't forget to remove the si from
the wait list.") during the LIST_DEL(). Make sure to always delete
the list's head in this case so that other elements can safely
detach later.
This is purely 1.9, no backport is needed.
Set the flag for the current thread in active_threads_mask when waking a
tasklet, or we will never run it if no tasks are available.
This is 1.9-specific, no backport is needed.
When we choose to insert a fd in either the global or the local fd update list,
and the thread_mask against all_threads_mask before checking if it's tid_bit,
that way, if we run with nbthreads==1, we will always use the local list,
which is cheaper than the global one.
Instead of just using the conn_stream wait_list, give the stream_interface
its own. When the conn_stream will have its own buffers, the stream_interface
may have to wait on it.
Instead of using si_cs_send() as a task handler, define a new function,
si_cs_io_cb(), and give si_cs_send() its original prototype. Right now
si_cs_io_cb() just handles send, but later it'll handle recv() too.
Modify tasklet_wakeup() so that it handles a task as well, and inserts it
directly into the tasklet list, making it effectively a tasklet.
This should make future developments easier.
This adds the set-priority-class and set-priority-offset actions to
http-request and tcp-request content. At this point they are not used
yet, which is the purpose of the next commit, but all the logic to
set and clear the values is there.
We'll need trees to manage the queues by priorities. This change replaces
the list with a tree based on a single key. It's effectively a list but
allows us to get rid of the list management right now.
We store the queue index in the stream and check it on dequeueing to
figure how many entries were processed in between. This way we'll be
able to count the elements that may later be added before ours.
The current name is misleading as it implies a queue size, but the value
instead indicates a position in the queue.
The value is only the queue size at the exact moment the element is enqueued.
Soon we will gain the ability to insert anywhere into the queue, upon which
clarity of the name is more important.
Commit 7ce0c89 ("MEDIUM: mux: Use the mux protocol specified on
bind/server lines") assumed a bit too strongly that we could only have
servers on the connect side :-) It segfaults under this config :
defaults
contimeout 5s
clitimeout 5s
srvtimeout 5s
mode http
listen test1
bind :8001
dispatch 127.0.0.1:8002
frontend test2
mode http
bind :8002
redirect location /
No backport needed.
To do so, mux choices are split to handle incoming and outgoing connections in a
different way. The protocol specified on the bind/server line is used in
priority. Then, for frontend connections, the ALPN is retrieved and used to
choose the best mux. For backend connection, there is no ALPN. Finaly, if no
protocol is specified and no protocol matches the ALPN, we fall back on a
default mux, choosing in priority the first mux with exactly the same mode.
Because there can be several default multiplexers (without name), they are now
reported with the name "<default>". And a message warns they cannot be
referenced with the "proto" keyword on a bind line or a server line.
Now we try to synchronously push updates as they come using the new rdv
point, so that the call to the server update function from the main poll
loop is not needed anymore.
It further reduces the apparent latency in the health checks as the response
time almost always appears as 0 ms, resulting in a slightly higher check rate
of ~1960 conn/s. Despite this, the CPU consumption has slightly dropped again
to ~32% for the same test.
The only trick is that the checks code is built with a bit of recursivity
because srv_update_status() calls server_recalc_eweight(), and the latter
needs to signal srv_update_status() in case of updates. Thus we added an
extra argument to this function to indicate whether or not it must
propagate updates (no if it comes from srv_update_status).
Multiplexers are not necessarily associated to an ALPN. ALPN is a TLS extension,
so it is not always defined or used. Instead, we now rather speak of
multiplexer's protocols. So in this patch, there are no significative changes,
some structures and functions are just renamed.
Now, a multiplexer can specify if it can be install on incoming connections
(ALPN_SIDE_FE), on outgoing connections (ALPN_SIDE_BE) or both
(ALPN_SIDE_BOTH). These flags are compatible with proxies' ones.
This function is generic and is able to automatically transfer data from a
buffer to the conn_stream's tx buffer. It does this automatically if the mux
doesn't define another snd_buf() function.
It cannot yet be used as-is with the conn_stream's txbuf without risking to
lose data on close since conn_streams need to be orphaned for this.
To be symmetrical with the recv() part, we no handle retryable and partial
transmission using a intermediary buffer in the conn_stream. For now it's only
set to BUF_NULL and never allocated nor used.
It cannot yet be used as-is without risking to lose data on close since
conn_streams need to be orphaned for this.
This is a partial revert of the commit deccd1116 ("MEDIUM: mux: make
mux->snd_buf() take the byte count in argument"). It is a requirement to do
zero-copy transfers. This will be mandatory when the TX buffer of the
conn_stream will be used.
So, now, data are consumed by mux->snd_buf() and not only sent. So it needs to
update the buffer state. On its side, the caller must be aware the buffer can be
replaced y an empty or unallocated one.
As a side effet of this change, the function co_set_data() is now only responsible
to update the channel set, by update ->output field.
When b_slow_realign is called with the <output> parameter equal to 0, the
buffer's head, after the realign, must be set to 0. It was errornously set to
the buffer's size, because there was no test on the value of <output>.
The current synchronization point enforces certain restrictions which
are hard to workaround in certain areas of the code. The fact that the
critical code can only be called from the sync point itself is a problem
for some callback-driven parts. The "show fd" command for example is
fragile regarding this.
Also it is expensive in terms of CPU usage because it wakes every other
thread just to be sure all of them join to the rendez-vous point. It's a
problem because the sleeping threads would not need to be woken up just
to know they're doing nothing.
Here we implement a different approach. We keep track of harmless threads,
which are defined as those either doing nothing, or doing harmless things.
The rendez-vous is used "for others" as a way for a thread to isolate itself.
A thread then requests to be alone using thread_isolate() when approaching
the dangerous area, and then waits until all other threads are either doing
the same or are doing something harmless (typically polling). The function
only returns once the thread is guaranteed to be alone, and the critical
section is terminated using thread_release().
When threads are disabled, some variables such as tid and tid_bit are
still checked everywhere, the MAX_THREADS_MASK macro is ~0UL while
MAX_THREADS is 1, and the all_threads_mask variable is replaced with a
macro forced to zero. The compiler cannot optimize away all this code
involving checks on tid and tid_bit, and we end up in special cases
where all_threads_mask has to be specifically tested for being zero or
not. It is not even certain the code paths are always equivalent when
testing without threads and with nbthread 1.
Let's change this to make sure we always present a single thread when
threads are disabled, and have the relevant values declared as constants
so that the compiler can optimize all the tests away. Now we have
MAX_THREADS_MASK set to 1, all_threads_mask set to 1, tid set to zero
and tid_bit set to 1. Doing just this has removed 4 kB of code in the
no-thread case.
A few checks for all_threads_mask==0 have been removed since it never
happens anymore.
An offsetof() macro was introduced with commit 928fbfa ("MINOR: compiler:
introduce offsetoff().") with a fallback for older compilers. But this
breaks gcc 3.4 because __size_t and __uintptr_t are not defined there.
However size_t and uintptr_t are, so let's fix it this way. No backport
needed.
The purpose is to make sure that all variables which directly depend
on this nbthread argument are set at the right moment. For now only
all_threads_mask needs to be set. It used to be set while calling
thread_sync_init() which is called too late for certain checks. The
same function handles threads and non-threads, which removes the need
for some thread-specific knowledge from cfgparse.c.
If nbthread is MAX_THREADS, the shift operation needed to compute
all_threads_mask fails in thread_sync_init(). Instead pass a number
of threads to this function and let it compute the mask without
overflowing.
This should be backported to 1.8.
Since BoringSSL 3b2ff028, API now correctly match OpenSSL 1.1.0.
The patch revert part of haproxy 019f9b10: "Fix BoringSSL call and
openssl-compat.h/#define occordingly.".
This will not break openssl/libressl compat.
Add a new pipe, one per thread, so that we can write on it to wake a thread
sleeping in a poller, and use it to wake threads supposed to take care of a
task, if they are all sleeping.
This lock was necessary to manipulate the pendconn element between
concurrent places, but was causing great difficulties in the list walk
by having to iterate over multiple entries instead of being able to
safely pick the first one (in fact the first element was always the
right one but the locking model was hard to prove).
Here since we know we can always rely on the queue's locks, we take
the queue's lock every time we need to modify the element. In practice
it was already the case everywhere except in pendconn_dequeue() which
only works on an element that was already detached. This function had
to be protected against the risk of meeting an incompletely detached
element (which could be unlinked but not yet assigned). By taking the
queue lock around the LIST_ISEMPTY test, it's enough to ensure that a
concurrent thread either didn't begin or had completed the operation.
The true benefit really is in pendconn_process_next_strm() where we
can again safely work with the first element of each queue. This will
significantly simplify next updates to this code.
The pendconn struct uses ->px and ->srv to designate where the element is
queued. There is something confusing regarding threads though, because we
have to lock the appropriate queue before inserting/removing elements, and
this queue may only be determined by looking at ->srv (if it's not NULL
it's the server, otherwise use the proxy). But pendconn_grab_from_px() and
pendconn_process_next_strm() both assign this ->srv field, making it
complicated to know what queue to lock before manipulating the element,
which is exactly why we have the pendconn_lock in the first place.
This commit introduces pendconn->target which is the target server that
the two aforementioned functions will set when assigning the server.
Thanks to this, the server pointer may always be relied on to determine
what queue to use.
Now pendconn_free() takes a stream, checks that pend_pos is set, clears
it, and uses pendconn_unlink() to complete the job. It's cleaner and
centralizes all the bookkeeping work in pendconn_unlink() only and
ensures that there's a single place where the stream's position in the
queue is manipulated.
For now the pendconns may be dequeued at two places :
- pendconn_unlink(), which operates on a locked queue
- pendconn_free(), which operates on an unlocked queue and frees
everything.
Some changes are coming to the queue and we'll need to be able to be a
bit stricter regarding the places where we dequeue to keep the accounting
accurate. This first step renames the locked function __pendconn_unlink()
as it's for use by those aware of it, and introduces a new general purpose
pendconn_unlink() function which automatically grabs the necessary locks
before calling the former, and pendconn_cond_unlink() which additionally
checks the pointer and the presence in the queue.
As __task_wakeup() is responsible for increasing
rqueue_local[tid]/global_rqueue_size, make __task_unlink_rq responsible for
decreasing it, as process_runnable_tasks() isn't the only one that removes
tasks from runqueues.
By removing the reason code for the wakeup we can gain 8 extra bits to
encode the task's state. The reason code was never used at all and is
wrong by design since subsequent calls will OR this value anyway. Let's
say it goodbye and leave the room for more precious bits. The woken bits
were moved to the higher byte so that the most important bits can stay
grouped together.
Whenever it's possible to avoid a copy, b_xfer() will simply swap the
buffer's heads without touching the data. This has brought the performance
back from 140 kH/s to 202 kH/s on the test case.
This function is generic and is able to automatically transfer data
from a conn_stream's rx buffer to the destination buffer. It does this
automatically if the mux doesn't define another rcv_buf() function.
In order to reorganize the connection layers, recv() operations will
need to be retryable and to support partial transfers. This requires
an intermediary buffer to hold the data coming from the mux. After a
few attempts, it turns out that this buffer is best placed inside the
conn_stream itself. For now it's only set to buf_empty and it will be
up to the caller to allocate it if required.
The latter function is more suited to operations that don't require any
check because the check has already been performed. It will be used by
other b_* functions.
This function is used a lot in block copies and is needlessly
complicated since it still uses pointer arithmetic. Let's fall
back to regular offsets and simplify it. This removed around
23 bytes from b_putblk() and it removed any conditional jump.
In thread_sync_barrier, we exit when all threads have set their own bit in the
barrier mask. It is done by comparing it to all_threads_mask. But we must not
use a simple equality to do so, becaue all_threads_mask may change. Since commit
ba86c6c25 ("MINOR: threads: Be sure to remove threads from all_threads_mask on
exit"), when a thread exit, its bit is removed from all_threads_mask. Instead,
we must use a bitwise AND to test is all bits of all_threads_mask are set.
This also requires that all_threads_mask is set to volatile if we want to
catch changes.
This patch must be backported in 1.8.
This new function wl_set_waitcb() prepopulates a wait_list with a tasklet
and a context and returns it so that it can be passed to ->subscribe() to
be added to a connection or conn_stream's wait_list. The caller doesn't
need to know all the insiders details anymore this way.
Totally nuke the "send" method, instead, the upper layer decides when it's
time to send data, and if it's not possible, uses the new subscribe() method
to be called when it can send data again.
Add a new "subscribe" method for connection, conn_stream and mux, so that
upper layer can subscribe to them, to be called when the event happens.
Right now, the only event implemented is "SUB_CAN_SEND", where the upper
layer can register to be called back when it is possible to send data.
The connection and conn_stream got a new "send_wait_list" entry, which
required to move a few struct members around to maintain an efficient
cache alignment (and actually this slightly improved performance).
Now all the code used to manipulate chunks uses a struct buffer instead.
The functions are still called "chunk*", and some of them will progressively
move to the generic buffer handling code as they are cleaned up.
Chunks are only a subset of a buffer (a non-wrapping version with no head
offset). Despite this we still carry a lot of duplicated code between
buffers and chunks. Replacing chunks with buffers would significantly
reduce the maintenance efforts. This first patch renames the chunk's
fields to match the name and types used by struct buffers, with the goal
of isolating the code changes from the declaration changes.
Most of the changes were made with spatch using this coccinelle script :
@rule_d1@
typedef chunk;
struct chunk chunk;
@@
- chunk.str
+ chunk.area
@rule_d2@
typedef chunk;
struct chunk chunk;
@@
- chunk.len
+ chunk.data
@rule_i1@
typedef chunk;
struct chunk *chunk;
@@
- chunk->str
+ chunk->area
@rule_i2@
typedef chunk;
struct chunk *chunk;
@@
- chunk->len
+ chunk->data
Some minor updates to 3 http functions had to be performed to take size_t
ints instead of ints in order to match the unsigned length here.
Now the buffers only contain the header and a pointer to the storage
area which can be anywhere. This will significantly simplify buffer
swapping and will make it possible to map chunks on buffers as well.
The buf_empty variable was removed, as now it's enough to have size==0
and area==NULL to designate the empty buffer (thus a non-allocated head
is the empty buffer by default). buf_wanted for now is indicated by
size==0 and area==(void *)1.
The channels and the checks now embed the buffer's head, and the only
pointer is to the storage area. This slightly increases the unallocated
buffer size (3 extra ints for the empty buffer) but considerably
simplifies dynamic buffer management. It will also later permit to
detach unused checks.
The way the struct buffer is arranged has proven quite efficient on a
number of tests, which makes sense given that size is always accessed
and often first, followed by the othe ones.
It used to be called 'len' during the reorganisation but strictly speaking
it's not a length since it wraps. Also we already use '_data' as the suffix
to count available data, and data is also what we use to indicate the amount
of data in a pipe so let's improve consistency here. It was important to do
this in two operations because data used to be the name of the pointer to
the storage area.
This one is more generic and designed to work on a random block. It
may later get a b_rep_ist() variant since many strings are already
available as (ptr,len).
There was no point keeping that function in the buffer part since it's
exclusively used by HTTP at the channel level, since it also automatically
appends the CRLF. This further cleans up the buffer code.
The new file istbuf.h links the indirect strings (ist) with the buffers.
The purpose is to encourage addition of more standard buffer manipulation
functions that rely on this in order to improve the overall ease of use
along all the code. Just like ist.h and buf.h, this new file is not
expected to depend on anything beyond these two files.
A few functions were added and/or converted from buffer.h :
- b_isteq() : indicates if a buffer and a string match
- b_isteat() : consumes a string from the buffer if it matches
- b_istput() : appends a small string to a buffer (all or none)
- b_putist() : appends part of a large string to a buffer
The equivalent functions were removed from buffer.h and changed at the
various call places.
The two variants now do exactly the same (appending at the tail of the
buffer) so let's not keep the distinction between these classes of
functions and have generic ones for this. It's also worth noting that
b{i,o}_putchk() wasn't used at all and was removed.
There's no distinction between in and out data now. The latter covers
the needs of the former and supports wrapping. The extra cost is
negligible given the locations where it's used.
Since we never access this field directly anymore, but only through the
channel's wrappers, it can now move to the channel. The buffers are now
completely free from the distinction between input and output data.
Since we use "_data" for the amount of data at many places, as opposed to
"_space" for the amount of space, let's rename the "data" field to "area"
so that we can reuse "data" later for the amount of data in the buffer
(currently called "len" despite not being contigous).
b_set_data() is used :
- in proto_http and hlua to trim input data (b_set_data(co_data()))
- in SPOE to append data to a buffer while building a message
In no case will this truncate a buffer so we can safely remove the
test for len < b->output.
b_del() is used in :
- mux_h2 with the demux buffer : always processes input data
- checks with output data though output is not considered at all there
- b_eat() which is not used anywhere
- co_skip() where the len is always <= output
Thus the distinction for output data is not needed anymore and the
decrement can be made inconditionally in co_skip().
This is intentionally the minimal and safest set of changes, some cleanups
area still required. These changes are quite tricky and cannot be
independantly tested, so it's important to keep this patch as bisectable
as possible.
buf_empty and buf_wanted were changed and are now exactly similar since
there's no <p> member in the structure anymore. Given that no test is
ever made in the code to check that buf == &buf_wanted, it may be possible
that we don't need to have two anymore, unless some buf_empty tests have
precedence. This will have to be investigated.
A significant part of this commit affects the HTTP compression code,
which used to deeply manipulate the input and output buffers without
any reasonable solution for a better abstraction. For this reason, if
any regression is met and designates this patch as the culprit, it is
important to run tests which specifically involve compression or which
definitely don't use it in order to spot the issue.
Cc: Olivier Houchard <ohouchard@haproxy.com>
For the same consistency reasons, let's use b_empty() at the few places
where an empty buffer is expected, or c_empty() if it's done on a channel.
Some of these places were there to realign the buffer so
{b,c}_realign_if_empty() was used instead.
We used to have variations around buffer_total_space() and
size-buffer_len() or size-b_data(). Let's simplify all this. buffer_len()
was also removed as not used anymore.
Now the new API functions are being used everywhere, we can get rid
of b_ptr(). A few last users like bi_istput() and bo_istput() appear
to only differ by what part of the buffer they're increasing, but
that should quickly be merged.
With this flag we introduce the notion of "dry" vs "wet" buffers : some
demultiplexers like the H2 mux require as much room as possible for some
operations that are not retryable like decoding a headers frame. For this
they need to know if the buffer is congested with data scheduled for
leaving soon or not. Since the new API will not provide this information
in the buffer itself, the caller must indicate it. We never need to know
the amount of such data, just the fact that the buffer is not in its
optimal condition to be used for receipt. This "CO_RFL_BUF_WET" flag is
used to mention that such outgoing data are still pending in the buffer
and that a sensitive receiver should better let it "dry" before using it.
The mux and transport rcv_buf() now takes a "flags" argument, just like
the snd_buf() one or like the equivalent syscall lower part. The upper
layers will use this to pass some information such as indicating whether
the buffer is free from outgoing data or if the lower layer may allocate
the buffer itself.
It also returns a size_t. This is in order to clean the API. Note
that the H2 mux still uses some ints in the functions called from
h2_rcv_buf(), though it's not really a problem given that H2 frames
are smaller. It may deserve a general cleanup later though.
Just like we have a size_t for xprt->snd_buf(), we adjust to use size_t
for rcv_buf()'s count argument and return value. It also removes the
ambiguity related to the possibility to see a negative value there.
This way the mux doesn't need to modify the buffer's metadata anymore
nor to know the output's size. The mux->snd_buf() function now takes a
const buffer and it's up to the caller to update the buffer's state.
The return type was updated to return a size_t to comply with the count
argument.
This way the senders don't need to modify the buffer's metadata anymore
nor to know about the output's split point. This way the functions can
take a const buffer and it's clearer who's in charge of updating the
buffer after a send. That's why the buffer realignment is now performed
by the caller of the transport's snd_buf() functions.
The return type was updated to return a size_t to comply with the count
argument.
Now that there are no more users requiring to modify the buffer anymore,
switch these ones to const char and const buffer. This will make it more
obvious next time send functions are tempted to modify the buffer's output
count. Minor adaptations were necessary at a few call places which were
using char due to the function's previous prototype.
Till now the callers had to know which one to call for specific use cases.
Let's fuse them now since a single one will remain after the API migration.
Given that bi_del() may only be used where o==0, just combine the two tests
by first removing output data then only input.
This will be important so that we can parse a buffer without touching it.
Now we indicate where from the buffer's head we plan to start to copy, and
for how many bytes. This will be used by send functions to loop at the end
of the buffer without having to update the buffer's output byte count.
This new functoin limits itself to the amount of data available in the
buffer and doesn't care about the direction anymore. It's only called
from co_getblk() which already checks that no more than the available
output bytes is requested.
These ones were merged into a single b_contig_space() that covers both
(the bo_ case was a simplified version of the other one). The function
doesn't use ->i nor ->o anymore.
This function was sometimes used from a channel and sometimes from a buffer.
In both cases it requires knowledge of the size of the output data (to skip
them). Here the split ensures the channel can deal with this point, and that
other places not having output data can continue to work.
These ones manipulate the output data count which will be specific to
the channel soon, so prepare the call points to use the channel only.
The b_* functions are now unused and were removed.
The few call places where it's used can use the trash as a swap buffer,
which is made for this exact purpose. This way we can rely on the
generic b_slow_realign() call.
Where relevant, the channel version is used instead. The buffer version
was ported to be more generic and now takes a swap buffer and the output
byte count to know where to set the alignment point. The H2 mux still
uses buffer_slow_realign() with buf->o but it will change later.
This adds :
- c_orig() : channel buffer's origin
- c_size() : channel buffer's size
- c_wrap() : channel buffer's wrapping location
- c_data() : channel buffer's total data count
- c_room() : room left in channel buffer's
- c_empty() : true if channel buffer is empty
- c_full() : true if channel buffer is full
- c_ptr() : pointer to an offset relative to input data in the buffer
- c_adv() : advances the channel's buffer (bytes become part of output)
- c_rew() : rewinds the channel's buffer (output bytes not output anymore)
- c_realign_if_empty() : realigns the buffer if it's empty
- co_data() : # of output data
- co_head() : beginning of output data
- co_tail() : end of output data
- ci_data() : # of input data
- ci_head() : beginning of input data
- ci_tail() : end of input data
- ci_stop() : location after ci_tail()
- ci_next() : pointer to next input byte
And for the ci_* / co_* functions above, the "__*" variants which disable
wrapping checks, and the "_ofs" variants which return an offset relative to
the buffer's origin instead.
Many places deal with buffer realignment after data removal. The method
is always the same : if the buffer is empty, set its pointer to the origin.
Let's have a function for this so that we have less code to change with the
new API.
Add a new function that lets you set the amount of input in a buffer.
For now it extends/truncates b->i except if the total length is
below b->o in which case it clears i and adjusts o.
Instead of doing b->i -= directly, introduce b_sub(), that does the job, to
make it easier to switch to the future API.
Also add b_add(), that increases b->i, instead of using it directly, and
bo_add(), that does increase b->o.
Here's the list of newly introduced functions :
- b_data(), returning the total amount of data in the buffer (currently i+o)
- b_orig(), returning the origin of the storage area, that is, the place of
position 0.
- b_wrap(), pointer to wrapping point (currently data+size)
- b_size(), returning the size of the buffer
- b_room(), returning the amount of bytes left available
- b_full(), returning true if the buffer is full, otherwise false
- b_stop(), pointer to end of data mark (currently p+i), used to compute
distances or a stop pointer for a loop.
- b_peek(), this one will help make the transition to the new buffer model.
It returns a pointer to a position in the buffer known from an offest
relative to the beginning of the data in the buffer. Thus, we can replace
the following occurrences :
bo_ptr(b) => b_peek(b, 0);
bo_end(b) => b_peek(b, b->o);
bi_ptr(b) => b_peek(b, b->o);
bi_end(b) => b_peek(b, b->i + b->o);
b_ptr(b, ofs) => b_peek(b, b->o + ofs);
- b_head(), pointer to the beginning of data (currently bo_ptr())
- b_tail(), pointer to first free place (currently bi_ptr())
- b_next() / b_next_ofs(), pointer to the next byte, taking wrapping
into account.
- b_dist(), returning the distance between two pointers belonging to a buffer
- b_reset(), which resets the buffer
- b_space_wraps(), indicating if the free space wraps around the buffer
- b_almost_full(), indicating if 3/4 or more of the buffer are used
Some of these are provided with the unchecked variants using the "__"
prefix, or with the "_ofs" suffix indicating they return a relative
position to the buffer's origin instead of a pointer.
Cc: Olivier Houchard <ohouchard@haproxy.com>
Passing unsigned ints everywhere is painful, and will cause some headache
later when we'll want to integrate better with struct ist which already
uses size_t. Let's switch buffers to use size_t instead.
The buffer code currently depends on pools and other stuff and is not
really autonomous anymore. The rewrite of the new API is an opportunity
to clean this up. This patch creates a new file (buf.h) which does not
depend on other elements and which will only contain what is needed to
perform the most basic buffer operations. The new API will be introduced
in this file and the conversion will be finished once buffer.h is empty.
The definition of struct buffer was moved to this new file, using more
explicity stdint types for the sizes and offsets.
Most new functions will be implemented in two variants :
__b_something() : unchecked variant, no wrapping is expected
b_something() : wrapping-checked variant
This way callers will be able to select which one to use depending on
the use cases.
Commit 200b0fa ("MEDIUM: Add support for updating TLS ticket keys via
socket") introduced support for updating TLS ticket keys from the CLI,
but missed a small corner case : if multiple bind lines reference the
same tls_keys file, the same reference is used (as expected), but during
the clean shutdown, it will lead to a double free when destroying the
bind_conf contexts since none of the lines knows if others still use
it. The impact is very low however, mostly a core and/or a message in
the system's log upon old process termination.
Let's introduce some basic refcounting to prevent this from happening,
so that only the last bind_conf frees it.
Thanks to Janusz Dziemidowicz and Thierry Fournier for both reporting
the same issue with an easy reproducer.
This fix needs to be backported from 1.6 to 1.8.
By default, HAProxy's DNS resolution at runtime ensure that there is no
IP address duplication in a backend (for servers being resolved by the
same hostname).
There are a few cases where people want, on purpose, to disable this
feature.
This patch introduces a couple of new server side options for this purpose:
"resolve-opts allow-dup-ip" or "resolve-opts prevent-dup-ip".
Up until now, a tasklet couldn't be free'd while it was in the list, it is
no longer the case, so make sure we remove it from the list before freeing it.
To do so, we have to make sure we correctly initialize it, so use LIST_INIT,
instead of setting the pointers to NULL.
The behavior of sigprocmask in an multithreaded environment is
undefined.
The new macro ha_sigmask() calls either pthreads_sigmask() or
sigprocmask() if haproxy was built with thread support or not.
This should be backported to 1.8.
To make sure we don't inadvertently insert task in the global runqueue,
while only the local runqueue is used without threads, make its definition
and usage conditional on USE_THREAD.
When building without threads enabled, instead of just using the global
runqueue, just use the local runqueue associated with the only thread, as
that's what is now expected for a single thread in prcoess_runnable_tasks().
This should fix haproxy when built without threads.
When an applet is created, let's assign it the same nice value as the task
of the stream which owns it. It ensures that fairness is properly propagated
to applets, and that the CLI can regain a low latency behaviour again. Huge
differences have been seen under extreme loads, with the CLI being called
every 200 microseconds instead of 11 milliseconds.
This function returns true is some notifications are registered.
This function is usefull for the following patch
BUG/MEDIUM: lua/socket: Sheduling error on write: may dead-lock
It should be backported in 1.6, 1.7 and 1.8
Don't forget to increase tasks_run_queue when we're adding a task to the
tasklet list, and to decrease it when we remove a task from a runqueue,
or its value won't be accurate, and could lead to tasks not being executed
when put in the global run queue.
1.9-dev only, no backport is needed.
This patch adds a warning if an http-(request|reponse) (add|set)-header
rewrite fails to change the respective header in a request or response.
This usually happens when tune.maxrewrite is not sufficient to hold all
the headers that should be added.
There's no real reason to have a specific scheduler for applets anymore, so
nuke it and just use tasks. This comes with some benefits, the first one
being that applets cannot induce high latencies anymore since they share
nice values with other tasks. Later it will be possible to configure the
applets' nice value. The second benefit is that the applet scheduler was
not very thread-friendly, having a big lock around it in prevision of this
change. Thus applet-intensive workloads should now scale much better with
threads.
Some more improvement is possible now : some applets also use a task to
handle timers and timeouts. These ones could now be simplified to use only
one task.
Introduce tasklets, lightweight tasks. They have no notion of priority,
they are just run as soon as possible, and will probably be used for I/O
later.
For the moment they're used to replace the temporary thread-local list
that was used in the scheduler. The first part of the struct is common
with tasks so that tasks can be cast to tasklets and queued in this list.
Once a task is in the tasklet list, it has its leaf_p set to 0x1 so that
it cannot accidently be confused as not in the queue.
Pure tasklets are identifiable by their nice value of -32768 (which is
normally not possible).
A lot of tasks are run on one thread only, so instead of having them all
in the global runqueue, create a per-thread runqueue which doesn't require
any locking, and add all tasks belonging to only one thread to the
corresponding runqueue.
The global runqueue is still used for non-local tasks, and is visited
by each thread when checking its own runqueue. The nice parameter is
thus used both in the global runqueue and in the local ones. The rare
tasks that are bound to multiple threads will have their nice value
used twice (once for the global queue, once for the thread-local one).
In preparation for thread-specific runqueues, change the task API so that
the callback takes 3 arguments, the task itself, the context, and the state,
those were retrieved from the task before. This will allow these elements to
change atomically in the scheduler while the application uses the copied
value, and even to have NULL tasks later.
A few users reported that building without threads was accidently broken
after commit 6b96f72 ("BUG/MEDIUM: pollers: Use a global list for fd
shared between threads.") due to all_threads_mask not being defined.
It's OK to set it to zero as other code parts do when threads are
enabled but only one thread is used.
This needs to be backported to 1.8.
The function hlua_ctx_resume return less text message and more error
code. These error code allow the caller to return appropriate
message to the user.
The polled_mask is only used in the pollers, and removing it from the
struct fdtab makes it fit in one 64B cacheline again, on a 64bits machine,
so make it a separate array.
With the old model, any fd shared by multiple threads, such as listeners
or dns sockets, would only be updated on one threads, so that could lead
to missed event, or spurious wakeups.
To avoid this, add a global list for fd that are shared, using the same
implementation as the fd cache, and only remove entries from this list
when every thread as updated its poller.
[wt: this will need to be backported to 1.8 but differently so this patch
must not be backported as-is]
Modify fd_add_to_fd_list() and fd_rm_from_fd_list() so that they take an
offset in the fdtab to the list entry, instead of hardcoding the fd cache,
so we can use them with other lists.
While running a task, we may try to delete and free a task that is about to
be run, because it's part of the local tasks list, or because rq_next points
to it.
So flag any task that is in the local tasks list to be deleted, instead of
run, by setting t->process to NULL, and re-make rq_next a global,
thread-local variable, that is modified if we attempt to delete that task.
Many thanks to PiBa-NL for reporting this and analysing the problem.
This should be backported to 1.8.
For large farms where servers are regularly added or removed, picking
a random server from the pool can ensure faster load transitions than
when using round-robin and less traffic surges on the newly added
servers than when using leastconn.
This commit introduces "balance random". It internally uses a random as
the key to the consistent hashing mechanism, thus all features available
in consistent hashing such as weights and bounded load via hash-balance-
factor are usable. It is extremely convenient because one common concern
when using random is what happens when a server is hammered a bit too
much. Here that can trivially be avoided, like in the configuration below :
backend bk0
balance random
hash-balance-factor 110
server-template s 1-100 127.0.0.1:8000 check inter 1s
Note that while "balance random" internally relies on a hash algorithm,
it holds the same properties as round-robin and as such is compatible with
reusing an existing server connection with "option prefer-last-server".
In order to use arbitrary data in the CLI (multiple lines or group of words
that must be considered as a whole, for example), it is now possible to add a
payload to the commands. To do so, the first line needs to end with a special
pattern: <<\n. Everything that follows will be left untouched by the CLI parser
and will be passed to the commands parsers.
Per-command support will need to be added to take advantage of this
feature.
Signed-off-by: Aurélien Nephtali <aurelien.nephtali@corp.ovh.com>
We'll need this in order to support uploading chunks. The h2 to h1
converter checks for the presence of the content-length header field
as well as the CONNECT method and returns these information to the
caller. The caller indicates whether or not a body is detected for
the message (presence of END_STREAM or not). No transfer-encoding
header is emitted yet.
In some cases, we call cs_destroy() very early, so early the connection
doesn't yet have a mux, so we can't call mux->detach(). In this case,
just destroy the associated connection.
This should be backported to 1.8.
With gcc < 4.7, when HAProxy is built with threads, the macros
HA_ATOMIC_CAS/XCHG/STORE relies on the legacy __sync builtins. These macros
are slightly complicated than the versions relying on the '_atomic'
builtins. Internally, some local variables are defined, prefixed with '__' to
avoid name clashes with the caller.
On the other hand, the macros HA_ATOMIC_UPDATE_MIN/MAX call HA_ATOMIC_CAS. Some
local variables are also definied in these macros, following the same naming
rule as below. The problem is that '__new' variable is used in
HA_ATOMIC_MIN/_MAX and in HA_ATOMIC_CAS. Obviously, the behaviour is undefined
because '__new' in HA_ATOMIC_CAS is left uninitialized. Unfortunatly gcc fails
to detect this error.
To fix the problem, all internal variables to macros are now suffixed with name
of the macros to avoid clashes (for instance, '__new_cas' in HA_ATOMIC_CAS).
This patch must be backported in 1.8.
In addition to metrics about time spent in the SPOE, following counters have
been added:
* applets : number of SPOE applets.
* idles : number of idle applets.
* nb_sending : number of streams waiting to send data.
* nb_waiting : number of streams waiting for a ack.
* nb_processed : number of events/groups processed by the SPOE (from the
stream point of view).
* nb_errors : number of errors during the processing (from the stream point of
view).
Log messages has been updated to report these counters. Following pattern has
been added at the end of the log message:
... <idles>/<applets> <nb_sending>/<nb_waiting> <nb_error>/<nb_processed>
Now it is possible to configure a logger in a spoe-agent section using a "log"
line, as for a proxy. "no log", "log global" and "log <address> ..." syntaxes
are supported.
With "log global" line, the global list of loggers are copied into the proxy's
struct. The list coming from the default section is also copied when a frontend
or a backend section is parsed. So it is possible to have duplicate entries in
the proxy's list. For instance, with this following config, all messages will be
logged twice:
global
log 127.0.0.1 local0 debug
daemon
defaults
mode http
log global
option httplog
frontend front-http
log global
bind *:8888
default_backend back-http
backend back-http
server www 127.0.0.1:8000
Now, the function parse_logsrv should be used to parse a "log" line. This
function will update the list of loggers passed in argument. It can release all
log servers when "no log" line was parsed (by the caller) or it can parse "log
global" or "log <address> ... " lines. It takes care of checking the caller
context (global or not) to prohibit "log global" usage in the global section.
"set-process-time" and "set-total-time" options have been added to store
processing times in the transaction scope, at each event and group processing,
the current one and the total one. So it is possible to get them.
TODO: documentation
Following metrics are added for each event or group of messages processed in the
SPOE:
* processing time: the delay to process the event or the group. From the
stream point of view, it is the latency added by the SPOE
processing.
* request time : It is the encoding time. It includes ACLs processing, if
any. For fragmented frames, it is the sum of all fragments.
* queue time : the delay before the request gets out the sending queue. For
fragmented frames, it is the sum of all fragments.
* waiting time: the delay before the reponse is received. No fragmentation
supported here.
* response time: the delay to process the response. No fragmentation supported
here.
* total time: (unused for now). It is the sum of all events or groups
processed by the SPOE for a specific threads.
Log messages has been updated. Before, only errors was logged (status_code !=
0). Now every processing is logged, following this format:
SPOE: [AGENT] <TYPE:NAME> sid=STREAM-ID st=STATUC-CODE reqT/qT/wT/resT/pT
where:
AGENT is the agent name
TYPE is EVENT of GROUP
NAME is the event or the group name
STREAM-ID is an integer, the unique id of the stream
STATUS_CODE is the processing's status code
reqT/qT/wT/resT/pT are delays descrive above
For all these delays, -1 means the processing was interrupted before the end. So
-1 for the queue time means the request was never dequeued. For fragmented
frames it is harder to know when the interruption happened.
For now, messages are logged using the same logger than the backend of the
stream which initiated the request.
Clearing the update_mask bit in fd_insert may lead to duplicate insertion
of fd in fd_updt, that could lead to a write past the end of the array.
Instead, make sure the update_mask bit is cleared by the pollers no matter
what.
This should be backported to 1.8.
[wt: warning: 1.8 doesn't have the lockless fdcache changes and will
require some careful changes in the pollers]
This function will be called from the CLI's "show fd" command to append some
extra mux-specific information that only the mux handler can decode. This is
supposed to help collect various hints about what is happening when facing
certain anomalies.
This patch add option crc32c (PP2_TYPE_CRC32C) to proxy protocol v2.
It compute the checksum of proxy protocol v2 header as describe in
"doc/proxy-protocol.txt".
Commit 4815c8c ("MAJOR: fd/threads: Make the fdcache mostly lockless.")
made the fd cache lockless, but after a few iterations, a subtle part was
lost, consisting in setting the bit on the fd_cache_mask immediately when
adding an event. Now it was done only when the cache started to process
events, but the problem it causes is that fd_cache_mask isn't reliable
anymore as an indicator of presence of events to be processed with no
delay outside of fd_process_cached_events(). This results in some spurious
delays when processing inter-thread wakeups between tasks. Just restoring
the flag when the event is added is enough to fix the problem.
Kudos to Christopher for spotting this one!
No backport is needed as this is only in the development version.
The management of the servers and the proxies queues was not thread-safe at
all. First, the accesses to <strm>->pend_pos were not protected. So it was
possible to release it on a thread (for instance because the stream is released)
and to use it in same time on another one (because we redispatch pending
connections for a server). Then, the accesses to stream's information (flags and
target) from anywhere is forbidden. To be safe, The stream's state must always
be updated in the context of process_stream.
So to fix these issues, the queue module has been refactored. A lock has been
added in the pendconn structure. And now, when we try to dequeue a pending
connection, we start by unlinking it from the server/proxy queue and we wake up
the stream. Then, it is the stream reponsibility to really dequeue it (or
release it). This way, we are sure that only the stream can create and release
its <pend_pos> field.
However, be careful. This new implementation should be thread-safe
(hopefully...). But it is not optimal and in some situations, it could be really
slower in multi-threaded mode than in single-threaded one. The problem is that,
when we try to dequeue pending connections, we process it from the older one to
the newer one independently to the thread's affinity. So we need to wait the
other threads' wakeup to really process them. If threads are blocked in the
poller, this will add a significant latency. This problem happens when maxconn
values are very low.
This patch must be backported in 1.8.
When a listener is temporarily disabled, we start by locking it and then we call
.pause callback of the underlying protocol (tcp/unix). For TCP listeners, this
is not a problem. But listeners bound on an unix socket are in fact closed
instead. So .pause callback relies on unbind_listener function to do its job.
Unfortunatly, unbind_listener hold the listener's lock and then call an internal
function to unbind it. So, there is a deadlock here. This happens during a
reload. To fix the problemn, the function do_unbind_listener, which is lockless,
is now exported and is called when a listener bound on an unix socket is
temporarily disabled.
This patch must be backported in 1.8.
This patch implement proxy protocol v2 options related to crypto information:
ssl-cipher (PP2_SUBTYPE_SSL_CIPHER), cert-sig (PP2_SUBTYPE_SSL_SIG_ALG) and
cert-key (PP2_SUBTYPE_SSL_KEY_ALG).
ssl_sock_get_pkey_algo can be used to report pkey algorithm to log
and ppv2 (RSA2048, EC256,...).
Extract pkey information is not free in ssl api (lock/alloc/free):
haproxy can use the pkey information computed in load_certificate.
Store and use this information in a SSL ex_data when available,
compute it if not (SSL multicert bundled and generated cert).
Private key information is used in switchctx to implement native multicert
selection (ecdsa/rsa/anonymous). This patch extract and store full pkey
information: dsa type and pkey size in bits. This can be used for switchctx
or to report pkey informations in ppv2 and log.
When the block of data need to be split to support the wrapping, the start of
the second block of data was wrong. We must be sure to skup data copied during
the first memcpy.
This patch must be backported to 1.8.
When the block of data need to be split to support the wrapping, the start of
the second block of data was wrong. We must be sure to skip data copied during
the first memcpy.
This patch must be backported to 1.8, 1.7, 1.6 and 1.5.
Since we use padding before the allocated page, it's trivial to place
the allocated address there and see if it gets mangled once we release
it.
This may be backported to stable releases already using DEBUG_UAF.
Commit 158fa75 ("MINOR: pools: implement DEBUG_UAF to detect use after free")
implemented pool use-after-free detection, but the mmap() return value isn't
properly checked, preventing the call to pool_alloc_area() from returning
NULL. So on out-of-memory a mangled pointer is returned, causing a crash on
the pool_alloc() site instead of forcing a GC. It doesn't affect regular
operations however, just complicates complex bug investigations.
This fix should be backported to 1.8 and to 1.7.
Since commit cf975d4 ("MINOR: pools/threads: Implement lockless memory
pools."), we support lockless pools. However the parts dedicated to
detecting use-after-free are not present in this part, making DEBUG_UAF
useless in this situation.
The present patch sets a new define CONFIG_HAP_LOCKLESS_POOLS when such
a compatible architecture is detected, and when pool debugging is not
requested, then makes use of this everywhere in pools and buffers
functions. This way enabling DEBUG_UAF will automatically disable the
lockless version.
No backport is needed as this is purely 1.9-dev.
This removes the end label from memory.h.
The labels are unused as of cf975d46bc
which is unreleased (and incidentally the first commit containing
those labels, thus they never have been used).
A TLS ticket keys file can be updated on the CLI and used in same time. So we
need to protect it to be sure all accesses are thread-safe. Because updates are
infrequent, a R/W lock has been used.
This patch must be backported in 1.8
Commit f61f0cb ("MINOR: threads: Introduce double-width CAS on x86_64
and arm.") introduced the double CAS. But the ARMv7 version is bogus,
it uses the value of the pointers instead of dereferencing them. When
lucky, it simply doesn't build due to impossible registers combinations.
Otherwise it will immediately crash at run time when facing traffic.
No backport is needed, this bug was introduced in 1.9-dev.
Each fd_{may|cant|stop|want}_{recv|send} function sets or resets a
single bit at once, then recomputes the need for updates, and then
the new cache state. Later, pollers will compute the new polling
state based on the resulting operations here. In fact the conditions
are so simple that they can be performed by a single "if", or sometimes
even optimized away.
This means that in practice a simple compare-and-swap operation if often
enough to set the new value inluding the new polling state, and that only
the cache and fdupdt have to be performed under the lock. Better, for the
most common operations (fd_may_{recv,send}, used by the pollers), a simple
atomic OR is needed.
This patch does this for the fd_* functions above and it doesn't yet
remove the now useless fd_compute_new_polling_status() because it's still
used by other pollers. A pure connection rate test shows a 1% performance
increase.
An fd cache entry might be removed and added at the end of the list, while
another thread is parsing it, if that happens, we may miss fd cache entries,
to avoid that, add a new field in the struct fdtab, "added_mask", which
contains a mask for potentially affected threads, if it is set, the
corresponding thread will set its bit in fd_cache_mask, to avoid waiting in
poll while it may have more work to do.
Create a local, per-thread, fdcache, for file descriptors that only belongs
to one thread, and make the global fd cache mostly lockless, as we can get
a lot of contention on the fd cache lock.
Instead of looking for CO_FL_EARLY_DATA to know if we have to try to wake
up a stream, because it is waiting for a SSL handshake, instead add a new
conn_stream flag, CS_FL_WAIT_FOR_HS. This way we don't have to rely on
CO_FL_EARLY_DATA, and we will only wake streams that are actually waiting.
Instead of using a list of applets with idle ones in front, we now use an
ebtree. Aapplets in the tree are idle by definition. And the key is the applet's
weight. When a new frame is queued, the first idle applet (with the lowest
weight) is woken up and its weight is increased by one. And when an applet sends
a frame to a SPOA, its weight is decremented by one.
This is empirical, but it should avoid to overuse a very few number of applets
and increase the balancing between idle applets.
So it is easier to respect the max_fpa value. This is no more the maximum frames
processed by an applet at each loop but the maximum frames waiting for an ack
for a specific applet.
The function spoe_handle_processing_appctx has been rewritten accordingly.
sending_rate was a counter used to evaluate the SPOE capacity to process
frames. Because it was not really accurrate, it has been replaced by a frequency
counter representing the number of frames handled by the SPOE per second. We
just check this counter is higher than the number of streams waiting for a
reply. If not, a new applet is created.
The calculation of a minimal number of active applets was really empirical and
finally useless. On heavy load, there are always many active applets (most of
time, more than the minimal required) and when the load is low, there is no
reason to keep unused applets opened.
Because of this change, the flag SPOE_APPCTX_FL_PERSIST is now unused. So it has
been removed.
Recent changes to the enum were not synchronized with the lock debugging
code. Now we use a switch/case instead of an array so that the compiler
throws a warning if there is any inconsistency.
To be backported to 1.8 (at least to add the START entry).
fd_insert() is currently called just after setting the owner and iocb,
but proceeding like this prevents the operation from being atomic and
requires a lock to protect the maxfd computation in another thread from
meeting an incompletely initialized FD and computing a wrong maxfd.
Fortunately for now all fdtab[].owner are set before calling fd_insert(),
and the first lock in fd_insert() enforces a memory barrier so the code
is safe.
This patch moves the initialization of the owner and iocb to fd_insert()
so that the function will be able to properly arrange its operations and
remain safe even when modified to become lockless. There's no other change
beyond the internal API.
These functions were created for poll() in 1.5-dev18 (commit 80da05a4) to
replace the previous FD_{CLR,SET,ISSET} that were shared with select()
because some libcs enforce a limit on FD_SET. But FD_SET doesn't seem
to be universally MT-safe, requiring locks in the select() code that
are not needed in the poll code. So let's move back to the initial
situation where we used to only use bit fields, since that has been in
use since day one without a problem, and let's use these hap_fd_*
functions instead of FD_*.
This patch only moves the functions to fd.h and revives hap_fd_isset()
that was recently removed to kill an "unused" warning.
Since only select() and poll() still make use of maxfd, let's move
its computation right there in the pollers themselves, and only
during each fd update pass. The computation doesn't need a lock
anymore, only a few atomic ops. It will be accurate, be done much
less often and will not be required anymore in the FD's fast patch.
This provides a small performance increase of about 1% in connection
rate when using epoll since we get rid of this computation which was
performed under a lock.
The incorrect comment was introduced in commit:
2ac5718dbd
v1.5-dev9 is the first tag containing this comment, the fix
should be backported to haproxy 1.5 and newer.
Marc Fournier reported an interesting case when using threads with the
master-worker mode : sometimes, a listener would have its FD closed
during startup. Sometimes it could even be health checks seeing this.
What happens is that after the threads are created, and the pollers
enabled on each threads, the master-worker pipe is registered, and at
the same time a close() is performed on the write side of this pipe
since the children must not use it.
But since this is replicated in every thread, what happens is that the
first thread closes the pipe, thus releases the FD, and the next thread
starting a listener in parallel gets this FD reassigned. Then another
thread closes the FD again, which this time corresponds to the listener.
It can also happen with the health check sockets if they're started
early enough.
This patch splits the mworker_pipe_register() function in two, so that
the close() of the write side of the FD is performed very early after the
fork() and long before threads are created (we don't need to delay it
anyway). Only the pipe registration is done in the threaded code since
it is important that the pollers are properly allocated for this.
The mworker_pipe_register() function now takes care of registering the
pipe only once, and this is guaranteed by a new surrounding lock.
The call to protocol_enable_all() looks fragile in theory since it
scans the list of proxies and their listeners, though in practice
all threads scan the same list and take the same locks for each
listener so it's not possible that any of them escapes the process
and finishes before all listeners are started. And the operation is
idempotent.
This fix must be backported to 1.8. Thanks to Marc for providing very
detailed traces clearly showing the problem.
Some pollers like epoll() need to know if the fd is already known or
not in order to compute the operation to perform (add, mod, del). For
now this is performed based on the difference between the previous FD
state and the new state but this will not be usable anymore once threads
become responsible for their own polling.
Here we come with a different approach : a bitmask is stored with the
fd to indicate which pollers already know it, and the pollers will be
able to simply perform the add/mod/del operations based on this bit
combined with the new state.
This patch only adds the bitmask declaration and initialization, it
is it not yet used. It will be needed by the next two fixes and will
need to be backported to 1.8.
Since the fd update tables are per-thread, we need to have a bit per
thread to indicate whether an update exists, otherwise this can lead
to lost update events every time multiple threads want to update the
same FD. In practice *for now*, it only happens at start time when
listeners are enabled and ask for polling after facing their first
EAGAIN. But since the pollers are still shared, a lost event is still
recovered by a neighbor thread. This will not reliably work anymore
with per-thread pollers, where it has been observed a few times on
startup that a single-threaded listener would not always accept
incoming connections upon startup.
It's worth noting that during this code review it appeared that the
"new" flag in the fdtab isn't used anymore.
This fix should be backported to 1.8.
A bitfield has been added to know if there are some FDs processable by a
specific thread in the FD cache. When a FD is inserted in the FD cache, the bits
corresponding to its thread_mask are set. On each thread, the bitfield is
updated when the FD cache is processed. If there is no FD processed, the thread
is removed from the bitfield by unsetting its tid_bit.
Note that this bitfield is updated but not checked in
fd_process_cached_events. So, when this function is called, the FDs cache is
always processed.
[wt: should be backported to 1.8 as it will help fix a design limitation]
A number of counters have been added at special places helping better
understanding certain bug reports. These counters are maintained per
thread and are shown using "show activity" on the CLI. The "clear
counters" commands also reset these counters. The output is sent as a
single write(), which currently produces up to about 7 kB of data for
64 threads. If more counters are added, it may be necessary to write
into multiple buffers, or to reset the counters.
To backport to 1.8 to help collect more detailed bug reports.
This one allows not to inflate some structures when threads are
disabled. Now struct global is 1.4 kB instead of 33 kB.
Should be backported to 1.8 for ease of backporting of upcoming
patches.
The "thread" part is 32kB long, better move it at the end of the
structure since it's only used during initialization, to keep the
rest grouped together.
Should be backported to 1.8 to ease backporting of upcoming patches,
no functional impact.
In addition to "option force-set-var", recently added, this directive can be
used to selectivelly register unknown variable names, without totally relaxing
their registration during the runtime, like "option force-set-var" does.
So there is no way for a malicious agent to exhaust memory by defining a too
high number of variable names. In other hand, you need to enumerate all
variable names. This could be painfull in some circumstances.
Remember, this directive is only usefull when the variable names are not
referenced anywhere in the HAProxy configuration or the SPOE one.
Thanks to Etienne Carrière for his help on this part.
Till now the use of __atomic_* gcc builtins required gcc >= 4.7. Since
some supported and quite common operating systems like CentOS 6 still
come with older versions (4.4) and the mapping to the older builtins
is reasonably simple, let's implement it.
This code is only used for gcc < 4.7. It has been quickly tested on a
machine using gcc 4.4.4 and provided expected results.
This patch should be backported to 1.8.
A SRV record weight can range from 0 to 65535, while haproxy weight goes
from 0 to 256, so we have to divide it by 256 before handing it to haproxy.
Also, a SRV record with a weight of 0 doesn't mean the server shouldn't be
used, so use a minimum weight of 1.
This should probably be backported to 1.8.
Since commit f9ce57e ("MEDIUM: connection: make conn_sock_shutw() aware
of lingering"), we refrain from performing the shutw() on the socket if
there is no lingering risk. But there is a problem with this in tunnel
and in TCP modes where a client is explicitly allowed to send a shutw
to the server, eventhough it it risky.
Not doing it creates this situation reported by Ricardo Fraile and
diagnosed by Christopher : a typical HTTP client (eg: curl) connecting
via the config below to an HTTP server would receive its response,
immediately close while the server remains in keep-alive mode. The
shutr() received by haproxy from the client is "propagated" to the
server side but not acted upon because fdtab[fd].linger_risk is set,
so we expect that the next close will immediately complete this
operation.
listen proxy-tcp
bind 127.0.0.1:8888
mode tcp
timeout connect 5s
timeout server 10s
timeout client 10s
server server1 127.0.0.1:8000
But since the whole stream will not end until the server closes in
turn, the server doesn't close and haproxy expires on server timeout.
This problem has already struck by waking up an older bug and was
partially fixed with commit 8059351 ("BUG/MEDIUM: http: don't disable
lingering on requests with tunnelled responses") though it was not
enough.
The problem is that linger_risk is not suited here. In fact we need to
know whether or not it is desired to close normally or silently, and
whether or not a shutr() has already been received on this connection.
This is the approach this patch takes, and it solves the problem for
the various difficult modes (tcp, http-server-close, pretend-keepalive).
This fix needs to be backported to 1.8. Many thanks to Ricardo for
providing very detailed traces and configurations.
The new function check_request_for_cacheability() is used to check if
a request may be served from the cache, and/or allows the response to
be stored into the cache. For this it checks the cache-control and
pragma header fields, and adjusts the existing TX_CACHEABLE and a new
TX_CACHE_IGNORE flags.
For now, just like its response side counterpart, it only checks the
first value of the header field. These functions should be reworked to
improve their parsers and validate all elements.
By copying the info in the stream interface that the mux cleanly reports
aborts, we'll have the ability to check this flag wherever needed regardless
of the presence of a mux or not.
This new field will be used to describe certain properties of some
muxes. For now we only add MX_FL_CLEAN_ABRT to indicate that a mux
is able to unambiguously report aborts using CS_FL_ERROR contrary
to others who may only report it via a read0. This will be used to
improve handling of the abortonclose option with H2. Other flags
may come later to report multiplexing capabilities or not, support
of client/server sides etc.
For security reasons, the spoe filter was only able to change values of
existing variables. In specific cases (ex : with LUA code), the name of
variables are unknown at the configuration parsing phase.
The force-set-var option can be enabled to register all variables.
Due to the nature of multiplexed protocols, it will often happen that
some operations are only performed on full frames, preventing any partial
operation from being performed. HTTP/2 is one such example. The current
MUX API causes a problem here because the rcv_buf() function has no way
to let the stream layer know that some data could not be read due to a
lack of room in the buffer, but that data are definitely present. The
problem with this is that the stream layer might not know it needs to
call the function again after it has made some room. And if the frame
in the buffer is not followed by any other, nothing will move anymore.
This patch introduces a new conn_stream flag CS_FL_RCV_MORE whose purpose
is to indicate on the stream that more data than what was received are
already available for reading as soon as more room will be available in
the buffer.
This patch doesn't make use of this flag yet, it only declares it. It is
expected that other similar flags may come in the future, such as reports
of pending end of stream, errors or any such event that might save the
caller from having to poll, or simply let it know that it can take some
actions after having processed data.
The thread patches adds refcount for notifications. The notifications are
used with the Lua cosocket. These refcount free the notifications when
the session is cleared. In the Lua task case, it not have sessions, so
the nofications are never cleraed.
This patch adds a garbage collector for signals. The garbage collector
just clean the notifications for which the end point is disconnected.
This patch should be backported in 1.8
The number of async fd is computed considering the maxconn, the number
of sides using ssl and the number of engines using async mode.
This patch should be backported on haproxy 1.8
In hpack_dht_make_room(), we try to fulfill this rule form RFC7541#4.4 :
"It is not an error to attempt to add an entry that is larger than the
maximum size; an attempt to add an entry larger than the maximum size
causes the table to be emptied of all existing entries and results in
an empty table."
Unfortunately it is not consistent with the way it's used in
hpack_dht_insert() as this last one will consider a success as a
confirmation it can copy the header into the table, and a failure as
an indexing error. This results in the two following issues :
- if a client sends too large a header into an empty table, this
header may overflow the table. Fortunately, most clients send
small headers like :authority first, and never mark headers that
don't fit into the table as indexable since it is counter-productive ;
- if a client sends too large a header into a populated table, the
operation fails after the table is totally flushed and the request
is not processed.
This patch fixes the two issues at once :
- a header not fitting into an empty table is always a sign that it
will never fit ;
- not fitting into the table is not an error
Thanks to Yves Lafon for reporting detailed traces demonstrating this
issue. This fix must be backported to 1.8.
If the hpack decoder sees an invalid header index, it emits value
"### ERR ###" that was used during debugging instead of rejecting the
block. This is harmless, and was detected by h2spec.
To backport to 1.8.
This BUG was introduced with:
'MEDIUM: threads/stick-tables: handle multithreads on stick tables'
The API was reviewed to handle stick table entry updates
asynchronously and the caller must now call a 'stkable_touch_*'
function each time the content of an entry is modified to
register the entry to be synced.
There was missing call to stktable_touch_* resulting in
not propagated entries to remote peers (or local one during reload)
server.h needs checks.h since it references the struct check, but depending
on the include order it will fail if check.h is included first due to this
one including server.h in turn while it doesn't need it.
Released version 1.9-dev0 with the following main changes :
- BUG/MEDIUM: stream: don't automatically forward connect nor close
- BUG/MAJOR: stream: ensure analysers are always called upon close
- BUG/MINOR: stream-int: don't try to read again when CF_READ_DONTWAIT is set
- MEDIUM: mworker: Add systemd `Type=notify` support
- BUG/MEDIUM: cache: free callback to remove from tree
- CLEANUP: cache: remove unused struct
- MEDIUM: cache: enable the HTTP analysers
- CLEANUP: cache: remove wrong comment
- MINOR: threads/atomic: rename local variables in macros to avoid conflicts
- MINOR: threads/plock: rename local variables in macros to avoid conflicts
- MINOR: threads/atomic: implement pl_mb() in asm on x86
- MINOR: threads/atomic: implement pl_bts() on non-x86
- MINOR: threads/build: atomic: replace the few inlines with macros
- BUILD: threads/plock: fix a build issue on Clang without optimization
- BUILD: ebtree: don't redefine types u32/s32 in scope-aware trees
- BUILD: compiler: add a new type modifier __maybe_unused
- BUILD: h2: mark some inlined functions "unused"
- BUILD: server: check->desc always exists
- BUG/MEDIUM: h2: properly report connection errors in headers and data handlers
- MEDIUM: h2: add a function to emit an HTTP/1 request from a headers list
- MEDIUM: h2: change hpack_decode_headers() to only provide a list of headers
- BUG/MEDIUM: h2: always reassemble the Cookie request header field
- BUG/MINOR: systemd: ignore daemon mode
- CONTRIB: spoa_example: allow to compile outside HAProxy.
- CONTRIB: spoa_example: remove bref, wordlist, cond_wordlist
- CONTRIB: spoa_example: remove last dependencies on type "sample"
- CONTRIB: spoa_example: remove SPOE enums that are useless for clients
- CLEANUP: cache: reorder includes
- MEDIUM: shctx: use unsigned int for len and block_count
- MEDIUM: cache: "show cache" on the cli
- BUG/MEDIUM: cache: use key=0 as a condition for freeing
- BUG/MEDIUM: cache: refcount forbids to free the objects
- BUG/MEDIUM: cache fix cli_kws structure
- BUG/MEDIUM: deinit: correctly deinitialize the proxy and global listener tasks
- BUG/MINOR: ssl: Always start the handshake if we can't send early data.
- MINOR: ssl: Don't disable early data handling if we could not write.
- MINOR: pools: prepare functions to override malloc/free in pools
- MINOR: pools: implement DEBUG_UAF to detect use after free
- BUG/MEDIUM: threads/time: fix time drift correction
- BUG/MEDIUM: threads/time: maintain a common time reference between all threads
- MINOR: sample: Add "thread" sample fetch
- BUG/MINOR: Use crt_base instead of ca_base when crt is parsed on a server line
- BUG/MINOR: stream: fix tv_request calculation for applets
- BUG/MAJOR: h2: always remove a stream from the send list before freeing it
- BUG/MAJOR: threads/task: dequeue expired tasks under the WQ lock
- MINOR: ssl: Handle reading early data after writing better.
- MINOR: mux: Make sure every string is woken up after the handshake.
- MEDIUM: cache: store sha1 for hashing the cache key
- MINOR: http: implement the "http-request reject" rule
- MINOR: h2: send RST_STREAM before GOAWAY on reject
- MEDIUM: h2: don't gracefully close the connection anymore on Connection: close
- MINOR: h2: make use of client-fin timeout after GOAWAY
- MEDIUM: config: ensure that tune.bufsize is at least 16384 when using HTTP/2
- MINOR: ssl: Handle early data with BoringSSL
- BUG/MEDIUM: stream: always release the stream-interface on abort
- BUG/MEDIUM: cache: free ressources in chn_end_analyze
- MINOR: cache: move the refcount decrease in the applet release
- BUG/MINOR: listener: Allow multiple "process" options on "bind" lines
- MINOR: config: Support a range to specify processes in "cpu-map" parameter
- MINOR: config: Slightly change how parse_process_number works
- MINOR: config: Export parse_process_number and use it wherever it's applicable
- MINOR: standard: Add my_ffsl function to get the position of the bit set to one
- MINOR: config: Add auto-increment feature for cpu-map
- MINOR: config: Support partial ranges in cpu-map directive
- MINOR:: config: Remove thread-map directive
- MINOR: config: Add the threads support in cpu-map directive
- MINOR: config: Add threads support for "process" option on "bind" lines
- MEDIUM: listener: Bind listeners on a thread subset if specified
- CLEANUP: debug: Use DPRINTF instead of fprintf into #ifdef DEBUG_FULL/#endif
- CLEANUP: log: Rename Alert/Warning in ha_alert/ha_warning
- MINOR/CLEANUP: proxy: rename "proxy" to "proxies_list"
- CLEANUP: pools: rename all pool functions and pointers to remove this "2"
- DOC: update the roadmap file with the latest changes merged in 1.8
- DOC: fix mangled version in peers protocol documentation
- DOC: add initial peers protovol v2.0 documentation.
- DOC: mention William as maintainer of the cache and master-worker
- DOC: add Christopher and Emeric as maintainers of the threads
- MINOR: cache: replace a fprint() by an abort()
- MEDIUM: cache: max-age configuration keyword
- DOC: explain HTTP2 timeout behavior
- DOC: cache: configuration and management
- MAJOR: mworker: exits the master on failure
- BUG/MINOR: threads: don't drop "extern" on the lock in include files
- MINOR: task: keep a pointer to the currently running task
- MINOR: task: align the rq and wq locks
- MINOR: fd: cache-align fdtab and fdcache locks
- MINOR: buffers: cache-align buffer_wq_lock
- CLEANUP: server: reorder some fields in struct server to save 40 bytes
- CLEANUP: proxy: slightly reorder the struct proxy to reduce holes
- CLEANUP: checks: remove 16 bytes of holes in struct check
- CLEANUP: cache: more efficiently pack the struct cache
- CLEANUP: fd: place the lock at the beginning of struct fdtab
- CLEANUP: pools: align pools on a cache line
- DOC: config: add a few bits about how to configure HTTP/2
- BUG/MAJOR: threads/queue: avoid recursive locking in pendconn_get_next_strm()
- BUILD: Makefile: reorder object files by size
pendconn_get_next_strm() is called from process_srv_queue() under the
server lock, and calls stream_add_srv_conn() with this lock held, while
the latter tries to take it again. This results in a deadlock when
a server's maxconn is reached and haproxy is built with thread support.
There are just a few pools, and they're stressed a lot, so it makes
sense to dedicate them a cache line to avoid contention and to place
the lock at the beginning.
The struct is not cache line aligned but at least, every time the lock
will appear in the same cache line as the fd it will benefit from being
accessed first. This improves the performance by about 2% on fd-intensive
workloads with 4 threads.
Commit 9dcf9b6 ("MINOR: threads: Use __decl_hathreads to declare locks")
accidently lost a few "extern" in certain lock declarations, possibly
causing certain entries to be declared at multiple places. Apparently
it hasn't caused any harm though.
The offending ones were :
- fdtab_lock
- fdcache_lock
- poll_lock
- buffer_wq_lock
This patch changes the behavior of the master during the exit of a
worker.
When a worker exits with an error code, for example in the case of a
segfault, all workers are now killed and the master leaves.
If you don't want this behavior you can use the option
"master-worker no-exit-on-failure".
During the migration to the second version of the pools, the new
functions and pool pointers were all called "pool_something2()" and
"pool2_something". Now there's no more pool v1 code and it's a real
pain to still have to deal with this. Let's clean this up now by
removing the "2" everywhere, and by renaming the pool heads
"pool_head_something".
Rename the global variable "proxy" to "proxies_list".
There's been multiple proxies in haproxy for quite some time, and "proxy"
is a potential source of bugs, a number of functions have a "proxy" argument,
and some code used "proxy" when it really meant "px" or "curproxy". It worked
by pure luck, because it usually happened while parsing the config, and thus
"proxy" pointed to the currently parsed proxy, but we should probably not
rely on this.
[wt: some of these are definitely fixes that are worth backporting]
It is now possible on a "bind" line (or a "stats socket" line) to specify the
thread set allowed to process listener's connections. For instance:
# HTTPS connections will be processed by all threads but the first and HTTP
# connection will be processed on the first thread.
bind *:80 process 1/1
bind *:443 ssl crt mycert.pem process 1/2-
Now, it is possible to bind CPU at the thread level instead of the process level
by defining a thread set in "cpu-map" directives. Thus, its format is now:
cpu-map [auto:]<process-set>[/<thread-set>] <cpu-set>...
where <process-set> and <thread-set> must follow the format:
all | odd | even | number[-[number]]
Having a process range and a thread range in same time with the "auto:" prefix
is not supported. Only one range is supported, the other one must be a fixed
number. But it is allowed when there is no "auto:" prefix.
Because it is possible to define a mapping for a process and another for a
thread on this process, threads will be bound on the intersection of their
mapping and the one of the process on which they are attached. If the
intersection is null, no specific binding will be set for the threads.
The prefix "auto:" can be added before the process set to let HAProxy
automatically bind a process to a CPU by incrementing process and CPU sets. To
be valid, both sets must have the same size. No matter the declaration order of
the CPU sets, it will be bound from the lower to the higher bound.
Examples:
# all these lines bind the process 1 to the cpu 0, the process 2 to cpu 1
# and so on.
cpu-map auto:1-4 0-3
cpu-map auto:1-4 0-1 2-3
cpu-map auto:1-4 3 2 1 0
# bind each process to exaclty one CPU using all/odd/even keyword
cpu-map auto:all 0-63
cpu-map auto:even 0-31
cpu-map auto:odd 32-63
# invalid cpu-map because process and CPU sets have different sizes.
cpu-map auto:1-4 0 # invalid
cpu-map auto:1 0-3 # invalid
The cache was relying on the txn->uri for creating its key, which was a
big problem when there was no log activated.
This patch does a sha1 of the host + uri, and stores it in the txn.
When a object is stored, the eb32node uses the first 32 bits of the hash
as a key, and the whole hash is stored in the cache entry.
During a lookup, the truncated hash is used, and when it matches an
entry we check the real sha1.
It can happen that we want to read early data, write some, and then continue
reading them.
To do so, we can't reuse tmp_early_data to store the amount of data sent,
so introduce a new member.
If we read early data, then ssl_sock_to_buf() is now the only responsible
for getting back to the handshake, to make sure we don't miss any early data.
This code has been used successfully a few times in the past to detect
that a pool was used after being freed. Its main goal is to allocate a
full page for each object so that they are always released individually
and unmapped from memory. This way if any part of the code reference the
object after is was freed and before it is reallocated, a segv occurs at
the exact offending location. It does a few extra things such as writing
to the memory area before freeing to detect double-frees and free of
read-only areas, and placing the data at the end of the page instead of
the beginning so that out of bounds accesses are easier to spot. The
amount of memory used with this is huge (about 10 times the regular
usage) but it can be useful sometimes.
Allows bigger objects to be cached in the shctx, the first
implementation was only storing small ssl session, but we want to store
bigger HTTP response.
The current H2 to H1 protocol conversion presents some issues which will
require to perform some processing on certain headers before writing them
so it's not possible to convert HPACK to H1 on the fly.
This commit modifies the headers decoding so that it now works in two
phases : hpack_decode_headers() only decodes the HPACK stream in the
HEADERS frame and puts the result into a list. Headers which require
storage (huffman-compressed or from the dynamic table) are stored in
a chunk allocated by the H2 demuxer. Then once the headers are properly
decoded into this list, h2_make_h1_request() is called with this list
to produce the HTTP/1.1 request into the destination buffer. The list
necessarily enforces a limit. Here we use 2*MAX_HTTP_HDR, which means
that we can have as many individual cookies as we have regular headers
if a client decides to break their cookies into multiple values. This
seams reasonable and will allow the H1 parser to decide whether it's
too much or not.
Thus the output stream is not produced on the fly anymore and this will
permit to deal with certain corner cases like reparing the Cookie header
(which for now is not done).
In order to limit header duplication and parsing, the known pseudo headers
continue to be passed by their index : the name element in the list then
has a NULL pointer and the value is the pseudo header's index. Given that
these ones represent about half of the incoming requests and need to be
found quickly, it maintains an acceptable level of performance.
The code was significantly reduced by doing this because the orignal code
had to deal with HPACK and H1 combinations (eg: index vs not indexed, etc)
and now the HPACK decoding is totally focused on the decompression, and
the H1 encoding doesn't have to deal with the issue of wrapping input for
example.
One bug was addressed here (though it couldn't happen at the moment). The
H2 demuxer used to detect a failure to write the request into the H1 buffer
and would then detect if the output buffer wraps, realign it and try again.
The problem by doing so was that the HPACK context was already modified and
not rewindable. Thus the size check is now performed first and a failure is
reported if it doesn't fit.
The current H2 to H1 protocol conversion presents some issues which will
require to perform some processing on certain headers before writing them
so it's not possible to convert HPACK to H1 on the fly.
Here we introduce a function which performs half of what hpack_decode_header()
used to do, which is to take a list of headers on input and emit the
corresponding request in HTTP/1.1 format. The code is the same and functions
were renamed to be prefixed with "h2" instead of "hpack", though it ends
up being simpler as the various HPACK-specific cases could be fused into
a single one (ie: add header).
Moving this part here makes a lot of sense as now this code is specific to
what is documented in HTTP/2 RFC 7540 and will be able to deal with special
cases related to H2 to H1 conversion enumerated in section 8.1.
Various error codes which were previously assigned to HPACK were never
used (aside being negative) and were all replaced by -1 with a comment
indicating what error was detected. The code could be further factored
thanks to this but this commit focuses on compatibility first.
This code is not yet used but builds fine.
While gcc only emits warnings about unused static functions, Clang also
emits such a warning when the functions are inlined. This is a bit
annoying at certain places where functions are provided to manipulate
multiple data types and are not yet used. Let's have a type modifier
"__maybe_unused" which sets the "unused" attribute like the Linux kernel
does. It's elegant as it allows the code author to indicate that it knows
that this element might be unused. It works on variables as well, which
is convenient to remove ifdefs around local variables in certain functions,
but doesn't work on labels.
[ plock commit 4c53fd3a0b2b1892817cebd0db012a52f4087850 ]
Pieter Baauw reported a build issue affecting haproxy after plock was
included. It happens that expressions of the form :
if ((const) ? (expr1) : (expr2))
do_something()
always produce code for both expr1 and expr2 on Clang when building
without optimization. The resulting asm code is even funny, basically
doing :
mov reg, 1
cmp reg, 1
...
This causes our sizeof() tests to fail to build because we purposely
dereference a fake function that reports the location and nature of the
inconsistency, but this fake function appears in the object code despite
all conditions being there to avoid it.
However the compiler is still smart enough to optimize away code doing
if (const)
do_something()
So we simply repeat the condition before do_something(), and the dummy
function is not referenced anymore unless really required.
[ plock commit 61e255286ae32e83e1a3174dd7c49eda99880a8b]
There are a few inlines such as pl_barrier() and pl_cpu_relax() which
are used a lot. Unfortunately, while building test code at -O0, inlining
is disabled and these ones are called a lot and show up a lot in any
profile, are traced into when single-stepping with a debugger, etc, thus
they are polluting the landscape. Since they're single-asm statements,
there is no reason for not turning them into macros.
The result becomes fairly visible here at -O0 :
$ size latency.inline latency.macro
text data bss dec hex filename
11431 692 656 12779 31eb treelock.inline
10967 692 656 12315 301b treelock.macro
And it was verified that regularly optimized code remains strictly identical.