The "reqtarpit" rule is not very handy to use. Now that we have more
flexibility with "http-request", let's finally make the tarpit rules
usable there.
There are still semantical differences between apply_filters_to_request()
and http_req_get_intercept_rule() because the former updates the counters
while the latter does not. So we currently have almost similar code leafs
for similar conditions, but this should be cleaned up later.
These are exactly the same as the classic redirect rules except
that they can be interleaved with other http-request rules for
more flexibility.
The redirect parser should probably be changed to stop at the condition
so that the caller puts its own condition pointer. At the moment, the
redirect rule and condition are parsed at once by build_redirect_rule()
and the condition is assigned to the http_req_rule.
We now have http_apply_redirect_rule() which does all the redirect-specific
job instead of having this inside http_process_req_common().
Also one of the benefit gained from uniformizing this code is that both
keep-alive and close response do emit the PR-- flags. The fix for the
flags could probably be backported to 1.4 though it's very minor.
The previous function http_perform_redirect() was becoming confusing
so it was renamed http_perform_server_redirect() since it only applies
to server-based redirection.
Several bugs were introduced recently due to a misunderstanding of how
this function works and what it was supposed to do. Since it's supposed
to only return the pointer to a rule which aborts further processing of
the request, let's rename it to avoid further issues.
The function was also slightly cleaned up without any functional change.
It happens that all of them call parse_logformat_line() which sets
proxy->to_log with a number of flags affecting the line format for
all three users. For example, having a unique-id specified disables
the default log-format since fe->to_log is tested when the session
is established.
Similarly, having "option logasap" will cause "+" to be inserted in
unique-id or headers referencing some of the fields depending on
LW_BYTES.
This patch first removes most of the dependency on fe->to_log whenever
possible. The first possible cleanup is to stop checking fe->to_log
for being null, considering that it always contains at least LW_INIT
when any such usage is made of the log-format!
Also, some checks are wrong. s->logs.logwait cannot be nulled by
"logwait &= ~LW_*" since LW_INIT is always there. This results in
getting the wrong log at the end of a request or session when a
unique-id or add-header is set, because logwait is still not null
but the log-format is not checked.
Further cleanups are required. Most LW_* flags should be removed or at
least replaced with what they really mean (eg: depend on client-side
connection, depend on server-side connection, etc...) and this should
only affect logging, not other mechanisms.
This patch fixes the default log-format and tries to limit interferences
between the log formats, but does not pretend to do more for the moment,
since it's the most visible breakage.
After the response headers are sent and the request processing is done,
the buffers are wiped out and the stream interface is closed. We must
then disable the request analysers, otherwise some processing will
happen on a closed stream interface and empty buffers which do not
match, causing all sort of crashes. This issue was introduced with
recent work on the stats, and was reported by Seri.
Previous commit was still wrong, it broke add-header and set-header
because we don't want to leave on these actions.
The http_check_access_rule() function should be redesigned, it was
initially thought for allow/deny rules but now it is executing other
non-final rules and at the same time returning a pointer to the last
final rule. That becomes a bit confusing and will need to be addressed
before we implement redirect and return.
This commit adding http-request add-header/set-header unfortunately introduced
a regression to the handling of the stats page which is not matched anymore.
Thanks to Dmitry Sivachenko for reporting this.
These two new statements allow to pass information extracted from the request
to the server. It's particularly useful for passing SSL information to the
server, but may be used for various other purposes such as combining headers
together to emulate internal variables.
At the moment, we need trash chunks almost everywhere and the only
correctly implemented one is in the sample code. Let's move this to
the chunks so that all other places can use this allocator.
Additionally, the get_trash_chunk() function now really returns two
different chunks. Previously it used to always overwrite the same
chunk and point it to a different buffer, which was a bit tricky
because it's not obvious that two consecutive results do alias each
other.
The HTTP header injection that are performed in dumpstats when responding
or when redirecting a POST request have nothing to do in dumpstats. They
do not use any state from the stats, and are 100% HTTP. Let's make the
headers there in the HTTP core, and have dumpstats only produce stats.
The dumpstats code looks like a spaghetti plate. Several functions are
supposed to be able to do several things but rely on complex states to
dispatch the work to independant functions. Most of the HTML output is
performed within the switch/case statements of the whole state machine.
Let's clean this up by adding new functions to emit the data and have
a few more iterators to avoid relying on so complex states.
The new stats dump sequence looks like this for CLI and for HTTP :
cli_io_handler()
-> stats_dump_sess_to_buffer() // "show sess"
-> stats_dump_errors_to_buffer() // "show errors"
-> stats_dump_raw_info_to_buffer() // "show info"
-> stats_dump_raw_info()
-> stats_dump_raw_stat_to_buffer() // "show stat"
-> stats_dump_csv_header()
-> stats_dump_proxy()
-> stats_dump_px_hdr()
-> stats_dump_fe_stats()
-> stats_dump_li_stats()
-> stats_dump_sv_stats()
-> stats_dump_be_stats()
-> stats_dump_px_end()
http_stats_io_handler()
-> stats_http_redir()
-> stats_dump_http() // also emits the HTTP headers
-> stats_dump_html_head() // emits the HTML headers
-> stats_dump_csv_header() // emits the CSV headers (same as above)
-> stats_dump_http_info() // note: ignores non-HTML output
-> stats_dump_proxy() // same as above
-> stats_dump_http_end() // emits HTML trailer
When a server responds prematurely to a POST request, haproxy used to
cause the transfer to be aborted before the end. This is problematic
because this causes the client to receive a TCP reset when it tries to
push more data, generally preventing it from receiving the response
which contain the reason for the premature reponse (eg: "entity too
large" or an authentication request).
From now on we take care of allowing the upload traffic to flow to the
server even when the response has been received, since the server is
supposed to drain it. That way the client receives the server response.
This bug has been present since 1.4 and the fix should probably be
backported there.
The two ACL fetches "resp_ver" and "status", if used in a request despite
the warning, would return a match of zero length. This is inappropriate,
better return a non-match to be more consistent with other ACL processing.
This returns the concatenation of the base32 fetch and the src fetch.
The resulting type is of type binary, with a size of 8 or 20 bytes
depending on the source address family. This can be used to track
per-IP, per-URL counters.
This returns a 32-bit hash of the value returned by the "base"
fetch method above. This is useful to track per-URL activity on
high traffic sites without having to store all URLs. Instead a
shorter hash is stored, saving a lot of memory. The output type
is an unsigned integer.
Until now it was only possible to use track-sc1/sc2 with "src" which
is the IPv4 source address. Now we can use track-sc1/sc2 with any fetch
as well as any transformation type. It works just like the "stick"
directive.
Samples are automatically converted to the correct types for the table.
Only "tcp-request content" rules may use L7 information, and such information
must already be present when the tracking is set up. For example it becomes
possible to track the IP address passed in the X-Forwarded-For header.
HTTP request processing now also considers tracking from backend rules
because we want to be able to update the counters even when the request
was already parsed and tracked.
Some more controls need to be performed (eg: samples do not distinguish
between L4 and L6).
If a client aborts a request with an error (typically a TCP reset), we must
log a 400. Till now we did not set the status nor close the stream interface,
causing the request to attempt to be forwarded and logging a 503.
Should be backported to 1.4 which is affected as well.
To ensure that we only count when a response was compressed, we also
check for the SN_COMP_READY flag which indicates that the compression
was effectively initialized. Comp_algo alone is meaningless.
Compression was not disabled on 1xx, 204, 304 nor HEAD requests. This
is not really a problem, but it reports more compressed responses than
really done.
Let's only look up the content-type header once. This involves
inverting the condition which is not dramatic.
Also, we now always check the value length before comparing it, and we
always reset the ctx.idx before looking a header up. Otherwise that
could make header lookups depend on their on-wire order. It would be
a minor issue however since at worst it would cause some responses not
to be compressed.
The compression is disabled when the HTTP status code is not 200, indeed
compression on some HTTP code can create issues (ex: 206, 416).
Multipart message should not be compressed eitherway.
If a client aborts with an abortonclose flag, the close is forwarded
to the server and when server response is processed, the analyser thinks
it's the server who has closed first, and logs flags "SD" or "SH" and
counts a server error. In order to avoid this, we now first detect that
the client has closed and log a client abort instead.
This likely is the reason why many people have been observing a small rate
of SD/SH flags without being able to find what the error was.
This fix should probably be backported to 1.4.
Depending on the content-types and accept-encoding fields, some responses
might or might not be compressed. Let's have a counter of the number of
compressed responses and report it in the stats to help improve compression
usage.
Some cosmetic issues were fixed in the CSV output too (missing commas at the
end).
Some users need more than 64 characters to log large cookies. The limit
was set to 63 characters (and not 64 as previously documented). Now it
is possible to change this using the global "tune.http.cookielen" setting
if required.
New option 'maxcompcpuusage' in global section.
Sets the maximum CPU usage HAProxy can reach before stopping the
compression for new requests or decreasing the compression level of
current requests. It works like 'maxcomprate' but with the Idle.
This patch makes changes in the http_response_forward_body state
machine. It checks if the compress algorithm had consumed data before
swapping the temporary and the input buffer. So it prevents null sized
zlib chunks.
Disabling compression based on the content-type was improperly done since the
introduction of the COMP_READY flag, sometimes resulting in truncated responses.
There was a possible memory leak in the zlib code when the first response of
a keep-alive session was compressed, because the next request would reset the
compression algo, preventing a later call to session_free() from releasing it.
The reason is that it is necessary to release the assigned resources in
http_end_txn_clean_session().
Instead of storing a couple of (int, ptr) in the struct connection
and the struct session, we use a different method : we only store a
pointer to an integer which is stored inside the target object and
which contains a unique type identifier. That way, the pointer allows
us to retrieve the object type (by dereferencing it) and the object's
address (by computing the displacement in the target structure). The
NULL pointer always corresponds to OBJ_TYPE_NONE.
This reduces the size of the connection and session structs. It also
simplifies target assignment and compare.
In order to improve the generated code, we try to put the obj_type
element at the beginning of all the structs (listener, server, proxy,
si_applet), so that the original and target pointers are always equal.
A lot of code was touched by massive replaces, but the changes are not
that important.
Some servers are not totally HTTP-compliant when it comes to parsing the
Connection header. This is particularly true with WebSocket where it happens
from time to time that a server doesn't support having a "close" token along
with the "Upgrade" token in the Connection header. This broken behaviour has
also been noticed on some clients though the problem is less frequent on the
response path.
Sometimes the workaround consists in enabling "option http-pretend-keepalive"
to leave the request Connection header untouched, but this is not always the
most convenient solution. This patch introduces a new solution : haproxy now
also looks for the "Upgrade" token in the Connection header and if it finds
it, then it refrains from adding any other token to the Connection header
(though "keep-alive" and "close" may still be removed if found). The same is
done for the response headers.
This way, WebSocket much with less changes even when facing non-compliant
clients or servers. At least it fixes the DISCONNECT issue that was seen
on the websocket.org test.
Note that haproxy does not change its internal mode, it just refrains from
adding new tokens to the connection header.
si_fd() is not used a lot, and breaks builds on OpenBSD 5.2 which
defines this name for its own purpose. It's easy enough to remove
this one-liner function, so let's do it.
This patch adds input and output rate calcutation on the HTTP compresion
feature.
Compression can be limited with a maximum rate value in kilobytes per
second. The rate is set with the global 'maxcomprate' option. You can
change this value dynamicaly with 'set rate-limit http-compression
global' on the UNIX socket.
This optimisation causes haproxy to time out requests that result
in two TCP packets, one packet containing the header, and one
packet containing the actual data. This is a very typical type
of response from a lot of servers.
[Willy: I suspect the fix might have an impact on the compression code
which I'm not sure completely handles calls with 0 bytes to forward]
Some old browsers that have a user-agent starting with "Mozilla/4" do
not support compressison correctly, so disable compression for those.
Internet explorer 6 after Windows XP service pack 2, IE 7, and IE 8,
do however support compression and still have a user agent starting
with Mozilla/4, so we try to enable compression for those.
MSIE has a user-agent on this form:
Mozilla/4.0 (compatible; MSIE <version>; ...)
98% of MSIE 6 SP2 user agents start with
Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1
The remaining 2% have additional flags before "SV1".
This simplified matching looking for MSIE at exactly position 25
and SV1 at exacly position 51 gives a few false negatives, so sometimes
a compression opportunity is lost.
A test against 3 hours of traffic to around 3000 news sites worldwide
gives less than 0.007% (70ppm) missed compression opportunities.
Sample conversions rely on two alternative buffers which were previously
allocated as static bufs of size BUFSIZE. Now they're initialized to the
global buffer size. It was the same for HTTP authentication. Note that it
seems that none of them was prone to any mistake when dealing with the
buffer size, but better stay on the safe side by maintaining the old
assumption that a trash buffer is always "large enough".
The trash is used everywhere to store the results of temporary strings
built out of s(n)printf, or as a storage for a chunk when chunks are
needed.
Using global.tune.bufsize is not the most convenient thing either.
So let's replace trash with a chunk and directly use it as such. We can
then use trash.size as the natural way to get its size, and get rid of
many intermediary chunks that were previously used.
The patch is huge because it touches many areas but it makes the code
a lot more clear and even outlines places where trash was used without
being that obvious.