This patch implements the retrieval of the challenges objects on the
authorizations URLs. The challenges object contains a token and a
challenge url that need to be called once the challenge is setup.
Each authorization URLs contain multiple challenge objects, usually one
per challenge type (HTTP-01, DNS-01, ALPN-01... We only need to keep the
one that is relevent to our configuration.
This patch implements the newOrder action in the ACME task, in order to
ask for a new certificate, a list of SAN is sent as a JWS payload.
the ACME server replies a list of Authorization URLs. One Authorization
is created per SAN on a Order.
The authorization URLs are stored in a linked list of 'struct acme_auth'
in acme_ctx, so we can get the challenge URLs from them later.
The location header is also store as it is the URL of the order object.
https://datatracker.ietf.org/doc/html/rfc8555#section-7.4
This patch implements the retrival of the KID (account identifier) using
the pkey.
A request is sent to the newAccount URL using the onlyReturnExisting
option, which allow to get the kid of an existing account.
acme_jws_payload() implement a way to generate a JWS payload using the
nonce, pkey and provided URI.
ACME requests are supposed to be sent with a Nonce, the first Nonce
should be retrieved using the newNonce URI provided by the directory.
This nonce is stored and must be replaced by the new one received in the
each response.
The first request of the ACME protocol is getting the list of URLs for
the next steps.
This patch implements the first request and the parsing of the response.
The response is a JSON object so mjson is used to parse it.
The "acme renew" command launch the ACME task for a given certificate.
The CLI parser generates a new private key using the parameters from the
acme section..
This commit allows to configure the generated private keys, you can
configure the keytype (RSA/ECDSA), the number of bits or the curves.
Example:
acme LE
uri https://acme-staging-v02.api.letsencrypt.org/directory
account account.key
contact foobar@example.com
challenge HTTP-01
keytype ECDSA
curves P-384
Add new acme keywords for the ckch_conf parsing, which will be used on a
crt-store, a crt line in a frontend, or even a crt-list.
The cfg_postparser_acme() is called in order to check if a section referenced
elsewhere really exists in the config file.
Add a configuration parser for the new acme section, the section is
configured this way:
acme letsencrypt
uri https://acme-staging-v02.api.letsencrypt.org/directory
account account.key
contact foobar@example.com
challenge HTTP-01
When unspecified, the challenge defaults to HTTP-01, and the account key
to "<section_name>.account.key".
Section are stored in a linked list containing acme_cfg structures, the
configuration parsing is mostly resolved in the postsection parser
cfg_postsection_acme() which is called after the parsing of an acme section.
Some rare commands in the worker require to keep their input open and
terminate when it's closed ("show events -w", "wait"). Others maintain
a per-session context ("set anon on"). But in its default operation
mode, the master CLI passes commands one at a time to the worker, and
closes the CLI's input channel so that the command can immediately
close upon response. This effectively prevents these two specific cases
from being used.
Here the approach that we take is to introduce a bidirectional mode to
connect to the worker, where everything sent to the master is immediately
forwarded to the worker (including the raw command), allowing to queue
multiple commands at once in the same session, and to continue to watch
the input to detect when the client closes. It must be a client's choice
however, since doing so means that the client cannot batch many commands
at once to the master process, but must wait for these commands to complete
before sending new ones. For this reason we use the prefix "@@<pid>" for
this. It works exactly like "@" except that it maintains the channel
open during the whole execution. Similarly to "@<pid>" with no command,
"@@<pid>" will simply open an interactive CLI session to the worker, that
will be ended by "quit" or by closing the connection. This can be convenient
for the user, and possibly for clients willing to dedicate a connection to
the worker.
Same as free_proxy(), but does not free the base proxy pointer (ie: the
proxy itself may not be allocated)
Goal is to be able to cleanup statically allocated dummy proxies.
Split alloc_new_proxy() in two functions: the preparing part is now
handled by setup_new_proxy() which can be called individually, while
alloc_new_proxy() takes care of allocating a new proxy struct and then
calling setup_new_proxy() with the freshly allocated proxy.
At the moment it is not supported to produce multi-line events on the
"show events" output, simply because the LF character is used as the
default end-of-event mark. However it could be convenient to produce
well-formatted multi-line events, e.g. in JSON or other formats. UNIX
utilities have already faced similar needs in the past and added
"-print0" to "find" and "-0" to "xargs" to mention that the delimiter
is the NUL character. This makes perfect sense since it's never present
in contents, so let's do exactly the same here.
Thus from now on, "show events <ring> -0" will delimit messages using
a \0 instead of a \n, permitting a better and safer encapsulation.
In order to support delimiting output events with other characters than
just the LF, let's pass the delimiter through the API. The default remains
the LF, used by applet_append_line(), and ignored by the log forwarder.
Commit f435a2e518 ("CLEANUP: atomics: also replace __sync_synchronize()
with __atomic_thread_fence()") replaced the builtins used for barriers,
but the different API required an argument while the macros didn't specify
any, resulting in double parenthesis that were causing obscure build errors
such as "called object type 'void' is not a function or function pointer".
Let's just specify the args for the macro. No backport is needed.
Some notification_* functions were not thread safe by default as they
assumed only one producer would emit events for registered tasks.
While this suited well with the Lua sockets use-case, this proved to
be a limitation with some other event sources (ie: lua Queue class)
instead of having to deal with both the non thread safe and thread
safe variants (_mt suffix), which is error prone, let's make the
entire API thread safe regarding the event list.
Pruning functions still require that only one thread executes them,
with Lua this is always the case because there is one cleanup list
per context.
notification_new and notification_wake were historically meant to be
called by a single thread doing both the init and the wakeup for other
tasks waiting on the signals.
In this patch, we extend the API so that notification_new and
notification_wake have thread-safe variants that can safely be used with
multiple threads registering on the same list of events and multiple
threads pushing updates on the list.
This commit is a direct follow-up of the previous one. It defines a new
server keyword check-pool-conn-name. It is used as the default value for
the name parameter of idle connection hash generation.
Its behavior is similar to server keyword pool-conn-name, but reserved
for checks reuse. If check-pool-conn-name is set, it is used in priority
to match a connection for reuse. If unset, a fallback is performed on
check-sni.
Support for connection reuse during server checks was implemented
recently. This is activated with the server keyword check-reuse-pool.
Similarly to stream processing via connect_backend(), a connection hash
is calculated when trying to perform reuse for checks. This is necessary
to retrieve for a connection which shares the check connect parameters.
However, idle connections can additionnally be tagged using a
pool-conn-name or SNI under connect_backend(). Check reuse does not test
these values, which prevent to retrieve a matching connection.
Improve this by using "check-sni" value as idle connection hash input
for check reuse. be_calculate_conn_hash() API has been adjusted so that
name value can be passed as input, both when using streams or checks.
Even with the current patch, there is still some scenarii which could
not be covered for checks connection reuse. most notably, when using
dynamic pool-conn-name/SNI value. It is however at least sufficient to
cover simpler cases.
The old __sync_* API is no longer necessary since we do not support
gcc before 4.7 anymore. Let's just get rid of this code, the file is
still ugly enough without it.
Implement the possibility to reuse idle connections when performing
server checks. This is done thanks to the recently introduced functions
be_calculate_conn_hash() and be_reuse_connection().
One side effect of this change is that be_calculate_conn_hash() can now
be called with a NULL stream instance. As such, part of the functions
are adjusted accordingly.
Note that to simplify configuration, connection reuse is not performed
if any specific check connection parameters are defined on the server
line or via the tcp-check connect rule. This is performed via newly
defined tcpcheck_use_nondefault_connect().
Define a new server keyword check-reuse-pool, and its counterpart with a
"no" prefix. For the moment, only parsing is implemented. The real
behavior adjustment will be implemented in the next patch.
Adjust newly defined be_reuse_connection() API. The stream argument is
removed. This will allows checks to be able to invoke it without relying
on a stream instance.
Following the previous patch, the part directly related to connection
reuse is extracted from connect_server(). It is now define in a new
function be_reuse_connection().
On connection reuse, a hash is first calculated. It is generated from
various connection parameters, to retrieve a matching connection.
Extract hash calculation from connect_server() into a new dedicated
function be_calculate_conn_hash(). The objective is to be able to
perform connection reuse for checks, without connect_server() invokation
which relies on a stream instance.
As Ilya reported in issue #2911, the CONCAT() macro breaks on NetBSD
which defines its own as __CONCAT() (which is exactly the same). Let's
just undefine it before ours to fix the issue instead of renaming, but
keep ours so that we don't have doubts about what we're running with.
Note that the patch introducing this breaking change was backported
to 3.0.
For leastconn, servers used to just be stored in an ebtree.
Each server would be one node.
Change that so that nodes contain multiple mt_lists. Each list
will contain servers that share the same key (typically meaning
they have the same number of connections). Using mt_lists means
that as long as tree elements already exist, moving a server from
one tree element to another does no longer require the lbprm write
lock.
We use multiple mt_lists to reduce the contention when moving
a server from one tree element to another. A list in the new
element will be chosen randomly.
We no longer remove a tree element as soon as they no longer
contain any server. Instead, we keep a list of all elements,
and when we need a new element, we look at that list only if it
contains a number of elements already, otherwise we'll allocate
a new one. Keeping nodes in the tree ensures that we very
rarely have to take the lbrpm write lock (as it only happens
when we're moving the server to a position for which no
element is currently in the tree).
The number of mt_lists used is defined as FWLC_NB_LISTS.
The number of tree elements we want to keep is defined as
FWLC_MIN_FREE_ENTRIES, both in defaults.h.
The value used were picked afrer experimentation, and
seems to be the best choice of performances vs memory
usage.
Doing that gives a good boost in performances when a lot of
servers are used.
With a configuration using 500 servers, before that patch,
about 830000 requests per second could be processed, with
that patch, about 1550000 requests per second are
processed, on an 64-cores AMD, using 1200 concurrent connections.
Add two new methods to lbprm, server_deinit() and proxy_deinit(),
in case something should be done at the lbprm level when
removing servers and proxies.
Implement mt_list_try_lock_prev(), that does the same thing
as mt_list_lock_prev(), exceot if the list is locked, it
returns { NULL, NULL } instaed of waiting.
jwk_thumbprint() is a function which is a function which implements
RFC7368 and emits a JWK thumbprint using a EVP_PKEY.
EVP_PKEY_EC_to_pub_jwk() and EVP_PKEY_RSA_to_pub_jwk() were changed in
order to match what is required to emit a thumbprint (ie, no spaces or
lines and the lexicographic order of the fields)
The new function "print_cpu_set()" will print cpu sets in a human-friendly
way, with commas and dashes for intervals. The goal is to keep them compact
enough.
GCC 15 throws the following warning on fixed-size char arrays if they do not
contain terminated NUL:
src/tools.c:2041:25: error: initializer-string for array of 'char' truncates NUL terminator but destination lacks 'nonstring' attribute (17 chars into 16 available) [-Werror=unterminated-string-initialization]
2041 | const char hextab[16] = "0123456789ABCDEF";
We are using a couple of such definitions for some constants. Converting them
to flexible arrays, like: hextab[] = "0123456789ABCDEF" may have consequences,
as enlarged arrays won't fit anymore where they were possibly located due to
the memory alignement constraints.
GCC adds 'nonstring' variable attribute for such char arrays, but clang and
other compilers don't have it. Let's wrap 'nonstring' with our
__nonstring macro, which will test if the compiler supports this attribute.
This fixes the issue #2910.
By default, pools of comparable sizes are merged together. However, the
current algorithm is dumb: it rounds the requested size to the next
multiple of 16 and compares the sizes like this. This results in many
entries which are already multiples of 16 not being merged, for example
1024 and 1032 are separate, 65536 and 65540 are separate, 48 and 56 are
separate (though 56 merges with 64).
This commit changes this to consider not just the entry size but also the
average entry size, that is, it compares the average size of all objects
sharing the pool with the size of the object looking for a pool. If the
object is not more than 1% bigger nor smaller than the current average
size or if it neither 16 bytes smaller nor larger, then it can be merged.
Also, it always respects exact matches in order to avoid merging objects
into larger pools or worse, extending existing ones for no reason, and
when there's a tie, it always avoids extending an existing pool.
Also, we now visit all existing pools in order to spot the best one, we
do not stop anymore at the smallest one large enough. Theoretically this
could cost a bit of CPU but in practice it's O(N^2) with N quite small
(typically in the order of 100) and the cost at each step is very low
(compare a few integer values). But as a side effect, pools are no
longer sorted by size, "show pools bysize" is needed for this.
This causes the objects to be much better grouped together, accepting to
use a little bit more sometimes to avoid fragmentation, without causing
everyone to be merged into the same pool. Thanks to this we're now
seeing 36 pools instead of 48 by default, with some very nice examples
of compact grouping:
- Pool qc_stream_r (80 bytes) : 13 users
> qc_stream_r : size=72 flags=0x1 align=0
> quic_cstrea : size=80 flags=0x1 align=0
> qc_stream_a : size=64 flags=0x1 align=0
> hlua_esub : size=64 flags=0x1 align=0
> stconn : size=80 flags=0x1 align=0
> dns_query : size=64 flags=0x1 align=0
> vars : size=80 flags=0x1 align=0
> filter : size=64 flags=0x1 align=0
> session pri : size=64 flags=0x1 align=0
> fcgi_hdr_ru : size=72 flags=0x1 align=0
> fcgi_param_ : size=72 flags=0x1 align=0
> pendconn : size=80 flags=0x1 align=0
> capture : size=64 flags=0x1 align=0
- Pool h3s (56 bytes) : 17 users
> h3s : size=56 flags=0x1 align=0
> qf_crypto : size=48 flags=0x1 align=0
> quic_tls_se : size=48 flags=0x1 align=0
> quic_arng : size=56 flags=0x1 align=0
> hlua_flt_ct : size=56 flags=0x1 align=0
> promex_metr : size=48 flags=0x1 align=0
> conn_hash_n : size=56 flags=0x1 align=0
> resolv_requ : size=48 flags=0x1 align=0
> mux_pt : size=40 flags=0x1 align=0
> comp_state : size=40 flags=0x1 align=0
> notificatio : size=48 flags=0x1 align=0
> tasklet : size=56 flags=0x1 align=0
> bwlim_state : size=48 flags=0x1 align=0
> xprt_handsh : size=48 flags=0x1 align=0
> email_alert : size=56 flags=0x1 align=0
> caphdr : size=41 flags=0x1 align=0
> caphdr : size=41 flags=0x1 align=0
- Pool quic_cids (32 bytes) : 13 users
> quic_cids : size=16 flags=0x1 align=0
> quic_tls_ke : size=32 flags=0x1 align=0
> quic_tls_iv : size=12 flags=0x1 align=0
> cbuf : size=32 flags=0x1 align=0
> hlua_queuew : size=24 flags=0x1 align=0
> hlua_queue : size=24 flags=0x1 align=0
> promex_modu : size=24 flags=0x1 align=0
> cache_st : size=24 flags=0x1 align=0
> spoe_appctx : size=32 flags=0x1 align=0
> ehdl_sub_tc : size=32 flags=0x1 align=0
> fcgi_flt_ct : size=16 flags=0x1 align=0
> sig_handler : size=32 flags=0x1 align=0
> pipe : size=24 flags=0x1 align=0
- Pool quic_crypto (1032 bytes) : 2 users
> quic_crypto : size=1032 flags=0x1 align=0
> requri : size=1024 flags=0x1 align=0
- Pool quic_conn_r (65544 bytes) : 2 users
> quic_conn_r : size=65536 flags=0x1 align=0
> dns_msg_buf : size=65540 flags=0x1 align=0
On a very unscientific test consisting in sending 1 million H1 requests
and 1 million H2 requests to the stats page, we're seeing an ~6% lower
memory usage with the patch:
before the patch:
Total: 48 pools, 4120832 bytes allocated, 4120832 used (~3555680 by thread caches).
after the patch:
Total: 36 pools, 3880648 bytes allocated, 3880648 used (~3299064 by thread caches).
This should be taken with care however since pools allocate and release
in batches.
When using hash-based load balancing, requests are always assigned to
the server corresponding to the hash bucket for the balancing key,
without taking maxconn or maxqueue into account, unlike in other load
balancing methods like 'first'. This adds a new backend directive that
can be used to take maxconn and possibly maxqueue in that context. This
can be used when hashing is desired to achieve cache locality, but
sending requests to a different server is preferable to queuing for a
long time or failing requests when the initial server is saturated.
By default, affinity is preserved as was the case previously. When
'hash-preserve-affinity' is set to 'maxqueue', servers are considered
successively in the order of the hash ring until a server that does not
have a full queue is found.
When 'maxconn' is set on a server, queueing cannot be disabled, as
'maxqueue=0' means unlimited. To support picking a different server
when a server is at 'maxconn' irrespective of the queue,
'hash-preserve-affinity' can be set to 'maxconn'.
Define a new global configuration tune.quic.frontend.max-data. This
allows users to explicitely set the value for the corresponding QUIC TP
initial-max-data, with direct impact on haproxy memory consumption.
A new structure quic_tune has recently been defined. Its purpose is to
store global options related to QUIC. Previously, only the tunable to
toggle pacing was stored in it.
This commit moves several QUIC related tunable from global to quic_tune
structure. This better centralizes QUIC configuration option and gives
room for future generic options.
By default, create_pool() tries to merge similar pools into one. But when
dealing with certain bugs, it's hard to say which ones were merged together.
We do have the information at registration time, so let's just create a
list of registrations ("pool_registration") attached to each pool, that
will store that information. It can then be consulted on the CLI using
"show pools detailed", where the names, sizes, alignment and flags are
reported.
alt_name will be used by metric exporters to know how the metric should be
presented to the user. If the alt_name is NULL, the metric should be
ignored. For now only promex exporter will make use of this.